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ABSTRACT

Clean and efficient energy technologies are in high demand to resolve the
issues related to limited fossil fuels and the climate crisis. Recently, electrochemical
conversion devices, such as fuel cells and electrolyzers, demonstrate a viable option
for a sustainable energy system. Electrolyzers can generate green hydrogen through
water electrolysis, which can then be used in fuel cells to directly convert chem-
ical energy to electricity. However, there are still technical barriers that need to
be addressed before reaching full commercialization in these emerging technologies.
For fuel cells, especially in heavy-duty vehicle applications, durability is a critical
concern to be competitive with internal combustion engines. One of the key degrada-
tion losses in fuel cells comes from the catalyst layer made of platinum nanoparticles
dispersed on carbon support (Pt/C). Here, a fundamental study was conducted to
investigate the degradation mechanism of Pt/C using accelerated durability testing
protocols in acidic and alkaline media. It was found that the generation of car-
boxyl functional groups due to carbon corrosion in acid poisons the Pt active sites
during oxygen reduction reaction (ORR). In alkaline, carbon dissolution happens
that triggers the formation of large Pt agglomerates. For electrolyzers, hydrogen
generation relies on an expensive and scarce iridium metal as a catalyst for the
oxygen evolution reaction (OER). To lower the cost of this device, alternative ma-
terials are developed to reduce the iridium (Ir) loading. We proposed to enhance Ir
utilization by alloying with cobalt (Co), being a less expensive and more available
metal. Surfactant-assisted Adam’s fusion synthesis technique was developed as a
scalable method to produce IrCo catalysts. The synthesized material outperforms
commercial Ir baseline catalysts, in both acidic and alkaline media. In addition, the
effects of the Ir/Co molar ratio, the use of surfactant, and acid etching were investi-
gated to enhance OER performance. In this dissertation, the catalytic performance
and degradation mechanisms of precious metals for ORR and OER in both acid
and alkaline media were successfully studied using half-cell electrochemical set-up
and physicochemical characterization tools. The new findings provide insights into
developing more efficient and durable fuel cells and electrolyzers to promote energy
sustainability toward a decarbonized society.
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Chapter 1
INTRODUCTION

1.1 The Climate Crisis and the Role of Hydrogen
1.1.1 Climate Change

The beginning of the industrial revolution in the mid-18"® century propelled
our society to advance — from steam engines powering trains, ships, and industrial
types of machinery. The new source of energy at that time was burning coal, natural
gas, and coal. This is followed by the invention of the internal combustion engine
which changed the transportation sector and how we move things around the world
[1]. Since then, our society has been totally dependent on the fossil fuel supply,
which although we know is limited, we keep on exploiting them for our aggressive
goal of industrialization. But this comes without a consequence as the uncontrolled
burning of these fuels leads to a massive release of harmful gases, which collectively
we call greenhouse gases (GHGs).

Carbon dioxide (COs) is one of the leading GHGs released into the atmo-
sphere. It has been noted by a lot of research facilities around the world that the
concentration of CO, in the atmosphere has been constantly increasing in the last
few decades. The Keeling Curve, presented in Figure 1.1, monitored by the Scripps
Institute of Oceanography at the University of California, San Diego is a great re-
source to track the COy concentration in the atmosphere. The drastic increase of
COy concentration in the atmosphere is echoed in this chart, where recent data
shows around 420 ppm of COs in the atmosphere. This is significantly higher than
the CO; level in 1750 at around 280 ppm.
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Figure 1.1: The Keeling Curve recording the CO, concentration in the atmosphere
in the last six decades [2].

The increase in GHGs concentration is driven by the rising global population
which in turn demands higher energy usage in recent years compared to previous
decades. And the rest is history, where the world we live in right now is suffering
from a phenomenon we call global warming. Global warming disrupted the normal
daily activities of individuals, especially in developing nations. Climate change is
real and is happening right in front of our very own eyes. We experience heatwaves,
droughts, extreme flooding, melting ice caps, declining biodiversity, food insecurity,
and the list goes on.

There is a consensus in the scientific community that climate warming in
the last century is caused by anthropogenic activities [3]. The reports [4] from
the Intergovernmental Panel on Climate Change (IPCC) strengthen the correlation
between climate change and more frequent severe storms, floods, droughts, and other
extreme weather disturbances. GHG emissions from fossil fuel burning endanger the
human population but we can still alter the climate story if we collectively put an
effort to adapt to the changes that are already happening.

Back in 2015, 196 parties signed the Paris climate agreement during the
Conference of the Partied (COP) 21. The goal of this international treaty is to limit
global warming to well below 2 °C, and preferably below 1.5 °C compared to the pre-
industrial level [5] . This calls for both private and public entities to cooperate and
promote a net-zero global economy. One clear path to mitigating global warming is
to reduce our carbon emissions by shifting from fossil fuel-based energy to renewable
energy systems.
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Figure 1.2: (a) Projections of global carbon emissions and (b) CO4 concentration
under different Representative Concentration Pathways (RCP). Image
obtained from Smith and Myers [6].

For climate modelers, the concept of Representative Concentration Pathways
(RCP) was introduced in 2011 by van Vurren [7] to predict the trajectories of COq
emissions and the resulting atmospheric concentration from 2000 to 2100. The
four different RCPs, depicted in Figure 1.2, were based on some assumptions for
the following parameters: population; economic growth; energy consumption and
source; and land use. The scenarios are named from the “radiative forcing” that
each of them produces in terms of Watts per square meter (W/m?). It is clear in
Figure 1.2b that even after emissions were reduced, the CO5 concentration continue
to rise in RCP 4.5 and RCP 6.0. Thus, it is important that the relationship between
emissions and CO, concentration in the atmosphere must be understood.

The RCP 8.5 is the worst possibility where the missions continue to rise until
stabilizing by 2100. However, in this case, the CO4y concentration could reach 950
ppm by 2100 and continue to rise in the next 100 years. Population growth is pre-
dicted to be 12 billion by the end of the century, leading to intensive energy demands
of about three times of the current levels. On the contrary, RCP 2.6 presents the
best alternative where the anthropogenic causes of climate change are limited. In
this scenario, the emissions are reduced to zero by the end of the century and the
COs3 concentration can be stabilized at current levels and the global temperature
can be controlled at around 1°C compared to 1900’s level [8].
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Figure 1.3: Cost projection of renewable energy sources such as solar PV, concen-
trating solar power (CSP), offshore and onshore wind energy. Figure
and data obtained in 2018 by International Renewable Energy Agency
(IRENA).

The scenario presented in RCP 2.6 can be a reality considering that recently,
the price of renewable power is getting cheaper according to the latest report from
the International Renewable Energ