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Prevention of Coronavirus Disease 2019 Among Older 
Adults Receiving Pneumococcal Conjugate Vaccine 
Suggests Interactions Between Streptococcus pneumoniae 
and Severe Acute Respiratory Syndrome Coronavirus 2 in 
the Respiratory Tract
Joseph A. Lewnard,1,2,3 Katia J. Bruxvoort,4 Heidi Fischer,4 Vennis X. Hong,4 Lindsay R. Grant,5 Luis Jódar,5 Bradford D. Gessner,5 and Sara Y. Tartof4

1Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, USA; 2Division of Infectious Diseases and Vaccinology, School of Public Health, University 
of California, Berkeley, Berkeley, California, USA; 3Center for Computational Biology, College of Engineering, University of California, Berkeley, Berkeley, California, USA; 4Department of Research 
and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA; and 5Pfizer Vaccines, Collegeville, Pennsylvania, USA

Background. While secondary pneumococcal pneumonia occurs less commonly after coronavirus disease 2019 (COVID-19) 
than after other viral infections, it remains unclear whether other interactions occur between severe acute respiratory syndrome co-
ronavirus 2 (SARS-CoV-2) and Streptococcus pneumoniae.

Methods. We probed potential interactions between these pathogens among adults aged ≥65 years by measuring associations 
of COVID-19 outcomes with pneumococcal vaccination (13-valent conjugate vaccine [PCV13] and 23-valent pneumococcal pol-
ysaccharide vaccine [PPSV23]). We estimated adjusted hazard ratios (aHRs) using Cox proportional hazards models with doubly 
robust inverse-propensity weighting. We assessed effect modification by antibiotic exposure to further test the biologic plausibility 
of a causal role for pneumococci.

Results. Among 531 033 adults, there were 3677 COVID-19 diagnoses, leading to 1075 hospitalizations and 334 fatalities, be-
tween 1 March and 22 July 2020. Estimated aHRs for COVID-19 diagnosis, hospitalization, and mortality associated with prior 
PCV13 receipt were 0.65 (95% confidence interval [CI], .59–.72), 0.68 (95% CI, .57–.83), and 0.68 (95% CI, .49–.95), respectively. 
Prior PPSV23 receipt was not associated with protection against the 3 outcomes. COVID-19 diagnosis was not associated with prior 
PCV13 within 90 days following antibiotic receipt, whereas aHR estimates were 0.65 (95% CI, .50–.84) and 0.62 (95% CI, .56–.70) 
during the risk periods 91–365 days and >365 days, respectively, following antibiotic receipt.

Conclusions. Reduced risk of COVID-19 among PCV13 recipients, transiently attenuated by antibiotic exposure, suggests that 
pneumococci may interact with SARS-CoV-2.

Keywords.  COVID-19; SARS-CoV-2; Streptococcus pneumoniae; pneumococcal conjugate vaccine; older adults; polymicrobial 
infection.

Bacterial–viral interactions in the upper and lower airways 
influence the natural history of numerous respiratory virus 
infections. A  substantial proportion of influenza-associated 
respiratory disease involves the bacterium Streptococcus 
pneumoniae (pneumococcus; [1]) likewise, incidence of severe 

pneumococcal infections closely tracks the incidence of influ-
enza and other respiratory virus infections [2]. A  canonical 
explanation for this observation is that virus-induced inflam-
mation in the upper airway impairs innate (monocyte or cyto-
kine) responses to pneumococci [3], facilitating the acquisition 
of pneumococcal carriage and a loss of control over progression 
to secondary bacterial pneumonia [4].

However, both epidemiological and experimental studies 
reveal viral–bacterial interactions arising at earlier stages 
of the clinical course. Individuals shedding respiratory 
viruses—including influenza virus, respiratory syncytial 
virus (RSV), adenoviruses, endemic human coronaviruses 
(HCoVs), and human rhinoviruses [5–11]—have higher-
density pneumococcal carriage than individuals without res-
piratory virus infection. Additionally, pneumococcal carriers 
have diminished mucosal antibody responses to influenza 
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virus challenge [12], and higher likelihood of both acquiring 
respiratory viruses and thereafter experiencing acute respi-
ratory symptoms [13]. Whereas these interactions have been 
shown to promote transmission of both pneumococci and 
viruses [14, 15], clinical implications including impacts on 
viral disease pathogenesis remain less clearly understood 
[16].

