1607.03445v1 [cs.PL] 12 Jul 2016

arxXiv

Type-Driven Repair for Information Flow Security

Nadia Polikarpova

Massachusetts Institute of Technology
polikarn@csail.mit.edu

Abstract

We present LIFTY, a language that uses type-driven program repair
to enforce information flow policies. In LIFTY, the programmer
specifies a policy by annotating the source of sensitive data with a
refinement type, and the system automatically inserts access checks
necessary to enforce this policy across the code. This is a significant
improvement over current practice, where programmers manually
implement access checks, and any missing check can cause an
information leak.

To support this programming model, we have developed (1) an
encoding of information flow security in terms of decidable refine-
ment types that enables fully automatic verification and (2) a pro-
gram repair algorithm that localizes unsafe accesses to sensitive
data and replaces them with provably secure alternatives. We for-
malize the encoding and prove its noninterference guarantee. Our
experience using LIFTY to implement a conference management
system shows that it decreases policy burden and is able to effi-
ciently synthesize all necessary access checks, including those re-
quired to prevent a set of reported real-world information leaks.

1. Introduction

Programs that compute over sensitive data are becoming more com-
plex. In addition to directly displaying sensitive values, applications
often support functionality such as search and aggregation. To pro-
tect users’ privacy and prevent information from being disclosed to
unauthorized users, programmers must implement access checks
across the program. Any missing check may result in an informa-
tion leak.

Traditional approaches to information flow control can detect
leaks that result from missing access checks, but the amount of pro-
grammer effort required to write secure code remains high. Tech-
niques for language-based information flow security [43] statically
verify the absence of such leaks, but they require the program-
mer to first correctly implement information flow checks across the
program and then additionally provide specifications of permitted
flows. While dynamic approaches [9l 27, 54] decrease the anno-
tation burden, the programmer remains responsible for correctly
implementing checks in order to avoid exceptions or silent failures.

We take a policy-agnostic approach [7, [52], factoring out in-
formation flow policies from the rest of the program to mitigate

[Copyright notice will appear here once *preprint’ option is removed.]

Jean Yang

Carnegie Mellon University
jyang2@cs.cmu.edu

Shachar Itzhaky
Armando Solar-Lezama

Massachusetts Institute of Technology
shachari,asolar@csail.mit.edu

Policies
Program
with with
Program holes checks

D Specification D Core program . Program hole

Policy check O Tool component

Figure 1. Type-driven repair for policy-agnostic programs.

programmer burden. In prior work on policy-agnostic program-
ming [[7} 152} 53]}, the programmer implements each information
flow policy once, associated with data definitions, rather than as
checks across the program. The remainder of the program may be
free of checks and the language runtime is responsible for steer-
ing dynamic behavior to adhere to policies. While this program-
ming model makes it impossible to leak information through miss-
ing checks, the dynamic solution unfortunately involves potentially
prohibitive overheads and unpredictable runtime behavior.

We take a static approach to avoid the pitfalls of runtime tech-
niques for policy-agnostic programming. Generating information
flow checks seems like a perfect application for program synthesis,
as what we want is to synthesize small code snippets corresponding
to policy checks. To make the synthesis problem tractable, however,
we need to be able to synthesize each check independently. Thus,
we need a way to decompose the global repair problem into local
synthesis problems. This is challenging because information flow
checks may depend on both sources and sinks for sensitive data
and there may be complex computations in between.

To address these challenges, we propose a type-driven solu-
tion for policy-agnostic programming. At the core of our tech-
nique is the insight that we can use refinement types—types dec-
orated with decidable predicates [41 49]—to statically enforce a
policy-compliant semantics. Refinement types have the advantages
that(1) they support expressive policies, (2) type-checking is de-
cidable, and (3) type inference can provide error localization while
reducing annotation burden. In our solution, the programmer imple-
ments each information flow policy only once, as a type annotation,
rather than as repeated checks across the program; the type checker

2016/7/13

is responsible for identifying unsafe flows, and a subsequent repair
phase prevents these flows by automatically inserting conditional
expressions implementing the policy checks into the code. The ap-
proach is fully static and requires no runtime analysis.

In this paper, we present(1) a policy-agnostic, security-typed
language called LIFTY (Liquid Information Flow TYpes) and (2) a
compiler that repairs LIFTY programs by inserting information
flow checks. In[Fig. T|we show an overview of LIFTY and its com-
pilation process. In LIFTY, the programmer specifies information
flow policies as refinement type associated with sources of sensi-
tive data. LIFTY’s verifier uses type inference techniques inspired
by liguid types [41] to produce a program with holes, where each
hole corresponds to an unsafe data access paired with a local pol-
icy specification. The repair phase builds on an existing type-based
program synthesis technique [39] to produce a policy check for
each hole. We formalize a core language for LIFTY, prove a non-
interference property, and demonstrate the practical promise of our
approach using an implementation of a LIFTY-to-Haskell compiler.

This paper makes the following contributions:

e Static, type-based approach to policy-agnostic program-
ming. We present a programming model that supports the im-
plementation of information flow policies as refinement types,
separately from other functionality. The compiler, rather than
the programmer, becomes responsible for generating code to
implement the policies.

Verification of expressive type-based policies. In order to sup-
port policy-agnostic programming, we developed a verification
technique for information flow security based on liquid type in-
ference. The technique is sound, has minimal annotation over-
head, and supports expressive policies and program constructs
(such as recursion and higher-order functions).

Formalization and proof of security guarantee. We formalize
our verification approach in terms of refinement types [41} 149]
and prove a non-interference property. Our proof technique uses
a phantom encoding to reduce the problem of proving non-
interference to the problem of proving type safety, within the
same language.

Multistage program synthesis for separating concerns. We
introduce a two-stage technique for synthesizing policy checks
that handles the functional specification of the check separately
from its information flow specification. The separation is based
on the insight that the two concerns are orthogonal, and helps
make the synthesis problem tractable.

Demonstration of practical promise. We implement a LIFTY-
to-Haskell compiler and demonstrate through micro-bench-
marks and the implementation of a conference management
system that our solution supports expressive policies, reduces
the burden placed on the programmer, is able to generate all
necessary checks for our benchmarks (just over two minutes
for the entire conference management system), and can repair
programs to prevent reported real-world leaks.

2. Introductory Example

We introduce the programming model of LIFTY using code from
our conference management case study. We first show how to im-
plement core functionality in a policy-agnostic style and add spec-
ifications for information flow policies. Then we explain how the
LIFTY compiler inserts access checks to ensure policy compliance.

2.1 Policy-Agnostic Core Functionality

The core functionality of a conference management system is to
provide access to a persistent store of paper submissions to authors

showPaper w pid =
let u = getCurrentUser w
out = do title <— getPaperTitle w pid
authors <— getPaperAuthors w pid
return (title ++ ":_" ++ show authors)
in print w u out

Figure 2. Excerpt from a conference management server code.

and reviewers. The function showPaper in|[Fig. 2| gets as argument a
paper ID pid, retrieves the paper’s title and author information from
the persistent store, and displays it to the current uselﬂ Note that the
function has both read effects (retrieval from the store) and write
effects (output to user). For simplicity, we capture these effects by
propagating a single additional argument w (of type World) through
the code. We assume that a World value encapsulates both the state
of the persistent store and the observations made by the users.

The body of showPaper accesses potentially sensitive data
using accessor functions getCurrentUser, getPaperTitle, and
getPaperAuthors. For example, implementing double-blind review
requires hiding the list of paper authors from ordinary reviewers
and making it visible only to the program chair. One way to en-
force this policy using conventional programming paradigms, is to
guard the call to getPaperAuthors by a conditional that checks if
the session user is allowed to see the author list, and alternatively
returns a constant default value. Note that the check is specific not
only to the data element being read, but also to the eventual viewer
of the result. (In this case it happens to be the session user, but this
is not always the case.) Because of this, the problem of checking
cannot be solved simply by delegating the checks to accessor func-
tions. Instead, a potentially different access check has to appear in
every computation that involves getPaperAuthors, which quickly
becomes tedious and error-prone.

LIFTY obviates the need for writing policy checks: as long as
the programmer correctly annotates getPaperAuthors with the de-
sired policy, the compiler will automatically guard each invocation
of this function with an appropriate policy check. To this end, the
compiler has to propagate the information about where a sensitive
value is flowing backwards through the computation towards the
source of the value. We achieve this by wrapping every sensitive
computation in a “static taint tracking” monad we call Tagged. A
computation in this monad has a refined type that keeps track of
the policy associated with the result, while at runtime Tagged has
no effect (i.e. it is equivalent to the identity monad). In in
the interest of readability, we wrap the sensitive computation of the
out variable in a Haskell-like do-notation (in our implementation,
this function is written without the do; instead, the string operations
are lifted into the Tagged monad.)

2.2 Adding Policies Through Types

In we show how to specify a policy that paper authors are
only visible to the program chair. In LIFTY the programmer desig-
nates accessor functions as sensitive by wrapping their return type
in a Tagged type constructor, which is parameterized by a predicate
corresponding to the information flow policy. More precisely, the
type Tagged a < P>, where P is a unary predicate, stores a value
(of type «) that can only be seen by a user u provided that P u
holds. In the example, we gave the function getPaperAuthors the
type Tagged [User] <Av .v = chair wﬂ This policy says that a

' Tn most web-based systems, there is a notion of a “session” and a session’s
“current user”.

