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Filtering higher-order laser modes using leaky plasma channels
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Plasma structures based on leaky channels are proposed to filter higher-order laser mode content.

The evolution and propagation of non-Gaussian laser pulses in leaky channels are studied, and it is

shown that, for appropriate laser-plasma parameters, the higher-order laser mode content of the

pulse may be removed while the fundamental mode remains well-guided. The behavior of multi-

mode laser pulses is described analytically and numerically using envelope equations, including

the derivation of the leakage coefficients, and compared to particle-in-cell simulations. Laser pulse

propagation, with reduced higher-order mode content, improves guiding in parabolic plasma

channels, enabling extended interaction lengths for laser-plasma accelerator applications.

Published by AIP Publishing. https://doi.org/10.1063/1.5006198

I. INTRODUCTION

An understanding of the non-idealized evolution of short

and intense laser pulses in a plasma is of great importance

for the field of laser-plasma interactions. Various applica-

tions and areas of research for these interactions can be

found in advanced laser-fusion schemes,1 higher harmonic

generation,2 and x-ray free electron lasers.3 Of primary inter-

est here are laser-plasma accelerators (LPAs),4 in which

intense laser pulses have been shown experimentally to

accelerate electron bunches to GeV energies.5,6 In an LPA, a

plasma wakefield is generated by the driving laser using the

ponderomotive force to create charge separation. LPAs are

able to produce acceleration gradients in excess of 100

GV/m, while the maximum gradient in conventional acceler-

ators based on radio frequency cavities is on the order of 100

MV/m. It has been shown that poor laser guiding, as a result

of the presence of higher-order laser modes, can have an

adverse effect on an LPA.5

Laser pulse propagation is optimized when the pulse

enters the gas-filled discharge channel with a flat phase front.

Under such conditions, we can achieve what is called

“matched” guiding, in which the laser spot size remains con-

stant (rs ¼ r0, where r0 is the initial spot size), e.g., a Gaussian

pulse injected into a properly shaped parabolic channel.

The critical channel depth for matched guiding is given by

Dnc ¼ ðprer2
0Þ
�1

or Dncðcm�3Þ � 1:13� 1020=r2
0ðlmÞ,

where re ¼ e2=mec2 is the classical electron radius, e and me

are the electron charge and rest mass, and c is the speed of

light. The production of high quality beams from LPAs

requires the laser pulse to maintain a high, constant intensity

over multiple Rayleigh ranges, where the Rayleigh range is

ZR ¼ pr2
0=k and k is the wavelength of the laser pulse.

However, guiding can be compromised in several ways.

Channel characteristics (e.g., the channel radius, density) may

not be optimally matched to the pulse at focus, leading to mis-

matched pulse propagation, i.e., poor guiding. Likewise, real-

istic pulses,5,6 which are often super-Gaussian in the

transverse direction in the near field after amplification, tend

to develop Bessel-like sidelobes at focus, which do not guide

according to the intended Gaussian description. Oscillations

due to mismatching and non-Gaussian pulse profiles can be

deleterious to LPA applications, leading to non-optimal accel-

eration or electron bunch loss. The decrease in laser amplitude

induces a reduction of the wakefield size and the bunch finds

itself in the defocusing phase of the wake. In addition to mis-

matching, the higher-order modes leak out more readily from

guiding structures, which can cause damage to the structure,

notably in the case of discharge capillaries.

Guiding of a non-Gaussian pulse in a parabolic channel is

challenging. One possible solution is to use a complicated

plasma channel structure that is better matched to the pulse.

Theoretically, in the low-intensity, low-power regime, one can

guide a pulse using a transverse density profile of the form

nðrÞ
n0

� 1

k2
p0

r2
?a?ðrÞ
a?ðrÞ

þ 1

 !
; (1)

where n0 is the on axis density of the plasma channel,

a?ðrÞ ¼ eA?ðrÞ=mec2 is the normalized transverse compo-

nent of the laser field vector potential, and kp0 ¼ xp0=c,

where x2
p0 ¼ 4pn0e2=me is the plasma frequency.7 Equation

(1) is derived from the steady state form of the paraxial wave

equation, as discussed below. An analogous tailoring of the

radial profile of the refractive index in fiber optics has been

used to guide an Airy-type pulse, but at much lower laser

intensities than that required in LPA experiments.8

Complicated pulse or channel profiles do not readily give

solutions that are experimentally tenable. Experimentally, a

ceramic aperture has been used to filter out sidelobes in the

far-field.9 While this is quite feasible, a significant amount of

energy is lost in the main-lobe, a few to tens of percent, and

the main-lobe still remains somewhat non-Gaussian. The

solution proposed in this paper is to use a leaky channel to

guide the primary Gaussian mode and to leak out the disrup-

tive higher-order modes.

Tailored plasma structures for the purpose of controlling

the evolution of laser pulses are well established,4 notably

those of parabolic and leaky channels. Leaky channels may
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be made using the hydrodynamic shock (hydroshock) tech-

nique or clustered gas jets.10–12 In both techniques, an

axicon-formed pump laser is used to ionize a stream of gas

and a channel is formed after several nanoseconds of evolu-

tion that is approximately parabolic near the axis of propaga-

tion and sharply truncated after several pulse-widths. Leaky

channels have been previously studied for a variety of appli-

cations, such as the minimization of instabilities (e.g., for-

ward Raman scattering).13 The approach used in our study

draws on the source dependent expansion (SDE) formal-

ism,14–17 which has been shown to effectively model the

evolution of Laguerre-Gaussian (LG) modes, as well as the

Wentzel-Kramers-Brillouin (WKB) approximation18,19 to

evaluate mode leakage in the channel.

