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Abstract 

The oscillating concentration distribution of a reacting species 

in excess supporting electrolyte is calculated for a rotating-disk 

system where a step change in the amplitude of the concentration 

fluctuation at the surface of the disk occurs at an arbitrary 

dis'tance from the center of the disk. The response of a product 

species and ofthe supporting electrolyte to this step changeis 

presented also. 
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Introduction 

Analysis of the current response of an electrochemical cell 

to an applied oscillating potential requires knowledge of the interplay 

between the current distribution in the bulk of the solution, the 

concentration variations near the electrode, the double-layer response 

to changes in composition and potential, and reaction kinetics. Our 

aim is to solve this problem for the rotating-disk system, but in 

this paper we show the influence of concentration variations only 

at the surface of the disk on the cell response in terms of the 

concentration gradients normal to· the surface of the disk. It has 

been shown by Parrish and Newman1 that if one can calculate the 

concentration gradients at the surface of an electrode, caused by a 

step·change in the concentration at said surface, one can calculate 

said gradients for arbitrary surface concentration by superposition.~ 

This information can then be used to solve the steady-state problem 

for the electrode being studied, but by the same reasoning we can 

apply our knowledge of the response of an electrode to a step change 

in the amplitude of the concentration variations to solve the 

alternating problem described above. This seems particularly important 

for the rotating disk, since there is no reason to assume that the 

oscillating current distribution on the surface of the disk will be 

uniform; in fact, the complete analysis shows that this is not the 

3 case. 

Earlier calculations of the concentration impedance of a rotating 

disk -- assuming a radially independent concentration distribution 
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4 have been made by Levart and Schuhmann and were later extended to 

include homogeneous, first-order .chemical reactions by means of a 

series expansion in -1/3 Sc and a dimensionless parameter involving 

rer.ction kinetics and oscillation frequency. 5 This expansion, 

valid for high frequencies and any practical Schmidt number is 

shoWnby these authors6 to include as a special case the expansion 

of Homsy and Newman, 7 valid for large Schmidt numbers and high 

frequencies. Deslouis et ~. 8 investigated experimentally the 

frequency dispersion of a rotating disk, operated below the limiting 

current. The reaction used was the reduction of ferricyanide in 

-excess supporting electrolyte. Their results are in surprisingly 

good agreement with the theoretical results of Levart and Schuhmann 

in view of our finding that both the oscillating current distribution 
'· 

and the time average current distribution for this reaction9 below 

the limiting current are nonuniform on the surface of the disk. 

Also, the concentration fluctuations of the produced species 

(ferrocyanide) influence the _concentration overpotential- to the 

same extent as the reacting species (see Newman, 1° Chapter 20). 

Finally, the change in the double-layer capacity is caused by 

the fluctuations in the potential and the fluctuations of all ionic 

species in the solution just outside the double layer -- including 

the supporting electrolyte. The latter fluctuations are caused 

by the influence of migration on the supporting electrolyte and the 

condition of electroneutrality outside the double layer. Therefore,· 

we have included the effect of the supporting electrolyte in our 

calculations. 
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Mathematical Formulation 

In our treatment we assume constant transport properties of the 

ionic species and neglect the influence of migration on the minor, 

reacting species. In addition, the cation of the supporting electrolyte 

is also' the cation of the reacting species. This situation arises, 

for instance, if we reduce sodium ferricyanide to sodium ferrocyanide 

in excess sodium fluoride. 

Since all transport equations used are linear, we may separate 

the equations into a time dependent and a time independent part. 

The time independent part has been treated before, and since all time 

dependent quantities fluctuate with a frequency w , we may write: 

!lei = Re{(\ exp (j wt)} , , [1] 

where 

[2] 

Radial diffusion is small compared to radial convection, so that the 

conservation equation in cylindrical coordinates for the minor species 

becomes: 

with the boundary conditions: 

c. = 0 at 
l. 

c. = 1 at 
1 

c. + 
1 

0 as 

y = 0 r < 

y = 0 r > 

y+oo 

r' 

r' 

"2-
0 c. 

l. 

ai [3] 

[4] 

(5] 

[6] 
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For high Schmidt numbers we may use the expression for the velocity 

distribution close to the disk surface. If we introduce subsequently 

the dimensionless variables: 

the conservation equation becomes: 