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the virus causing coronavirus disease 2019 (COVID-
19), has rapidly achieved pandemic spread and has caused 
substantial morbidity and mortality in the United States (US) 
and worldwide. While available data have shown limited burden 
of secondary bacterial pneumonia among individuals with se-
vere COVID-19 illness [17], the contribution of respiratory 
microbiota to SARS-CoV-2 infection and pathogenesis has not 
been widely investigated [18, 19]. In 1 study of patients with in-
vasive pneumococcal disease (IPD), concomitant SARS-CoV-2 
infection and IPD was associated with 7-fold higher odds of 
death in comparison to IPD without SARS-CoV-2 infection; 
furthermore, SARS-CoV-2 infection within 28 days after IPD 
was associated with 4-fold higher mortality [20].

Among adults, 13-valent pneumococcal conjugate vaccine 
(PCV13) reduces nasopharyngeal carriage acquisition and 
density [21, 22] for targeted pneumococcal serotypes, in addi-
tion to preventing invasive disease and nonbacteremic pneu-
monia [23, 24] involving these serotypes. In contrast, 23-valent 
pneumococcal polysaccharide vaccine (PPSV23), also recom-
mended for US adults aged ≥65  years to prevent IPD, has 
not been found to confer strong protection against mucosal 
endpoints such as pneumococcal carriage and nonbacteremic 
pneumonia [25]. Randomized controlled trials among children 
and adults [26–29] have found PCVs to confer 23%–49% pro-
tection against pneumonia associated with respiratory viruses, 
including HCoVs [27, 28], supporting the etiologic involve-
ment of pneumococci in virus-associated respiratory disease. 
To probe the potential for similar interactions between SARS-
CoV-2 and pneumococci, we compared COVID-19 outcomes 
in a cohort of US older adults who had received and had not 
received PCV13.

METHODS

Cohort

The Kaiser Permanente Southern California (KPSC) health-
care system provides comprehensive care to roughly 19% of the 
Southern California population. Members are enrolled through 
employer-provided health insurance plans, prepaid plans, and 
state- and federally sponsored insurance programs. Electronic 
health records including member demographics, services (in-
cluding vaccination), and diagnoses are tracked from outpatient, 
emergency department, and hospital settings. Care received out 
of network is captured through insurance claim reimburse-
ments, enabling near-complete medical care ascertainment for 

KPSC members. We included individuals aged ≥65 years as of 
1 March 2020 and thus eligible for PCV13 receipt, who were 
KPSC members for at least 1 year before this date. The KPSC 
Institutional Review Board provided ethical approval.

Outcomes and Exposures

We assessed time to each of the following endpoints: any 
COVID-19 diagnosis, defined as a positive result of a molec-
ular test for SARS-CoV-2 infection or a clinically confirmed 
COVID-19 diagnosis; COVID-19 hospitalization, defined as 
a new inpatient admission between 7 days before and 28 days 
after a COVID-19 diagnosis; and fatal COVID-19 hospitaliza-
tion, defined as death within 60 days of the admission date for 
a COVID-19 hospitalization. We excluded observational ad-
missions lasting <24 hours from our definition of COVID-19 
hospitalization.

The primary exposure of interest for our study was receipt 
of PCV13 (with or without PPSV23) concordant with Advisory 
Committee on Immunization Practices (ACIP) guidelines at age 
≥65 years. We excluded cohort members who received PCV13 
and PPSV23 at intervals discordant with 2015 ACIP guidelines 
[30], which stipulated the timing of PCV13 dosing as follows: 
≥1 year before PPSV23 for immunocompetent individuals or 
≥8 weeks before PPSV23 for immunocompromised persons; 
or ≥1 year after the most recent PPSV23 dose for individuals 
previously vaccinated with PPSV23 (owing to the reduced 
immunogenicity of PCV13 when administered shortly after 
PPSV23 [31]). We updated vaccination status for individuals 
who received PPSV23 or PCV13 during the follow-up period, 
excluding person-time contributed during the first 30 days after 
receipt of any PCV13 or PPSV23 dose to allow for time to onset 
of immunity.

