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Abstract

Empowering Responsible Use of Large Language Models

by

Xuandong Zhao

The rapid advancement of powerful Large Language Models (LLMs), such as Chat-

GPT and Llama, has revolutionized the world by bringing new creative possibilities and

enhancing productivity. However, these advancements also pose significant challenges

and risks, including the potential for misuse in the form of fake news, academic dis-

honesty, intellectual property infringements, and privacy leaks. In response to these

concerns, this thesis explores approaches to promoting the responsible use of LLMs from

both theoretical and empirical perspectives.

Three key approaches are presented: (1) Detecting AI-generated Text via Water-

marking: We propose a robust and high-quality watermarking method called Unigram-

Watermark and introduce a rigorous theoretical framework to quantify the effectiveness

and robustness of LLM watermarks. Furthermore, we propose PF-Watermark, which

achieves the best balance of high detection accuracy and low perplexity. (2) Protect-

ing the Intellectual Property of LLMs: We safeguard the intellectual property of LLMs

through novel watermarking techniques designed to prevent model-stealing attacks in

both text classification and text generation tasks. (3) Privacy-Preserving LLMs: We em-

ploy Confidential Redacted Training (CRT) to train and fine-tune language generation

models while protecting sensitive information. In summary, we propose a suite of algo-

rithms and solutions to address LLMs’ trending safety, security, and privacy concerns.

We hope our studies provide valuable insights for researchers to explore exciting future

research solutions that promote responsible AI development and deployment.
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Chapter 1

Introduction

1.1 Overview

The world stands on the brink of a technological revolution with the rapid emergence

of powerful generative Artificial Intelligence (AI) models, particularly Large Language

Models (LLMs). LLMs, such as ChatGPT [1] and Llama [2], enable remarkable creative

capabilities like generating fluent essays, translating hundreds of languages, and pro-

ducing efficient code. However, the power of LLMs also brings significant risks, includ-

ing the creation of fake news, fraud, scams, the potential automation of disinformation

campaigns, infringements on copyright and intellectual property, and significant privacy

breaches. This underscores the urgent need for research and policies to ensure the safety,

security, and privacy of these rapidly advancing technologies.

Responsible AI is a top priority for governments and society, as it is one of the most

critical challenges to address. Last year, the White House issued an executive order

promoting the safe, secure, and trustworthy development of Artificial Intelligence [3]. In

Europe, leaders convened an AI Safety Summit [4]. Furthermore, over 200 universities

and companies joined the AI Safety Institute to develop the next generation of AI models
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Introduction Chapter 1

aligned with human values to shape a better future [5].

To address the growing global concerns surrounding AI ethics, this thesis is rooted

deeply in the realms of AI safety, security, and privacy from a technical standpoint. By

advancing statistical machine learning techniques tailored for a deep understanding of

natural language processing applications, this thesis promotes the responsible use of large

language models from both theoretical and empirical perspectives. Specifically, we study

three critical problems related to the responsible use of LLMs:

1. How to detect AI-generated text to prevent misuse.

2. How to protect the intellectual property of large language models to prevent theft.

3. How to prevent large language models from generating sensitive information.

To tackle these challenges, we developed novel watermarking, intellectual property

protection, and differentially private training techniques that provide theoretical guaran-

tees and empirical evidence with many current state-of-the-art models.

1.2 Watermarking LLM-Generated Text

In the first part, we explore the watermarking of LLM-generated text. The rapid

advancement of large language models like ChatGPT has led to a proliferation of synthetic

content generation across sectors such as media, cybersecurity, public discourse, and

education. Detecting LLM-generated content is crucial, and watermarking LLMs’ text

output is one of the most promising approaches to addressing the safety challenges of

LLM usage.

We propose two prominent solutions in this domain [6, 7]. In Unigram-Watermark,

we formally define robustness for text watermarking of LLMs and propose a rigorous

2
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theoretical framework to quantify performance drops, detection accuracy, and security

against post-processing. The Unigram-Watermark method ensures that the watermarked

LLM remains close to the original LLM, while the Type I/II errors in detection decrease

exponentially as the suspect text length increases. Experiments on diverse LLMs and

datasets demonstrate superior detection accuracy and robustness against attacks, pro-

moting responsible LLM use.

The second work builds upon the Permute-and-Flip (PF) decoding method, further

exploring its properties and applications in watermarking. We demonstrate the Pareto

optimality of the PF decoding method in balancing robustness and perplexity, highlight-

ing its advantages over traditional decoding methods like softmax sampling. Additionally,

we propose a novel “PF Watermark”, analogous to the Gumbel-Watermark, showcasing

its effectiveness in detecting watermarked text while preserving the indistinguishability

of the watermarked decoder from its non-watermarked counterpart.

1.3 Distillation Resistant Model Watermark

In the second part, we focus on protecting the intellectual property of generative AI

[8, 9]. The proliferation of free or low-cost generative AI APIs has heightened concerns

over intellectual property (IP) theft through model distillation. For example, the Alpaca

team recently claimed to distill ChatGPT for just $600 in API calls, demonstrating the

urgency of this issue. This raises a pertinent question: how can we prevent model-stealing

attacks through distillation?

We seek to prevent such model-stealing attacks by developing novel watermarking

techniques tailored for large language models. In Chapter 5, we propose Distillation-

Resistant Watermarking (DRW) to protect NLP models from being stolen via distillation.

DRW protects a model by injecting watermarks into the victim’s prediction probabilities

3
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corresponding to a secret key, which can be detected by probing a suspect model. From a

theoretical perspective, we prove that a protected model still retains the original accuracy

within a certain bound.

Progressing further, we adapt the principles of DRW to text generation models, the

default setting for large language models. Our method, Ginsew, provides an innovative

methodology to protect these models. By injecting secret watermarking signals into

decoding steps, we can ascertain the origin of the model, offering a formidable defense

against unauthorized distillation. Notably, our method is one of the first to watermark

LLMs directly in the decoding steps. Overall, this line of work makes crucial strides

toward securing AI systems against IP infringement via model distillation.

1.4 Privacy-Preserving LLMs

In the third part, we examine privacy-preserving LLMs [10]. LLMs pose serious pri-

vacy risks by making it easier to extract and exploit personal data. Moreover, large

language models may inadvertently memorize sensitive information, such as Social Secu-

rity numbers, contained in their massive training datasets, as it is infeasible to manually

screen this data at scale. To address these challenges, we have developed effective tech-

niques to train LLMs while preserving privacy.

Our proposed Confidentially Redacted Training (CRT) method trains language gen-

eration models while protecting confidential segments. Drawing inspiration from dif-

ferential privacy, CRT can provably prevent unintended memorization by randomizing

parts of the training process. Moreover, we demonstrate that redaction with an approx-

imately correct screening policy amplifies the confidentiality guarantee. These methods

help mitigate privacy risks in the initial model training phase.

4
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1.5 Summary and Contributions

In summary, this thesis makes novel contributions to securing LLMs and their outputs

through provably robust watermarking techniques for both generated text and the models

themselves, as well as confidential training procedures. The proposed methods aim to

enable the responsible development and deployment of LLMs while mitigating risks of

misuse, intellectual property theft, and data leakage. By providing a solid foundation of

theory and practice, this work helps chart a path towards a future where the immense

benefits of LLMs can be realized while upholding important societal values.

1.5.1 Thesis Structure

The thesis is organized as follows:

• Chapter 1 introduces the background, motivation, and scope of the thesis.

• Chapter 2 presents the Unigram-Watermark method, offering a rigorous theoretical

framework and empirical evidence for detecting LLM-generated text.