2 For readability, in the rest of the paper we always use v for the sole
argument of the policy predicate and omit the binding.

2016/7/13

getCurrentUser :: World — Tagged User <True>
getPaperTitle ::

w:World — PaperId — Tagged String <True>
getPaperAuthors ::

w: World — PaperId — Tagged [User] <v = chair w>

Figure 3. A basic policy for double-blind review.

print :: <P:User — Bool>
World — viewer: Tagged {User | P v} <P>
—» msg: Tagged String <P> — World

Figure 4. Output function from LIFTY standard library.

viewer v may see the return value of the function as long as it is
equal to the chair field of the persistent store. Note that policy pred-
icates can directly refer to the fields of the persistent store (such as
chair above), while the executable program can only obtain their
Tagged versions by means of accessor functions; this separation is
important in order to support policies that themselves depend of

sensitive values (see[Sec. 6).

2.3 Qutput functions

Output functions, such as print in are responsible for im-
posing the requirement that the sensitive values they consume are
visible to the target of the output. In[Fig. 4 we show how this is ac-
complished through the type signature of print. In addition to the
sensitive message msg, the function takes as argument the viewer
who is going to observe the output. The type of print is param-
eterized by a policy P, which labels both the viewer and the mes-
sage. The rationale is that the identity of the viewer may itself de-
pend on sensitive information. (We show interesting cases of this
in[Sec. 6]) When checking an application print w u x, the LIFTY
type checker must infer a concrete instantiation of P that is at least
as restrictive as the policies guarding both u and x, but at the same
time P u must hold (as expressed by the refinement {User | P v} in
the type of viewer).

Even though in web applications the viewer of most output op-
erations is the current session user, we cannot assume that this is
always the case. Supporting functionality such as sending email
has led to real-world information leaks: one such documented bug
in the HotCRP conference management allowed users to send pass-
word reminders for any other user—to themselves [54]. By making
the viewer explicit in output operations and enforcing policies with
respect to an arbitrary viewer, LIFTY can prevent such leaks.

2.4 Inserting Policy Checks

Our goal is to get the policy-agnostic code from [Fig. 2]to adhere to
the policy we specified in [Fig. 3] Prior tools for static verification
of information flow properties [} [10, 130, 140l |43] will alert the
programmer that checks are missing, but they will not help the
programmer produce the checks. Using LIFTY, the programmer
may write policy-agnostic programs and rely on the compiler to
generate the necessary checks.

The key innovation in the LIFTY compiler is a repair algorithm
that generates policy-enforcing code. LIFTY first attempts to verify
the code against the provided annotations. In our example, LIFTY
detects that a value with policy v = chair wflows into the argument
out, which is required to have policy v = u (or weaker). Since
v =u # v = chair w, LIFTY deems this flow unsafe. There are
several ways to prevent this flow. One option is to wrap the print
invocation itself in a conditional; this would fix the leak but will
have an undesired side effect of hiding the paper title along with the

showPaper w pid =
let u = getCurrentUser w
out = do
title < getPaperTitle w pid
t; < getChair w
tz(*U
authors < if t; = t, then getPaperAuthors w pid
else return ["??"]
return (title ++ ":_" ++ show authors)
in print w u out

Figure 5. Example implementation with injected policy code.

getSessionNo ::

getPaperStatus
w: World — PaperlId

— Tagged Status <currentPhase w = Done>

World — PaperId — Tagged Int <True>

showPaper w pid =
let u = getCurrentUser w
out = do
t1 < getCurrentPhase w
st <— if t; = Done then getPaperStatus w pid
else return NoDecision
if st = Accepted
then 1iftM show (getSessionNo w pid)
else return ""
in print w u out

Figure 6. An implicit flow example and the code injected to
overcome it.

author list. The goal of the LIFTY compiler is to preserve as much
of the original program behavior as possible, thus it always chooses
to guard the smallest possible subterm, which has the effect of
inserting checks directly at the source of the sensitive value. In this
example, LIFTY identifies getPaperAuthors w pid as the offending
source.

IFig. 5| shows the repaired version of the code, in which the in-
vocation of getPaperAuthors is guarded with an appropriate check.
In the code, shaded areas indicate injected policy code evaluated
in the Tagged monad. This code retrieves the value of the program
chair using getChair (the accessor function for the field chair) and
compares it to u. In case the policy is violated, the guarded access
returns a default value ["??"]. LIFTY requires that the program-
mer designate a constant default value for every sensitive accessor
method involved in repair.

Note that in a more realistic example, several sensitive values
with different policies are likely to flow into the same print oper-
ation. This presents no problem for LIFTY: since the repair is per-
formed at the source, every sensitive value access will be guarded
with its own check, which complies with our goal of preserving
maximum functionality.

2.5 Preventing Implicit Flows

Information leaks can also occur because viewers access values de-
rived from sensitive data as a result of control flow. Suppose that
in our conference management system, authors are not allowed
to see whether a paper has been accepted prior to the notification
date. Now consider a function that prints out, for an accepted pa-
per, which conference session it has been assigned to, and prints
an empty value if the paper has not been accepted. If this function

2016/7/13

is executed on behalf of an author, they might infer whether their
paper has been accepted, based on the session value they observe;
in fact, this is a documented leak in the EDAS conference manage-
ment system [1]]. We show the code for this, along with the repairs,
in Because LIFTY regards the condition st = Accepted as
secret, the result of the if expression is also secret. Since the result
flows into an output, the compiler wraps the source of the sensitive
data (getPaperStatus) with a check. (Small note: show converts a
value to a string; 1iftM lifts an operation to Tagged.)

In summary, LIFTY ensures that any value derived (either ex-
plicitly or implicitly) from a sensitive value will be shown to a
viewer only if the policies allow. The only parts of the code that
need to be trusted are the policy predicates in the types of the ac-
cessor functions and the output functions, such as print, which can
be written once and reused across different systems. Note that if the
programmer has already implemented the checks in the program,
LIFTY will leave the program as is. LIFTY is also able to enhance
existing checks by adding conditionals inside of the existing ones.

3. Solution Overview

We now describe the encoding and algorithm that enable LIFTY to
insert checks. The main insight is that we can reduce the problem
of inserting information flow checks to the problem of local syn-
thesis from refinement types. By extending the subtyping rules for
refinement types to support phantom predicates, we can use liquid
type checking [41]] for decidable verification and error localization.
Our encoding also allows us to use type inference both for propa-
gating policies through a program and for associating each source
of a policy violation with the specific policy that has been violated.
We can then use the abduction technique of the tool SYNQUID [39]
for synthesizing the necessary conditional checks. In this section
we provide an overview of the solution. We present the detailed

formalism in and the detailed repair algorithm in

3.1 Security Policies as Phantom Refinements

The key to understanding our solution is understanding the Tagged
monad that we introduced in[Sec. 2} Tagged is a data container that
marks sensitive values and associates them with their policies for
the purpose of static verification, error localization, and repair. It
has a single constructor, which is private — it cannot be referenced
in user code, which ensures that such code cannot accidentally de-
construct the value and discard its policy; instead, this is done in a
safe manner inside core library routines such as bind and print.
This encapsulation provides the following two properties:(1) all
results of computations of a tagged value are tagged with the same
policy (or one that is more strict), and (2) once a value is tagged, it
remains tagged for all subsequent computations.

LIFTY employs refinement types and allows the program-
mer to express policies as refinement predicates. Recall from
that the getPaperAuthors function has the return type
Tagged [User] <v = chair w>. The expression v = chair w is the
refinement predicate for the Tagged type of the returned value,
where v is a reserved name for that predicate’s argument. Because
the function has this type, programs will only compile if the type
checker can statically prove that eventual print destinations of this
value have (at most) the chair as the viewer. Once values become
tagged, LIFTY’s type checker is responsible for correct propagation
of policies through derived values.

Our encoding allows LIFTY to take advantage of the main ben-
efit of liquid types: automatic type inference. This alleviates the an-
notation burden, allowing programs to be policy-agnostic, associ-
ating policy-related annotations only with sources of sensitive data,
rather than throughout the program. This level of automation is not
achievable with the general value-dependent types previously used
for security verification [47 48]

Note also that there is a key difference between LIFTY’s use
of predicate parameters and the standard use [49] for abstracting
over functional properties. With the standard usage, we can de-
fine a data type IntPair with a constructor such as C :: x: Int —
y: {Int | P x v} — IntPair <P>, such that P denotes the relation
between the two components of the pair. In LIFTY, policy pred-
icates carry information that has nothing to do with the runtime
values of the type, but that describes which viewers are allowed to
see each value. Thus policy predicates are phantom, i.e. parame-
ters that do not appear in the arguments of the data constructor, a
notion analogous to phantom types in Haskell Our use of phan-
tom predicates not only supports our encoding of information flow
policies, but it also simplifies our formalization and proof of our se-
curity property. In[Sec. 4| we provide the formal details of phantom
predicates and safety in LIFTY.

3.2 Inserting Security Checks Through Program Repair
The stages of repair are as follows.

Verification. The LIFTY type-checker uses a variation of lig-
uid type checking to verify the code against the provided annota-
tions. From our example in[Fig. 3] LIFTY infers the type judgement
out :: Tagged String <v = u> for the program in by col-
lecting type constraints and solving them (as explained in[Sec.5.1).
Through the application of monadic bind, LIFTY also infers the
type authors :: Tagged [User] <v = u>. At this point, LIFTY de-
termines that getPaperAuthors w pid will not type-check, since its
expected type is Tagged [User] <v = u>, while its actual type is
Tagged [User] <v = chair w>, according to the type signature of
getPaperAuthors .

