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Atmospheric nitrogen (N) deposition has been shown to decrease
plant species richness along regional deposition gradients in Europe
and in experimental manipulations. However, the general response
of species richness to N deposition across different vegetation types,
soil conditions, and climates remains largely unknown even though
responses may be contingent on these environmental factors. We
assessed the effect of N deposition on herbaceous richness for 15,136
forest, woodland, shrubland, and grassland sites across the conti-
nental United States, to address how edaphic and climatic conditions
altered vulnerability to this stressor. In our dataset, with N deposi-
tion ranging from 1 to 19 kg N·ha−1·y−1, we found a unimodal re-
lationship; richness increased at low deposition levels and decreased
above 8.7 and 13.4 kg N·ha−1·y−1 in open and closed-canopy vege-
tation, respectively. N deposition exceeded critical loads for loss of
plant species richness in 24% of 15,136 sites examined nationwide.
There were negative relationships between species richness and
N deposition in 36% of 44 community gradients. Vulnerability to N
deposition was consistently higher in more acidic soils whereas the
moderating roles of temperature and precipitation varied across
scales. We demonstrate here that negative relationships between N
deposition and species richness are common, albeit not universal,
and that fine-scale processes can moderate vegetation responses
to N deposition. Our results highlight the importance of contingent
factors when estimating ecosystem vulnerability to N deposition
and suggest that N deposition is affecting species richness in for-
ested and nonforested systems across much of the continental
United States.

nitrogen deposition | plant species richness | diversity | soil pH | climate

Global emissions of reactive nitrogen (N) to the atmosphere
and subsequent deposition into terrestrial ecosystems have

tripled in the last century (1). This N deposition has been iden-
tified as a threat to plant diversity (2–4), and plant diversity is
linked to ecosystem stability (5), productivity (6), and other eco-
system services (7). Elevated nitrogen inputs have been shown to
cause decreases in species richness over time in small plot ex-
periments (8–10) and in regional gradient studies in Europe (11,
12). Although these studies and others have led to some gener-
alizations about the impacts of N deposition on plant diversity,
most of these studies have focused on grassland ecosystems and/
or, in the United States, have been fine-scale field experiments
where N is added experimentally as fertilizer. Thus, translation of
these findings to nongrassland systems or to large regions of the

United States may not be appropriate. Unlike grasslands, where
elevated N has often led to light limitations and subsequent com-
petitive exclusion (13), plant growth in the herbaceous layers of
forest understories is typically primarily light-limited (14) regard-
less of the extent of N inputs. Moreover, soil chemistry can be
heterogeneous, influencing the potential of soil acidification by
nitrogen deposition (15). In most arid ecosystems, moisture may be
more important than nutrients in controlling plant growth during
the growing season (16, 17). Finally, the level of N input at which
diversity is first impacted (18) is often unknown for many regions
because most studies use a fairly coarse experimental approach
to estimate thresholds of response or have been conducted where
there have already been high inputs of N for decades (e.g., Northern
Europe). To address these critical gaps in our knowledge of
continental-scale relationships between N deposition and plant di-
versity, we used data from herbaceous ground-layer communities
within 15,136 forest, woodland, shrubland, and grassland
sites spanning N deposition gradients across the continental
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United States. More specifically, we assessed how covarying
climate and edaphic factors affected ecosystem vulnerability
to N deposition.
Nitrogen inputs can increase diversity, decrease diversity, or

leave diversity unchanged, contingent on a host of associated
ecosystem factors. Biodiversity can be reduced through several
general mechanisms (4), including but not limited to (i) release
from N limitation that leads to increased aboveground production,
reduced light availability, and ultimately competitive exclusion (13,
19) and (ii) soil acidification and associated cation depletion and
imbalances that lead to recruitment inhibitions (20, 21). The im-
portance of N limitation likely declines in arid areas that are more
moisture-limited or in warm, wet areas favoring high net N min-
eralization, either one of which may reduce the importance of
external N inputs. In such cases, N may be less limiting to plant
growth, and therefore communities are less responsive to addi-
tional N deposition (2). Conversely, enrichment may increase
biodiversity in extremely N-poor environments where release from
N limitation does not result in competitive exclusion (22, 23) or
where soils have a high pH resistant to soil acidification (11, 24).
Because N enrichment can affect plant diversity through mul-

