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Abstract

The oscillating concentration distribution of a reacting species
in excess supporting electrolyte is calculated for a rotating-disk
system where a step chenge in the amplitude of the concehtrafioni
fluctuation at the surface of the disk occurs at an arbitrery
distance from the center of the_disk. The respehse of a product

’ species and of the supporting electrolyte to this step change‘is

presented also.



Introddction

Analysis of‘the‘qurrent response of‘an electhChemical cell
to an applied oscillafing pptential requires knowledge of thé interplay
_between the cuirent,distribution in the bulk of the solution, the
concentration variatiohs near the electrode, the double—layer response
to changes in composition and potential, and reaction kinetics. Our
aim is to solve this problem for the rotating-disk system, but in
this paper we show the influence of concentration variatibns oﬁly
at the surface of the disk on the cell response in terms of the
concentration gradients normal to: the surface of the disk. It has
beenvshown by Parrish and Newman1 that if one can calculate the
_ concentiationvgradients at the surface of an electrode, caused by a
step change in the concentration at said surface, one can calculate
said gradients for arbitfary surface concentration By superposition. .
This information can then be used to solve the steady-state problem
for the e1ectrode being studied, but by the samé reasoning we can
apply our knowledge of the response of an electrode to a step chénge
in the amplitude of the concentration variations to solve the
alternating problem described above. This seems pafticularly important
for the rotating disk, since thefe is no reason to assume thét the
oscillating current distribution on the surface of the disk will be
uniform; in fact, the complefe.ana;ysis shows that this is not the
case. |

Earlier calculations of the concentration impedance of a rotating

disk -- assuming a radially independent concentration distribution



have been made by Levart and Schuhmann4 and were later extended to
include homogeneous,. first-order chemical reactions by means of a

1/3

‘.Series-expansion‘in " Sc” and a dimensionless parameter involving.
renction kinetics and oscilleition'frequency.5 This expansion,
valid fﬁr high frequencieé'and any practical Schmidt numﬁer is.
“shown" by these authors6 to include as a special case the expansion
Qf,Homsy and Newman,7:valid for iarge Schmidt numbers and high
frequencies. Deslouis g}_gl}g‘investigated experimentally the
bfréquencyldiSpersiOn of a rotating disk, operated below the limiting
current. The reaction used was the reduction of ferricyanide in
»éicessvsupporting electrolyte. Their results are in surprisingly
good agreemeﬁt with the theoretical results of Levart and Schuhmann
in view of our finding that both the oscillating current distribution
and the time average current distributioﬁ for this reaction9 beiow _
the limiting current are nonuniform on the surface of the disk.
Also, the concentration fiuctuations of the produced species
(ferrocyénide) iﬂfluence the_conéeﬁtration overpotential to the
same exten£ as the reacting species.(see Newman,10 Chapter 20).
Finally, the change in the double-layer capacity isAcaused by
the fluctuations in the pétential and the fluctuations of all ionic
spe;ies in the solution just outside the double layer -- including
the supporting electrolyte; The latter fluctuations are caused
by the influence of migration on the supporting electrolyte and the
condition of electroneutrality outside the double layer. Therefore,
we have included the effect of the'supporfing'electrolyte in our

calculations.



Mathemétiéal>Formulation

In our treatmeﬁt we assume»constant transport properties of the
ionic_species and negléct the ihfluenée of migration on the minor,
reacting species. In addition, thé cation of tHe supporting electfolyte
is also the cation of the reacting species. This situation arises,
for instance, if we reduce sodiuﬁ ferricyanide td sodium ferrocyanide
in excess sodium fluoride. |

Since all transport equations used are linear, we may sebarate
the equations intova time dependent and a time indepéndent parf.
The time independent part has been treated Before, and since all time

dependent quantities fluctuate with a frequency w ;, we may write:

Aci = Ré{zi exp (jwt)} s [1]

where

¢ = lAci(r,y)I exp [jo(r,y)] . | 12

Radial diffusion is small compared to radial convection, so that the

conservation equation in cylindrical coordinates for the minor species

becomes:
) 2%, 5%, 2%, |
JWE VgtV = Dy > [3]

with the boundary conditions:

¢ =0 at y=0,r<r", ' [4]
Ei =1 at y=0, riz_r'_, v [5]
C. >0 as y >, [6]



For high Schmidt numbers we may use the expression for the velocity
‘distribution close to the disk surface. If we introduce subsequently

the dimensionless variables:

33 .
X = \—3 > [7]

C1/3 8172 | |
o) @

the conservation equation becomes:

P Y S | 5%,

i 2 2. 30 %% ,
+-3ni5n—i—JKix ci+3nix(1-x)——.ax s [9]

where K. is 4 dimensionless frequency, given by:

. L 2/3 - o
K, = ‘%SC?S (%) ) - - [10]

In this new coordinate system, th'e’ boundary conditions given by

~equations 4 - 6 are transformed into:

¢ = 1 at n; = 0, [11]
\ ci->0.as ng >, [12]
c, = Fo(n‘i) at x =0 . [13]

The function Fo»(ni) is obtained by solving equation 9 é_t x =0

with boundary conditions 11 and 12. The result is:



1 -z : _ o
Fo(ni) = I‘—(T/S_),/ e " dz . , | - [14]

The finité—difference form of equation 9 has to take into
account the behavior ofr Ei near x = 0 since this is a-singular
point of fhis equation. Therefore, an asymptotic solution was
.sought for small values of x . This solution also serves as a
check on the values obtained numerically. For this purpose, we

~

expand s in a power series in x :

(e]]

1 (,%) = Fo(ng) + Fy(n)x" « Fy(n)x” + 0GPy . [15]

Substitution of this expression into equation 9 gives a set of
coupled ordinary differential equations, and in addition we find that -
m=2,n=4,ad p=25. All these equations for Fk(ni) » Where

k>0, are‘subject to the boundary conditions:

F, =0 at o =0, F, >0 as n, >, .', [16]

since Ei evaluated from the series expansion must also satisfy

boundary conditions 11 - 13. The équation for Fll is:

dZFi , dF ‘
+ 3N, — - n.F. = jK.F_. ' [17]
dn? i dni .1 1 io

1

The solution to above equation satisfying boundary conditions 16 is:



jK. 2 3 jK. -n
F. = > n.fe-z dz - e -+
1~ 2T(4/3) ' . 6I'(4/3)
n., -
i

123K 1 : o 3
zfx / e dzdX . [18]
6(I(4/3))" | .

n,/(1-x3 /3

The differential equation for F, is:

2
a’r, L aF, | -
ng i | -

’which has been SolVed numericallyvsince #o analYtic';olutidh could

be obtained. As mentioned before, we are interested ih the flux

at the surface of the disk as a function of x, the dimensionless
distancebfrom the step change at r = r' . Using the analYtic solution
fOr'"Fo' and F1 , and the numerical solutioﬁ foi F2', we obtain

the following exPreSsion, valid for small values of x :

L I L [P(S/E)]z
TR = T T3 AT A/3) LT3
LY} .
' 1 -
0.01250457 Kix4 f 00d) . 2o

Another singular point of equation 9 occurs at x = 1 (infinitely

far away from the step change at r = r'). Proceeding in the same

manner as before, we can show that the asymptotic expansion of Ei

valid for values of x «close to 1 is:



~

g, = G, + 6,1 - x) . 6,1 - 0%+ ola - x)3] [21]

The equation for G0 is identical to the equation describing the

uniform distribution and has been calculated by Levart and Schuhmann4

and by Mohr (as reported by Homsy):?

2

a6,  , dG, | |
1 5 + 3T]i ET-]_ = JK].GO . [22]
ny 1

.wifh boundary conditions 11 and 12. Singe the equations fbr Go s Gl"
and G, do not permit us to obtain an explicit dependence of Ky
Similaf to equation 20, we have sélved G1 and G2 only for
Ki = 50 . The solutioh of equation 22 has been obtained for all
values of Ki investigated.