This paper is organized as follows: in Sec. II, we discuss

the general behavior and consequences of multimode laser

pulses in a plasma channel. We are interested in pulses that

have a jinc-type transverse profile, as well as pulses com-

posed of Laguerre-Gaussian modes similar in profile to a

jinc. In Sec. III, we model the effects of leaky channels using

the WKB theory. In Sec. IV, we present the paraxial solution

to the wave equation and its decomposition into LG modes

via the SDE. Using particle-in-cell (PIC) simulations, in Sec.

V, it is shown that the inclusion of a leakage rate coefficient

in the SDE accurately models the secular evolution of the

laser pulse which is in agreement with PIC simulations.

Also, we provide numerical examples of sharply truncated as

well as exponentially decaying leaky channels in the quasi-

linear regime to further corroborate the concept. A summary

and conclusion are presented in Sec. VI. Throughout this

paper, we use the PIC code INF&RNO20,21 to simulate LPA

systems in 2 D, axisymmetric geometry.

II. NON-GAUSSIAN TRANSVERSE PULSE PROFILES
AND PLASMA GUIDING STRUCTURES

When treated theoretically, laser pulses are generally

modeled as having Gaussian profiles in the transverse direc-

tion, a?ðrÞ ¼ a0 exp ð�r2=r2
0Þ, where a0 is the initial, on-axis

laser amplitude for a Gaussian pulse, but this is not a realistic

description of an experimental pulse. For example, if the laser

profile at the surface of a focusing optic is a flat top, then at

focus the laser profile can be better approximated by a jinc

profile than a Gaussian, i.e., jincðrÞ ¼ 2J1ðjr=r0Þ=ðjr=r0Þ,
where J1ðrÞ is the first order Bessel function of the first kind

and j ¼ 2:74331 is a scale parameter so that the jinc

profile has the same Full-Width Half-Maximum (FWHM) as

the Gaussian pulse. For analytical tractability, we can

decompose a jinc pulse into Laguerre-Gaussian (LG) modes,

Lmð2r2=r2
LGÞexp ð�r2=r2

LGÞ, where the Laguerre polynomials

LmðxÞ ¼ 1
m! ð d

dx� 1Þmxm is the Laguerre polynomial of order m
and the first three polynomials are L0ðxÞ ¼ 1; L1ðxÞ ¼ 1� x,

and L2ðxÞ ¼ 1� 2xþ 1
2

x2, and rLG ¼ 1:144r0 for three modes

when matching the FWHM of the superposition of the three

modes to a Gaussian as well as a jinc profile. Note, in this

instance, since rLG 6¼ r0, each individual LG mode is inher-

ently mismatched if the channel depth is chosen to be matched

for the Gaussian. Theoretically, it would simplify the problem

to pick rLG ¼ r0 for the LG decomposition; however, this

decomposition choice reflects the experimental practice of

defining the pulse by the FWHM of the main-lobe regardless

of modal content (which is not the correct pulse-width to

which we should match a parabolic channel for guiding). For

simplicity, only azimuthally symmetric modes are considered.

In our simulations we use three LG modes (LG3) because, up

to a radius of 250 lm, a typical radius for a capillary channel

used for guiding, three appropriately matched LG modes accu-

rately model the main lobe and first sidelobe of a jinc pulse,

while accounting for 94% of the power content. The initial val-

ues of the LG decomposition are chosen by using a nonlinear

fit to match the peak, the FWHM of the main lobe, and the first

zero of the jinc pulse. Gaussian, jinc, and LG3 pulse profiles

are shown in Fig. 1. The presence of sidelobes in a jinc profile,

or higher-order modes in an LG decomposition, can be shown

to lead to mode beating that causes significant oscillations in

the pulse intensity and poor guiding.

As a demonstration of the behavior of realistic pulse

propagation, we compare the evolution of a Gaussian, jinc,

and LG3 pulse in a matched parabolic channel, given by the

following equation:

nðrÞ ¼ n0 1þ 4

ðkp0RÞ2
r2

r2
0

" #
; (2)

where R is the characteristic radius of the channel, and for

matched propagation R¼ r0. In Fig. 2 it is demonstrated that,

where an ideal Gaussian pulse with a Rayleigh length of ZR ¼
1:083 cm would be guided, the presence of sidelobes causes

the pulse to suffer from significant beating between the

modes. Even though individual LG modes are guided by a

parabolic channel, the superposition of multiple modes causes

beating of the form �2amðzÞanðzÞ cos ½/mðzÞ � /nðzÞ�,22

where am and /m are the amplitude and phase, respectively, of

the corresponding LG mode. For linearly polarized LG modes,

one has /m � /n ¼ kbeatz, where kbeat ¼ 2ðm� nÞ=ZR.