2-a c. 
1 

--+ 
2 an. 
1 

2 ac
1
. 2 3

_ ac. 
3 0- 3 ( ) 1 n. -0-- = JK.x c. + · n.x 1 - x ~x · 

1 n. 1 1 1 a 
1 

where K. is d dimensionless frequency, given by; 
l 

In this new coordinate system, the. boundary conditions 

equations 4 - 6 are transformed into: 

c. = 1 at n. = 0 
1 1 

c. + 0 as n. +oo 
1 1 

c. = F (n:) at X = 0 
1 0 l 

The function F en.) is obtained by solving equation 
0 1 

with boundary conditions 11 and 12. The result is: 

given 

9 at 

[7] 

[8] 

[9] 

[10] 

by 

[11] 

[12] 

[13] 

X = 0 
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F (n.) = 
0 .1 

[14] 

The finite-difference form of equation 9 has to take into 

-account the behavior of c. 
]. 

near X = 0 since this is a singular 

point of this equation. Therefore, an asymptotic solution was 

sought for small values of x . This solution also serves as a 

check on the values obtained numerically. For this purpose, we 

expand c. 
]. 

in a power series in x : 

c. (n. ,x) = F (n.) + F1 (n.)xm + F
2

(n.)xn + O(xP) . [15] ]. ]. 0 . ]. ]. ]. 

Substitution of this expression into equation 9 gives a set of 

coupled ordinary differential equations, and in addition we find that 

m = 2 n = 4 , and p = 5 All these equations for Fk(ni) , where 

k > 0 , are subject to the boundary conditions: 

since -· c. 
]. 

at n. = o , Fk + 0 
. ]. 

as n + oo i J 

evaluated from the series expansion must also satisfy 

boundary conditions 11 - 13. The equation for F
1 

is: 

jK.F 
]. 0 

{16] 

[17] 

The solution to aboye equation satisfying boundary conditions 16 is: 
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00 

jK. f 3 Fl 
~ 2 -z = 2f(4/3) ni e dz 

n. 
~ 

1 00 

3 jK. -n. 
~ ~ 

6f (4/ 3) e 

3 -z e dzdX . ·2jKi 2! X f . 
6(f(4/3)) 0 . 3 1/3 

n./(1-X) 
~ 

The differential equation for F2 . is: 

+ 

[18] 

[19] 

which has been solved mnnerically since no analytic solution could 

be obtained. As mentioned before·, ·we are interested in the flux 

at the surface of the disk as a function of X ·, the dimensionless 

distance from the step change at r = r' Using the analytic solution 

for F 
0 

and F1 , and the numeric·al solution for F2 ·, we obtain 

the following expression, valid for small values of x : 

a c. 
~ 

an. 
~ n.=o 

·~ 

1 
r c 4/ 3) 

jKi [f(5/3)]
2 

2 _ 
4f(4/3) f(4/3) X 

2 4 5 0.01250457 K.x + O(x ) 
~ 

[20] 

Another singular point of equation 9 occurs at x = 1 (infinitely 

far away from the step change at r = r'). Proceeding in the same 

~ 

manner as before, we can show that the asymptotic expansion of c. 
~ 

valid for values of x close to 1 is: 
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[21] 

The equation for G
0 

is identical to the equation describing the 

uniform distribution and has b~en calculated by Levart and Schuhmann4 

7 
and by Mohr (as reported by Homsy) : 

[22] 

with boWldary conditions 11 and 12. Since the equations for G
0 

, G1 , 

and do not permit us to obtain an explicit dependence of 

similar to equation 20, we have solved G1 and G2 only for 

K. 
1 

K. = 50 . The solution of equation 22 has been obtained for all 
1 ' 

values of K. investigated. 
1 

The linearization procedure for the convective diffusion 

equation for the supporting electrolyte, including the effect of 

migration, has been described elsewhere. 3,lO Basically, it involves 

the elimination of the migration term by applying the electroneutrali ty 

condition, resulting in the appearance of terms in the equation 

accounting for the interaction of each major component with all 

minor components in the solution. The analysis will be given for 

the cation of the supporting electrolyte. Using the same notation 

as in equation 9 with the effective diffusion coefficient 

the supporting electrolyte, where 

D e 
for 
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zuD -zuD + + - + 
z u z u 