To mitigate confounding due to differences in risk status, 
contact patterns and SARS-CoV-2 exposure, and healthcare 
utilization associated with vaccination, covariates included 
in our analyses were age group (defined in 5-year bins), sex, 
race/ethnicity, current or former smoking, body mass index, 
history of comorbid conditions, prior year healthcare utiliza-
tion (across outpatient, emergency, and inpatient settings), 
median household income within individuals’ residential 
census tract, and prior receipt of any zoster vaccine as well 
as 2019–2020 seasonal influenza vaccine. Comorbid condi-
tions were defined by International Classification of Diseases, 
10th Revision, Clinical Modification (ICD-10-CM) codes for 
prior diagnoses of myocardial infarction, congestive heart 
failure, peripheral vascular disease, cerebrovascular disease, 
hypertension, hyperlipidemia, diabetes, chronic obstruc-
tive pulmonary disease, renal disease, moderate or severe 
liver disease, asthma, obstructive sleep apnea, human im-
munodeficiency virus (HIV)/AIDS, immunocompromising 
conditions, organ transplant, malignancy or metastatic 
solid tumor, rheumatologic or inflammatory disorders, and 
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depression. We encoded missing information on race/eth-
nicity, body mass index, smoking, and median census tract 
household income as a distinct exposure category, as the oc-
currence of missing data was informatively associated with 
healthcare utilization and history of vaccination. To assess 
effect modification, we also recorded dates of any oral or in-
travenous antibiotic receipt among cohort members.

Statistical Analysis

We measured the association between PCV13 receipt and 
COVID-19 outcomes via the adjusted hazard ratio (aHR), es-
timated via Cox proportional hazards regression with doubly-
robust inverse propensity weighting for PCV13 exposure [32]. 
We computed stabilized weights for cohort members that were 
inversely proportional to their propensity of having received 
PCV13, based on demographic and clinical attributes, using 
a logistic regression model defining any PCV13 receipt as the 
outcome. Covariates listed above were the predictors. We con-
trolled for all covariates included the treatment model in the 
outcome models.

Because covariate adjustment may not completely remove 
bias in the presence of unmeasured confounding [33], we cor-
rected for the association of COVID-19 outcomes with receipt 
of zoster vaccination (defined as receipt of any live or recombi-
nant zoster vaccine dose, for which there are similar age-based 
recommendations among US older adults) as a negative control 
exposure. While not hypothesized to confer specific protection 
against COVID-19 outcomes, we expected that zoster vaccine 
receipt could be associated with COVID-19 outcomes through 
unmeasured confounding pathways that would also affect ana-
lyses of PCV13, such as an association between vaccine uptake 
and personal protective measures against COVID-19 (eg, mask 
wearing, avoidance of social gatherings). Using the method of 
Sanderson and colleagues [33], we adjusted estimates for the as-
sociation of zoster vaccine receipt with COVID-19 outcome via 
the formula aHRP/aHRZ, where aHRP and aHRZ were adjusted 
hazard ratio estimates for PCV13 and zoster vaccine exposures, 
respectively. We considered findings to be statistically signifi-
cant if the 95% confidence interval (CI) around aHRP/aHRZ 
excluded 1; here, statistical significance indicated that the mag-
nitude of effect associated with pneumococcal vaccination ex-
ceeded the estimated negative control effect size.

Effect Modification by Antibiotic Exposure

Finally, to assess the hypothesis that associations with PCV13 
receipt were mediated by presence of pneumococci in the res-
piratory tract, we assessed differences in effect size estimates 
across strata defined according to individuals’ history of anti-
biotic exposure. While direct verification of individuals’ pneu-
mococcal carriage status was not possible in this retrospective 
study, we hypothesized that no effects of PCV13 would be ev-
ident during risk periods immediately following antibiotic 

treatment, as persistence of pneumococci in the upper airway 
following antibiotic treatment would be unlikely [34]. Our ana-
lyses used a case-control framework, defining cases as individ-
uals who experienced COVID-19 diagnosis over the duration 
of the study period, and controls as individuals who did not. 
We estimated adjusted odds ratios (aORs) for predictors of case 
status using logistic regression models applying stabilized in-
verse propensity weights (as defined above) for PCV13 receipt. 
We quantified the negative control-corrected association of 
PCV13 with COVID-19 outcomes as aORP/aORZ, consistent 
with our primary analyses, for the aORs associated with re-
ceipt of PCV13 (P) and zoster (Z) vaccines. Owing to the low 
incidence of COVID-19 (<1% in the study cohort over the fol-
low-up period), the odds ratio provided a suitable approxima-
tion for the hazard ratio [35].