In order to offset the negative influences of sidelobes,

we propose the use of plasma structures such as leaky chan-

nels. The application of plasma lenses and filters can com-

pensate for the constraints of the optical systems,23,24

providing additional pulse tuning after amplification or com-

pression. In this paper, we investigate the effects of plasma

structures, more specifically leaky channels, on multimode

FIG. 1. Comparison of a Gaussian pulse with r0 ¼ 53 lm, a jinc-type profile,

and a superposition of three LG modes. For the jinc profile, j ¼ 2:74331

and for the LG3 profile,
P3

m¼1 amLmð2r2=r2
LGÞ exp ð�r2=r2

LGÞ, where the

mode amplitudes are a0 ¼ 0:729; a1 ¼ 0:418, and a2 ¼ �0:146 and the

LG3 matched radius is rLG ¼ 1:144r0.
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laser pulses for the purpose of improving laser guiding and

evolution. In our analytic formulation, we assume the low

intensity limit a� 1, which neglects nonlinear effects such

as self-focusing and wakefield generation. These results are

compared to fully nonlinear simulations for cases where

a � 1.

We generally focus on sharp truncations in the plasma

density profile as seen in Fig. 3 (solid blue curve), analytically

expressible by multiplying the density profile by a Heaviside

function Hðrcut � rÞ, where rcut is the truncation radius of the

channel. Also analytically tractable are leaky channels with

linearly or exponentially decaying density gradients, where

we multiply the density function n(r) by the factor exp

ð�r2=r2
EDÞ (dotted and dashed-dotted curves), where rED is a

constant and the effective channel radius near the axis is

Reff ¼ R 1� kp0r0R

2rED

� �2
" #�1=2

: (3)

III. WKB METHOD

A general treatment of the power loss from the leaky

plasma channel can be achieved via the WKB method.

Heuristically, we do this by assuming first that modal power

loss is given by25

dPm ¼ �ĉmPmdz; (4)

where Pm is the modal power contribution, ĉm ¼ Tm=Zm,

where Tm is the transverse leakage (tunneling) rate per mode

m and Zm is the characteristic propagation distance. In the

case where ĉm does not depend on the propagation distance

z, we can write

PmðzÞ ¼ Pmð0Þ exp �ĉmz½ �: (5)

In order to calculate Zm and Tm, we use the WKB for-

malism.26 Given a wave equation of the form

r2
? þ K2ðrÞ

� �
WðrÞ ¼ 0; (6)

where K2ðrÞ � x2=c2 � k2
pðrÞ � k2

z is the general leaky

channel wavenumber, x ¼ kc ¼ 2pc=k is the frequency of

the laser, k2
pðrÞ ¼ k2

p0
nðrÞ
n0

is the wavenumber corresponding

to plasma oscillations, kz � x2=c2 � k2
p0 � 4ð2mþ 1Þ=r2

0 is

the axial wavenumber, and WðrÞ is a generalized potential

field. For the Helmholtz equation (6), we can write down the

WKB solution for an arbitrary density profile

WðrÞ ¼ Cffiffiffiffiffiffiffiffiffiffi
KðrÞ

p exp i

ðr

jKðr0Þjdr0
� �

; (7)

where C is a coefficient to be determined and the integration

takes place between the turning points of K2.

In the WKB formulation, we can describe the transverse

profile with respect to incident (i), reflected (r), and transmit-

ted (t) local plane waves, which are, respectively, distin-

guished by different coefficients Ci, Cr, and Ct, as well as

integration limits: r < rtp for the incident/reflected waves,

where rtp is a turning point for jKj2 ¼ 0 and r > rcut for the

transmitted waves. In the region rtp < r < rcut, the field is

evanescent and decreases exponentially with r, which in turn

is characterized by Ce.

Using the standard connection formulas for the

WKB theory, by which we can write Ci ¼ Ce;Ct

¼ Ce exp½�
Ð rcut

rtp
jKjdr�; the transmission coefficient25 for the

transverse laser profile is

T ¼ jWtj2

jWij2
¼ jCtj2

jCij2
¼ exp �2

ðrcut

rtp

jKjdr

" #
; (8)

and the propagation distance between turning points along a

ray path is

Zm ¼ 2kz

ðrtp

0

jKj�1dr � pZR: (9)

While Tm is an accurate calculation of the leakage rate, it

neglects the effect of multi-mode interference, which is not

explored in this paper but has been explored in other fields.27

For the m-th order LG mode propagating in a sharply

truncated parabolic channel, the leakage rate is defined as12

Tm ¼
rcut

lR
þ r2

cut

ðlRÞ2
� 1

 !1=2
2
4

3
5

2l2

� exp �2l
rcut

r0

r2
cut

ðlRÞ2
� 1

 !1=2
2
4

3
5; (10)

FIG. 2. Evolution of the normalized laser amplitude a for a non-Gaussian

pulse in a parabolic channel with R¼ r0. The blue line corresponds to a for a

Gaussian pulse, the red line to a jinc pulse, and the green line to an LG3

pulse, i.e.,
P3

m¼1 amLmð2r2=r2
LGÞ exp ð�r2=r2

LGÞ. The simulation parameters

are rLG ¼ 1:144r0; r0 ¼ 53 lm, and ZR ¼ 1:083 cm, initial amplitude

a?ð0Þ ¼ 0:1; n0 ¼ 1017 cm– 3, mode amplitudes a0 ¼ 0:729; a1 ¼ 0:418,

and a2 ¼ �0:146, an LG3 matched radius of 1:144r0, and a jinc matching

parameter of j ¼ 2:74331. (Pulse profiles shown in Fig. 1.).