+ + 

we arrive at the following equation: 

zRu+(D_ - DR) a2-
. cR ZPU+(D_ 

z uD - z u D ;r- z u D -+ + - - - + ne + + -

[23] 

Dp) a2-- cp 
z u D ;r - - + ne 

[24] 

In order to ·take separately into account the concentration changes of 

supporting electrolyte, reactant and product species, we first solve 

the above equation with neglect of the last two terms with boundary 

conditions 11 - 13, and let its solution be denoted by a. This 

solution is identical to the solution of equation 9 with De instead 

of D. . Similarly, we solve equation 24, neglecting the interaction 
1 

with the product species, but with a2cR/an; evaluated from the 

solution to equation 9, with the boundary conditions: 

c - 0 
+ 

as n +co e . 

Let the solution be given by .13 ; the solution to equation 24 due 

-. 
to interaction with the. product species only is given by o . It 

[25] 

is evident that both solutions are identical, except that 13 involves 

the diffusion coefficient of the reactant and 8 that of the product. 

The asymptotic expansion of S (and of 8) near 'x = 0 proceeds 

along the same lines as before. Because the resulting equations are 

I' 
I 
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all linear, it is easy to show that 

[26] 

-where (3
0 

, S
1 

, and S2 are independent of Ke and real. It is 

possible to obtain an analytic expression for so , but not for sl 

and s2 : 

-

3 
-z d e z (27] 

Numerical solutions for 61 and s2 were not attempted; with the 

results obtained so far we are able to check the numberical solution 

of (3 by evaluating both (3(0) and d(3/dne (at n = 0 and X = 0) e . 

and compare these values with the values obtained by using equation 

26 at x = 0 : 

(3(0) = 0 . as I , ~ 
''e n =0 e 

Results and Discussion 

A comparison between the asymptotic solutions (equations 15 

and 21) and the numerical solution of equation 9 near x = 0 and 

[28] 

x = 1 shows that the values and certain derivatives are identical 

within 0.1 percent. 
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Figures 1 and 2 show the derivatives of the real part and 

the imaginary part of the reactant concentration respectively, 

evaluated at n. = 0 . 
1 

The real part is plotted against 4 x , the 

iiJ.la:'i.nary part against 2 
X This choice, as we 11 as the form of 

the respective expressions on the ordinates, is suggested by the 

asymptotic solution for small values of x Figures 3 and 4 show 

the concentration derivative of the cation of the supporting electrolyte 

due to. a step change in the reactant concentration at the surface 

of the disk (as;an (n = O)) • Here again, the difference between . . e e 

the values of 8(0) and as;an en = o) e e -
at x = 0 calculated from 

the numerical evaluation of S and these values as obtained from 

equation 28 was less than 0.1 percent. The Nernst-Einstein relation 

was assumed to be applicable. ·:... 

We shall now proceed to show how one can·obtain the oscillating 

flux distribution at the disk surface for all ionic species from . . ' 

the results obtained so far once the concentration distribution of 

these species at t~e surface of the disk is known. The dimensionless 

flux is defined as: 7 

since 

dC. 
1 1 dCi 

az;;i z;;.=o 
1 

= :X an. 
1 

c;;. = xn. . 
1 1 

n.=o 
1 

[29] 

[30] 
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Asymptotic solution 
for small x ---....... 

0.2 1.0 
x4 

XBL 7310-5546 

Derivative of the real part of the concentration at 
n. = 0, as a function of x4 

l 

.J 
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Fig. 2. Derivative of the imaginar~ part of the concentration at 
fl.·:: 0, as a' function of X , 

1 
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Fig. 3. Derivative of the real part of the concentration fluctuations 
at the disk surface of the cation of the supporting electrolyte 
due to a step change in the amplitude of reactant fluctuation. 
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Fig. 4. Derivative of the imaginary part of the concentration 
fluctuations at the surface of the disk of the cation of the 
supporting electrolyte due to a stepchange in the anplitude 
of reactant fluctuation. 
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The right side of equation 29 has been calculated as a function of· 

x for a step change at r = r 1 Therefore, for arbitrary surface 

-concentration c. , we obtain the corresponding flux distribution 
1,0 

by superposition, which for the reactant becomes 

R,o r de I 
= J dr r=rl 

0 

3 )1/3 
r d I 3 r . 