tiple pathways and environmental contingencies, we investigated
whether N deposition is a widespread threat to plant species di-
versity or whether some vegetation types or environments are
more vulnerable than others. We compiled herbaceous plant
species composition data from existing datasets (Table S1) that
included 15,136 sites and 3,852 herbaceous species from across the
continental United States. At each site, we calculated species
richness, the total number of unique species per plot, a commonly
used metric of diversity (25). We then extracted geospatial esti-
mates (Table S2) of N deposition, annual precipitation, mean
annual temperature, and soil pH for each site. As in several pre-
vious studies in Europe (11, 12, 26), we used a correlative ap-
proach that cannot show direct causality but can nevertheless
provide insight into the mechanisms involved in, and communities
most susceptible to, loss of diversity as a result of N deposition.
First, we analyzed relationships between plant species richness and
N deposition involving interactions with precipitation, tempera-
ture, and soil pH within two broadly defined vegetation types
(closed canopy forest vs. open canopy grasslands, shrublands, and
woodlands). We then examined the same set of predictors within

gradients defined by unique combinations of specific vegetation
communities and source datasets that spanned an adequate range
of N deposition (Methods and Table S3).

Results and Discussion
National-Scale N Deposition Critical Loads and Exceedances Analyses.
At a national scale, separating sites into open canopy (grassland,
shrubland, and woodland) versus closed canopy (forested) veg-
etation types, we found that herbaceous plant species richness was
best explained by N deposition (R1 coefficient of determination =
0.10 and 0.05 for open and closed vegetation, respectively), fol-
lowed by soil pH (R1 = 0.02 and 0.04 for open and closed vege-
tation, respectively), temperature (R1 = 0.04 and 0.01 for open and
closed vegetation, respectively), and precipitation (R1 = 0.02 and
0.004 for open and closed vegetation, respectively). Regression
analyses incorporating N deposition interaction effects with other
predictors (Table 1) showed strong hump-shaped relationships be-
tween herbaceous plant species richness and N deposition in open
canopy vegetation (Fig. 1A and Fig. S1 A and B). In open-canopy

Table 1. Parameter coefficients for species richness from
median quantile regressions

Name Open canopy (±1 SE) Closed canopy (±1 SE)

Intercept 14.9 (3.42)* 13.6 (2.55)*
N 4.69 (0.60)* 0.449 (0.33)n

N2 −0.494 (0.02)* −0.125 (0.01)*
pH −2.17 (0.46)* −1.49 (0.37)*
Precip −0.011 (0.002)* −0.003 (0.001)*
Temp −0.059 (0.18)n −0.321 (0.04)*
N:pH 0.475 (0.07)* 0.543 (0.04)*
N:precip 0.002 (0.001)* NA
N:temp −0.073 (0.03)+ NA

Regressions represent herbaceous plant species richness response to N
deposition (kg·ha−1·y−1; quadratic), soil pH, total annual precipitation (mm),
average annual temperature (°C), and interactions of N (deposition) with pH,
precipitation, and temperature. An NA (not applicable) indicates that term
didn’t appear in best model. Sample size is 11,819 sites for closed canopy
(deciduous forest, evergreen forest, and mixed forest) and 3,317 sites for
open canopy (grassland, shrubland, and woodland). Level of significance is
indicated as follows: nP ≥ 0.05, +P < 0.05, or *P < 0.001.
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Fig. 1. Herbaceous plant species richness relationships with N deposition. Raw data points (n = 15,136 sites) are gray. Surface plots represent 0.1 (red), 0.5
(median; black), and 0.9 (blue) quantile regression models (median parameters in Table 1) fitted to 3,317 open sites (combined grassland, shrubland, and
woodland) (A) and 11,819 closed canopy sites (combined deciduous, evergreen, and mixed forests) (B), as influenced by soil pH. Asterisks indicate significant
interactions (P < 0.05).
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vegetation, richness declined at lower N deposition levels in more
acidic soils—declining with N deposition above 6.5 kg·ha−1·y−1 at a
soil pH of 4.5, and declining with N deposition above 8.8 kg·ha−1·y-1

at a soil pH of 7 (Fig. 1A). In closed-canopy conditions, the in-
teraction of N deposition with soil pH was even stronger: At a soil
pH of 4.5, richness began declining when N deposition exceeded