• Chapter 3 explores the PF Decoding method, delving into its robustness, perplexity

trade-off, and applications in watermarking.

• Chapter 4 introduces Distillation-Resistant Watermarking (DRW), focusing on pro-

tecting NLP models from being stolen via distillation.

• Chapter 5 extends DRW principles to text generation models, introducing Ginsew

for watermarking LLMs in decoding steps to prevent model stealing attacks.

• Chapter 6 discusses Confidentially Redacted Training (CRT), providing a new ap-

proach to training LLMs while preserving privacy.

5
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• Chapter 7 concludes the thesis by summarizing key contributions and outlining

future research directions.

This thesis contributes significantly to the responsible use of large language models,

promoting safety, security, and privacy in a rapidly evolving technological landscape.

6
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Chapter 2

Unigram-Watermark

We study the problem of watermarking large language models (LLMs) generated text

— one of the most promising approaches for addressing the safety challenges of LLM

usage. In this chapter, we propose a rigorous theoretical framework to quantify the ef-

fectiveness and robustness of LLM watermarks. We propose a robust and high-quality

watermark method, Unigram-Watermark, by extending an existing approach with a

simplified fixed grouping strategy. We prove that our watermark method enjoys guaran-

teed generation quality, correctness in watermark detection, and is robust against text

editing and paraphrasing. Experiments on three varying LLMs and two datasets verify

that our Unigram-Watermark achieves superior detection accuracy and comparable

generation quality in perplexity, thus promoting the responsible use of LLMs. Our code

is available at https://github.com/XuandongZhao/Unigram-Watermark.

2.1 Introduction

Generative Artificial Intelligence (AI) [11, 12, 13, 14] has achieved significant progress

in recent years, spanning from computer vision (CV) to natural language processing

8

https://github.com/XuandongZhao/Unigram-Watermark


Unigram-Watermark Chapter 2

(NLP). Large language models (LLMs) such as ChatGPT [1] can generate coherent and

contextually relevant long-form text in response to user-specified prompts. However, the

ease of using LLMs has raised concerns about their potential misuse [15, 16, 17]. For

example, LLMs could be used to generate fake news, contaminate web content, or assist

in academic dishonesty. Additionally, the proliferation of synthetic data from LLMs poses

challenges for training new models, as synthetic data needs to be detected and excluded

before model training [18, 19].

There are two main camps of existing attempts to address these challenges. One

camp, inspired by [20], aims at generically distinguishing machine-generated text from

that of the humans [21, 22, 23, 15, 24]. These works primarily leverage hand-crafted

or learned “statistical patterns” of generated text, thus their performance is not robust

to distribution changes (e.g., by prompting / conditioning), prone to biases [25], and

vulnerable to adversarial attacks.

The other camp advocates active intervention by injecting carefully-designed water-

marks to machine-generated text [26, 9]. The watermarking approach does not search for

statistical patterns (which could be hit-or-miss), but rather deliberately plant subtle but

distinctive patterns within the content to enable downstream detection. Compared to

the passive detection approaches, the watermarking methods aim at determining whether

the text is coming from a specific language model rather than solving the Turing test

generically. As a result, watermarking approaches are robust to distribution-shift and

can essentially prove — rather than predict — the origin of the suspect text.

The most notable challenge for the watermarking approach is that the planted pat-

terns could be post-processed away. As an example, [26]’s soft watermarking method

divides the vocabulary into a “green list” and a “red list” based on the prefix token,

and subtly increases the probability of choosing from the green list. If the watermarked

sentence is edited by changing every other token into its synonym, then it is no longer

9
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possible to determine the green/red lists for each candidate token, thus ruining the detec-

tor. One could also simply paraphrase the sentence as a whole using another off-the-shelf

LLM.

In this chapter, we take a first stab at formally defining robustness in the context of

watermarking LLMs. Our contributions are fourfold.

1. We devise a rigorous theoretical framework for quantifying the performance drop,

the correctness of detection, and the security property against post-processing.

2. We propose to simplify the scheme of [26] by using a fixed Green-Red split consis-

tently and show that the new watermark, named Unigram-Watermark, is twice

as robust to edits as the baseline, provably.

3. We prove that the watermarked LLM is close to the original LLM (in all Renyi

divergences) and show that the Type I/Type II errors of the detection algorithm

decay exponentially as the suspect text length gets longer and more diverse.

4. We conduct experiments utilizing various large language models on diverse datasets.

The results indicate that our method achieves superior detection accuracy and

improved robustness against different attacks, thus promoting the responsible use

of LLMs.

To the best of our knowledge, we are the first to obtain provably robust guarantees

for watermarks for LLMs against arbitrary edits.

Related work. We build upon the work of [26] in which the family of K-gram

(statistical) watermark was proposed1. The main method we consider chooses K = 1,

thus its name Unigram-Watermark. Our work provides formal theoretical guarantees

1Note the changed name. [26] referred to its (unnamed) soft-watermark that determines the green/red
list using a prefix of length (K − 1). We think K-gram watermark is the most concise and informative
name for this family.

10
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to this family of K-gram watermark. For the sake of a clean presentation, we focus on the

case when K = 1 and discuss the applicability of our results for K > 1 in the discussion

section. Our work is independent of the concurrent work of cryptographic watermarks

[27, 28]. In particular, [27]’s proprietary work can also be viewed as an alternative K-gram

watermark, but uses a cryptographic approach for measuring utility drop, which results

in a different kind of tradeoff. We defer detailed discussion to an extended discussion of

the related work in the next section. Technically, the main theoretical tool we used for

analyzing dependent random variables and their concentration tightly is due to [29], the

instantiation to our problem is new and nontrivial.

2.2 Related Work

Watermarking natural languages. The concept of watermarking, which involves

hiding identifying information within data, has a long history. However, watermarking

digital text has been challenging due to its discrete nature [30]. Early approaches relied

on techniques such as synonym substitution [31], syntactic structure restructuring [32],

or paraphrasing [33]. Later, advancements in modern neural language models led to

improved methods that move away from rule-based approaches. Different approaches

have been proposed, such as encoding messages by context-aware lexical substitution

[34] or using mask-infilling models for editing text [35]. Recent studies [9, 26] explore

modifying the logits of language models during token generation and embedding invisible

watermarks in the decoding process. Our objective is to develop a robust watermarking

technique for natural language models that maintain high text quality while effectively

concealing identifying information.

Post-hoc detection. Rather than watermarking, an alternative approach involves

developing detection models for post-hoc analysis of machine-generated text. Some de-
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tection methods use statistical outlier detection techniques without requiring additional

training. For example, GLTR [21] assesses the expected probability of individual tokens

and applies thresholding to identify AI-generated content. DetectGPT [22] suggests that

AI-generated passages tend to reside in the negative curvature of the log probability of

texts. Another set of methods relies on classifiers that are fine-tuned to distinguish be-

tween human-written and machine-generated text. Initial efforts in this domain focus

on detecting fake reviews [23] and fake news [15]. More recently, OpenAI releases a

web interface that uses a finetuned GPT model for this discrimination task [24]. How-

ever, as language models improve, AI-generated text is becoming increasingly similar to

human-generated text, making it more challenging to detect. [36] find that existing de-

tection strategies designed for GPT-2 struggle with GPT-3. Moreover, known detectors

are found to be fragile to adversarial attacks [37] and biased towards non-native English

writers [25].