We defined separate strata for cases who experienced 
COVID-19 diagnoses within 1–30, 31–60, or 61–90  days fol-
lowing receipt of any antibiotic (defined by the date of receipt 
for antibiotics with a single administration, or the last day of 
antibiotic supply for multiday prescriptions); cases who never 
received antibiotics during the study period; and cases who re-
ceived antibiotics in a remote risk period 91–365 days before 
their COVID-19 diagnosis. Stratification of controls for anti-
biotic receipt was unnecessary as the risk ratio of control status 
among unvaccinated and vaccinated persons—a factor in the 
odds ratio—approaches 1 at low risk of infection (p → 0):

lim
p→0

1 − [1 + a0(α− 1)] p

1 − [1 + a1 (α− 1)] νp
= 1,

where a1 and a0 are the prevalence of antibiotic receipt among 
controls who received and did not receive PCV13, respec-
tively,ν  is the risk ratio of COVID-19 given PCV13 receipt (and 
conditioned on antibiotic exposure status), andαis the risk ratio 
of COVID-19 diagnosis given antibiotic receipt.

RESULTS

The study cohort comprised 531  033 individuals aged 
≥65 years enrolled in KPSC health plans, among whom there 
were 3677 COVID-19 cases, 1075 COVID-19 hospitalizations, 
and 334 fatal COVID-19 hospitalizations from 1 March to 22 
July 2020. In total, 451 068 cohort members received PCV13 
at age ≥65 years. On average, recipients of PCV13 were older 
than nonrecipients, had higher prevalence of comorbid condi-
tions associated with risk of pneumonia and COVID-19, and 
had higher rates of healthcare utilization in the preceding year 
(Table 1; Supplementary Table 1). Incidence rates of COVID-19 
diagnosis, hospitalization, and fatal hospitalization were higher 
among individuals with each comorbid condition included in 
analyses, with the exception of malignancy, metastatic solid 
tumor, and HIV infection (for which the sample size was small; 
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Supplementary Table 1). Reweighting of the cohort according 
to the inverse propensity of PCV13 receipt balanced the dis-
tribution of confounding variables between recipients and 
nonrecipients (Figure 1; Supplementary Table 2).

Accounting for zoster vaccination as a negative-control ex-
posure, the estimated aHR for COVID-19 among PCV13 re-
cipients, vs nonrecipients, was 0.65 (95% CI, .59–.72; Figure 
2; Supplementary Table 3). For hospitalization and fatal hos-
pitalization endpoints, aHR estimates were 0.68 (95% CI, 
.57–.83) and 0.68 (95% CI, .49–.95), respectively. In contrast, 
receipt of PPSV23 was not independently associated with clear 
differences in risk of the 3 COVID-19 outcomes (Figure 2; 
Supplementary Table 4); estimates suggested a reduction in risk 
of hospitalization associated with PPSV23 receipt, although this 

effect size did not differ significantly from the negative control 
association with zoster vaccination (aHR, 1.02 [95% CI, .78–
1.29]). Individuals receiving only PCV13 experienced lower 
risk of each outcome than individuals receiving only PPSV23 
(Supplementary Table 5).

In analyses distinguishing risk periods according to history 
of antibiotic receipt, the aOR for COVID-19 among PCV13 re-
cipients, vs nonrecipients, was 0.62 (95% CI, .54–.70) among in-
dividuals who never received antibiotics over the study period 
(Figure 3; owing to the low incidence of COVID-19, the aOR 
is directly comparable to the aHR for the same outcome). In 
contrast, estimates of the aOR over the time periods 1–30 days, 
31–60  days, and 61–90  days after antibiotic receipt were 1.12 
(95% CI, .87–1.41), 1.14 (95% CI, .71–1.75), and 1.06 (95% CI, 

Table 1. Descriptive Attributes of the Study Cohort

Characteristic

No. (%) of Individuals

PCV13 Received per ACIP Guidelinesa PCV13 Not Received

(n = 451 068) (n = 80 600)

Age on 1 March 2020   

 65–69 y 96 812 (21.5) 42 898 (53.2)

 70–74 y 136 556 (30.3) 18 982 (23.6)

 75–79 y 94 209 (20.9) 9482 (11.8)

 80–84 y 63 650 (14.1) 5031 (6.2)

 85–89 y 38 473 (8.5) 2569 (3.2)

 ≥90 y 21 368 (4.7) 1638 (2.0)

Sex   

 Female 250 005 (55.4) 44 662 (55.4)

 Male 201 063 (44.6) 35 938 (44.6)

Race/ethnicity   

 White, non-Hispanic 222 100 (49.2) 37 664 (46.7)

 Black, non-Hispanic 39 483 (8.8) 10 415 (12.9)

 Asian or Pacific Islander, non-Hispanic 56 331 (12.5) 6585 (8.2)