11.6 kg·ha−1·y−1, whereas at the highest pH (8.2) there was no ev-
idence of a decline (Fig. 1B). In closed-canopy communities, there
was no significant interaction of temperature (Fig. S1C) or pre-
cipitation (Fig. S1D) with N deposition in most quantiles.
Our results demonstrate for the first time, to our knowledge,

across a wide spatial domain that multiple mechanisms may

Table 2. Critical loads (CLs) of N deposition for herbaceous plant species richness

Vegetation
CL expression (partial derivative of

species richness equation)

CL (kg N·ha−1·y−1)

CL error§Mean† Range† Range of 95% CI‡

Open canopy vegetation [4.690 + (0.475 · (soil pH)) + (0.0018 · (mm of precip.)) +
(−0.073 · (temp. (°C)))]/(−2 · −0.494)

8.7 7.4–10.3 6.4–11.3 −4.5%, 4.8%

Closed canopy vegetation [0.449 + (0.543 · (soil pH))]/(−2 · −0.125) 13.4 7.9–19.6 6.8–22.2 −6.2%, 7.7%

The critical load (CL) expression is derived using the partial derivative with respect to nitrogen of the species richness equation in Table 1, and then
evaluated locally with site-specific soil pH, precipitation, and temperature values.
†Mean and range of CLs across sites, reflecting variation in soil pH, precipitation, and temperature variables across sites but not uncertainty in coefficient
estimates.
‡Range of CL 95% confidence interval endpoints across sites (Fig. S3), reflecting both ecological variability (soil pH and climate variables) and uncertainty in
coefficient estimates, with the latter calculated from the 2.5th and 97.5th percentiles of 10,000 Monte Carlo simulations of coefficient uncertainty.
§Average of the site-specific CL % errors, calculated from the lower and upper endpoints of the 95% confidence interval of Monte Carlo simulations of
coefficient uncertainty repeated at each site.

N Deposition
  (kg/ha/yr)

0 - 5
5 - 9
9 - 11
11 - 13
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15 - 63

   Critical Load
     (kg/ha/yr)

7.4 - 9
9 - 11
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0 500 1,000250 Kilometers

Closed            Open

Fig. 2. Nitrogen deposition (gray-scale) and critical loads for nitrogen deposition based on total graminoid plus forb species richness (colored symbols). The 3,317
open sites (combined grassland, shrubland, and woodland vegetation types) are portrayed with triangles, and the 11,819 closed canopy sites (deciduous, ever-
green, and mixed forests) are portrayed with circles. Background deposition values are the average of 27 y of wet deposition (NADP 1985–2011) plus the average
of 10 y of dry deposition (CMAQ 2002–2011). Other variation in critical loads is due to the other predictor variables (soil pH, temperature, and precipitation).

4088 | www.pnas.org/cgi/doi/10.1073/pnas.1515241113 Simkin et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515241113/-/DCSupplemental/pnas.201515241SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515241113/-/DCSupplemental/pnas.201515241SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515241113/-/DCSupplemental/pnas.201515241SI.pdf?targetid=nameddest=SF3
www.pnas.org/cgi/doi/10.1073/pnas.1515241113


operate to influence the response of plant species richness to N
deposition. A decline in species richness with N deposition at low
soil pH in both open and closed canopy systems is consistent with
the soil acidification mechanism of species loss (20). At higher
soil pH, the patterns found in the two systems diverged. In-
creased species richness with N deposition in the shaded forest
understory is consistent with release from the soil acidification
mechanism combined with a limited potential for competitive
exclusion through shading—because most understory forest spe-
cies are already well adapted to shady conditions. In open canopy
systems, some species are not well adapted to shady conditions,
meaning that, even though release from soil acidification had
occurred at higher pH, competitive exclusion from light limitation
may still have been a potential factor affecting plant richness (13).
Critical loads of N deposition based on changes in herbaceous

plant species richness are defined as the point at which species losses
begin to occur (18) and are calculated here by taking the partial
derivative with respect to nitrogen of the surfaces in Fig. 1 (and
Table 1) and solving for N (Methods). Critical loads were generally
much lower in open grasslands, shrublands, and woodlands than in
closed-canopy forests (Table 2, Fig. 2, and Fig. S2). Critical load
estimates were contingent on soil pH (and in open vegetation on
climate as well), but parameter uncertainty in the critical load esti-
mates was relatively modest (Table 2 and Figs. S3 and S4). When we
subtracted N deposition critical load estimates from N deposition
values, we found that 5% of sites had exceedances of 3–8 kg·ha−1·y−1

and 19% had exceedances of up to 3 kg·ha−1·y−1 (Fig. S5). For al-
ternate exceedance calculations, a benefit-of-doubt approach [using
upper limit of 95% confidence interval (CI) of the critical load]
yields a maximum exceedance of 8.3 kg·ha−1·y−1 and 18% of sites
having positive exceedances whereas a precautionary approach
(using lower limit of 95% CI of the critical load) yields a maximum
of 9.6 kg·ha−1·y−1 and 29% of sites with positive exceedances. If
methods change N deposition estimates, then critical loads would
also increase or decrease by that same percentage.
When we applied national-scale critical loads equations (Table