To reason about policies that may be stronger or weaker than
the explicitly stated policy, we take advantage of a subryping rela-
tionship between refinement types. The important subtyping rule to
note is Tagged< P> <: Tagged<Q > iff () = P. For this reason it is
essential for the phantom predicate parameter to be contravariant,
so as to allow more public values to flow into more secret values,
and not the other way around. We define the subtyping rules in
Note that this check is always decidable for the predicates
allowed by the type system. Decidability is especially important for
a verification procedure to be used for automated synthesis.

Error localization. The information obtained from type inference
is used to localize errors. Since v =u # v = chair w, LIFTY
will not only mark this as a type error, but it will also identify
getPaperAuthors w pid as the offending term. Whereas standard
error localization for liquid types finds the first offending term,
LIFTY identifies all instances of subtyping violations. LIFTY’s use
of contravariance, along with its implementation of type inference,
allows LIFTY to identify precise locations for expressions that need
to be wrapped in conditional checks, as well as specifications for
the check holes.

Check synthesis. The final stage of compilation involves replacing
the holes with checks implementing the policies. The problem of
synthesizing information flow checks has the nice property that
it is restricted to expressions of Boolean type, allowing us to use
SYNQUID’s abduction to infer a sufficient logical condition for
the hole. We then use SYNQUID to translate the logical condition
into a program term. In our example, SYNQUID combines the
local variables u and w with the context components getChair and
eq to construct a program term equivalent to the logical formula
u = chair w. For efficiency purposes we do not use SYNQUID off-
the-shelf; we explain our modifications in[Sec. 3]

3 https://wiki.haskell.org/Phantom_type

2016/7/13

https://wiki.haskell.org/Phantom_type

v u=z|Adx:Te Values
e u=v|letz=wvvine Expressions
| if = then e else e
| match zwith DT — e
n= Formulas:
| T|IL]|O]|4]|... (varies) interpreted symbol
| f uninterpreted symbol
| application
a =y |nZT|¢Y=a Atomic refinement
r u=alaAr Refinement
p =r|Xz:Tp Parametric refinement
B = Base types:
| ()| Bool | Int primitive
| type variable
| DT (p) data type
T =«={B|r}|z:T—->T Types
o =@|e|o Variance
S u=T|Voa.S |Vo(m:T).S Type schemas

Figure 7. Terms and types.

4. Formal Semantics and Guarantees

We present the semantics and guarantees of LIFTY in two steps.
First, we present the static semantics of 5L, a simple pure func-
tional language that extends Ap, the core language of Abstract
Refinement Types [49], with type constructors (polymorphic data
types) that are parameterized by types and predicates and obey
nominal subtyping rules. Our extension is sufficiently minimal that
we can take advantage of A\p’s decidable type-checking and auto-
matic type inference.

Polymorphic data types allow us to encode tagging values with
information flow policies directly in BL, rather than extending the
language. We first show how to implement tagging in BL as the
information flow monad Tagged. We then use a new proof tech-
nique we have developed to prove non-interference, introducing the
Tagged® monad that relates pairs of executions and showing that
type-checking with Tagged? implies non-interference with Tagged.
Since the repair phase always generates type-correct programs, this
is sufficient for verifying the correctness of LIFTY’s repair.

4.1 Syntax and Types of BL

We now present BL. Like Ap, BL’s type system features decidable
refinement types, as well as type- and predicate-polymorphism.
Our presentation of the syntax, types, and semantics closely follows
Vazou et al.’s presentation of Ap [49]. BL additionally includes
a formalization of type constructors parameterized both by types
and by predicates. These type constructors, combined with the
subtyping rules we define for them, are crucial for supporting the
phantom predicates necessary for our solution.

We show the BL syntax in[Fig. 7]

Expressions. We differentiate between program terms and refine-
ment terms. The former include values (variables and abstractions)
as well as let-bindings, conditionals, and pattern-matching. All 3L
programs are in A-normal form [20]: application only appears in
let-bindings and are built out of values, not arbitrary expressions
(this is important for refinement type checking).

For simplicity of presentation we omit recursion and assume our
data types are record types (i.e. have a single constructor); hence the
match expression, which binds the fields of the record to variables,
only has one case. Our implementation supports both recursion
and proper algebraic data types (tagged unions); extending the
formalism to include these features would be straightforward.

Refinements. Refinements are built up from formulas ¥ of the re-
finement logic and applications of predicate variables 7. Inside for-
mulas, the exact set of interpreted symbols depends on the chosen
refinement logic; the only requirement is that the logic be decid-
able to enable automatic type checking. Predicate variables always
appear positively inside refinements to enable type inference.

Types and Schemas. A BL type is either a scalar—a refined base
type—or a dependent function type. Base types include primitives,
type variables, and data types. A data type is an application of a
type constructor D to zero or more types and zero or more para-
metric refinements. Schemas are obtained by universally quantify-
ing types over type and predicate variables. We explicitly label each
quantification with its variance: covariant (), contravariant (), or
invariant (®). & is the default variance and may be omitted.

4.2 BL Static Semantics

In we show the relevant subset of well-formedness, sub-
typing, and type checking rules for BL. These rules deviate from
the standard semantics is in the way we track variances of type
and predicate parameters of polymorphic schemas; explicit vari-
ance annotations are required to control the subtyping relation for
data types with phantom predicate parameters, which we use to en-
code policies. Note that while our extensions to Ap are standard,
they are important for deriving our safety property.

In our semantics, a typing environment I" maps variables to type
schemas (x :), bound type variables to their variances (« : o),
and bound predicate variables to their types and variances (7 :
T'[o]). We assume that for each type constructor D the environment
contains a data constructor with the same name; the type schema of
the constructor has the form Voa.Vor : T'Th7 — ... = T, —
{D awZ | r} and determines the type and predicate parameters
of the type constructor D.

Well-Formedness. A refinement r is well-formed in the environ-
ment I', written I" + r, if it sort-checks to Boolean and none of
its predicate variables are bound in a contravariant manner in I'.
We use a judgment I - r : T in the premises of rules WF-1 and
WE-7 to denote simple sort checking of refinement terms, as op-
posed to I' - e :: T', which denotes refinement type checking of
program terms. Well-formedness extends to base types, types, and
type schemas. The well-formedness rules ensure that variance an-
notations on type and predicate parameters are consistent with how
those parameters are used inside the type (i.e. whether they appear
positively, negatively, or in both positions); to this end, I'™ in the
premises of rules for function types inverts variance annotations for
all type and predicate variables in the environment.

Subtyping. The subtyping relation T' + T <: T’ is standard
except for data types. Rule <:-SC reduces subtyping be-
tween scalar types to implication between their refinements, under
the assumption extracted from the environment. Since the refine-
ments are drawn from a decidable logic, this implication is decid-
able. Refinement assumption is simply a conjunction of all refine-
ments of scalar variables:

= A [e/vr

z:{B|r}el’

Rule <:-D reduces subtyping between two instantiations of the
same type constructor to a relation between their type and predicate
arguments. Each argument is compared according to its variance
annotation in the corresponding data constructor.

Type Checking and Inference. Type checking rules are standard.
In the rule P-IF, we use a shortcut I'; 7 for I'; = : {() | r}, where
is a fresh variable name. The most interesting rule is P-INST, which
instantiates a term of predicate-polymorphic type with a parametric
refinement p of an appropriate type. The operation [7 > p]S can be

2016/7/13

Well-Formedness |I' Fr|[T - B]|[TF 5]

WE- I' k% : Bool WE-r D'k mz:Bool I'(m) # T[O]

Tk Thrz

I'(a) #6© WE-SC I'-B T;v:Btrr
'Fa 'H{B|r}

WF-a

I'—+T, e Ty BT
'rT, —>T

WEF-FuN

F(D) = Voai.vo<7r]' : UJ>T ‘Tz| = |O£1‘
I'+DT; (p;)

I'kp;:U;
WEF-D P %3

Tia:o0kF S
I'kVYoa.S

Subtyping |'FT <: T’

I'-B <: B Valid([T]Ar=)
TH{B|r} <: {B'|r'}

D;m:Tlol S

WE-Va _
FEVo(n:T).S

WE-V7

<:-Sc

ETy <t Tp Tyy:Tybkly/z]T <@ T

<:-FUuN
Trha: Ty, >T <t y: Ty »>T'

(D)= V%ai'v‘)j (m3). T TET;~o, Ti/ I'kpj ~oj; p;'

<:-D — —
I'-DT;(p;) <: DT/ (pé}
THT <: T’ T <:T T <:T' THT <:T
THT ~g T THT ~g T T~ T

Tiz:ThHp~op
TEXe:Tpr~o Az :T.p

Type Checking

[(z)={B|r}
VAR-SC VAR
'tz {B|v=uz}

re{olry~ {0}
Tkre~or!