 Hispanic (any race) 122 540 (27.2) 17 664 (21.9)

 Other, mixed, or unknown race 10 614 (2.4) 8272 (10.3)

Tobacco smoking   

 Current smoker 14 080 (3.1) 2982 (3.7)

 Former smoker 156 177 (34.6) 16 196 (20.1)

 Never smoker 261 103 (57.9) 38 383 (47.6)

 Unknown 19 708 (4.4) 23 039 (28.6)

Body mass index, kg/m2   

 <18.5 (underweight) 8253 (1.8) 1112 (1.4)

 18.5–24.9 (normal weight) 129 518 (28.7) 16 711 (20.7)

 25.0–29.9 (overweight) 162 049 (35.9) 20 200 (25.1)

 30.0–39.9 (obese) 114 448 (25.4) 14 532 (18.0)

 ≥40.0 (morbidly obese) 13 786 (3.1) 1954 (2.4)

 Unknown 23 014 (5.1) 26 091 (32.4)

Comorbid conditions   

 Myocardial infarction 22 589 (5.0) 1664 (2.1)

 Congestive heart failure 35 647 (7.9) 1977 (2.5)

 Peripheral vascular disease 181 756 (40.3) 11 123 (13.8)

 Cerebrovascular disease 31 028 (6.9) 2240 (2.8)

 Hypertension 291 730 (64.7) 28 304 (35.1)

 Hyperlipidemia 317 967 (70.5) 30 758 (38.2)

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab128#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab128#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab128#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab128#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab128#supplementary-data
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Characteristic

No. (%) of Individuals

PCV13 Received per ACIP Guidelinesa PCV13 Not Received

(n = 451 068) (n = 80 600)

 Diabetes 127 981 (28.4) 9761 (12.1)

 COPD 80 680 (17.9) 5487 (6.8)

 Renal disease 91 274 (20.2) 5543 (6.9)

 Moderate or severe liver disease 1682 (0.4) 94 (0.1)

 Malignancy 26 844 (6.0) 2398 (3.0)

 Metastatic solid tumor 8184 (1.8) 803 (1.0)

 Asthma 45 130 (10.0) 3249 (4.0)

 Obstructive sleep apnea 31 469 (7.0) 2270 (2.8)

 HIV/AIDS 174 (<0.1) 7 (<0.1)

 Organ transplant 556 (0.1) 33 (<0.1)

 Other immunocompromising condition 22 059 (4.9) 1894 (2.3)

 Hypothyroidism 66 156 (14.7) 6238 (7.7)

 Rheumatologic/inflammatory condition 11 579 (2.6) 964 (1.2)

 Depression 66 030 (14.6) 4844 (6.0)

Zoster vaccinationb   

 Any zoster vaccine dose received 224 317 (49.7) 9625 (11.9)

Influenza vaccination   

 Vaccinated in 2019–2020 season 390 322 (86.5) 20 617 (25.6)

PPSV23 vaccination   

 PPSV23 ever received 404 730 (89.7) 13 743 (17.1)

Prior year outpatient visits   

 0–9 98 005 (21.7) 43 533 (54.0)

 10–19 137 344 (30.4) 19 172 (23.8)

 20–29 89 508 (19.8) 8839 (11.0)

 30–39 51 813 (11.5) 4241 (5.3)

 ≥40 74 398 (16.5) 4815 (6.0)

Prior year inpatient visits   

 0 411 875 (91.3) 77 679 (96.4)

 1 30 152 (6.7) 2391 (3.0)

 2 6186 (1.4) 361 (0.4)

 ≥3 2855 (0.6) 169 (0.2)

Prior year emergency department visits   

 0 339 108 (75.2) 69 482 (86.2)

 1 70 527 (15.6) 7954 (9.9)

 2 22 915 (5.1) 1945 (2.4)

 ≥3 18 518 (4.1) 1219 (1.5)

Census tract median household income   

 $0–$29 999 5460 (1.2) 1173 (1.5)

 $30 000–$49 999 67 197 (14.9) 12 848 (15.9)

 $50 000–$69 999 100 439 (22.3) 18 458 (22.9)

 $70 000–$89 999 105 416 (23.4) 18 570 (23.0)

 $90 000–$109 999 77 593 (17.2) 13 705 (17.0)

 $110 000–$129 999 52 644 (11.7) 8538 (10.6)

 ≥$130 000 41 645 (9.2) 6965 (8.6)

 Unknown 674 (0.1) 343 (0.4)

Receipt of antibiotics   

 At any point during study period 2064 (0.5) 232 (0.3)

 ≥1 d before COVID-19, if ever diagnosed 1406 (0.3) 169 (0.2)

Values show the number of individuals with each risk factor who belonged at any point during follow-up to the exposure groups. We indicate incidence of COVID-19 outcomes associated 
with each attribute in Supplementary Table 1. We present reweighted estimates in Figure 1 and Supplementary Table 2.