2) to specific level 1 ecoregions, we were able to refine (Table S4)
previous estimated critical loads (18) as a consequence of using
many more data than were previously available across a wider range
of environmental conditions. We emphasize that all critical loads of
N deposition presented here are for total herbaceous plant species
richness from the national analysis and that critical loads may be
lower for specific species (23), functional groups (4), or ecoregions.
Furthermore, when we calculated critical load estimates (Table

2) for specific sites using our national-scale equations (Table 1), we
found that they were consistent with experimental data from long-
term N additions. Our critical load estimate of 8.4 kg N·ha−1·y−1 for
grassland at the Cedar Creek LTER site was consistent with the
critical loads estimated there using statistical extrapolation of results
from a fertilization experiment (95% inverse prediction interval of
7.3–15.8 kg N·ha−1·y−1) (10). Likewise, our estimated critical load of
11.8 kg N·ha−1·y−1 for forest in the Fernow Experimental Forest
was consistent with the interpretation (27) that ambient N de-
position already exceeded critical loads before the initiation of ex-
perimental additions at Fernow. This consistency of experimental
and gradient results strengthens our confidence in our critical load
estimates for sites without long-term experimental data.

Finer Scale N Deposition Gradients Within Specific Vegetation Communities.
Having just demonstrated relationships between plant species
richness and N deposition at a national scale, we now shift our
focus to the community scale at which many local land man-
agement activities are directed. Within community-scale de-
position gradients, we again found that relationships between
plant species richness and N deposition were often conditional
on soil and climate covariates. Plant species richness declined as
N deposition increased in 36.5% of the 44 studied gradients
(16% unconditional, 20.5% conditional on a covariate), increased

with N deposition in 18% of the gradients (4.5% unconditional,
13.5% conditional), and showed no relationship with N deposition
in 45.5% of gradients (Fig. 3). Most of the gradients where species
richness increased with N deposition had N deposition averaging
3 kg N·ha−1·y−1 or less (Fig. 4). Overall, plant species richness was
more likely to decline with increasing N deposition along gradients
with more acidic soil conditions (Fig. 4A), or warmer (Fig. 4B),
wetter (Fig. 4C) climates, broadly consistent with the national
analysis. Both the community-level and national-level analyses
showed decreases in more acidic conditions, and although the
community-level analysis showed declines under warmer conditions,
that relationship was present only for open canopy systems for the
national analysis. This restricted gradient analysis was possible
only in the subset of vegetation types that spanned an adequate N
deposition range (Table S3), but its power lies in the capacity to
detect relationships missed by national-scale analyses, and the
restriction to datasets within similar methodologies and vegetation
types to control for any potential spurious relationships.
We demonstrate the context dependency of N deposition ef-

fects using the three forested vegetation types (Acer-Betula alli-
ances, Quercus alba alliances, Pseudotsuga menziesii alliances) that
were represented in more than three separate gradients (Table
S5). In these cases, species richness declines were more readily
detected where precipitation and temperature were highest, or
where N deposition reached or exceeded 7.5–9.5 kg·ha−1·y−1.
Among the four Acer - Betula forest gradients, only the gradient
with the highest precipitation and temperature showed an un-
conditional species richness decline with N deposition. Among the
six Q. alba forest gradients, only the two gradients where N de-
position was always greater than 9.5 kg·ha−1·y−1 showed a species
richness decline with N deposition. Finally, among the four
P. menziesii forest and woodland gradients, we observed in-
creases in richness in the three gradients where deposition was always
below 4.6 kg·ha−1·y−1, but, in the gradient with up to 7.5 kg·ha−1·y−1, a
species decline emerged. Shifts in relationships for the same
vegetation type along different N deposition ranges were con-
sistent with the curved response surfaces illustrated in Fig. 1.
In grasslands and shrublands, we hypothesized that the com-