I'(z) =S S non-scalar
kxS

'tT, Tiyx:TpkFexT

ABS
T e :Tre(x:Tp —T)

F'tovia(y:Ty—T) ThuvuTh
PETy<:Ty Tiz:w/ylT'kFexT

LET
I'Fltz=wvivoine:: T

'k {D’fm (D) | T}
I'(D) =VYoaVo(m).T1 = ... = Tn = {Da (@) | 7}
Tsyi: [Tw/allpe > 7|Ti;2: {D Ty (Pa) | Ta AT} benT

M
ATCH I'Fmatchzwith DT — e T
T'kx:: {Bool | r}
I D;[T/vlrker =T T[L/vlrkex =T
'k if x thenej elseeg :: T
e : I'kFe:Voa.S T'H{B
T—GENM T-INST € o { ‘7’}
I'ke:Voa.S e [{B]|r}/a]lS
;m:To]Fex:S THT
P-GEN
ke Vo(n:T).S
I'ke:V :T).S T'kp:T
P-INST e Volr: 1) b

F'ke:[p>mn)S

Figure 8. Static semantics of BL: well-formedness, subtyping,
and type-checking.

module Tagged where

private ctx:U -- Current context

-- | Tagged data constructor

private Tagged: Va. Vg<p: U — Bool> .
val:a — Tagged <« <p>

return: Vao. Vg<p: U — Bool> . a — Tagged « <p>

bind: Vo 5. Vg<p: U — Bool> . V<fiax — 8 — Bool> .
x: Tagged o <p> — (y: a — Tagged {ﬂ\ fyv} <p>)
— Tagged {8 | f (val x) v} <p>

print: Va. Vg<p: U — Bool> .
0 — u:Tagged {U \ p V}<p> — x:Tagged @ <p> — 0

Figure 9. The Tagged monad. U denotes the type of principals; O
denotes the type of observations.

bindBool: V3. Vg<p: U — Bool> .
V<f: Bool — 3 — Bool>. V<c: Bool> .
x: Tagged {Bool | v =>c} <Au.puA c>
— (u: {Bool | ¥ = c} — Tagged {8 | f u v} <p>)
— Tagged {8 | f (val x) v} <p>

Figure 10. The type signature of bindBool.

understood as substituting the lambda-term p for every occurrence
of m in S and then “beta-reducing” the result using the actual
arguments of 7 (see [49] for details).

Note that rules T-INST and P-INST are non-deterministic: they
guess appropriate instantiations for type and predicate variables. In
practice these instantiations are inferred by liquid type inference

(see[Sec.).

4.3 Encoding Information Flow in BL

Now that we have data types, we can track information flow by
wrapping sensitive values inside a data type Tagged o (Au.r). The
predicate parameter (Au.r), which we refer to as policy, encodes
which principals are allowed to see the wrapped value. We show
the type of the corresponding data constructor together with the
basic monadic operations in [Fig. 9] With these functions, we can
rely on the type checking from|Fig. §|to propagate policies through
all computations involving sensitive values and to reject programs
that call sink functions with arguments whose policies are too
restrictive.

It is important that the policy parameter of the Tagged construc-
tor is contravariant, since a value with a less restrictive tag (i.e.
visible to more users, more public) should be allowed to flow into a
variable with a more restrictive tag (more secret) and not the other
way around. In addition, to prevent user code from matching on a
tagged value and freely extracting the protected sensitive value, we
place a restriction that the Tagged constructor is not accessed from
other modules. This is similar to FINE’s [47] technique of using
private data constructors.

Manipulating tagged values. Policy-agnostic code manipulates
tagged values using the monadic return and bind shown in[Fig. 9
Their implementations are the same as for the identity monad and
are not shown on the figure, while their type signatures ensure
proper propagation of tags. In particular, the signature of bind
means that applying a sensitive function to a sensitive value yields

2016/7/13

a result that is at least as secret as either of them. The additional
predicate parameter f of bind allows the type checker to reason
about the functional properties of a Tagged computation, alongside
its policies.

Output at sinks. For the sake of simplicity we define a single sink
function called print as part of the Tagged module that enables
output of a value tagged with a policy p to a user u, as long
as u satisfies p. To simplify formalization of noninterference, we
parameterize the semantics of BL by the context, i.e. the principal
who is observing the execution. More concretely, we assume that
the environment always contains a variable ctx : U, and when a
BL program is executed, it is executed with all possible values of
ctx at the same time. This allows us to define print as follows:

print = Ao. Au. Ax.
match u with Tagged u’ —
if u’ # ctx then o
else match x with Tagged x’ — o0 ++ show x’

The notion of context allows us to define a concept of contextual
noninterference: informally, if a program type-checks with a given
context, then substituting different values for tagged variables that
are not visible to the context will not influence the final result of
the execution.

Relaxing requirements on bind. While the signature of bind
is safe, it requires that all steps in a computation over sensitive
values carry the same policies as the result. This can be overly
restrictive when we want to execute conditional checks that depend
on sensitive values. We might want to, for instance, show results
only to viewers who are in a sensitive authors list. We may still want
the program to define behavior for when the check fails, but with
our existing bind we are not able to perform checks on sensitive
values that may fail.

In order to allow conditional checks on sensitive values that may
fail, we provide a separate function bindBool (shown in [Fig. 10),
where the first argument is a (tagged) Boolean. According to the
type of bindBool, the first argument x is allowed to carry a policy
with an additional conjunct c. This is allowed because whenever ¢
is violated, = must be false (that is, any insufficiently exported x
has the same value). We are able to make a special case for binding
Boolean values: liquid type checking supports this construct for
Booleans, as it is possible to use predicate abstraction for automatic
type inference in the case of Booleans.

4.4 Proving Non-Interference Using Tagged>

‘We now prove that executions involving the Tagged monad preserve
contextual noninterference: if a sensitive value v may not flow
to a given viewer, then any pair of executions involving different
assignments to v should yield equivalent outputs.

Reasoning directly about noninterference is inconvenient be-
cause it requires talking about two executions. We simplify our
noninterference proof using a technique similar to that of Pottier
and Simonet [40]: we introduce auxiliary constructs that allow us
to reason about two executions in one. Being able to encode secu-
rity labels as a library makes the formalization particularly nice: the
only auxiliary construct we need for the proof is an alternative def-
inition of the Tagged monad. We introduce the Tagged? monad with
new implementations of bind, return, and print yielding the prop-
erty that if a program type-checks with Tagged?, then it preserves
contextual noninterference with Tagged.

The Tagged® monad. We first construct a phantom encoding: a
new information flow monad, Tagged?, that explicitly relates pairs
of program executions. The intuition behind Tagged? is as follows:
it represents two versions of a sensitive value from two different
executions of the program as seen by the current observer ctx.

module Tagged2 where
private ctx:U -- Current context

-- | Tagged data constructor

private Tagged?: Vo . Vo<p: U — Bool> .
La— ria— prop: ({() | p ctx} = {O) | 1L=r})
— Tagged & <p>

return?: Vo . Vo<p: U — Bool> . — Tagged o <p>
return? = Ax . Tagged® x x id

bind%: Yo 8. Vg<p: U — Bool> . V<f:ae — 3 — Bool> .
x: Tagged o <p> — (y: a — Tagged {ﬂ\ fyv} <p>)
— Tagged {8 | f (1L x) v} <p>

bind?> = Ax. Ag.match x with Tagged? xl xr _ —
match g x1 with Tagged2 yl - - —

match g xr with Tagged2 _yr - — Tagged2 yl yr id

print?: Va . Vo<p: U — Bools .
0 — u:Tagged {U \ p V}<p> — x:Tagged & <p> — 0
print? = Ao. Au. Ax.
match u with Tagged2 ul ur - —
if ul # ctx A ur # ctx then o
else if ul # ur then fail
else match x with Tagged2 xl xr - —
if x1 # xr then fail else o ++ show x1

Figure 11. The Tagged”? monad, which keeps track of two projec-
tions.

Mirroring what we want for our noninterference property, the two
versions are only allowed to differ for those sensitive values that are
not visible to ctx. The Tagged? constructor accepts two « values, 1
and r, which we call projections. Its third argument prop serves as
a proof of the property p ctx = [= r, that is, if the policy holds
of the current observer, the two projections must be equal.

A Tagged? value with different projections corresponds to Pot-
tier and Simonet’s “bracket value” in [40], and the prop require-
ment corresponds to their rule that all bracket values are assigned
high security labels. The main conceptual difference of our treat-
ment is that the division between high and low security, as well as
the notion of a leak, is context-specific.

We show the implementation of the Tagged? in The
phantom encoding provides alternative implementations of the
primitive policy combinators: return® gives the same value for
both projections, while bind® applies the function projection-wise.
The BL type checker can easily show both implementations type-
safe.

The new module also provides a new implementation for print
that is designed to fail when it detects interference. This is not a
function designed for printing to allowed users, but for checking
values across multiple executions. The main idea is that print?
fails whenever the observer could notice a difference between the
two executions, either because the target of the output is different
in the two executions (ul # ur) or because it outputs two different
values (x1 # xr). We assume that fail is an untypable term, so
the only way to type-check print? is to prove that both failing
branches are unreachable, which B.L successfully accomplishes. To
understand why the first failing branch is unreachable, recall that
from the type of u we know that p ul A p ur; we also know that

2016/7/13

ul = ctx V ur = ctx from the path condition, thus p ctx holds,
which gives ul = ur guaranteed by the Tagged® constructor.

Contextual noninterference. 'We now show that type-checking
with Tagged? implies contextual noninterference with Tagged. Be-
cause the Tagged? functions type-check and because the type sys-
tem of BL is sound [49]], we know that no type-correct program that
manipulates Tagged? values can go wrong, i.e. attempts to print the
results of two executions that are different. Now we only have to
formally connect computations with Tagged values and those with
Tagged” values, and show how type safety of the latter implies non-
interference for the former.