Abbreviations: ACIP, Advisory Committee on Immunization Practices; COPD, chronic obstructive pulmonary disease; COVID-19, coronavirus disease 2019; HIV, human immunodeficiency 
virus; PCV13, 13-valent pneumococcal conjugate vaccine; PPSV23, 23-valent pneumococcal polysaccharide vaccine.
aReceipt of PCV13 ≥1 year before PPSV23 for immunocompetent individuals, or ≥8 weeks before PPSV23 for immunocompromised individuals; or, for individuals who had previously re-
ceived PPSV23, receipt of PCV13 ≥1 year after the most recent PPSV23 dose.
bReceipt of ≥1 dose of live or recombinant zoster vaccine.

Table 1. Continued

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab128#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab128#supplementary-data
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.66–1.60), respectively. Over the period 90–365 days after anti-
biotic receipt, the aOR for COVID-19 associated with PCV13 
receipt was 0.65 (95% CI, .50–.84), suggesting that differences 
in effect estimates shortly after antibiotic administration were 
not attributable to fundamental differences between individuals 
who received and did not receive antibiotics.

We indicate negative-control (ie, noncausal) associations of 
zoster vaccine receipt with COVID-19 outcomes, used to cor-
rect for residual confounding, in Supplementary Table 6. In 
contrast to the lower observed incidence of COVID-19 among 
zoster vaccine recipients than nonrecipients, 2019–2020 sea-
sonal influenza vaccination was not independently associated 
with COVID-19 outcomes in the study cohort (Supplementary 
Tables 7 and 8), illustrating that our findings were not sensi-
tive to the choice of zoster vaccination as the negative control 
exposure.

DISCUSSION

Within a cohort of US adults aged ≥65 years, receipt of PCV13 
was associated with lower incidence of any COVID-19 diag-
nosis, COVID-19 hospitalization, and fatal COVID-19 hos-
pitalization after correction for multiple potential sources 
of confounding. These results are consistent with previous 
findings of interactions between pneumococci and respira-
tory viruses [5–9], contributing to PCV efficacy against virus-
associated pneumonia among both children and older adults 
[26–29]. Although exploratory in nature as our study used an 
observational design, our findings support the hypothesis that 
interactions with pneumococci in the upper airway contribute 
to SARS-CoV-2 pathogenesis in 3 respects. First, similarity of 
PCV13 effect estimates across all 3 outcomes suggests that pro-
tection arose from the prevention of early stages of COVID-19 
pathogenesis rather than prevention of severe postinfection 
sequelae, which would have led to higher effectiveness estimates 
against hospitalization and death. This finding is externally 
consistent with previous studies, suggesting a low burden of 
secondary pneumococcal pneumonia following SARS-CoV-2 
infection, in contrast to experience with other viral pathogens 
such as influenza [16]. Second, receipt of PPSV23—which, un-
like PCV13, would not be expected to prevent pneumococcal 
colonization—showed little association with protection against 
COVID-19 outcomes. Third, recent antibiotic receipt was a 
modifier of the PCV13 effect estimate. Individuals who recently 
received antibiotics, and who would therefore not be expected 
to carry pneumococci, did not experience PCV13-associated 
protection against subsequent COVID-19 diagnosis.

Improved understanding of viral–bacterial interactions 
during SARS-CoV-2 infection remains necessary to validate 
the mechanistic basis for our findings. However, our results 
are in agreement with other data, suggesting that the pathoge-
nicity of respiratory viruses may be modified by bacterial car-
riage [36]. Evidence that upper respiratory commensal bacteria 