FIG. 3. Examples of theoretical models used in simulating truncated plasma

channels relative to a Gaussian pulse with r0 ¼ 53 lm: sharp truncation at

rcut ¼ 2r0 (solid curve), exponentially decaying walls with a matched effec-

tive radius, i.e., Reff � r0 (dash-dotted curve), and exponentially decaying

walls with a mismatched effective radius (dotted curve).
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where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 1
p

. Figure 4 shows Tm for modes m¼ 0, 1,

and 2, and channel radii R=r0 ¼ 0:95; 1:0; 1:05. Higher-order

modes leak out at a much faster rate than the fundamental

for all cutoff radii and higher-order modes are more sensitive

to deviations in the characteristic guiding radius of the chan-

nel. Likewise, all leakage coefficients saturate to a value of

one below a certain cutoff radius, i.e., the vacuum diffraction

rate. The channel parameters can be chosen using Fig. 5,

where the white line governs the maximum leakage coeffi-

cient T1 for the m¼ 1 LG mode for varying channel parame-

ters. Higher-order modes will have a shallower slope since

they will leak out even faster. Wider truncation radii allow

for a lower T0=T1 ratio but slower overall leakage.

IV. SOURCE DEPENDENT EXPANSION

A useful way to describe pulse propagation in an infinite

parabolic channel is the SDE.14,15 Below, we will extend the

SDE to truncated channels by incorporating our results from

the WKB approximation. The full wave equation for the

transverse vector potential is

r2A? �
1

c2

@2A?
@t2

¼ �l0Jþ 1

c

@rU
@t

; (11)

where J is the source current and U is the scalar potential of

the laser field. In Eq. (11), we proceed to neglect the scalar

potential contribution, since it is generally small within the

laser pulse,28 and we write the vector potential in the follow-

ing form:

A?ðr; z; tÞ ¼ Âðr; z; tÞ exp iðkz� xtÞ½ �; (12)

where Â is the amplitude and k and x are the wavenumber

and frequency of the laser pulse. After inserting (12) into

(11), and making the slowly-varying envelope assumption

jk @Â
@z j � j @

2Â
@z2 j, we obtain the paraxial equation

r2
?Â þ 2ik

@Â

@z
¼ �l0Ĵ; (13)

where r2
? ¼ ð1=rÞ@rðr@rÞ in polar coordinates and Ĵ is the

fast part of the source current.

In the SDE, where we work with the normalized

vector potential â ¼ eÂ=mec2, we are only considering

the transverse field. We parameterize the pulse

as âðr; zÞ ¼
P

m âmðzÞLm½2r2=r2
s ðzÞ�exp �½1� iaðzÞ�r2=r2

s

	 

,

where âmðzÞ ¼ CmðzÞ exp ½i/mðzÞ�; rsðzÞ is the pulse spot

size, aðzÞ is the inverse radius of curvature, CmðzÞ and /mðzÞ
are the mode-specific amplitude contribution and phase. For

this problem, in the axisymmetric case, we are solving the

reduced wave equation, i.e., the paraxial equation

1

r

@

@r
r
@

@r

� �
þ 2ik

@

@z

� �
âðr; zÞ ¼ �jðr; zÞ: (14)

In order to account for the truncated plasma channel, we

may consider the source function as truncated itself,

jðr; zÞ ¼ jðn; zÞ ¼ k2
p0

nðnÞ
cn0

Hðncut� nÞaðn; zÞ, where c¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þa2
p

�1 since we are only considering low-power laser pulses in

this paper, n¼2r2=r2
s , and ncut corresponds to the truncation

radius rcut. This in theory will give an exact description of the

laser pulse evolution, however, only if a sufficient number of

modes are included.

The SDE method is well suited to describe the propaga-

tion and evolution of near-Gaussian pulses, since only a few

LG modes are needed in the SDE expansion. This is the case

for an idealized (infinite) parabolic channel. For a leaky

channel, the SDE method becomes problematic, since a sig-

nificant portion of the laser power can exist outside the chan-

nel, resulting in laser profiles consisting of a near-Gaussian

core superimposed on a low amplitude radial quasi-plateau

that extends to large radii and represents the leaked power

outside the channel. In order to describe the low amplitude

wings of the leaked laser field, the SDE method would

require the retention of hundreds of LG modes.

Alternatively, to describe laser power loss in a leaky

channel, we can modify the SDE equations by heuristically

including a power loss damping coefficient, as determined

from the above WKB theory, in the wave operator of the par-

axial wave equation. Based on comparisons to simulations of

the full Maxwell-plasma equations, it is found that by includ-

ing this damping term, pulse evolution in a leaky channel

can be modeled with the modified SDE equations using only

a small number of LG modes.

FIG. 4. Leakage coefficients (Tm) estimated with the WKB theory for the

first three modes (m¼ 0—red, m¼ 1—blue, and m¼ 2—green) for varying

channel radii (R=r0 ¼ 0:95—dashed, 1.0—solid, and 1.05—dotted).