We first show that replacing a Tagged? value with its projection
in Tagged at the beginning of an execution yields the same result as
projecting at the end of an execution. A projection of an expression
e (written |e];, for j = {l,r}) is an expression where every
occurrence of Tagged” z; =, _ in e is replaced by Tagged ;.
Lemma 1 (Projection). If e —* ¢’ then |e]; —* [€'];, for
Jj= {l7 T}'

Proof outline. The only steps that are different in the evaluation of
e and its projections are those resulting from the bodies of bind
and print. By inspection of bind? it is easy to see that it applies
the function projection-wise, and thus preserves the property of the
lemma. In case of print2, since it does not fail, either it does not
do any output, or the two projections are the same; in both cases,
projections of its body will have the same behavior. O

Theorem (Contextual Noninterference). Let I'; x : Tagged @ (p) b
e = O, and —(p ctx). Let for j € {l,r}, T F v; = o and
[(Tagged v;)/x]e =™ o0;. Then o; = oy.

Proof outline. Since —(p ctx), we know I' F Tagged® v; v, id ::
Tagged (p) for any vy, v,. Let e be [(Tagged® v, v, id)/z]e;
note that |e? |; = [(Tagged v;)/x]e. By inspection of typing rules
of BL, substitution of a subterm with the same type does not
change the type of the term, so T' e :: O. By soundness of the
type system, e? either diverges or reduces to a value o of type O.
Note that the execution of e differs from the executions of either
[(Tagged v;)/x]e only in the bodies of bind and print functions;
since none of them introduces divergence, e* cannot diverge either.
By le?|; —* |o];, thatis o; = |o];, but |o]; = |o]~

O

since o is a value and is not tagged.

A note on the proof technique. Being able to express tagged
values as a data type with a phantom predicate parameter is not
only simpler, but also allows us to prove non-interference over
pairs of traces simply by grounding phantom predicates. In the
information flow monad Tagged, policies are phantom predicates
that do not appear in the arguments of data constructors. In Tagged?,
the predicates are no longer phantom, but appear negatively in the
type of prop, consistent with its variance annotation. Using these
predicates for explicitly relating multiple program executions helps
simplify the formalization and proof of non-interference.

5. Repair Algorithm

In this section we give more detail about how LIFTY inserts ac-
cess checks into policy agnostic code. We outline the process in
REPAIR takes as input a program term e (in A-normal
form), its top-level type annotation 7', as well as an environment I"
that includes all necessary components (such as the Tagged library
and all sources of sensitive data). Repair proceeds as follows.

Type-checking (1) and error localization. Type-checking the
program (line[2) will either succeed, result in a failure (if the e has
a type-error unrelated to information flow), or return a list leaks of

Algorithm 1 Repair

I: REPAIR(T, ¢, T)

2 leaks < VERIFY(I', e, T)
3: for (z,T') < leaks do
4: e <+ FIX(I', z, T’ e)
5

6

7

leaks’ < VERIFY(I', e, T
if leaks’ = [] then return e
else fail

8: FiIx(I'z,T,letx = fvine)
9: 1 < ABDUCE(l; v + fo 2 T)

10: ¢ < SYNTHESIZE(I” F ¢ :: {Bool | v & 2})

11: ¢’ «+ LIrT(T, ¢)

12: return let z = bindBool ¢’ (Ac.if c then f U else fqer) ine
13: Fix(I', z, T, e)

14: recursively call FIX on subterms of e

unsafe accesses. Each unsafe access is a pair of a variable name x
and a type 7", where z is bound to an unsafe sub-expression of e
and needs to be enhanced by a conditional check.

Repair. Error localization has reduced the repair problem to local
synthesis. Function FIX replaces every violation (line).

Type-checking (2) . While repair is guaranteed to produce func-
tionally correct checks, the checks themselves may leak informa-
tion if they depend on sensitive values. For this reason we re-run
type-checking the resulting program in line[5

5.1 Verification and Error Localization

The LIFTY compiler uses a variation of the liquid type infer-
ence [41] with predicate polymorphism [49] to produce a list of
typed leaks. We first provide an overview of liquid type inference
and then describe how we extend it.

Liquid type inference with predicate polymorphism translates a
type checking problem I - e :: T into a set of Horn constraints
over predicate unknowns P;, corresponding to unknown parametric
refinements in the instantiations of predicate-polymorphic compo-
nents (i.e. the p in the typing rule P-INST in[Fig. 8). The inference
algorithm solves Horn constraints using predicate abstraction: re-
stricting the search space for each P; to conjunctions of atomic
predicates generated from a given set of templates called quali-
fiers. The algorithm efficiently finds a solution to the set of Horn
constraints using the Houdini algorithm [19], a a least-fixpoint al-
gorithm that computes the strongest solution for each P; (i.e. the
largest subset of atomic predicates that satisfies the constraints).

The LIFTY compiler modifies standard liquid type inference to
produce the list of leak signatures by (1) labeling Horn clauses and
(2) using a version of the least fixed point algorithm that finds all
violations, rather than the first violation we can find. LIFTY’s type
checker labels each Horn clause it generates with the name of the
variable whose type is constrained by this clause. For example,
print w w « where u : {User | v = sessionUser w} from our
first introductory example produces (among others) a Horn
clause labeled with u:

u: v = sessionUser w = P

where P is the (as yet unknown) policy parameter of this print;
this clause corresponds to the precondition on u that it satisfy
the policy. All Horn clauses generated by the type checker are
either definite clauses of the form) A P = P (like the one
above) or goal clauses of the form) A P = ¢, where ¢ is a
known formula. Whereas the Liquid Haskell type checker looks
for the first offending term, we want all offending terms. Thus

2016/7/13

our implementation of the least fixpoint algorithm first finds the
strongest solution that satisfies all definite clauses and then checks
which goal clauses are violated by this solution. (Note that finding
the strongest solution is always possible since a definite clause can
always be satisfied by assigning T to its right-hand side.) The labels
of these goal clauses give us the list of variables to return as leaks.

It turns out that we can rely on type checking to determine,
for an insufficiently protected sensitive value, both (1) the precise
source access that is “too secret” for the sink it is flowing into, and
(2) the most restrictive policy it must satisfy in order to be “public
enough” for that sink (represented by the solution to definite subset
of Horn clauses). Normally, when type checking functional proper-
ties, goal clauses arise from checking either preconditions of func-
tion calls or the top-level user-provided type annotation. Because
the policy parameter of the Tagged type is contravariant, however,
policy checks produce Horn clauses with the two sides flipped, so
goal clauses correspond to the user-specified policies on the sources
of the sensitive data. For instance, in the introductory example,
binding the variable authors to rest of the Tagged computation pro-
duces the constraint authors: Py = v = chair w (where P is the
policy parameter of the corresponding bind). As a result, the first
phase of the least-fixpoint algorithm has the effect of propagating
the type of the sinks all the way backwards through a Tagged com-
putation, resulting in the assignment Py — v = sessionUser w
for this example. The second phase has the effect of identifying ac-
cesses to sources whose policies are too restrictive for the inferred
sinks, such as authors, whose goal clause does not hold for the
inferred solution to Py.

5.2 Fix generation

We now give details of the FIX procedure outlined on lines[8HI4]of
Given a leak signature (z, T'), the function finds the
violating binding let x = f v, which it has to replace with some
let = = €. Since we only need a specific kind of repair, finding e’
reduces to solving the following local synthesis problem:

I I bindBool (??) (Ac.if ¢ then f U else fger) :: T

Here fqef is the user-defined default alternative for the source f:
we require that for every component f : U — Tagged T(p), the
user designate, through a special annotation, a component fger :
Tagged T'(T) to serve this purpose. Thus the only unknown term in
the synthesis problem is the check. Note that this synthesis problem
is completely local, i.e. can be solved independently from other
violations.

LIFTY’s synthesizer relies on procedures from the SYNQUID
tool for synthesis from refinement types [39], but with a key mod-
ification. While off-the-shelf SYNQUID can solve our problem in
principle, the monadic code LIFTY needs to synthesize is sub-
optimal for SYNQUID’s approach to specification decomposition.
Our insight for efficient synthesis is that we can make use of the
property that functional properties (i.e. compute a condition that is
strong enough to make f ¥ comply to the policy in T') are orthog-
onal to confidentiality policies (i.e. the check itself should not be
too secret). Synthesis in LIFTY first tries to satisfy the functional
specification and then checks if the result is too secret.

LIFTY performs synthesis in three steps.

Condition abduction. LIFTY infers the weakest precondition v
that would make the first branch of the conditional above type
check (line [9). Like type-checking, condition abduction relies on
predicate abstraction, but uses the greatest-fixpoint algorithm in-
stead of the least. This is necessary for obtaining the weakest pre-
condition instead of the strongest, which would be _L. This allows
LIFTY programs to retain the original functionality (i.e. get the real
sensitive value) in as many executions as possible. There might be
no unique conjunctive solution : abduction may return multiple

solutions, which we treat as a disjunction. If the weakest 1) the
solver can construct out of given qualifiers is L, the system issues
a warning that it failed to adbuce a nontrivial access check.

Check synthesis. In the next step (line [I0), we use SYNQUID to
synthesize from the abduced condition a pure version of the check,
i.e. a program term ¢ of type {Bool | v < }; the synthesis
is performed in a modified environment I, where all sensitive
components are stripped of their tags. Since this is non-monadic
code, SYNQUID can synthesize it efficiently.