Impossibility results? [38] poses the question of whether detecting machine-

generated text is possible and argue that as the human distribution and LLM distribu-

tion of texts get closer, any classifier will have to either have a large Type I error or a

large Type II error. The authors also argue that (in Corollary 2) if the watermarking

scheme can be learned then paraphrasing attacks either evade the detector or also classify

humans with a similar distribution as false positives. This does not invalidate our results

as we made no theoretical claim about paraphrasing. We do claim that in Theorem 2.3.4

that the watermarked LM M̂ and original LM M is statistically close — in fact, indis-

tinguishable in the “differential privacy” sense. But the indistinguishability is for each

token. As the number of tokens gets larger, they will eventually become distinguishable,

that is why our Theorem 2.6.4 and Theorem 2.6.13 are not contradicting Theorem 2.3.4.

This argument was initially pointed out by [39], showing that detection is possible.

Language model watermarks with provable guarantees. Concurrent to our

12
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work, [28] consider the problem of formally defining watermarking language models and

propose a construction with provable guarantees. The main differences between their

work and ours are:

• In [28], the watermarked distribution is computationally indistinguishable (i.e.,

indistinguishable against probabilistic polynomial-time algorithms) from the un-

watermarked distribution whereas in our case, we insist that the watermarked dis-

tribution is statistically close to the un-watermarked distribution (of each token).

The Type-I/Type-II error guarantees and the security properties are qualitatively

different in both works.

• We both use different approaches to achieve our definitions. The advantage of our

construction is that it satisfies robustness to edits property whereas they have no

such guarantees. On the other hand, our construction uses a very different set of

assumptions (e.g., high entropy) on the language model and prompt that appears

to be incompatible with theirs.

• Finally, we implement our construction and conduct a thorough empirical evalua-

tion to demonstrate its practicality while they don’t provide any implementation

of their construction.

Statistical vs Cryptographic Watermarks. [28] and [27] are examples of crypto-

graphic watermarks, while [26] and this work study statistical watermarks. There are

several prominent differences that make it a bit challenging to compare the two kinds, but

we will try. To start, we argue that both [28] and [27] use a similar definition of language

model watermarks as Definition 2.3.2 and considered a similar set of properties. Specifi-

cally, the “soundness”, “completeness” from [28] directly map to our “Type I error” and

“Type II error” requirements. As we understand from the materials in [27]’s talk, their

13
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“indistinguishability” is a form of performance guarantee for M̂. The difference to ours

is that they require (in our notation)

P
M̂(prompt)

[Next token] = E
k

[
P

M̂(prompt)

[Next token|k]

]
= P

M(prompt)
[Next token]

where the random key k is marginalized out. while our results require that for every k

the next token

P
M̂(prompt)

[Next token|k] ≈δ P
M(prompt)

[Next token]

to be statistically close (in the same sense of δ-differential privacy). By our metric,

however, [27]’s watermark does not appear to satisfy any nontrivial δ guarantee, since

it only requires unbiasedness. For that reason, the detection guarantee and its tradeoff

with quality that we discussed in Remark 2.6.15 is not applicable to the cryptographic

watermarks.

2.3 Proposed Method: Unigram-Watermark

We start with an overview of the language model watermarking problem. The defi-

nitions and notations introduced in this section will be used throughout the chapter.

Language models. A language model (LM)M is a statistical model that describes

the probability of a sequence of words occurring in a sentence. Common neural language

models (e.g., GPT-2/3 [40, 11]) are designed for next-word prediction which typically uses

a transformer neural network [41]. The LM has a “vocabulary” V with N := |V| = 50, 000

tokens or more [40, 42]. Let x be an input prompt. y := [y1, . . . , yn] are n tokens generated

by M. During inference, M receives the input prompt x as the prefix of generation. It

iteratively computes logit scores ℓt for every next token. The logits transform into a

probability distribution via soft-(arg)max function pt[v] = exp(ℓt[v])∑
i∈V exp(ℓt[i])

for all v ∈ V .

14
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The LM then samples the next token from this distribution: yt ∼ pt.

2.3.1 Definition of language model watermarking

In the language model watermarking problem, the objective for the model owner is

to embed a secret message known as “watermark” within the generated sequence y for

a given prompt x. There are two desired requirements for watermarking. First, the

quality of the watermarked model should be comparable to the quality of the original,

un-watermarked model. Second, an adversary needs to modify sufficiently many AI-

generated text in order to evade detection.

Definition 2.3.1 (Edit distance). The edit distance, denoted as ED(y,z), quantifies the

number of basic operations required to transform a sequence y into another sequence z.

These operations include “insertion”, “deletion”, and “replacement” of tokens.

Definition 2.3.2 (Language model watermarking). A language model watermarking

scheme consists of two probabilistic polynomial-time algorithms (Watermark,Detect):

• Watermark(M): Let M be a language model and let pt := PM(x)[yt = ·|y1:t−1] be the

conditional probability distribution of t-th token on V generated byM. This algorithm

produces a new model M̂ with a new conditional distribution p̂t := PM̂(x)[yt = ·|y1:t−1]

on V . Additionally, it outputs a detection key k associated with M̂. The watermark

could contain certain randomness.

• Detect(k, y): This algorithm takes input detection key k and sequence y, then outputs

1 (indicating it was generated by M̂) or 0 (indicating it was not generated by M̂).

We require the following three correctness properties to hold:

• ω-Quality of watermarked output, for ω ∈ R: Assume the original language modelM

generates a probability vector pt for the token at position t. The watermarked model M̂
15
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predicts the token at position t using the modified probability vector p̂t. It is required

that the distance between the two probability distributions satisfies: D (p̂t∥pt) ≤ ω for

any fixed prompts and prefixes.

• αy-Type I error (“No false positives”): for any fixed y (i.e., independent to k), it holds

that

P
[
Detect(k, y) = 1 ; (M̂, k) ∼ Watermark(M)

]
≤ αy.

• β(x,M)-Type II error (“No false negatives”):

P
[
Detect(k, y) = 0 ; (M̂,k)∼Watermark(M)

y∼M̂(x)

]
≤ β(x,M).

We also require the following security property (parameterized by ϵ ≥ 0 and

η(y, k, ϵ)):

• For any adversary A that postprocesses y with auxiliary information aux and any

prompt x ∈ V∗

P
[
Detect(k, yA) = 1 or ED(y, yA) ≥ η(k, y, ϵ)

∣∣∣∣ y,k,
Detect(k,y)=1 ;

(M̂,k)∼Watermark(M)

y∼M̂(x)
yA∼A(y,aux)

]
≥ 1− ϵ.

Remark 2.3.3 (Discussion on Definition 2.3.2). Informally, our definition allows us to

formally quantify the essential properties of a language model watermarking scheme

including its generation quality relative to the input LM, the accuracy of detection in

terms of both false positives and false negatives, as well as the robustness to attacks.

The security property, in particular, states the following: suppose a malicious ad-

versary intends to evade the detection algorithm, then the adversarial answer, to some

input prompt x, should be far away (in edit distance) from any AI-generated answer.

In other words, the optimal strategy to evade the detection algorithm would necessitate
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executing a minimum number of insert/delete/replacement operations, captured by the

function η(·) in Definition 2.3.2. This conceptually suggests that the adversary must

exert considerable effort to successfully elude detection.

Admittedly, there are other attacks where edit distance does not capture either the

effort or the utility loss. For example, if one prompts an unwatermarked LLM to para-

phrase y then the number of edits can be large but the semantic meaning is retained.

However, edit distance is a natural metric that smoothly interpolates the gray zone be-

tween the world where yA = y in which it should clearly be caught and the other world

where yA is independently created without using M̂ in which it would be a false positive

if Detect returns 1.