petitive exclusion mechanism of N deposition-induced species
loss would be strong because there is greater potential for some
herbaceous species to shade or grow faster than other non–shade-
tolerant or slower growing herbaceous species. Consistent with
this hypothesis, one of three shrubland gradients showed an un-
conditional decrease in plant species richness with increasing
N deposition, even though all shrubland gradients experienced
N deposition of 5 kg·ha−1·y−1 or less (Table S5). Shrublands
experiencing higher N deposition have shown even stronger re-
sponses (e.g., native species richness declines in coastal sage scrub
with N deposition beyond 8.7 kg·ha−1·y−1) (28). Grassland species
richness declined once N deposition exceeded 8 kg·ha−1·y−1

(Schizachyrium scoparium-Bouteloua curtipendula and Andropogon
gerardii-Sorghastrum nutans grasslands in Table S5), consistent
with experimental work (10) and a continental-scale study of
European grasslands (11).

Scale and Context Dependency of Species Richness Relationships with
N Deposition.Our results demonstrate that negative relationships
between N deposition and species richness are common, albeit
not universal, and that fine-scale processes seem to moderate
vegetation responses to N deposition in many areas. This scale-
dependency is consistent with the known mechanisms of bio-
diversity loss (4, 9, 29), all of which may operate simultaneously
in ecosystems. At both the national and fine scales, we identi-
fied environmental conditions where there was little to no re-
lationship between N deposition and species richness, and
conditions under which N deposition increases species richness,
which helps place previous work (30, 31) in context, and unifies
these conflicting empirical results to ecological theory. We were able
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to identify N deposition relationships with species richness by ac-
counting for heterogeneous soil pH and climate factors within distinct
vegetation types. As national-scale, high-resolution datasets for other
covariates such as herbivory (32) and disturbance history become
available, it should be possible to resolve in even finer detail this
relationship between N deposition and plant species richness.

Conclusion
Our continental-scale analysis found that the threat of N de-
position to herbaceous plant species richness is ecosystem-spe-
cific, with some ecosystems more vulnerable than others, and
some conditions conferring greater vulnerability. Ecosystems
with open vegetation (grasslands, shrublands, and woodlands)
had lower critical loads of N deposition (7.4–10.3 kg N·ha−1·y−1)
than ecosystems with closed-canopy forest vegetation (7.9–19.6
kg N·ha−1·y−1). Within these broad vegetation groups, declines in
species richness along gradients of increasing N deposition were
more likely to occur in ecosystems with acidic soils. Climate also
interacted with N deposition to help explain species richness, but
its influence was less consistent across scales. Increasing the
number of N-addition experiments with treatment levels span-
ning 2–20 kg·ha−1·y−1 and implementing them across the full
range of soil pH, climate, and vegetation types that exist on the
landscape would be a very welcome complement to the correl-
ative work that we have reported here. In the meantime, our
work suggests that the mechanism of competitive exclusion via
shading is likely of reduced strength in the comparative shade of
forest understories whereas the acidification and competitive ex-
clusion mechanisms are probably more likely to occur synergistically
in the high-light environment characteristic of grasslands. We suc-
cessfully identified ecosystems vulnerable to N deposition and re-
fined herb-based N deposition critical loads (18) by incorporating a
broad range of vegetation types, N deposition loads, soil substrates,
and climate conditions in our analysis. This identification of vul-
nerable ecosystems and influential environmental factors is critical
for managers to set monitoring and conservation priorities.

Methods
Data Acquisition and Management. We compiled vegetation data from mul-
tiple sources (Table S1) because a single standardized national dataset of
herbaceous plant species presence and abundance with sufficient spatial
coverage and plot density is not available for the United States. We retained

only terrestrial sites sampled after 1989 that had a complete inventory of
species from graminoid and forb functional groups, quantitative abundance
for each plant species, a sampling area of 100–700 m2, and known geo-
graphic coordinates. At each site, we calculated total herbaceous (defined
here as forbs and graminoids) plant species richness, a conservative measure
because total richness could remain unchanged even as invasive species
richness increases and native species richness declines.