FIG. 5. Leakage coefficient ratio T0=T1 for varying rcut=r0 and R=r0.
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In this approach, we equate the power for the LG modes,

which conserve energy over all space, to a separate solution

with an exponentially decaying component, that is

âmðzÞ2 � amðzÞ2 exp ð�ĉmzÞ, or

âmðzÞ � amðzÞ exp ð�ĉmz=2Þ; (15)

and insert this into Eq. (14), giving us an additional term in

the paraxial wave equation proportional to ĉma. In this case,

the source term is that of the infinite channel, i.e., no

Heaviside function, and for which the LG modes are the

proper eigenfunctions.

In the low-power limit a� 1, analytical solutions can

be derived for pulse decompositions of a few lower-order

modes. Integrating the paraxial Equation (14) with respect to

n, gives a series of decoupled equations for each of the LG

modes by using the orthogonality property of the Laguerre

polynomials. For the m-th radial mode

@zþcmþAmð Þam� imBam�1� iðmþ1ÞB�amþ1¼�iFm; (16)

where cm ¼ ĉm=2,

AmðzÞ ¼
r0s
rs
þ ið2mþ 1Þ ð1þ a2Þ

kr2
s

� a
r0s
rs
þ a0

2

" #
;

BðzÞ ¼ �a
r0s
rs
� ð1� a2Þ

kr2
s

þ a0=2� i
r0s
rs
� 2

a
kr2

s

 !
;

where the prime 0 corresponds to the derivative with respect

to z, and

FmðzÞ ¼ �
1

2k

ð1
0

jðnÞLm n½ �exp � 1þ iað Þn=2
� �

dn:

For three modes, assuming jamj � 1 for m 	 3, there are

four separate equations

ð@z þ c0 þ A0Þa0 � iB�a1 ¼ �iF0;

ð@z þ c1 þ A1Þa1 � iBa0 � 2iB�a2 ¼ �iF1;

ð@z þ c2 þ A2Þa2 � 2iBa1 ¼ �iF2;

�3iBa2 ¼ �iF3:

(17)

The first three equations govern the evolution of the ampli-

tude coefficients and phases. Using the relative smallness of

the highest order terms, we obtained a fourth equation to pro-

vide closure for an initially over-determined three mode sys-

tem and effectively describe the evolution of rs and a.

The SDE is a powerful tool which allows for rapid

modeling and assessment of LG laser modes in a parabolic

channel. However, in order to get a more full description of

laser pulse evolution, it is necessary to turn to numerical

techniques, as described in Sec. V.

V. NUMERICAL RESULTS

In this section, we compare our analytic approximations

with numerical analyses of multimode LG pulses propagat-

ing through leaky plasma channels. This includes comparing

numerical results of the SDE equations to results from the

particle-in-cell (PIC) code INF&RNO.20,21 Of particular

interest is whether the LG decomposition is sufficient to

describe a jinc pulse in a leaky channel. As seen in Fig. 6,

which shows results from the PIC code INF&RNO, there is a

close correlation between the two even when only using an

LG3 pulse. In this case, we are propagating the jinc and LG3

pulses through a leaky channel with an on axis density of

n0 ¼ 1017 cm3 and a truncation radius of rcut ¼ 2r0, where

r0 ¼ 53 lm and the jinc matching parameter is j ¼ 2:74331.

The numerical parameters used in the following

simulations are propagation step size kp0Dz ¼ 1,

plasma grid kp0Drplasma ¼ 1=10 and kp0Dfplasma ¼ 1=20

(where f ¼ z� ct is the comoving coordinate of the pulse),

and laser grid kp0Drlaser ¼ 1=20 and kp0Dflaser ¼ 1=15. In the

simulations we take rLG ¼ r0 so that individual modes are

matched to the channel. The parabolic profile is character-

ized by R¼ r0. In this simulation, we chose to match the jinc

and LG3 pulse with respect to the on-axis amplitude a, there-

fore, the main difference between the two is that the jinc has

more energy overall so, as the fundamental evolves, it also

effectively extracts energy from the higher-order modes.

Otherwise, the pulse evolutions are similar.

In Fig. 7, we can see the relative effectiveness of the

SDE formulation, in which we are solving the system of Eqs.

(17), relative to the PIC simulations. In this figure, we are

comparing the SDE and PIC results for three different cutoff

radii: (a) rcut ¼ 3r0, (b) rcut ¼ 2:25r0, and (c) rcut ¼ 1:75r0.

This is for a sharply truncated parabolic channel with n0 ¼
1017 cm– 3 and R¼ r0. In addition, we use an exponentially

decaying numerical filter near the boundaries of the simula-

tion to gently eliminate radiation leaked from the channel

before it can be numerically reflected back into the channel.

The threshold for relativistic self-focusing of a linearly

polarized Gaussian laser pulse is given by the relation

P=Pcr ¼ ðkp0r0a0Þ2=32; and a system is generally only sig-

nificantly affected by self-focusing when P=Pcr > 1. In this

case for a 
 0:3 and r0 ¼ 53 lm as seen in Fig. 7,

P=Pcr 
 0:06, so self-focusing is not an important contribu-

tion to pulse evolution. It is evident that, as the cutoff radius

decreases, the SDE is less able to model the evolution of the

pulse in a leaky channel. However, the greatest discrepancy

is near pulse injection and, as the pulse propagates, the

FIG. 6. PIC modeling results comparing the evolution of a jinc pulse with

j ¼ 2:74331 and r0 ¼ 53 lm in a matched, truncated parabolic channel with

rcut ¼ 2r0; ZR ¼ 1:083 cm, and n0 ¼ 1017 cm�3, to three LG modes of

amplitude a0 ¼ 0:729; a1 ¼ 0:418, and a2 ¼ �0:146, for which we normal-

ize the initial sum such that a?ð0Þ ¼ 0:1.
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higher-order modes leak out faster and the SDE and PIC

begin to agree again as the evolution of the fundamental

mode begins to dominate. We believe that the discrepancy at

the beginning of pulse evolution, most noticeable in Fig.