2.3.2 Threat models

Adversary’s objective. The primary objective of the adversary is to render the

watermark detection algorithm ineffective. Specifically, the adversary aims to produce a

yA such that Detect(k, yA) = 0 while at the same time, yA is a minor modification of an

AI-generated text y.

Adversary’s capabilities. We consider an adversary with black-box input-output

access to the language model. This adversary has the capacity to modify the sequence

within a bounded edit distance. Given an input prompt x, the watermarked language

model generates a text output y ← M̂(x). The adversary, equipped with arbitrary side-

information and computational resources, can then produce a modified output yA such

that the edit distance between the original and modified output, ED(y, yA), is bounded,

i.e. ED(y, yA) < η.

2.3.3 Method

17
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Algorithm 1 Unigram-Watermark: Watermark

1: Input: random number generator F , green list size γ ∈ (0, 1), watermark strength
δ.

2: Randomly generate a watermark key k using F .
3: Use watermark key to partition the vocabulary of M into a “green list” G ⊂ V of

size γ|V|, and a “red list” R = Gc.
4: Define a new language model M̂ where for t and any prefix [x, y1:t−1], the resulting

logits satisfy
ℓ̂t[v] := ℓt[v] + δ1(v ∈ G), (2.1)

where 1(·) is the indicator function and the logit vector ℓt ∈ R|V| is obtained by the
passing the same prefix to M.

5: Output: watermark key k, watermarked language model M̂.

Algorithm 2 Unigram-Watermark: Detect
1: Input: suspect text y, watermark detection key k, threshold τ .
2: Output: 1 or 0 (whether the text is watermarked).
3: Use the watermark detection key k to find the “green list” G.
4: Calculate the number of green list tokens |y|G =

∑n
t=1 1(yt ∈ G) in [y1, . . . , yn].

5: Compute the z-statistic:

zy = (|y|G − γn) /
√

nγ(1− γ). (2.2)

6: if zy > τ then return 1, i.e., “The suspect text is watermarked.”
7: else return 0, i.e., “The suspect text is not watermarked.”

Now let us instantiate Definition 2.3.2 with concrete algorithms. We will focus on

Unigram-Watermark — a variant of the K-gram watermark proposed by [26] but with

a choice of K = 1. Pseudocodes of our approach Watermark and Detect are provided in

Algorithm 1 and 2.

In Algorithm 1, we randomly partition the vocabulary into two distinct sets: the

green list with γN tokens and the red list with the remaining tokens. In M̂, the logits

of the language model for the green list tokens are increased by δ while the logits for

tokens in the red list remain unchanged. Then at detection time (Algorithm 2), we count

the number of green tokens in the suspect text, normalize the test-statistic, then make
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a calibrated decision on whether we think the suspect text is generated from M̂ or not.

We show the examples of real prompts and watermarked outputs in Table 2.1.

The watermarking procedure is parameterized by two watermark strength parameters

γ, δ. γ determines the fraction of the vocabulary included in the green list. We typically

set γ to be a constant, e.g., 1/3 or 0.5. δ specifies the increase in the logits associated

with the green list tokens. The larger δ is, the lower the quality of the watermarked LM,

but the easier it is to detect.

Our Unigram-Watermark enjoys all good properties of the general K-gram wa-

termark from [26]. It runs in linear time and does not require access to the language

model or the prompt used for generation. It is also intuitively robust to cropping and

minor edits.

Overall, the proposed watermarking scheme requires almost no overhead in its imple-

mentation, is extremely simple, and is easy to maintain. The big question is:

How well does this watermark scheme work?

The remainder of this chapter provides answers to this question with provable guar-

antees (Section 2.3.3) on the properties from Definition 2.3.2 and extensive experiments

(Section 2.4).

Before that, let us address two burning questions that a knowledgeable reader may

have.

Why choosing K = 1? Recall that the general K-gram watermark works in the

same way as ours, but randomly generates a different Green list for each prefix of length

K − 1. In contrast, choosing K = 1 means we have a consistent green list for every new

token the language model generates. The main advantage of choosing K = 1 is that it is

the most robust choice within this family — and we believe robustness is the single most

important feature of a watermarking scheme in practice.
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Prompt Is it possible to fail several times and succeed once?

LLaMA-13B
(un-watermarked)

PPL: 12.19
z-score: -2.425

Of course it is, and that is how we improve.\nSaying ”I can’t do that” is never
a good thing.\nSometimes we think we’ve tried all we can and that ”isn’t
enough”. That is the time when we ask for help.\nThe root of all evils is to
be a secret. Honesty and self-criticism is necessary for improvement. \nThe
measure of intelligence is the ability to change. [continues...]

LLaMA-13B
(watermarked)

PPL: 12.47
z-score: 11.085

When most people are confronted with failure, they cannot imagine such a
thing happening. When one faces business reverses and bankruptcy, it seems
impossible. When we are rejected it looks as if we are going to be rejected
forever. However, it does not need to be this way. The human spirit simply
will not give up. When we face failure and it looks like we [continues...]

Table 2.1: Comparison of un-watermarked and watermarked text using the LLa-
MA-13B model. Green and red tokens are color-coded respectively. Unigram-Wa-
termark produces watermarked text of similar quality without noticeable degrada-
tion, yet with significant differences in z-scores for watermark detection.

Robustness to other attacks. Besides the robustness to edits, which we will

prove in Section 2.3.3 and compare to that of K ≥ 2. Unigram-Watermark is also

resilient to many other kinds of generation time attacks that people can apply such as

reversing, shuffling, as well as the “Emoji insertion attack” that will completely break

the watermark for K ≥ 2 but not for K = 1. We provide a detailed discussion of this in

Appendix 2.6.10.

The price for robustness? [26] did not consider the choice of K = 1 for an obvious

reason. The watermark is now so simple that an attacker who observes the generated

text may learn to guess the consistent green list. This is an issue for K ≥ 2 too but

certainly more so for K = 1. There is a robustness-learnability tradeoff as we adjust

K which deserves a more rigorous treatment in future work. That said, we are ready

to argue for biasing towards robustness. Why? We argue that in practice, it could be

surprisingly difficult for an attacker to construct a meaningful attack when they do not

have access to the original LM. We provide a more detailed experimental study with a

faithful practical attack in Appendix 2.5.4. Moreover, there are alternative ways to get

around this issue by refreshing the green list once in a while.
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Main theoretical results

In this section, we present the quality, correctness, and security properties of Unigram-

Watermark as described in Definition 2.3.2.

2.3.4 Quality guarantee of Unigram-Watermark

We first show that the distance between the original probability vector pt and the

watermarked probability vector p̂t are very close to each other in any Renyi-divergence.

Theorem 2.3.4. Consider h as the input to the language model at step t, denoted as

h = [x, y1:t−1]. Fix green list G. Let δ represent the watermark strength. For any h, the

α-th order Renyi-divergence between the watermarked probability distribution p̂t = p̂t(·|h)

at time step t and the original probability distribution pt = pt(·|h) satisfies:

∀h,max
(
Dα

(
p̂t∥pt

)
, Dα

(
pt∥p̂t

))
≤ min{δ, αδ2/8}.

The proof, deferred to the appendix, leverages a surprising connection to modern

techniques in the differential privacy literature [43, 44].

Remark 2.3.5 (KL-divergence and other probability distance metrics). Renyi-divergence

is very general. Kullback-Leibler-divergence and chi-square divergence are directly im-

plied by the α-Renyi divergence bound of min{δ, αδ2/8} by choosing α = 1 and α = 2

respectively and swap p̂ and p. Hellinger distance can be obtained by choosing α = 0.5.