Lifting. On line [T1] we lift the pure term c into a Tagged compu-
tation ¢’ through a simple syntactic transformation, inserting calls
to bind and return where required. Since the lifting step is purely
syntactic, if policies depend on sensitive values the resulting lifted
check might end up being too private for the policies in 7. For this
reason, the REPAIR algorithm re-checks the solution on 1ine@

5.3 Implementation

We have implemented LIFTY in Haskell, using the same minimal
Haskell dialect as SYNQUID and using infrastructure provided by
the SYNQUID synthesizer [39]. We implemented the least-fixpoint
Horn solver required for VERIFY on top of SYNQUID’s abduc-
tion and program synthesis mechanisms. We also enhanced SYN-
QUID’s qualifier extraction procedure. Like SYNQUID, LIFTY uses
the Z3 SMT solver [15]] for solving Horn constraints. We also im-
plemented a SYNQUID to Haskell compiler that enables executing
the code repaired by LIFTY and linking it with non-security-critical
modules written directly in Haskell.

6. LIFTY Gallery

We now show that LIFTY is able to handle cases useful for real-
world programming. We use examples that build on the conference
management example we introduce in

Policies that depend on sensitive values. A tricky corner case of
policy enforcement occurs when policies may depend on sensitive
values. For example, it makes sense to show the list of authors to
any of the paper’s other authors. This policy is self-referential: the
policy depends on the sensitive value that it protects. Despite the
cyclic reasoning, there is a clear solution: since authors are allowed
to see the author list, they can also see that they are on the author
list, so it is safe to display the list to them. Other users, who are
not allowed to see the list, may be able to infer from observing
the default value that they are not on the list — but no additional
information about the list’s contents.

LIFTY is able to perform verification and repair in the presence
of self-referential policies and policies that depend on other sen-
sitive values, in a manner consistent with our definition of safety
in[Sec. 4.4] We show the implementation of the author list policy
in[Fig. 12| and apply it to the same showPaper routine from[Fig. 2]
The repaired code now contains two cases where the original term
is used: when the current user is chair and when the user is in the
list of authors. We can see this in the disjunction in line[T2] In this
code, paperAuthors is the logical counterpart of getPaperAuthors.

Note that policies that depend on sensitive values are not in
scope for label-based approaches [5, 6, I8 112, 130, 35]] because
these approaches trust the programmer to correctly encode poli-
cies in terms of labels. With these approaches, the programmer
is responsible for correctly managing these dependencies. And
while these policies arise quite frequently in our survey of real-
world security policies, other verification-based approaches for se-
curity [10} /111147, 48] do not address such policies.

Output to multiple users. In our we said that the viewer
is usually the session user, but it may also be a different user. For
instance, a user may initiate a transaction that sends email to one or

2016/7/13

getPaperAuthors
w: World — PaperId
— Tagged (List User) <v € paperAuthors w pid V
v = chair w>

showPaper w u pid =
let out = do
title < getPaperTitle w pid
t; < getChair w
t2<—u
t3 < getPaperAuthors w pid
authors < if t, = t; V t, € t3 then
getPaperAuthors w pid
else defaultPaperAuthors
return (title ++ ":_" ++ show authors)
in print w u out

Figure 12. A policy that itself depends on sensitive values, and
injected code when applied to the example in[Fig. 2]

printMany ::
w:World — Tagged [{User | P 1}] <P>
— Tagged a <P> — World

getPaperStatus
w: World — pid: PaperId
— Tagged Int <v in paperAuthors w pid A
currentPhase w = Done>

notifyAuthors w pid =
let status = do
t1 < getCurrentPhase w
if t1 = Done then getPaperStatus w pid
else defaultPaperStatus
let authors = getPaperAuthors w pid
printMany w authors status

Figure 13. A program that produces output to multiple users.

more other users (e.g. all reviewers, all co-authors, etc.). Because
of how LIFTY propagates information about both the policies and
the viewer, it is able to(1) generate customized checks based on the
identity of the viewer, (2) generate appropriate policies even when
viewers may be sensitive values, (3) determine a sufficiently strong
policy when outputting to multiple viewers at once.

We now show how LIFTY ensures that when there are multiple
viewers for the result of a single transaction, the system shows
a version of the result that each viewer is allowed to see. Note
that the list of recipients is itself sensitive and LIFTY’s verification
algorithm ensure that the checks respect the policy on the list. In
we show a transaction that sends messages to authors of
a paper, notifying them of the paper’s status as decided by the
committee. The policy on the status is that it should be hidden until
the conference phase is Done (reviews have been finalized), and then
visible only to authors. LIFTY inserts a check for the phase being
Done. LIFTY is able to infers that a check for the viewer being an
author is not necessary, since the list of viewers is exactly the list
of authors. It also verifies that submitting a message to the authors
does not leak sensitive information about the authors, since all the
recipients have sufficient privilege to see the list.

Policy-generic functions. We now show that by following the
functional programming idiom of using higher-order functions that

sortM ::

(a — a — Tagged Bool <P>) — [a] — Tagged [a] <P>

getPaperScore :: w:World — pid: PaperId
— Tagged Int <v ¢ paperConflicts w pid>

sortPapersByScore w =
let u = getCurrentUser w
let cmpScore pid; pid; = do
t; < u
t, < getPaperConflicts w pid;
s; < if t; ¢ t, then getPaperScore w pid;
else defaultPaperScore
t3 < getPaperConflicts w pid,
s, < if t; ¢ t; then getPaperScore w pid;
else defaultPaperScore
return s; <'s,
out = do pids <— getAllPaperIds w
sortM cmpScore pids
in print w u out

Figure 14. A function that sorts papers by their score. Some
scores may be hidden from the current viewer due to conflicts.

are generic with respect to computations, we can write LIFTY func-
tions that are generic with respect to the policies. While higher-
order reasoning is often out of reach of first-order reasoning tech-
niques, LIFTY’s type system does the heavy lifting and thus LIFTY
is able to support an idiom where programmers write policy-
generic code by annotating functor arguments.

The code in shows the repaired result of code for sort-
ing a list of paper IDs using a comparator cmpScore. Instead of
implementing this functionality with a specialized sorting func-
tion customized to the policy on the score, we use the sortM func-
tion, which is generic with respect to both the comparison func-
tion and the policy on that function. Since cmpScore consumes
the sensitive paper score, its result is also sensitive, so its type is
PaperId — PaperId — Tagged Bool <..>. LIFTY infers the pred-
icate from the context, causing LIFTY to insert check code into
this function. Notice that since LIFTY injects the check around
the sensitive access inside cmpScore; the code for sortM need not
change. Notice also that the programmer does not need to annotate
cmpScore. As with all other policies, the programmer only needs to
provide a type annotation on the accessor getPaperScore.

7. Evaluation

We implemented a set of micro-benchmarks and a larger confer-
ence management system example, measuring code size and com-
piler performance. We demonstrate the following:
e Expressiveness of policy language. We demonstrate that we
can use LIFTY’s policy language to implement realistic systems
with nontrivial policies.

Support for policy-agnostic programming. We compare
LIFTY’s output to checks that were written manually. We show
that not only does our policy specifications allow for informa-
tion checks to be centralized and concise, but also that the com-
piler is able to recover all necessary checks, without reducing
the functionality.

¢ Good performance. We demonstrate that the LIFTY compiler
is sufficiently efficient at verification, error localization, and
repair to use for systems of reasonable size. We demonstrate
that LIFTY is able to generate all necessary checks for our

2016/7/13

Compilation time

Benchmark Verify Repair Recheck Total

Basic policy (Fig. 3) 0.03s 0.18s 0.19s 0.41s

Self-referencing policy 0.05s 0.29s 0.52s 0.88s

Implicit flow 0.07s 0.37s 0.70s 1.15s

Filter by author 1.28s 1.05s 332s 5.65s

Sort by score 0.22s 2.53s 127s 4.03s

Send to multiple users (Fig. 13) 0.02s 0.41s 0.64s 1.08s

Table 1. Micro-benchmarks, with compile-time statistics.
Policy size (tokens): 105
Program size (tokens) Time
Security checks | Manual Auto

Benchmark Original Manual Auto | Verify Verify Repair Recheck Total
Send paper status to authors 53 18 19 2.15s 0.36s 0.51s 1.91s 2.79s
Send paper status to PC chair 49 0 0 0.37s 0.39s 0.00s 0.00s 0.39s
Display paper authors to user 59 16 26 2.61s 0.50s 0.59s 4.00s 5.10s
Display paper status to user 23 50 71 5.23s 0.10s 1.86s 8.45s 10.41s
Display status and session number 65 24 71 3.56s 0.54s 1.87s 9.19s 11.61s
Display title and list of conflicts 37 30 56 3.60s 0.19s 13.51s 7.31s 21.02s
(auxiliary function for next three benchmarks) 51 40 54 7.97s 0.69s 6.91s 11.67s 19.28s
Display information about a list of papers 27 0 0 0.07s 0.09s 0.00s 0.00s 0.09s
Display information about all papers 30 0 0 0.06s 0.08s 0.00s 0.00s 0.08s
Display all papers belonging to session user 85 29 47 6.42s 4.34s 1.84s 10.60s 16.79s
Display a list of all unconflicted papers 51 34 28 6.38s 2.47s 5.58s 7.39s 15.45s
Bid on a paper for the review phase 55 38 50 4.83s 0.57s 9.44s 7.26s 17.28s
Send decisions to all authors of papers 105 19 19 2.48s 0.92s 0.57s 2.80s 4.30s
Totals 727 261 488 45.78s 11.47s 43.96s 75.29s 130.74s

Table 2. Case study: conference management system.

conference management system (391 lines of LIFTY) in a little
over two minutes.