7(c), to be due to the coupled excitation of different modes

due to back reflection from the sharp truncation, which is not

accounted for in our model.

Numerical simulations show that as the pulse stabilizes,

the contribution of the fundamental mode (m¼ 0) dominates

and higher-order mode content leaks out and/or changes

phase. This can be seen in Fig. 8, where a sharply truncated

parabolic channel is used to filter a jinc pulse. Using the

same numerical parameters as before, here, we have a filter

that is 16 cm¼ 14.8 ZR in length with a 0.5 cm gap before

the pulse is injected into an “infinite” parabolic channel

(rcut ¼ 8r0). The purpose of this gap is to facilitate injection

of the filtered pulse into the parabolic capillary discharge

channel with a flatter phase front assisted by simple vacuum

diffraction. In Fig. 8(a), we plot the normalized amplitude a
in red while comparing it to an identical pulse injected only

into an infinite parabolic channel. We can see once again

how the jinc pulse will undergo much more severe oscilla-

tions if the sidelobes are not removed. The energy content of

the pulse is plotted in blue and falls to about 75%. This is a

significant loss, however, the Gaussian mode accounts for

68% of the initial pulse. We are mainly losing energy from

the higher-order modes as shown in Fig. 8(b).

In Fig. 8(b), we show a modal decomposition of the

pulse during filtering, focusing primarily on m¼ 0, 1, and 2,

and can see how the higher-order modes leak out, leaving

what is effectively just the 0-th and 1st order modes. We can

extract the individual mode content numerically by exploit-

ing the orthogonality property of the LG modes

amðzÞ ¼
ð1

0

atotðz; nÞLmðnÞ exp ð�nÞdn;

where amðzÞ is the individual mode amplitude coefficient and

the sum over atot is the total, numerical transverse lineout of

the PIC-generated pulse at peak field intensity.

FIG. 8. A truncated leaky channel (rcut ¼ 2:25r0; nfilter ¼ 1017 cm�3, and length of 16 cm), acting as a filter, precedes a parabolic capillary discharge channel

with n0 ¼ 3� 1017 cm�3 and R ¼ 1:1r0 lm separated by a 0.5 cm gap. (a) The laser amplitude propagating through the filter into a parabolic channel is in red,

an unfiltered jinc pulse propagating just through a matched infinite channel (black), and the energy content of the filtered pulse (blue). (b) Modal decomposition

of intensity. The color lines represent the fundamental (red), 1st (blue), and 2nd (green) higher-order modes on the basis of an LG decomposition. (c) The ini-

tial, unfiltered pulse profile (red) and the filtered pulse profile (black), where a?ð0Þ ¼ 0:5; r0 ¼ 53 lm, ZR ¼ 1:083 cm, and j ¼ 2:74331.

FIG. 7. Comparison of numerical PIC results with the SDE including trans-

verse transmission coefficients calculated via the WKB theory. Three

injected modes with equal initial amplitudes a0 ¼ a1 ¼ a2 ¼ 0:1, with a

pulse radius of r0 ¼ 53 lm and a matched parabolic density profile R¼ r0,

ZR ¼ 1:083 cm, with cutoff radii of (a) rcut ¼ 3:0r0, (b) rcut ¼ 2:25r0, and

(c) rcut ¼ 1:75r0. The WKB transmission coefficients provide accurate mod-

els of the pulse evolution for rcut > 2r0, but for the rcut < 2r0 mode, excita-

tion leads to a discrepancy.
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A comparison of the transverse profiles of the initial

(red) and filtered (black) pulses can be seen in Fig. 8(c). In

addition to filtering, the sharp cutoff of the filter leads to

strong internal reflection and mode excitation, which means

that even for a perfect, Gaussian pulse on entry, there will be

modest but noticeable generation of higher-order modes.

This can be seen in the transverse profile of the filtered pulse,

where it has small but long lived wings. Likewise, the sharp

truncation requires significantly long filters, on the order of

20 cm, before filtering out the initial higher-order mode con-

tent. This is challenging in present experiments, as

experimentally-demonstrated gas jet generated leaky chan-

nels are thus far at most 5–7 centimeters in length by

concatenating several such jets. However, if one was to use a

discharge capillary that was designed and prepared for

energy to be leaked out, then such long, sharply truncated

leaky channels could be realized.