By Pinsker’s inequality, we get a Total Variation distance bound of min{
√
δ/2, δ/4}.

Moreover, by choosing α → ∞, we obtain an upper bound of δ for a very strong mul-

tiplicative guarantee known as max-divergence. The resulting two distributions p̂ and

p are referred to by cryptographers as (δ, 0)-indistinguishable, which says that for any

measurable event S, the log-odds ratio satisfies −δ ≤ log p̂t(yt∈S|h)
pt(yt∈S|h) ≤ δ.
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To summarize, our result shows that Algorithm 1 produces M̂ that satisfies ω-quality

of watermarked output with ω (as a function of δ) for almost all commonly used proba-

bility distance D.

2.3.5 Type I error of Unigram-Watermark

Theorem 2.3.6 (No false positives (short version of Theorem 2.6.4)). Consider y = y1:n

as any fixed text. Define Cmax(y) := maxi∈[N ]

∑n
j=1 1(yj = i) and V (y) := 1

n

∑N
i=1(
∑n

j=1 1(yj =

i))2. With probability 1− α (over only the randomness of G):

zy ≤

√
64V (y) log(9/α)

1− γ
+

16Cmax(y) log(9/α)√
nγ(1− γ)

.

The theorem says that the z-score for any sufficiently diverse text is Õ(1) and it is

applicable to any text not generated by the watermarked LM M̂.

Remark 2.3.7 (Controlling false positive rate). The theorem implies that if we choose

τ >
√

64V log(9/α)
1−γ

+ 16Cmax log(9/α)√
nγ(1−γ)

, then the false-positive rate is smaller than α. Note that

V and Cmax can be computed directly from y, allowing us to choose an input-dependent

τ as a function of V,Cmax that achieves a α-Type I error guarantee with a fixed α for

all inputs. In particular, the Type I error α decreases exponentially as we increase the

threshold τ .

2.3.6 Type II error of Unigram-Watermark

To bound the Type II error, i.e., false negative rates, we need to make certain as-

sumptions about p of the language model and the prompt x. These assumptions include

a “on-average high entropy” assumption and a “homophily” condition. We will

provide a detailed definition and discussion of these assumptions in Appendix 2.6.4 and
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Appendix 2.6.4.

The “on-average high entropy” assumption requires the probability of the roll-out

text to be “sufficiently diverse” on average. It is related but different from the “spike

entropy” assumption used by [26]. The “homophily” assumption is new to this chapter. It

is an assumption about the distribution induced by the state-transitions of the language

model M, which says that increasing the probability of a green-list token at time t

does not decrease the probability of seeing that token in the future. This may seem

counter-intuitive, but we will give concrete examples in Appendix 2.6.4 to show why this

is fundamental for any statistical watermark to work effectively.

Theorem 2.3.8 (Only true positive (informal version of Theorem 2.6.13)). Assume

“average-high entropy” and “homophilly” to be valid with appropriate parameters, and in

addition n ≥ Ω̃(log(1/β)/δ2), then with probability 1− β,

zy ≥ Ω
(

(eδ − 1)
√

nγ(1− γ)
)
.

Remark 2.3.9. The bounds on Type I/II error together say that zy ≍ δ
√
n if y is from M̂

while zy ≍ O(1) otherwise, i.e., there is a large margin between them so we can choose τ

in between. Also, the α and β parameters decay exponentially as the n gets larger.

2.3.7 Security property of Unigram-Watermark

We demonstrate the robustness of our watermarking scheme against editing attempts

through Theorem 2.3.10. As a baseline of comparison, we also obtain new robustness

guarantees for the soft watermarking method proposed in [26]. The detailed proof is

deferred to the Appendix 2.6.

Theorem 2.3.10 (Robustness to editing). Let y = [y1, . . . , yn] represent the watermarked

23



Unigram-Watermark Chapter 2

sequence. Suppose the adversary A follows Definition 2.3.2 and outputs a modified text

u = [u1, . . . , um]. Following Equation 2.2, we calculate z-score zy and zu. Assume edit

distance between y and u (denoted as η) satisfies η < n. Then we have

zu ≥ zy −max

{
(1 + γ/2)η√

n
,
(1− γ/2)η√

n− η

}
.

In particular, when η ≤ 2γn
(1+γ/2)2

, we can drop the second term in the max.

This theorem bounds the changes to our test z-score when η edits are performed. As

we established for a high-entropy sequence, zy typically grows in O((eδ − 1)
√
n), which

means that when δ is a constant, with an appropriate choice of τ , the watermark is robust

up to O(n) arbitrary edits! Finally, compared to [26]’s watermark, ours is twice as robust

(see Appendix 2.6.7).

2.4 Experiments

In this section, we aim to conduct experiments to evaluate watermark detection per-

formance, watermarked text quality, and robustness against attacks compared to the

baseline. Additional experiment results including different parameters, white-box at-

tacks, scaled language models, etc. are deferred to Appendix 2.5.

2.4.1 Experiment setting

Datasets and prompts. We utilize two long-form text datasets: OpenGen and

LFQA. OpenGen, collected by [45], consists of 3K two-sentence chunks sampled from the

validation split of WikiText-103 [46]. The subsequent 300 tokens serve as the human-

written continuation. LFQA is a long-form question-answering dataset created by [45]

by scraping questions from Reddit, posted between July and December 2021, across
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Figure 2.1: z-scores of watermarked and un-watermarked machine-generated text,
along with the z-score of human-generated text. The watermarked text z-score sur-
passes the empirical threshold of z = 6.0.

six domains. [45] randomly select 500 questions from each domain and pair them with

their corresponding longest human-written answers, resulting in 3K QA pairs. In our

experiments, we use the questions as prompts and the corresponding answers as human-

written text.

Language models. We conduct experiments using three state-of-the-art public

language models of varying sizes from different model families: GPT2-XL with 1.5B

parameters [40], OPT-1.3B [47], and LLaMA-7B [48]. Nucleus Sampling [49] is employed

as the default decoding algorithm to introduce randomness while maintaining human-like

text output. The models are loaded from the Huggingface library [50], and the generate

API function is used to adjust the logits distribution of the language model.

Evaluation methods. Maintaining a low false positive rate is crucial to prevent

misclassifying un-watermarked text as watermarked. To ensure this, we set the false pos-

itive rates at 1% and 10% for all detection algorithms and adjust the detection threshold
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Figure 2.2: Text perplexity comparison (evaluated by GPT-3) between human-gener-
ated text and text generated by various models on the OpenGen dataset.

accordingly. We report true positive rate (TPR), F1 score, and ROC curves. GPT3

(text-davinci-003) with 175 billion parameters and reinforcement learning from hu-

man feedback [51], is used as the oracle model for perplexity evaluation. The experiments

are conducted on Nvidia A100 GPUs.