We estimated N deposition by adding Community Multiscale Air Quality
(CMAQ) model dry deposition estimates to interpolated National Atmo-
spheric Deposition Program (NADP) wet deposition and extracting a value
based on coordinates for each site. The CMAQ version 5.0.2 dry deposition
estimate was a 10-y average (2002–2011) with 12-km resolution, using
models run in 2014 by Robin Dennis at the Environmental Protection Agency
(EPA). CMAQ dry deposition estimates, or other comparable estimates with
fine resolution, are not yet available at a national scale before 2002. The
NADP wet deposition was a 27-y average (1985–2011), which we resampled
from the raw 2.33833-km resolution to the 4-km resolution of the Parameter-
Elevation Relationships on Independent Slopes Model (PRISM) precipitation
data that had been used in the interpolation.

We extracted climate covariates [specifically, average annual precipitation
and temperature from 30-y PRISM climate normals (1981–2010)] and obtained
soil pH, where available, from the same datasets that supplied vegetation
data. If soil data from soil samples colocated with vegetation data were not
available, then pH from 1:1 water extracts from the national US Department
of Agriculture (USDA) Soil Survey Geographic (SSURGO) database was used.
We retained the 15,136 sites with nonmissing species richness and predictor
values that met the criteria for analyses at either the national scale (data
sources combined but plots filtered based on area) or gradient scale (data
sources considered separately).

Data Analysis. For our initial national-scale analysis, we began with all 15,136
sites, and then, based on expected differences in mechanisms, we divided those
sites into two broad vegetation types: namely, closed canopy (deciduous forest,
evergreen forest, and mixed forest) and open canopy (grassland, shrubland,
and woodland) vegetation types. Within each of these two groups, we de-
termined the relative importance of our four primary predictor variables
(N deposition, soil pH, precipitation, and temperature) by looking at the R1

coefficients of determination (based on absolute deviations in quantile
regression rather than squared deviations) of b-spline models with and
without these four main effects. Next, we examined nonlinear regressions
of the 0.50 (median), 0.10, and 0.90 quantiles of total herbaceous plant
species richness response to N deposition (quadratic), soil pH, mean annual
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Fig. 4. Magnitude of plant species richness changes associated with N de-
position, as moderated individually by (A) soil pH, (B) average temperature, or
(C) annual precipitation. Each point, symbolized by the mean N deposition of
that gradient (kg·ha−1·y−1), represents an individual gradient with a single
narrow vegetation type. Species richness change is calculated as the simple
slope of nitrogen deposition frommultiple regression coefficients: βN + (βN*M ×
Mi), where βN is the parameter for N deposition, βN*M is the parameter for
the interaction of N deposition and the moderating variable M, and Mi are the
mean (symbol) and range (lines) of the moderating variable M across the
gradient. Unlike in Fig. 3, each predictor variable is considered separately.

Fig. 3. Summary of relationships between plant species richness and N
deposition in 46 gradients. Gradients (uniquely defined by vegetation type
and data source) contain 6,807 sites, conditional on soil pH, average annual
temperature, annual precipitation, and N deposition interactions with each
of the other three predictors. In conditionally negative or positive gradients,
the relationship was either negative or positive, respectively, for more than
half of the range of the moderating variable(s).
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temperature, annual precipitation, and the two-way interactions involving
N deposition (i.e., N × precipitation, N × temperature, and N × soil pH) using
the quantreg package of R (version 3.0.2) software. Out of all possible models,
we selected the model with the lowest corrected Akaike information criterion
(AICc) for each of the two broad vegetation types (Table 1 and Fig. 1).

We used the median quantile regression model with the best AICc to
calculate separate critical loads of N deposition for open and closed canopy
vegetation. Qualitatively, critical loads of N deposition are defined here as
the N deposition threshold at which species richness begins to decline, cor-
responding graphically to the N deposition level at which a hump-shaped
relationship between N deposition and species richness reaches its peak value
of species richness. Quantitatively, we calculated critical loads of N deposition
by taking the first derivative of the best model with respect to nitrogen and
setting that expression to zero, for models with a negative quadratic N
deposition term. For critical loads specific to each site, we used the coeffi-
cients from the critical load expression and site-specific covariate values. We
subtracted critical loads from N deposition to determine exceedances of N
deposition critical loads. Three sets of exceedances were calculated, using (i)
the median point estimates of critical loads, as well as (ii) the upper and (iii)
the lower limits of the 95% CI of the critical loads. Only the exceedances
based on the median point estimates of critical loads are presented graph-
ically and in the Abstract.