rl . 
[31] 

The same expression holds for the product species, but the subscript 

R will then be replaced by P . For the cation of the supporting 

electrolyte we have shown how to take separately into account the 

contribution of reactant and product species. Because of the 

linearity of equation 24 we may add these contributions in the 

expression under the integral sign: 

ac r (de I _ + f + ,o aa ar- : dr . _ I dn_ 
e 

0 0 r-r e 
0 n = n = e e 

dcp ,o 
dr r=r 1 

dcR I ,o 
+ d 

r r=r 1 

r d I 
3 )1/3 

3 r 
rl 

as an- + 
e n. =0 e 

Finally, the anion concentration can be calculated from the 

electroneutrali ty equation 

I z.c. = o , 
1 1 

i 

[32] 

[33] 
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and the anion flux by taking the first derivative of this equation. 

Sununary 

The conservation equations of minor and major species have been 

solved for a rotating-disk system where a step change in the amplitude 

of the concentration fluctuations at the surface of the disk occurs 

at an arbitrary distance from the center of the disk. The effect 

of migration on the supporting electrolyte was included in the 

analysis. Results were presented in the form of the flux of each 

species at the surface of the disk as a function of distance from 

the place where the step change occurs. The results obtained by 

the numerical solution of the complete equations were compared with 

asymptotic solutions valid for short or for very large distances 

from the step change. The differences were less than 0.1 percent. 

It was shown that through the use of superposition integrals 

these results can be applied to the calculation of the oscillating 

flux distribution of each ionic species for arbitrary concentration 

distributions of these species at the surface of the disk. 
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List of Symbols 

a· 0.51023 

3 c. concentration of species i, mole/em 
l. 

~c. deviation of species i from its time average concentration, 
l. 

c. 
l. 

D e 

mole/cm3 

complex alternating concentration of species i, mole/cm3 

(see equation 2) 

diffusion coefficient of supporting electrolyte, cm2/s 

(see equation 23) 

D. diffusion coefficient o£ species i, cm2/s 
l. 

F
0

,F1,F2 functions in series expansion for the complex concentration 

near the step change (see equation 15) 

G
0

,G1,G2 functions in ser~es expansion for the complex concentration 

far from the step change (see equation 21) 

j 

K. 
l. 

r 

r' 

dimensionless oscillating frequency based on. species i 

radial distance, em 

distance from the center of the disk were a step change 

·occurs in the complex concentration at the disk surface, em 

Sc.=v/D. Schmidt number of species i 
l. l. 

t 

u. 
l. 

v 
y 

X 

time, s 

mobility of species 2 i, em -mole/J-s 

radial velocity, cm/s 

normal velocity, cm/s 

dimensionless radial distance (see equation 7) 
• 
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" J 

z 

z. 
l. 
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dwmny variable in equation 18 

distance from the surface of the disk, em 

dummy variable in equations 14 and 18 

charge number of species i 

complex concentration of the cation of the supporting 

electrolyte due to a step change in its concentration at 

the disk surface, mole/cm3 

complex concentration of the cation of the supporting 

electrolyte due to a step change of reactant concentration 

' 3 
at the disk surface, mole/em 

-functions in series expansion of S near the step change 

(see equation 26) 

f(p) the gamma function of the number p 

8 complex concentration of the cation of the supporting 

I;. 
l. 

n. 
l. 

v 

w 

electrolyte due to a step change in product concentration, 

mole/cm3 

dl.mensionless distance from the disk surface, based on the 

diffusivity of species i (see equation 30) 

dimensionless distance (see equation 8) 

kinematic viscosity, cm2/s 

phase shift in alternating concentration, rad (see equation 2) 

oscillation frequency of concentrations, rad/s 

rotation speed of disk~ rad/s 
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subscripts 

·e 

p 

R 

+ 

supporting electrolyte 

produced species 

reacting. species 

cation of the supporting electrolyte 

anion bf the Supporting electrolyte 
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