7.1 Overview of Case Study
We implemented the following code using LIFTY.

Micro-benchmarks We implemented the following representa-
tive micro-benchmarks based on the examples we have shown so
far:(1) policies that depend on sensitive values, (2) implicit flow,
(3) higher-order functions that compute on sensitive values, and
(4) functionality that outputs to multiple users. For these examples
we implement information flow policies as described and rely on
LIFTY to insert policy checks into the programs.

Conference management system We implemented a basic con-
ference management system, using LIFTY to implement all in-
formation policy checks. The system handles confidentiality poli-
cies for papers in different phases of the conference (Submission,
Review, and Done) and different statuses of each paper (NoDecision,
Accepted, and Rejected). Users of the system have the roles of au-
thor, PC member, and PC chair. Policies depend on this state, as
well as additional properties such as conflicts with a particular pa-
per. The system provides features for displaying(1) paper title and
authors, (2) paper status, (3) list of conflicts, and (4) conference
information conditional on acceptance. Information may be dis-
played to the user currently logged in (“session user”) or sent via
various means to different users.

For the rest of this section, we break down the features of the
system into fransactions, which are different queries that the user

can issue. These were implemented as a set of LIFTY functions, and
the underlying implementation of the accessors to the database was
implemented in Haskell. On top of that, some non-security-critical
UI code was also implemented in Haskell, but without being al-
lowed to access the database directly — only invoke the transac-
tions. The system contains 756 lines of code in total (391 LIFTY
+ 365 Haskell) and provides a superset of the functionality shown
in our micro-benchmarks. Essentially, our conference management
is a superset of our micro-benchmarks, but it also exposes some
cross-dependencies between software features. We show informa-
tion about which transactions we implemented in

7.2 Measuring the Quality of Repair

Towards quantitatively and qualitatively evaluating LIFTY’s repair
capabilities, we had a developer who was not involved with devel-
oping LIFTY build an alternate implementation of the conference
management system with manual checks. For this benchmark we
compare three versions of the code: (1) a policy-agnostic imple-
mentation with no checks at all, (2) an implementation with manu-
ally implemented checks, and (3) an implementation with automat-
ically generated checks.

We show the results of the comparison in The column
“Original” shows the size of the code, in terms of number of tokens,
without any security checks. Then we show the size of additional
security checks, both those inserted manually by a human program-
mer and those automatically generated by the system. Note that the
checks sometimes approach the size of the code, confirming our

2016/7/13

hypothesis that for many applications, much of the programming
burden is in the security checking.

Our results reveal that while manual checks are more concise
than LIFTY-generated checks, the tool generates checks that are
the same order of magnitude. The most code overhead is 3x. We
found that the bloat in the automatically generated code comes
from redundancy and unnecessary verbosity, rather than from ad-
ditional functionality; for example, LIFTY would typically gen-
erate an expression such as ifM t; e; (ifM t, e; e;) instead of
ifM (LiftM or t; t;) e; ey, essentially duplicating e, and caus-
ing some bloat. However, this affects only the size of the code and
neither its functionality nor its performance. The manual and auto-
matic checks were semantically equivalent across our benchmarks:
the checks are not more conservative than needed.

As an anecdote, the human programmer was, at times, more
conservative than the automatic tool, in ways that led to unneces-
sarily restricting application functionality. In “Display status and
session number”, for instance, the human guarded the sensitive ac-
cess with a check that the conference phase is Done, making it so
that even the conference chair will not see the status in an earlier
phase, although this flow is in fact permitted by the policy. LIFTY
was able to come up with a check that correctly handles this case.

7.3 Performance Statistics

We show the performance of the LIFTY compiler for the micro-
benchmarks, as well as for the conference system, in Tabs. E]and@
We break down running time into verification, error localization,
and synthesis of new checks. For the version that contains manual
checks, we show only verification time, as LIFTY skips the other
phases. Notice that the LIFTY is able to determine that three of our
benchmarks required no checks at all: one because the information
is sent to the chair, who has sufficient privilege as it is and two
others because all the checks are already inserted in a subroutine
they depend on. We show that LIFTY is able to handle all checks
for the conference management system in a little over two minutes.

It is important to explain that the repair of each function is
independent. Cross effects arise only from (1) interactions between
policies and (2) having more generic components in scope, as
the synthesizer needs to search over this space. (The transaction
“Send paper status to authors” has the same functionality as the
micro-benchmark “Self referencing-policy (I2)”, but takes longer
to compile due to having more policy type declarations and global
functions visible to the synthesizer.) Other than the cross effects,
changing the body of one function does not require recompilation
of other functions. This makes it possible to cache compilation
artifacts to speed up development.

8. Related Work

Our work builds on ideas from information flow security, program
synthesis, and program repair to develop the first technique for
repairing programs to adhere to information flow policies.

While LIFTY’s policy language and guarantees build on work
in language-based information flow [43]], the programming model
that LIFTY supports differs from that of most prior work [J5, I8,
10l [131 16l 271 130, 40l 42, 48] [54] in the following key way.
Prior approaches detect leaks, through either static or dynamic
analysis, in programs written in programming models that are not
security-aware. In order to implement programs that do more than
raise errors (either at compile-time or runtime) or silently fail,
the programmer needs to implement the policy checks and filters
correctly across the program. In contrast, our solution is to use a
security-aware, policy-agnostic [1,152] programming model.

LIFTY supports the first static solution for policy-agnostic pro-
gramming. While it is relatively straightforward to factor out access
control checks [18l 134, [36], addressing the implicit and indirect

flows involved with information flow security requires deeper inte-
gration with the language semantics. The Jeeves language [7} 152]
and Jacqueline web framework [53|] support a programming model
where the programmer implements information flow policies as
program functions and runtime performs faceted execution [6],
simulating simultaneous multiple executions in order to propa-
gate sensitive values and policies. There are two main drawbacks:
(1) nontrivial runtime overheads and (2) difficulty of reasoning
about program behavior. Our static repair-based approach supports
similarly expressive policies, but additionally removes unnecessary
runtime overheads and makes runtime behavior explicit.

LIFTY’s verification algorithm differs from prior work in that(1) it
allows the programmer to implement policies using expressive
predicates and (2) provides static guarantees even when policies
depend on sensitive values. Rather than having to encode per-
missions as labels, as with decentralized information flow con-
trol [SL 16, 18} 1124 130, 35]], the LIFTY programmer provides higher-
level predicates. While a label-based system trusts the programmer
to correctly assign labels, a predicate-based approach ensures that
permissions are assigned correctly. Fine [10] and F* [48] simi-
larly encode information flow policies as dependent types, but, as
opposed to LIFTY’s type-checking, verification is undecidable.

As mentioned throughout, LIFTY relies on capabilities provided
by liquid type inference [41l 49H51] for verification and error
localization. The localization problem we solve is easier than that
of Haskell type error localization tools such as SHErrLoc [53],
since it is meant for consumption by our synthesis algorithm rather
than by a human developer.

We build on prior work in program synthesis to perform pro-
gram repair. LIFTY’s repair technique uses abduction technique of
the SYNQUID tool [39] for type-based program synthesis. SYN-
QUID, like other prior approaches for program synthesis [214} |17,
211, 241 128 33} [37), 45]], solves synthesis problems (1) based on
full functional specifications and (2) for synthesizing self-contained
pieces of functionality. Our work is the first to extend these tech-
niques for program repair, based on specifications that are not fully
functional (but rather for a cross-cutting concern), and for function-
ality that is not self-contained.

Our repair solution differs from general repair techniques in
that it is (1) sound, (2) based on specifications that are semanti-
cally intertwined with the rest of the program, and (3) based on
specifications of a cross-cutting concern rather than on full func-
tional specifications. There is a body of prior work in unsound
program repair that is unsound and not based on logical specifi-
cation [14} 25| 29} 1311 132] 38| 144]]. Kneuss et al. [26] provide a
sound program repair solution, but it requires full functional spec-
ifications. Because our approach is type-based, it is also able to
localize errors better.

While there has also been prior work on rewriting programs
specifically based on security concerns, LIFTY’s policies are more
expressive and the analysis is deeply integrated with the program
semantics. The SWIM tool [23] performs automatic instrumenta-
tion to insert label-manipulation code into programs. Policy weav-
ing [22]] rewrites programs to adhere to stateful access control poli-
cies (e.g. “an application may not send a package after reading
from history or file system”). FIXMEUP [40] repairs access con-
trol checks, but does not detect or repair information flow checks.
Because LIFTY changes the underlying programming model, it is
also able to do more than halt or fail silently in cases where sensi-
tive values may not be shown.

9. Conclusions

We demonstrate that by encoding information flow policies as re-
finement types, we can develop a sound and automatic program re-
pair technique to insert missing conditional policy checks across a

2016/7/13

program. This allows us to support a policy-agnostic programming
model, where the compiler, rather than the programmer, is respon-
sible for implementing policy checks. We show how, by decom-
posing a global synthesis problem into local synthesis problems,
we can decrease the opportunity for programmer error to cause in-
formation leaks.

References

[1] S. Agrawal and B. Bonakdarpour. Runtime verification of k-safety
hyperproperties in HyperLTL. In CSF, 2016.