2.4.2 Watermarking results

We use a watermark strength of δ = 2.0 and a green list ratio of γ = 0.5. We also use

different watermark keys k for different models. Stronger watermarks can be achieved

for shorter sequences for a smaller γ and a larger δ. From the two datasets, we gener-

ate 500 watermarked sentences and 500 un-watermarked sentences using three different

models (GPT2-XL, OPT-1.3B, and LLaMA-7B). We label them as “watermarked” and

“un-watermarked” respectively. We also have corresponding human-written text for each

prompt, referred to as ”human”. All sentences are cropped to a length of 200 tokens.
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OpenGen LFQA
Setting Method 1% FPR 10% FPR 1% FPR 10% FPR

TPR F1 TPR F1 TPR F1 TPR F1

No attack
KGW+23 1.000 0.995 1.000 0.952 1.000 0.995 1.000 0.952
Unigram-Watermark 1.000 0.995 1.000 0.952 1.000 0.995 1.000 0.952

ChatGPT
KGW+23 0.565 0.704 0.853 0.747 0.327 0.453 0.673 0.490
Unigram-Watermark 0.866 0.910 0.961 0.818 0.442 0.568 0.865 0.584

DIPPER-1
KGW+23 0.386 0.546 0.738 0.720 0.372 0.534 0.740 0.767
Unigram-Watermark 0.729 0.830 0.922 0.837 0.639 0.770 0.909 0.865

DIPPER-2
KGW+23 0.490 0.646 0.810 0.769 0.432 0.595 0.845 0.839
Unigram-Watermark 0.777 0.862 0.941 0.852 0.693 0.810 0.948 0.894

BART
KGW+23 0.342 0.505 0.667 0.759 0.457 0.617 0.783 0.836
Unigram-Watermark 0.590 0.730 0.861 0.857 0.656 0.784 0.885 0.897

Table 2.2: Performance comparison of our method (Unigram-Watermark) and the
soft watermarking method proposed in [26] (denoted as KGW+23). Both methods
employ LLaMA-7B with nucleus sampling, utilizing δ = 2.0 and γ = 0.5. We use Chat-
GPT, DIPPER, and BART for paraphrasing the watermarked text as paraphrasing
attacks. True positive rate and F1 score are presented for fixing the false positive rates
at 1% and 10%. When there is no attack, both methods exhibit perfect watermark
detection. Nevertheless, when subjected to paraphrasing attacks, Unigram-Water-
mark consistently outperforms KGW+23.

z-scores are calculated for hypothesis testing as shown in Algorithm 2 between different

sentence groups. The results (Figure 2.2a) indicate a clear distinction between water-

marked and non-watermarked text. A default threshold of z-score = 6.0 can be used to

determine if a text is watermarked. For a fair comparison with [26], we also set δ = 2.0

and γ = 0.5 for their method.

Figure 2.2b demonstrates the text perplexity of human, un-watermarked machine-

generated, and two watermarking-generated texts, evaluated on the OpenGen dataset.

The perplexity of human text is significantly lower, likely due to the expertise contributed

in the Wikipedia-based dataset used to train GPT3. We observe that the perplexity of

the watermarked text is comparable to that of human-generated text, especially with

the use of the largest model LLaMA-7B. This finding further supports the effectiveness
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Avg Score STD

Un-watermarked 3.660 0.655

Watermarked 3.665 0.619

Table 2.3: Human evaluation result.

of our method in preserving linguistic characteristics and coherence, ensuring seamless

integration of watermarks without compromising overall text quality. One example of

the prompt questions and machine-generated answers can be found in Table 2.1. We also

conduct human evaluations to assess text quality. We enlist crowd workers from Amazon

Mechanical Turk (AMT) to evaluate the quality of both watermarked and unwatermarked

texts. From the LLaMA-7B model on the OpenGen dataset, we select 100 watermarked

and 100 unwatermarked texts, anonymize the sentences, and ask workers to rate the

quality on a scale of 1 (poor) to 5 (excellent). Each sentence undergoes two evaluations.

The average score and standard deviation are computed and presented in Table 2.3.

2.4.3 Robustness results

Paraphrasing attack. To demonstrate the superior robustness of our method,

supported by our theorem, we devise experiments to compare its performance against

[26]. We employ different paraphrase attack techniques targeting the removal of the

watermark. Firstly, we utilized two versions of the DIPPER model [45], we denote them

as “DIPPER-1” and “DIPPER-2”. DIPPER-2 has greater diversity than DIPPER-1.

Additionally, we leverage the ChatGPT API, generating paraphrased text by providing

prompts such as “Rewrite the following paragraph:”. Furthermore, we employ BART

[52] (bart-large-cnn, a large-sized model fine-tuned on the CNN Daily Mail dataset

[53]) for text summarization as another type of paraphrasing attack. The results of our

experiments are shown in Figure 2.4.2 and Table 2.2. The results illustrate the substantial
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Figure 2.3: Unigram-Watermark against paraphrasing attacks on OpenGen
dataset with LLaMA-7B.
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Figure 2.4: Unigram-Watermark against editing attacks on LFQA dataset with
LLaMA-7B. We vary the rates of synonym replacement, random deletion, and random
swapping (0.1, 0.3, 0.5) to demonstrate different attack scenarios.

improvement in robustness achieved by our method compared to [26]. Notably, our

method achieves an accuracy rate of over 85% with a false positive rate of 10%.

Editing attack. To further evaluate the robustness of Unigram-Watermark

against edit attacks, we examine its performance when subjected to synonym replace-

ment, random deletion, and random swapping. These edit attack scenarios represent

common techniques used to manipulate text and potentially remove watermarks. We con-

duct these attacks for the watermarked text of Unigram-Watermark and KGW+23.

The results are shown in Figure 2.4.2. In each scenario, our method consistently outper-

forms [26] watermarking scheme, showcasing its enhanced resilience and effectiveness in
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Figure 2.5: Distinguishing human-written text on TOEFL dataset.

protecting the integrity of the embedded watermarks.

2.4.4 Distinguishing human-written text

An interesting observation emphasized by [25] is the misclassification of non-native

English writing samples as AI-generated by existing AI content detectors. Our method

can effectively establish text origin and maintain robustness to distribution shifts. We

evaluate Unigram-Watermark in distinguishing human-written text on a dataset of

human-written TOEFL essays collected by [25]. Our method demonstrates a remarkable

ability to accurately classify human-written text, as evidenced by significantly lower z-

scores compared to the empirical threshold of z = 6.0. This outcome underscores the

effectiveness of our watermark in discerning text generated by human authors, further

enhancing its practical utility and reliability.

2.5 Conclusion

In this chapter, we have addressed the concerns surrounding the potential misuse

of large language models and proposed an effective watermarking approach, Unigram-
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Watermark, for detecting machine-generated text from a specific language model. Our

contributions include the development of a rigorous theoretical framework, designing a

provable effective, and robust watermarking scheme under this framework, as well as

conducting extensive experiments to demonstrate the effectiveness and robustness of our

method in practice. We anticipate that our work will inspire future research to develop

more resilient watermarking methods capable of withstanding a broader range of attacks.

Impact statements

Applicability to general K-Gram watermark. While we focused on Unigram-

Watermark, most of our results apply to K-Gram watermarks with K ≥ 2 too. These

include the Type I error bound, security properties (Robustness to edits), as well as the

“Unique” alternative detector which we presented in Appendix 2.6.9. While our Type

II error bound does not directly work for K ≥ 2, some of our intermediate steps can be

applied.

Limitations. While our watermarking method, Unigram-Watermark, demonstrates

improved robustness against edits, its reliance on a fixed Green-Red split may not be

universally optimal. The performance and robustness of watermarking methods can vary

depending on the specific characteristics of the LLM and the generated text. Additionally,

although our method enhances detection capabilities, it is not immune to all possible

attacks.
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Additional experiment results

2.5.1 Empirical error rates

We perform experiments on two datasets (OpenGen and LFQA) using three differ-

ent models (GPT2-XL, OPT-1.3B, and LLaMA-7B). Table 2.4 presents the error rates,

showcasing the sensitivity of the resulting hypothesis test based on observed z-scores.