A solution to mode excitation and slow filtering of the

truncated channel is to use a channel that is tailored to leak

out higher-order modes faster, as well as not generate them

as strongly. A simple analytical candidate for this is an expo-

nentially decaying parabolic channel, which comes about

naturally in the earlier evolution of a hydroshock generated

channel, which is visualized in Fig. 3. This can be seen in

Fig. 9(a), where a parabolic channel with exponentially

decaying walls is used to guide a laser pulse (red). Once

again, we compare it to a pulse injected directly into a

matched parabolic channel (black), and we can see the stark

difference in terms of mismatched guiding. The laser energy

depletion is similar to that of a sharp truncation. We are

using the same numerical parameters as in the sharply trun-

cated channel, except now the filter length is 6.5 cm¼ 6 ZR

and is characterized by kp0rED ¼ 3:86 and a slight channel

mismatching with R ¼ 0:856r0.

It has been found that leaky channels with steeper walls,

i.e., smaller than matched channel radii, e.g., Reff ¼ 27 lm

for r0 ¼ 53 lm, where Reff comes from the Taylor-expansion

of n(r) as seen in Eq. (3), both guide the main lobe and leak

out higher-order modes more efficiently. In this case, how-

ever, the effective radius approximates a mismatched plasma

channel, which here causes the pulse to focus. When

Reff < r0, we get greater leakage rates of all modes, which

leads to a faster filtering of the injected pulse, although steep

density profiles are more difficult to practically achieve in

experiment.

In Fig. 9(b), it appears that only a marginal amount of

higher-order mode content is leaked out. However, this

modal decomposition is done for the laser intensity and so

does not account for a change in sign in the individual mode

coefficients, which in turn minimizes the presence of side-

lobes. Once again, we see that the sidelobes, i.e., the higher-

order modes, are minimized when we compare the initial

transverse pulse profile to that of a filtered pulse, of Fig.

9(c). An important advantage of the exponentially decaying

leaky channel is that the simulated plasma filter is only sev-

eral centimeters in length, which has a notably faster filtering

in comparison to the sharply truncated leaky channel. This is

likely due to two factors: the effectively thicker wall of the

exponentially decaying channel reduces the leakage rate of

confined modes, but the negative density gradient outside the

channel effectively acts as a diffracting lens for the laser

content that has already leaked out.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the application of

leaky channels to mode filtering non-Gaussian laser pulses

for potential use in LPAs. Realistic, experimental pulses are

super-Gaussian after pumping and focus down to a near jinc

profile with the sidelobes at focus. A jinc type pulse, which

can be expressed as a superposition of LG modes, leads to

mode beating and in turn to poor guiding, which can lead to

FIG. 9. An exponentially decaying leaky channel (kp0rED ¼ 3:86; R ¼ 0:856r0; nfilter ¼ 1017 cm�3, and length of 6.5 cm), acting as a filter, precedes a para-

bolic capillary discharge channel with n0 ¼ 3� 1017 cm�3 and R¼ 30 lm. (a) The laser amplitude propagating through the filter into a parabolic channel

(red), an unfiltered jinc pulse propagating just through an approximately matched infinite channel (black), and the energy content of the filtered pulse (blue).

(b) Modal decomposition of intensity. The color lines represent the fundamental (red), 1st (blue), and 2nd (green) higher-order modes on the basis of an LG

decomposition. (c) The initial, unfiltered pulse profile (black) and filtered pulse profile (red), where a?ð0Þ ¼ 0:5; r0 ¼ 53 lm, ZR ¼ 1:083 cm, and

j ¼ 2:74331.
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electron bunch loss in a laser-plasma accelerator. We have

demonstrated using the WKB method that we can accurately

calculate the leakage rate of LG modes. Likewise, we can

couple the WKB result via a leakage coefficient to the SDE

formalism that allows for us to accurately model the evolu-

tion of multi-mode LG pulses in leaky channels. The accu-

racy of the SDE method was verified by comparisons to full

PIC simulations. Numerically, we investigated both a sharply

truncated as well as exponentially decaying channels. Both

are able to filter out higher-order modes, but the latter is able

to do so more rapidly, especially when mismatched. The two

forms of leaky channels tested are based on laser-ignited

hydrodynamic shock expansion at different points of the

plasma channel evolution.

Implementation of leaky channel plasma structures and

potentially mode transforming filters to generate single-

mode Gaussian pulses have the potential to greatly improve

future LPA experiments that rely on laser guiding in para-

bolic plasma channels. Two specific examples were exam-

ined in which a leaky channel was placed immediately in

front of an idealized parabolic channel in order to improve

guiding (reduce mismatch, spot size oscillations, and

improve pulse evolution) in the parabolic channel. In the first

case, a 16 cm long leaky channel with a sharp truncation was

used. Matching in the parabolic channel was greatly

improved due to the preferential loss in power for the higher

order modes compared to the fundamental Gaussian in the

leaky channel. Approximately 75% of the initial laser power

was coupled into the parabolic channel in a near-matched

mode. In the second case, a 7 cm-long leaky channel with

exponential truncation was used. Matching into the parabolic

channel was improved due to a rephasing of the higher-order

modes in the leaky channel. Over 70% of the initial laser

power was coupled into the parabolic channel in a near-

matched mode. This improvement in matched propagation

will greatly improve the performance of laser-plasma

accelerators.