promote viral infection dates at least to 1987 [37], with studies 
demonstrating that enzymes expressed by bacteria (including 
pneumococci [38]) enhance influenza virus replication and 
pathogenicity. More recently, blunting of innate immune re-
sponses to influenza virus during pneumococcal colonization 
has been demonstrated in human challenge studies [12]. Such 
mechanisms of interaction may account for epidemiologic ob-
servations of enhanced virus acquisition and symptom risk 
among carriers of pneumococci and other respiratory com-
mensal pathogenic bacteria [9, 13]. To substantiate our findings, 
it remains crucial to determine whether risk of SARS-CoV-2 
infection and adverse clinical outcomes differ among individ-
uals who carry or do not carry pneumococci. Several classes of 
observational studies would be helpful to test this hypothesis. 
Epidemiological studies should evaluate interactions between 
pneumococci and SARS-CoV-2 by comparing the prevalence 
and density of pneumococcal carriage among COVID-19 cases 
and uninfected controls, or among individuals with SARS-
CoV-2 infection who experience or do not experience symp-
toms. Such studies will also provide an opportunity to assess 
whether interactions between pneumococci and SARS-CoV-2 
are serotype specific, as reported in prior laboratory and epi-
demiologic studies of pneumococcal interactions with influenza 
and RSV [36, 39–41]. Studies assessing whether preexisting or 
concomitant pneumococcal colonization is associated with 
differential immune responses to SARS-CoV-2 could further 
establish whether host-mediated mechanisms of interaction be-
tween pneumococci and influenza also apply contribute to the 
observed association in our study [12].

Counter-arguments to the above hypothesis merit considera-
tion as well. First, prevalence of pneumococcal carriage among 
older adults has historically been reported at very low levels. 
However, recent studies using sensitive techniques of nasal 
wash or saliva sampling with molecular pneumococcal detec-
tion methods have found that low-density carriage is much 
more common than previously thought among adults [42]. 
Notably, roughly one-third of serotypes carried by adults are 
PCV13 types in settings with well-established pediatric vacci-
nation programs [43–45], indicating that vaccination of young 
children reduces but does not eliminate PCV13-serotype cir-
culation. While short-term effects on adult carriage were re-
ported in in a large-scale randomized trial of PCV13 in the 
Netherlands [46], use of traditional nasopharyngeal sampling 
methods was a limitation of this study. Challenge experiments 
have provided further demonstration of PCV13-conferred pro-
tection against vaccine-serotype carriage acquisition among 
adults [12, 22]. Second, among children, reductions in vaccine-
serotype carriage are largely offset by increases in carriage of 
nonvaccine serotypes following PCV13 receipt. Whether this 
is also true of adult carriage is uncertain, in particular be-
cause adults may be exposed to a lower force of infection 
than children. Previous studies have reported reduced risk of 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab128#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab128#supplementary-data
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Figure 1. We illustrate the distribution of demographic and clinical attributes of individuals within the cohort by receipt (blue) or nonreceipt (red) of 13-valent pneumococcal 
vaccine (PCV13). Plots in the left-hand column illustrate cohort characteristics, as observed; individuals receiving PCV13 tended to be older, had higher prevalence of comorbid 
conditions, and had higher rates of healthcare utilization in the preceding year than individuals who did not receive PCV13. Plots in the right-hand column illustrate cohort 
characteristics after reweighting of individuals according to the inverse of their propensity of PCV13 receipt (as estimated in logistic regression models defining PCV13 receipt 
as the outcome variable and factors listed in the figure as covariates) [32]; this approach reduced confounding based on differences in measured risk factors between PCV13 
recipients and nonrecipients. We indicate sample characteristics in Supplementary Table 1 (with reweighted estimates in Supplementary Table 3) and indicate differences in 
incidence of COVID-19 endpoints associated with each risk factor in Supplementary Table 2. Abbreviations: HIV, human immunodeficiency virus; PCV13, 13-valent pneumo-
coccal vaccine; PPSV23, 23-valent pneumococcal polysaccharide vaccine.
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virus-associated symptoms among children receiving PCVs 
despite serotype replacement in carriage [13, 26, 28, 29], fur-
ther suggesting that nonvaccine serotypes may differ in their 
propensity for viral interaction. It remains unclear to what ex-
tent our findings could be explained by lower pneumococcal 
carriage prevalence among adults receiving PCV13, if serotype 
replacement is minimal, or by serotype-specific virus interac-
tion, if serotype replacement is substantial.