The results demonstrate that there are no Type-I (false positive) errors for all models,

with true positive rates exceeding 0.94 for a threshold of z = 6.0.

z = 6.0 z = 7.0

Dataset Model FPR TNR TPR FNR FPR TNR TPR FNR

OpenGen
GPT2-XL 0.0 1.0 0.943 0.057 0.0 1.0 0.832 0.168
OPT-1.3B 0.0 1.0 0.998 0.002 0.0 1.0 0.996 0.004
LLaMA-7B 0.0 1.0 0.974 0.026 0.0 1.0 0.911 0.089

LFQA
GPT2-XL 0.0 1.0 0.948 0.052 0.0 1.0 0.889 0.111
OPT-1.3B 0.0 1.0 1.000 0.000 0.0 1.0 0.997 0.003
LLaMA-7B 0.0 1.0 0.976 0.024 0.0 1.0 0.942 0.058

Table 2.4: Empirical error rates for watermark detection using different models on
two datasets. All models employ nucleus sampling with δ = 2.0 and γ = 0.5. No
Type-I (false positive) errors are observed across all models.

2.5.2 Different watermark parameters

We conduct an analysis to understand the impact of changing watermark strength (δ),

green list size (γ), and sampling methods on two datasets. The results are summarized in

Table 2.5. When using nucleus sampling with a fixed γ = 0.5, increasing the watermark

strength resulted in higher true positive rates (TPR), but it also led to an increase in

perplexity (lower quality). Furthermore, for the same watermark strength δ, varying the

green list ratio from 0.25 to 0.5 and 0.75 showed improved detection results with smaller γ.

Additionally, we explore different decoding methods, transitioning from nucleus sampling
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to multinomial sampling and beam search. Remarkably, watermark detection performed

effectively with all decoding methods. It is worth noting that the perplexity score for

beam search is significantly lower than that of nucleus sampling. However, beam search

tends to generate shorter sequences with repeated words.

z = 6.0 z = 7.0

Dataset decoding δ γ PPL FPR TNR TPR FNR FPR TNR TPR FNR

OpenGen

nucleus 1.0 0.5 18.376.45 0.0 1.0 0.576 0.424 0.0 1.0 0.310 0.690
nucleus 2.0 0.5 19.428.78 0.0 1.0 0.998 0.002 0.0 1.0 0.996 0.004
nucleus 5.0 0.5 19.4415.02 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 10.0 0.5 19.2018.01 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 2.0 0.25 17.969.54 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 2.0 0.75 20.037.67 0.0 1.0 0.820 0.180 0.0 1.0 0.485 0.515
m-nom. 2.0 0.5 1.750.59 0.0 1.0 0.951 0.049 0.0 1.0 0.924 0.076
4-beams 2.0 0.5 1.830.97 0.0 1.0 0.992 0.008 0.0 1.0 0.982 0.018
6-beams 2.0 0.5 1.891.10 0.0 1.0 0.984 0.016 0.0 1.0 0.982 0.018
8-beams 2.0 0.5 1.961.23 0.0 1.0 0.986 0.014 0.0 1.0 0.984 0.016

LFQA

nucleus 1.0 0.5 18.637.19 0.0 1.0 0.455 0.545 0.0 1.0 0.199 0.801
nucleus 2.0 0.5 19.1411.11 0.0 1.0 1.000 0.000 0.0 1.0 0.997 0.003
nucleus 5.0 0.5 16.3715.39 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 10.0 0.5 16.0714.25 0.0 1.0 0.998 0.002 0.0 1.0 0.998 0.002
nucleus 2.0 0.25 15.2710.00 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 2.0 0.75 19.448.20 0.0 1.0 0.893 0.107 0.0 1.0 0.582 0.418
m-nom. 2.0 0.5 3.172.39 0.0 1.0 0.934 0.066 0.0 1.0 0.914 0.086
4-beams 2.0 0.5 3.242.85 0.0 1.0 0.990 0.010 0.0 1.0 0.986 0.014
6-beams 2.0 0.5 3.202.52 0.0 1.0 0.994 0.006 0.0 1.0 0.994 0.006
8-beams 2.0 0.5 3.132.37 0.0 1.0 0.994 0.006 0.0 1.0 0.992 0.008

Table 2.5: Comparison of empirical error rates for watermark detection using nucleus
sampling, multinomial decoding, and beam search. Each row represents the average of
500 sequences. While sequences generated with beam search exhibit lower perplexity,
they tend to favor shorter outputs, potentially resulting in less diverse text.

2.5.3 Additional robustness results

In addition to the previously discussed robustness evaluations, we provide further

analysis of our method’s resilience against paraphrasing attacks and editing attacks.

The results are presented in Figure 2.7. Notably, our proposed method (Unigram-

Watermark) consistently outperforms the baseline approach (KGW+23) across various
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datasets and attack scenarios. This demonstrates the superior robustness of our method

in accurately detecting watermarked text.
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Figure 2.6: Unigram-Watermark against paraphrasing attacks on LFQA dataset
with LLaMA-7B.
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Figure 2.7: Unigram-Watermark against editing attacks on OpenGen dataset with
LLaMA-7B. We vary the rates of synonym replacement, random deletion, and random
swapping (0.1, 0.3, 0.5) to demonstrate different attack scenarios.

2.5.4 White-box attack

A potential attack for Unigram-Watermark is to estimate the fixed green and red

list. Then the adversary may attempt to bypass detection using these estimated lists. We

conduct experiments on white-box attacks and we find that it is difficult to accurately

estimate the green list. Even if the green list is known, our watermark is still somewhat
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effective thanks to our added robustness.

Estimating the Green List tokens

The question arises: how can the adversary estimate the green list? We simulate an

adversary attempting to learn the green list tokens by querying the model multiple times.

The adversary collects token distributions from watermarked text and compares them to

natural human distributions.

In our experiment, we query the LLaMA-13B watermarked model with watermark

strength δ = 2.0, watermark ratio γ = 0.5 2500 times, collecting 0.7 million tokens of

watermarked text generated from the prompts in LFQA and OpenGen dataset.

Then we simulate three human data distributions:

1. The human response from the same prompt (LFQA and OpenGen dataset). The

corresponding human output is 0.4 million tokens. We denote it as the “LFQA &

OpenGen dataset”

2. Most times, human responses are not known. So we collect 2000 samples from the C4

[54] dataset to form an approximate human dataset with 1 million tokens. We denote

it as the “C4 dataset”.

3. To simulate the distribution from non-native speakers. We also collect a non-native

speaker (TOEFL essay) dataset from [25] with 12k tokens. We denote it as the “Non-

native dataset”.

We calculate token frequencies for the three “human” datasets and the watermarked

dataset. We use the following decision rule (Algorithm 3) to decide whether a token is

green or red.

The estimation results for the green list tokens are shown in the table below.
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Algorithm 3 Estimating the Green List tokens

1: for every token v in the vocabulary V do
2: ∆(v)← Frequency(v in watermarked text) − Frequency(v in human text)
3: if ∆(v) ≥ 0 then
4: v is in the Green List.
5: else
6: v is in the Red List.
7: end if
8: end for

Dataset TPR FPR FNR F1

LFQA & OpenGen dataset 0.692 0.830 0.170 0.755
C4 dataset 0.591 0.806 0.194 0.609
Non-native dataset 0.323 0.923 0.077 0.463

The results suggest that while it is possible to make non-trivial inferences about

which token is green, it is hard to say for sure. Notice that we are using a rather big

watermark strength. For smaller and more esoteric contexts (prompt, e.g., Non-native

TOEFL dataset), such determination is harder.