Further community-scale analyses were focused on individual alliances as
defined by the National Vegetation Classification (NVC) (33). We analyzed

alliances with deposition gradients with maximum N deposition that was either
2.5 times or 4 kg·ha−1·y−1 greater than minimum N deposition, and that had at
least 20 sites from at least one common data source. These gradient criteria
reduced the number of sites to 6,807. For each N deposition gradient, we
performed multiple regressions of species richness against N deposition, with
the same predictor variables and the same model selection procedure as in the
national analysis (except that N deposition was only first order).

ACKNOWLEDGMENTS. Vegetation data were shared by the Forest Inventory
and Analysis Database (FIADB) Vegetation Indicators Program, the Ecological
Society of America VegBank, the Minnesota Biological Survey, the New York,
Virginia, and West Virginia Natural Heritage Programs, Robert Peet and the
Carolina Vegetation Survey, the US National Park Service Southern Colorado
Plateau Network, the University of Wisconsin Plant Ecology Laboratory, Kevin
Knutson of the US Geological Survey (USGS), and the coauthors. This paper
arose from the “Diversity and Nitrogen Deposition” working group supported
by the John Wesley Powell Center for Analysis and Synthesis, funded by the
USGS. The US Environmental Protection Agency (Contract EP-12-H-000491) and
the Cooperative Ecosystem Studies Units Network (National Park Service Grant
P13AC00407 and USGS Grant G14AC00028) provided additional funding. The
USGS supports the conclusions of research conducted by their employees, and
peer reviews and approves all of their products consistent with USGS Funda-
mental Science Practices. The views expressed in this manuscript do not nec-
essarily reflect the views or policies of the US Environmental Protection Agency
or the USDA Forest Service. Mention of trade names or commercial products
does not constitute endorsement or recommendation for use.

1. Galloway JN, et al. (2004) Nitrogen cycles: Past, present, and future. Biogeochemistry
70(2):153–226.

2. Porter EM, et al. (2013) Interactive effects of anthropogenic nitrogen enrichment and
climate change on terrestrial and aquatic biodiversity. Biogeochemistry 114(1-3):
93–120.

3. Sala OE, et al. (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):
1770–1774.

4. Bobbink R, et al. (2010) Global assessment of nitrogen deposition effects on terrestrial
plant diversity: A synthesis. Ecol Appl 20(1):30–59.

5. Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-
long grassland experiment. Nature 441(7093):629–632.

6. Isbell F, et al. (2013) Nutrient enrichment, biodiversity loss, and consequent declines in
ecosystem productivity. Proc Natl Acad Sci USA 110(29):11911–11916.

7. Isbell F, et al. (2011) High plant diversity is needed to maintain ecosystem services.
Nature 477(7363):199–202.

8. De Schrijver A, et al. (2011) Cumulative nitrogen input drives species loss in terrestrial
ecosystems. Glob Ecol Biogeogr 20(6):803–816.

9. Clark CM, et al. (2007) Environmental and plant community determinants of species
loss following nitrogen enrichment. Ecol Lett 10(7):596–607.

10. Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen de-
position to prairie grasslands. Nature 451(7179):712–715.

11. Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition
on the species richness of grasslands. Science 303(5665):1876–1879.

12. Stevens CJ, et al. (2010) Nitrogen deposition threatens species richness of grasslands
across Europe. Environ Pollut 158(9):2940–2945.

13. Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity
loss after eutrophication. Science 324(5927):636–638.

14. Neufeld HS, Young DR (2014) Ecophysiology of the herbaceous layer in temperate
deciduous forests. The Herbaceous Layer in Forests of Eastern North America, ed
Gilliam FS (Oxford Univ Press, New York), 2nd Ed, Chap 3, pp 34–95.

15. Beier CM, et al. (2012) Changes in faunal and vegetation communities along a soil
calcium gradient in northern hardwood forests. Can J For Res 42(6):1141–1152.

16. Hall SJ, et al. (2011) Ecosystem response to nutrient enrichment across an urban
airshed in the Sonoran Desert. Ecol Appl 21(3):640–660.

17. Ladwig LM, et al. (2012) Above- and belowground responses to nitrogen addition in a
Chihuahuan Desert grassland. Oecologia 169(1):177–185.

18. Pardo LH, et al. (2011) Effects of nitrogen deposition and empirical nitrogen critical
loads for ecoregions of the United States. Ecol Appl 21(8):3049–3082.