Our study has limitations. Laboratory confirmation was 
recorded for 81.2% of COVID-19 diagnoses; clinically con-
firmed cases may have been tested by other providers. While 
nonrandomized PCV13 exposure was a limitation, use of in-
verse propensity weighting helped to mitigate confounding 
in our analyses. Moreover, accounting for other adult vac-
cine exposures reduces risk that unmeasured confounding 

pathways—such as an association between vaccine access and 
compliance with social distancing—would explain our find-
ings. As PCV13 receipt was more common among older in-
dividuals and those with high-risk conditions, bias would 
be expected to suggest greater risk among PCV13 recipients 
than nonrecipients, contrary to our results. Our findings that 
PPSV23 did not prevent COVID-19 outcomes, and that PCV13 
effects were not evident following antibiotic receipt, are con-
sistent with the hypothesis that protection was mediated by 
prevention of pneumococcal carriage. Hospitalizations and 
death within the specified time window surrounding COVID-
19 diagnosis may have been due to other causes. Such outcome 
misclassification, however, would be expected to obscure vac-
cine effects against COVID-19 hospitalization and fatality 
endpoints, biasing outcomes in favor of the null hypothesis. 

0.3 0.5 0.7 1
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No antibiotics in study period
aOR (95% CI)
0.62 (.54–.70)

1.12 (.87–1.41)
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1.06 (.66–1.60)
0.65 (.50–.84)

Antibiotics  31–60 days previously
Antibiotics  61–90 days previously

Antibiotics  >90 days previously

1.5 2

Figure 3. We present estimates of the effectiveness of any 13-valent pneumococcal vaccine (PCV13) receipt for risk periods defined by recent antibiotic exposure: no anti-
biotics received in the preceding 30 days (top), antibiotics received within the preceding 1–30 days (middle), and antibiotics received >60 days previously (and not within the 
ensuing 60 days; bottom). We obtain estimates using doubly robust Cox proportional hazards models applying inverse weights for the propensity of PCV13 receipt, correcting 
for the association of coronavirus disease 2019 diagnosis with prior zoster vaccination as a negative control exposure. Lines (and numbers in parentheses) signify 95% con-
fidence intervals around maximum likelihood estimates (points). Abbreviations: aOR, odds ratio; CI, confidence interval.

Any COVID–19 diagnosisA.

PCV13
PCV13 and PPSV23

aHR (95% CI)
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COVID–19 hospitalizationB.
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Figure 2. We present estimates of the effectiveness of any 13-valent pneumococcal vaccine (PCV13) receipt, and receipt of PCV13 and 23-valent pneumococcal poly-
saccharide vaccine (relative to no pneumococcal vaccination) according to 2015 guidelines of the Advisory Committee on Immunization Practices [30], against outcomes of 
any coronavirus disease 2019 (COVID-19) diagnosis (A), COVID-19 hospitalization (B), and fatal COVID-19 hospitalization (C). We obtain estimates using doubly robust Cox 
proportional hazards models applying inverse weights for the propensity of PCV13 receipt, correcting for the association of each endpoint with prior zoster vaccination as a 
negative control exposure. Lines (and numbers in parentheses) signify 95% confidence intervals around maximum likelihood estimates (points). Abbreviations: aHR, adjusted 
hazard ratio; CI, confidence interval; COVID-19, coronavirus disease 2019; PCV13, 13-valent pneumococcal vaccine; PPSV23, 23-valent pneumococcal polysaccharide vaccine.
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We assumed that associations of COVID-19 endpoints with 
zoster vaccination provided an indicator of bias due to residual 
confounding. Although we are unaware of data demonstrating 
nonspecific effects of zoster vaccination against COVID-19, this 
possibility merits fuller investigation. Exposure to children and 
living in group housing are key risks factor for pneumococcal 
carriage among older adults that were not assessed in this study, 
although our analyses did address other risk factors including 
age group, smoking status, receipt of antibiotics and PCV13, 
and comorbid chronic diseases [47–49]. Finally, periods imme-
diately surrounding the timing of antibiotic receipt may have 
been associated with differential risk of SARS-CoV-2 infection 
for adults in the study, although we are unaware of a reason why 
this would differentially modify risk among PCV13 recipients 
and nonrecipients.

Despite longstanding pediatric PCV13 use, circulation of 
vaccine-targeted serotypes continues to occur in the United 
States, accounting for 28% of invasive pneumococcal disease 
cases in 2015–2016 [50]. Reductions in childhood vaccine 
coverage associated with the COVID-19 pandemic may ac-
centuate the relative importance of vaccine-targeted sero-
types in pneumococcal carriage and in diseases for which 
pneumococci play a role in the causal pathway. Efforts to 
understand bacterial accentuation of viral infection or path-
ogenicity are needed, both in the context of the COVID-19 
pandemic and for other important viral pathogens such as 
RSV and influenza.
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