The linearization procedure for the convective diffusion
equation for the supporting eléctrolyte, including the effect.of

3,10

migration, has been described elsewhere. Basically, it involves

the elimination of the‘migration term by applying the electroneutrality
condition, resulting in the appearance of terms in the equation
accounting for the interaction of each major component with all

minor components in the solution. The aﬁalysis will be given for

the cation of the supporting electrolyte. Using fhe same notation

as in equation 9 with the effective diffusion coefficient De for

the supporting eiectrolyte, where



0Cd8d708ys 43

T | B s e == . 231

3¢ 2 Bc 3 3c+
>+ Sne Bn = jK x°C,  + Bnex(l x™) "X
on
e
zu (D - D) 8%& u (@ -D,) »%
R+ R’ . R + P P [24]
zuD - zubD 2 zuD -2zub -2 "
+ o+ + Bne + + Bne

In order to take separately into account the concentration changes of
supporting electrolyte, reactant and product spec1es, we f1rst solve
the above equatlon with neglect of the last two terms w1th boundary
' condltlons 11 - 13, and let its solutlon be denoted by & . This
solution is identical to the solution ofAequation 9 with D, instead
of 'Di'. 'Simiiarly, wé so1§e eﬁﬁation 24, neglecting the interaction
with the product spec1es, but w1th 8 /an evaluated from the

solution to equation 9, with the boundary conditions:

; ¢ =0 at "n =0, E; +.0 as ne > . | [25]

Let the solution be given by ,B ; the solution to equationv24 due
to intéraction.with the product species only is given by s . It
is evident that both,solutions are identical, except that é involves
_the diffusion coefficient of the reactant and & that of the product.

The asymptotic expansion of é ~ (and of 3) near x = 0 prOCeedS

along the same lines as before. Because the resulting equations are



--10-
all linear, it is easy to show that

B =B () + jKe51Cne)?2 + Kﬁézine)x4 +0(x°) [26] | -

~ ~

~ where Bo s Bl , and 82 are independent of 'Ke and real. It is

~

~

possible to obtain an analytic  expression for Eo , but not for 81

and,'é2 :

‘ . e ,
B = “R%+De °- T R f e_zsdz . [27]
o F(4/3)(z+u+D_ - z_u_D+)‘ De -D :

Numerical solutions for 81 “and éz were not attempted; with the
results obtained so far we are able to check the numberical solution
of B by evaluating both B(0) and 'aé/ane (at n, = 0 and x = 0)

and comparé these values with the values obtained by using equation

26 at x =0 :

. e z.u.D D - D \[/D \1/3 1
80) = 05 5| T ) (n_ DR)‘Kﬁg)' - }'
n =0 z,4, - -z ulb, e R R

ene

[28]

Results and Discussion
A comparison between the asymptotic solutions (equations. 15
and 21) and the nﬁmerical solution of equation 9 near x = 0 and

x = 1 shows that the valuesAand certain derivatives are identical

within 0.1 percent.
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Figures 1 and 2 show the derivatives of the real part and
the imaginary part of the reactant concentration respectively,
. evaluated at - n; = 0 . The real part is plotted_against ’x4 , the
imaéinary part against x2 . This choice, as well as the form of
the respective expressions on the ordinétes, is suggested by.the
aéymptotic solution for small values of x .- Figures 3 and 4 show
thé concentration derivative of the cation of the supporting electrolyte
due to a Stéb change in ‘the reactant concentration at the surface
of the disk (Bé/ane(ne = Q)) . Here again, the difference between
thézvalues of E(O)'-épd 8é/ane(ne =0) at x=20 calculated from .
thé-humeriéaI eva1ué£ion of. B and these values as obtained from
equation 28 was iess;fhaﬁ 0.1>§ércent. ‘The Nernst-Einstein relation
was assumed to be appliéable. | -