In prior experimental work, leaky channels have been

produced in gas jet plasmas with lengths on the order of a

few centimeters. Longer channels may be created in capil-

lary discharges using laser-assisted heating.29 A secondary

problem not considered in this work is the potential damage

by and containment of this leaked energy, as several Joules

of laser energy (for a GeV LPA) would be leaked into the

walls of a capillary based structure. Another possibility is to

incorporate a gas jet earlier in the chirped pulse amplification

process altogether. Placing a leaky channel immediately

after the power amplifiers, where the flat-top profile origi-

nates and a higher order mode content is primarily intro-

duced, but before compression, can take advantage of the

long pulse, low fluence properties of the laser pulse at this

point. Here, the laser pulse can be focused to a very small

spot size, thereby, shortening the Rayleigh length and so the

length of the filter, while also allowing one to completely

neglect plasma wake effects. This would have the advantage

that the filtered pulse would then put a lesser strain on the

compression gratings used in the amplification process, as

well as resulting in a more Gaussian pulse in the end.

However, the effect of long-pulse laser-plasma instabilities

(e.g., Raman backward scattering) during uncompressed-

laser propagation would need further investigation.

ACKNOWLEDGMENTS

The authors acknowledge contributions from members

of the BELLA Program at the Lawrence Berkeley National

Laboratory. This work was supported by the Director, Office

of Science, Office of High Energy Physics, of the U.S.

Department of Energy under Contract No. DE-AC02-

05CH11231, as well as by the NSF through Grant No. PHY-

1632796.

1M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J.

Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, Phys.

Plasmas 1, 1626 (1994).
2H. M. Milchberg, C. G. Durfee II, and T. J. McIlrath, Phys. Rev. Lett. 75,

2494 (1995).
3D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D.

L. Matthaws, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly,

R. W. Falcone, and G. L. Strobel, Phys. Plasmas 1, 1744 (1994).
4E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81, 1229

(2009).
5W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C.

B. Schroeder, C. Toth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L.

Vay, C. G. R. Geddes, and E. Esarey, Phys. Rev. Lett. 113, 245002 (2014).
6A. J. Gonsalves, K. Nakamura, J. Daniels, H.-S. Mao, C. Benedetti, C. B.

Schroeder, C. T�oth, J. van Tilborg, D. E. Mittelberger, S. S. Bulanov, J.-L.

Vay, C. G. R. Geddes, E. Esarey, and W. P. Leemans, Phys. Plasmas 22,

056703 (2015).
7C. Benedetti, F. Rossi, C. B. Schroeder, E. Esarey, and W. P. Leemans,

Phys. Rev. E 92, 023109 (2015).
8I. Gris-S�anchez, D. Van Ras, and T. A. Birks, Optica 3, 270 (2016).
9A. J. Gonsalves, private Communication (2017).

10H. M. Milchberg, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. Sheng,

Phys. Trans. R. Soc. 364, 647–661 (2006).
11C. Durfee and H. M. Milchberg, Phys. Rev. E 51, 2368–2396 (1995).
12P. Volfbeyn, E. Esarey, and W. P. Leemans, Phys. Plasmas 6, 2269–2277

(1999).
13T. Antonsen and P. Mora, Phys. Rev. Lett. 72, 4440–4443 (1995).
14P. Sprangle, A. Ting, and C. M. Tang, Phys. Rev. A 36, 2773–2781

(1987).
15P. Sprangle, E. Esarey, and J. Krall, Phys. Rev. E 54, 4211–4232

(1996).
16E. Esarey and W. P. Leemans, Phys. Rev. E 59, 1082–1095 (1999).
17P. Sprangle, B. Hafizi, and J. R. Pe~nano, Phys. Rev. E 61, 4381 (2000).
18A. H. Hartog and M. J. Adams, Opt. Quantum Electron. 9, 223–232

(1977).
19J. P. Palastro, T. M. Antonsen, S. Morshed, A. G. York, and H. M.

Milchberg, Phys. Rev. E 77, 036405 (2008).
20C. Benedetti, C. B. Schroeder, E. Esarey, C. G. R. Geddes, and W. P.

Leemans, AIP Conf. Proc. 1299, 250–255 (2010).
21C. Benedetti, C. B. Schroeder, C. G. R. Geddes, E. Esarey, and W. P.

Leemans, Plasma Phys. Controlled Fusion 60, 014002 (2018).
22E. Cormier-Michel, E. Esarey, C. G. R. Geddes, C. B. Schroeder, K. Paul,

P. J. Mullowney, J. R. Cary, and W. P. Leemans, Phys. Rev. Accel. Beams

14, 031303 (2011).
23C. Ren, B. J. Duda, R. G. Hemker, W. B. Mori, T. Katsouleas, Jr., and T.

M. Antonsen, Phys. Rev. E 63, 026411 (2001).
24J. P. Palastro, D. Gordon, B. Hafizi, L. A. Johnson, J. Pe~nano, R. F. Hubbard,

M. Helle, and D. Kaganovich, Phys. Plasmas 22, 123101 (2015).
25A. Snyder and J. Love, Optical Waveguide Theory (Chapman and Hall,

New York, 1983).
26L. Brekhovskikh, Waves in Layered Media (Academic Press, New York,

1960).
27S. Golowich, W. White, and W. A. Reed, J. Lightwave Technol. 21,

111–121 (2003).
28E. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE J. Quantum Electron.

33, 1879 (1997).
29N. A. Bobrova, P. V. Sasorov, and C. Benedetti, Phys. Plasmas 20, 020703

(2013).
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