[2] A. Albarghouthi, S. Gulwani, and Z. Kincaid. Recursive program
synthesis. In CAV, 2013.

[3] A. Albarghouthi, I. Dillig, and A. Gurfinkel. Maximal specification
synthesis. In POPL, 2016.

[4] R. Alur, P. Cerny, and A. Radhakrishna. Synthesis through unification.
In CAV, 2015.

[5]1 O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov, and A. C.
Myers. Sharing mobile code securely with information flow control.
In Symposium on Security and Privacy, SP, 2012.

[6] T. H. Austin and C. Flanagan. Multiple facets for dynamic information
flow. In POPL, 2012.

[7]1 T. H. Austin, J. Yang, C. Flanagan, and A. Solar-Lezama. Faceted
execution of policy-agnostic programs. Proceedings of the Eighth
ACM SIGPLAN workshop on Programming languages and analysis
for security - PLAS ’13,2013.

[8] N. Broberg and D. Sands. Flow locks: Towards a core calculus for
dynamic flow policies. In European Symposium on Programming,
ESOP, volume 3924 of LNCS. Springer Verlag, 2006.

[9] P. Buiras, D. Stefan, and A. Russo. On dynamic flow-sensitive
floating-label systems. CoRR, abs/1507.06189, 2015.

[10] J. Chen, R. Chugh, and N. Swamy. Type-preserving compilation of
end-to-end verification of security enforcement. In Conference on
Programming Language Design and Implementation, PLDI, 2010.

[11] A. Chlipala. Static checking of dynamically-varying security policies
in database-backed applications. In 9th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2010, October 4-6,
2010, Vancouver, BC, Canada, Proceedings, 2010.

[12] S. Chong, K. Vikram, and A. C. Myers. Sif: Enforcing confidentiality
and integrity in web applications. In Symposium on USENIX Security,
SS°07, 2007.

[13] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information
flow for javascript. In Conference on Programming Language Design
and Implementation, PLDI, 2009.

[14] Z. Coker, D. Garlan, and C. Le Goues. Sass: Self-adaptation using
stochastic search. In Proceedings of the 10th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS ’15, Piscataway, NJ, USA, 2015. IEEE Press.

[15] L. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In TACAS,
2008.

[16] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20(7), 1977.

[17] J. K. Feser, S. Chaudhuri, and I. Dillig. Synthesizing data structure
transformations from input-output examples. In PLDI, 2015.

[18] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz.
Verification and change-impact analysis of access-control policies. In
International Conference on Software Engineering, ICSE *05. ACM,
2005.

C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant
for esc/java. In FME 2001: Formal Methods for Increasing Software
Productivity, International Symposium of Formal Methods Europe,
Berlin, Germany, March 12-16, 2001, Proceedings, 2001.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In Proceedings of the ACM SIGPLAN

1993 Conference on Programming Language Design and Implemen-
tation, PLDI *93, New York, NY, USA, 1993. ACM.

[19]

[20]

[21] J. Frankle, P. Osera, D. Walker, and S. Zdancewic. Example-directed
synthesis: a type-theoretic interpretation. In POPL, 2016.

[22] M. Fredrikson, R. Joiner, S. Jha, T. W. Reps, P. A. Porras, H. Saidi,
and V. Yegneswaran. Efficient runtime policy enforcement using
counterexample-guided abstraction refinement. In Computer Aided
Verification - 24th International Conference, CAV 2012, Berkeley, CA,
USA, July 7-13, 2012 Proceedings, 2012.

[23] W. R. Harris, S. Jha, and T. Reps. DIFC programs by automatic
instrumentation. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS *10, New York, NY,
USA, 2010. ACM.

[24] J. P. Inala, X. Qiu, B. Lerner, and A. Solar-Lezama. Type assisted
synthesis of recursive transformers on algebraic data types. CoRR,
abs/1507.05527, 2015.

Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun. Repairing Programs
with Semantic Code Search. In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Lincoln, NE, USA, November 2015.

[26] E. Kneuss, M. Koukoutos, and V. Kuncak. Deductive program repair.
In D. Kroening and C. S. Pasareanu, editors, Computer Aided Verifica-
tion - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part II, volume 9207 of Lecture
Notes in Computer Science. Springer, 2015.

[27] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris. Information flow control for standard OS abstractions.
In Proceedings of Twenty-first ACM SIGOPS Symposium on Operat-
ing Systems Principles, SOSP *07, New York, NY, USA, 2007. ACM.

[28] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional
synthesis. In PLDI, 2010.

[29] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A
generic method for automatic software repair. IEEE Transactions on
Software Engineering, 38, 2012.

[30] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers.
Fabric: a platform for secure distributed computation and storage. In
Symposium on Operating Systems Principles, SOSP. ACM, 2009.

[25]

[31] F. Long and M. Rinard. Staged program repair with condition synthe-
sis. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, New York, NY, USA, 2015.
ACM.

[32] F. Long and M. Rinard. Automatic patch generation by learning
correct code. SIGPLAN Not., 51(1), Jan. 2016.

[33] Z. Manna and R. Waldinger. A deductive approach to program syn-
thesis. ACM Trans. Program. Lang. Syst., 2(1), Jan. 1980.

[34] A. Milicevic, D. Jackson, M. Gligoric, and D. Marinov. Model-based,
event-driven programming paradigm for interactive web applications.
In International Symposium on New Ideas, New Paradigms, and Re-
flections on Programming & Software, Onward!, 2013.

[35] A. C. Myers. JFlow: Practical mostly-static information flow con-
trol. In Symposium on Principles of Programming Languages, POPL,
1999.

[36] J. P. Near and D. Jackson. Rubicon: bounded verification of web ap-
plications. In Symposium on the Foundations of Software Engineering,
SIGSOFT/FSE ’12. ACM, 2012.

[37] P. Osera and S. Zdancewic. Type-and-example-directed program syn-
thesis. In PLDI, 2015.

[38] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard. Automatically patch-
ing errors in deployed software. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, SOSP *09, New
York, NY, USA, 2009. ACM.

[39] N. Polikarpova, I. Kuraj, and A. Solar-Lezama. Program synthesis
from polymorphic refinement types. In PLDI, 2016.

[40] F. Pottier and V. Simonet. Information flow inference for ML. ACM
Transactions on Programming Languages and Systems, 25(1), Jan.
2003.

2016/7/13

http://people.cs.umass.edu/brun/pubs/pubs/Ke15ase.pdf
http://people.cs.umass.edu/brun/pubs/pubs/Ke15ase.pdf

[41] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI,
2008.

[42] 1. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel.
Laminar: Practical fine-grained decentralized information flow con-
trol. In Conference on Programming Language Design and Imple-
mentation, PLDI.

A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1),
2003.

S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard. Au-
tomatic error elimination by horizontal code transfer across multiple
applications. SIGPLAN Not., 50(6), June 2015.

[45] A. Solar-Lezama, L. Tancau, R. Bodik, S. A. Seshia, and V. A.
Saraswat. Combinatorial sketching for finite programs. In ASPLOS,
2006.

S. Son, K. S. McKinley, and V. Shmatikov. Fix Me Up: Repairing
access-control bugs in web applications. In 20th Annual Network
and Distributed System Security Symposium, NDSS 2013, San Diego,
California, USA, February 24-27, 2013. The Internet Society, 2013.

N. Swamy, J. Chen, and R. Chugh. Enforcing stateful authorization
and information flow policies in Fine. In Programming Languages and
Systems, 19th European Symposium on Programming, ESOP 2010,
Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.

[43

[44]

[46]

[47

Proceedings, 2010.

[48] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.
Secure distributed programming with value-dependent types. In Inter-
national Conference on Functional Programming, ICFP, 2011.

[49] N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement types. In
ESOP, 2013.

[50] N. Vazou, E. L. Seidel, and R. Jhala. Liquidhaskell: experience with
refinement types in the real world. In Haskell, 2014.

[51] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. L. P. Jones.
Refinement types for haskell. In ICFP, 2014.

[52] J. Yang, K. Yessenov, and A. Solar-Lezama. A language for automat-
ically enforcing privacy policies, 2012.

[53] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama, C. Flanagan, and

S. Chong. Precise, dynamic information flow for database-backed

applications. In Proceedings of the 37th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’16,

New York, NY, USA, 2016. ACM.

A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving

application security with data flow assertions. ACM Symposium on

Operating Systems Principles, 2009.

[55] D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton-Jones. Diagnos-
ing type errors with class. In 36th ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation (PLDI), June 2015.

(54

2016/7/13

	1 Introduction
	2 Introductory Example
	2.1 Policy-Agnostic Core Functionality
	2.2 Adding Policies Through Types
	2.3 Output functions
	2.4 Inserting Policy Checks
	2.5 Preventing Implicit Flows

	3 Solution Overview
	3.1 Security Policies as Phantom Refinements
	3.2 Inserting Security Checks Through Program Repair

	4 Formal Semantics and Guarantees
	4.1 Syntax and Types of BL
	4.2 BL Static Semantics
	4.3 Encoding Information Flow in BL
	4.4 Proving Non-Interference Using [language=lifty,basicstyle=,columns=fixed]Tagged2

	5 Repair Algorithm
	5.1 Verification and Error Localization
	5.2 Fix generation
	5.3 Implementation

	6 Lifty Gallery
	7 Evaluation
	7.1 Overview of Case Study
	7.2 Measuring the Quality of Repair
	7.3 Performance Statistics

	8 Related Work
	9 Conclusions