We shall now proceed to show ﬁow-oné can obtain the oscillating
flux distribution at the disk sqrface'for alipionie species'from
_tﬁé ¥é$ﬁits:6bt;iﬁea»sd.féf_dnée‘ihe Eonceﬁtrétion'distribufibn of
.these épecies at the surface of the disk is kﬁown. The dimensionless

flhx is defined as:7

~ . ~

Bcl 1 Bci .
oC. X, > ' [29]
i|g.=0 i . : _
i n.=0
i
since
T. = Xn. . ' | [30]
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Fig. 1. Derivative of the real part of the concentration at
n, = 0, as a function of x
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Fig. 2. Derivative of the imaginarg part of the concentration at
‘hi = 0, das”a function of x<. : :
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Fig. 3. Derivative of the real paft of the concentration fluctuations
at the disk surface of the cation of the supporting electrolyte
due to a step change in the amplitude of reactant fluctuation.
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The right side of equation 29 has been calculated as a function of -
x for a step change at r = r' . -Therefore, for arbitrary surface
concentration Ei o » We obtain the corresponding flux distribution

2

by superposition, which for the reactant becomes

3¢ d¢ d¢C. 3 »

R o R,01 1 _ T dr! [31]
IS0 dr | ___, on, A3 3 T

1 : r=r 1 r -1 -

The same expressibn holds fdr.thg product species, but the subscript
R will then be replacedlby P . For the.catién of the supporting
electrolyte we haVe shown how to take separately into account the
contribution of reactant and product species. Because of the .
linearity of equation 24 we may add these contributions in the

expression under the integral sign:

S T ~
oc, =f dc+,o aa ch,o - 8 .
Se -0 0 dr lpepr e -0 _dr' rert Mg -0
ng=0. I = Ne=

dop o)  3b | S
dr |___, o 3 .3 o [32]

r=r' ‘e r° -1

n.=0 .

Finally, the anion concentration can be calculated from the

electroneutrality equation

) z;c, =0, | [33]
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and the anion flux by taking the first derivative of this equation.

Summary

The conservation equations of minor and major species have been
solved for a rotating-disk system where a step change in the amplitude
of the concentration fluctuations at the surface of the disk occurs
at an arbitrary distance from the center of the disk. The effect
of migration on the supporting electrolyte was included in the
énalysis. Results weie.presented in the form of the flux of each
species at the surface of the disk as a function of distance from
the place where the step change occurs. The results obtained by
the‘numerical'solution of the complete‘equations were compared with
agymftotic solutions valid for short or for very large distances |
from the step change. The differences were less than 0.1 peréent.'

It was shown that through the'use of superposition integrals
these results can be‘applied to the calculation of thé oscillating
flux distribution of each ionic épecieé for arbitrary concentration

distributions of these species at the surface of the disk.
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List of Symbols
0.51023
concentration of species i, mole/cm3
deviation of species i from.its time average concentration,
mole/cm3
complex alternating concentration of species i, mole/cni3
(see equation 2)
diffusion coefficient of supporting electrolyte, cmz/s
(seé equation 23)
diffusion coefficient of~species i, cm2/s
functions in series expansion for the complex concentration
near the step change (see equation 15)

functions in series expansion for the complex concentration

- far from the step chénge (see equation 21)

V-1
dimensionless oscillating frequency based on.species i
radial distance, cm

distance from the center of the disk were a step change

occurs in the complex concentration at the disk surface, cm

Schmidt number of species i

time, s

mobility of species i, cmz—mole/J-s
radial velocity, cm/s

normal velocity, ém/s

dimensionless radial distance (see equation 7)

*

i)
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duﬁmy variable in equation 18

distance from the surface of the disk, cm

dummy variable in equations 14 and 18

éhargé number of species i

complex céncentration of the cation of the supporting
electrolyte due to a step change in its concentration at
the disk surface, mol'e/cm3

complex concentration of the cation of the supporting

electrolyte due to a step change of reactant concentration

- at the disk surface,.mole/cm3

functions in series expansion of B near the step change

‘(see equation 26)

the gamma function of the number p

complex concentration of‘the cation of the supporting

.electrolyte due to a step change in product concentration,

mole/cm3

‘dimensionless distance from the disk surface, based on the

diffusivity of species i (see equation 30)

~dimensionless distance (see equation 8)

kinematic viscosity, cm2/s
phase shift in alternating concentration, rad (see equation 2)
oscillation frequency of concentrations, rad/s

rotation speed of disk, rad/s
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subscripts
e supﬁorting elecfrolyté
P produced species -
R reacting. species
+ | cation of the supporting electrolyte

- " anion of the supporting electrolyte
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