19. Bobbink R, Hicks WK (2014) Factors affecting nitrogen deposition impacts on bio-
diversity: An overview. Nitrogen Deposition, Critical Loads, and Biodiversity, eds
Sutton MA, et al. (Springer, Dordrecht, The Netherlands), Chap 14, pp 127–138.

20. Stevens CJ, Thompson K, Grime JP, Long CJ, Gowing DJG (2010) Contribution of
acidification and eutrophication to declines in species richness of calcifuge grasslands
along a gradient of atmospheric nitrogen deposition. Funct Ecol 24(2):478–484.

21. Chen DM, Lan ZC, Bai X, Grace JB, Bai YF (2013) Evidence that acidification-induced
declines in plant diversity and productivity are mediated by changes in below-ground
communities and soil properties in a semi-arid steppe. J Ecol 101(5):1322–1334.

22. Sverdrup H, et al. (2012) Testing the feasibility of using the ForSAFE-VEG model to
map the critical load of nitrogen to protect plant biodiversity in the Rocky Mountains
region, USA. Water Air Soil Pollut 223(1):371–387.

23. BowmanWD, Gartner JR, Holland K, Wiedermann M (2006) Nitrogen critical loads for
alpine vegetation and terrestrial ecosystem response: Are we there yet? Ecol Appl
16(3):1183–1193.

24. Diekmann M, et al. (2014) Long-term changes in calcareous grassland vegetation in
North-western Germany: No decline in species richness, but a shift in species com-
position. Biol Conserv 172:170–179.

25. Magurran AE (2004) Measuring Biological Diversity (Blackwell, Maldan, MA).
26. Roth T, Kohli L, Rihm B, Achermann B (2013) Nitrogen deposition is negatively related

to species richness and species composition of vascular plants and bryophytes in Swiss
mountain grassland. Agric Ecosyst Environ 178:121–126.

27. Gilliam FS (2006) Response of the herbaceous layer of forest ecosystems to excess
nitrogen deposition. J Ecol 94(6):1176–1191.

28. Fenn ME, et al. (2010) Nitrogen critical loads and management alternatives for
N-impacted ecosystems in California. J Environ Manage 91(12):2404–2423.

29. Suding KN, et al. (2005) Functional- and abundance-based mechanisms explain di-
versity loss due to N fertilization. Proc Natl Acad Sci USA 102(12):4387–4392.

30. Verheyen K, et al. (2012) Driving factors behind the eutrophication signal in under-
storey plant communities of deciduous temperate forests. J Ecol 100(2):352–365.

31. Dirnböck T, et al. (2014) Forest floor vegetation response to nitrogen deposition in
Europe. Glob Change Biol 20(2):429–440.

32. Throop HL, Lerdau MT (2004) Effects of nitrogen deposition on insect herbivory:
Implications for community and ecosystem processes. Ecosystems (N Y) 7(2):109–133.

33. Grossman DH, et al. (1998) International Classification of Ecological Communities:
Terrestrial Vegetation of the United States. The National Vegetation Classification
System: Development, Status, and Applications (The Nature Conservancy, Arlington,
VA), Vol I.

34. Lamarque JF, et al. (2013) Multi-model mean nitrogen and sulfur deposition from the
Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evalua-
tion of historical and projected future changes. Atmos Chem Phys 13(16):7997–8018.

35. Schwede DB, Lear GG (2014) A novel hybrid approach for estimating total deposition
in the United States. Atmos Environ 92:207–220.

36. Radeloff VC, et al. (2010) Housing growth in and near United States protected areas
limits their conservation value. Proc Natl Acad Sci USA 107(2):940–945.

37. Dengler J, et al., eds (2012) Vegetation databases for the 21st century. Biodivers &
Ecol 4:1–447.

38. Knutson KC, et al. (2014) Long-term effects of seeding after wildfire on vegetation in
Great Basin shrubland ecosystems. J Appl Ecol 51(5):1414–1424.

39. Dennis RL, et al. (2013) Sensitivity of continental United States atmospheric budgets
of oxidized and reduced nitrogen to dry deposition parametrizations. Philos Trans R
Soc Lond B Biol Sci 368(1621):20130124.

40. Daly C, et al. (2008) Physiographically sensitive mapping of climatological tempera-
ture and precipitation across the conterminous United States. Int J Climatol 28(15):
2031–2064.

Simkin et al. PNAS | April 12, 2016 | vol. 113 | no. 15 | 4091

EC
O
LO

G
Y