Evasion attack (white-box and estimated)

In situations where the adversary has either an estimated version or full knowledge

of the green and red lists, they can formulate an evasion strategy. We simulate this

by assuming the adversary employs WordNet from NLTK to identify token synonyms.

Tokens identified as in the green list are replaced with red list synonyms, noting that

some tokens may not have synonyms or may only have green synonyms.

The results in Table 2.6 show it is difficult to evade detection even with known green

list tokens. The detection AUC for the watermarked text is still somewhat high. In

addition, the honest attempt to evade the attack by automatic synonym replacement has

led to a significant drop in the text quality.

36



Unigram-Watermark Chapter 2

Green List Detect AUC Avg PPL (eval by GPT-3)

No attack 1.000 45.413
Know all green tokens 0.8413 193.410
Estimated from LFQA & OpenGen dataset 0.9397 189.423
Estimated from C4 dataset 0.9291 189.070
Estimated from Non-native dataset 0.9998 125.380

Table 2.6: Evasion attack results: analysis of detection AUC and perplexity.

2.5.5 Testing on scaled language models

OpenGen LFQA

LLaMA-13B
No attack 1.000 1.000
ChatGPT attack 0.783 0.854

LLaMA-65B
No attack 1.000 1.000
ChatGPT attack 0.831 0.697

Table 2.7: Detection results (TPR at 1% FPR) for scaled models LLaMA-13B and
LLaMA-65B.

We conduct supplementary experiments on the scaled models LLaMA-13B and LLaMA-

65B. Using the same experimental settings as mentioned before, our preliminary results

show that our method maintains effectiveness on these larger models. For LLaMA-13B,

we are able to use the same test set size. For LLaMA-65B, due to computational con-

straints, we test on a sample of 100 sentences. The results (TPR at 1% FPR) are shown

in Table 2.7.

2.5.6 Results for deduplicated detection

An alternative detector, named “Unique” demonstrates improved robustness in de-

tection and offers advantages in controlling false positives with ease (Section 2.6.9). We

conduct experiments to evaluate deduplicated detection performance, with the outcomes
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OpenGen LFQA

LLaMA-13B
No attack - Unique Detector 1.000 1.000
ChatGPT attack - Unique Detector 0.679 0.773

LLaMA-65B
No attack - Unique Detector 1.000 1.000
ChatGPT attack - Unique Detector 0.783 0.682

Table 2.8: Detection results (TPR at 1% FPR) with “Unique” detector.

presented in Table 2.8.

2.6 Proofs of Technical Results

In this section, we state and prove the guarantees for Unigram-Watermark which

certifies the required quality, correctness, and security properties of a language model

watermarking scheme from Definition 2.3.2.

Symbols and mathematical notations. We use P[·], E[·], P[·|·] and E[·|·] to denote

the probability, expectation operator, conditional probability and conditional expectation

respectively. Whenever there is ambiguity on which distribution the random variables

are drawn from, we explicitly state them, e.g., P(X,Y )∼D[X < 3|Y = y], or equivalently

P[X < 3|Y = y ; (X, Y ) ∼ D]. To avoid clutter, we do not distinguish between random

variables and constants as the distinctions are clear from the context. Boldface symbols

denote a vector, e.g., a probability mass function p or a sequence of tokens y. ∥ ·∥2, ∥ ·∥∞

denotes the standard ℓ2 and ℓ∞-norms of a vector. In addition, [n] is a shorthand for

{1, 2, ..., n}. Other symbols and their meanings will be defined as we encounter them.
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2.6.1 Quality guarantees

We start by providing a strong utility analysis of the watermarked language model

than the “perplexity” bound from [26]. Our results work for the entire family of Rényi-

divergence and imply guarantees in Kullback-Leibler (KL) divergence and Total Variation-

distance.

The Renyi-divergence of two distributions P , Q is defined as

Dα

(
P∥Q

)
=

1

α− 1
log E

x∼Q

[
(
dP

dQ
)α
]

where dP
dQ

is the Radon–Nikodym derivative. When α → 1, the Renyi divergence con-

verges to the KL-divergence. Additionally, when α = 0.5, it serves as an upper bound

for the TV-distance.

On the technical level, we leverage a surprising connection to a modern machinery

developed in the differential privacy literature known as “bounded range” analysis [44]

of the classical exponential mechanism [55].

Theorem 2.6.1 (Restatement of Theorem 2.3.4). Consider h as the input to the language

model at step t, denoted as h = [x, y1:t−1]. Fix green list G. Let δ represent the watermark

strength. For any h, the α-th order Renyi-divergence between the watermarked probability

distribution p̂t = p̂t(·|h) at time step t and the original probability distribution pt = pt(·|h)

satisfies:

∀h,max
(
Dα

(
p̂t∥pt

)
, Dα

(
pt∥p̂t

))
≤ min{δ, αδ2/8}.

Proof. We define δv = 0 when v ∈ R and δv = δ when v ∈ G. Using this definition, we

have:

p̂(v|h) =
exp(ℓv + δv)∑
w exp(ℓw + δw)

≤ exp(δ) exp(ℓv)

exp(−δ)
∑

w exp(ℓw)
= e2δp(v|h)
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Similarly, p̂(v|h) ≥ e−2δp(v|h).

Consequently, p̂ and p are 2δ-close in terms of max-divergence, which can be inter-

preted as (ϵ, δ̃)-indistinguishable, similar to the concept of Differential Privacy [43] with

δ̃ = 0 and ϵ = 2δ.

Additionally, p̂(v|h) and p(v|h) satisfy δ-BoundedRange (Proposition 1 in [44]) with

parameter δ, since the changes to ℓv is monotonic. Lemma 3.2 in [56] shows that δ-

Bounded Range implies δ2/8-concentrated differential privacy, which says that Dα(p̂∥p) ≤
δ2α
8

for all α ≥ 1 (where Dα represents Rényi Divergence of order α). Specifically, when

α = 1, the KL-divergence satisfies DKL(p̂∥p) ≤ δ2

8
.

Furthermore, δ-BoundedRange implies δ-DP (or rather (δ, 0)-indistinguishability, since

we are dealing with just two distributions rather than a family of neighbor distributions).

It follows from the that

DKL(p̂∥p) ≤ D∞(p̂∥p) ≤ δ

Corollary 2.6.2. For any prompt x, the KL-divergence between the probability distribu-

tion of the watermarked sequence and the original sequence satisfies:

∀x,max{DKL

(
p̂(y1:n|x)∥p(y1:n|x)

)
, DKL

(
p(y1:n|x)∥p̂(y1:n|x)

)
} ≤ αmin{nδ, nδ2/8}

Proof. The proof follows from the adaptive composition theorem for Renyi-divergence,

and max-divergence (from the DP literature) for the autoregressive decomposition of

p̂(y1:n|x) and p(y1:n|x) and then invoke Theorem 2.3.4 for each factor.
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2.6.2 Robustness / Security guarantees

In this section, we provide the proof for Theorems 2.3.10, 2.6.24, and 2.3.4 to ensure

completeness and precision. We begin by restating the theorems and providing the

corresponding proofs with necessary modifications.

Theorem 2.6.3 (Robustness to editing (Restatement of Theorem 2.3.10) ). Let y =

[y1, . . . , yn] represent the watermarked sequence. Suppose the adversary A follows Def-

inition 2.3.2 and outputs a modified text u = [u1, . . . , um]. Following Equation 2.2, we

calculate z-score zy and zu. Assume edit distance between y and u (denoted as η) satisfies

η < n. Then we have

zu ≥ zy −max{(1 + γ/2)η√
n

,
(1− γ/2)η√

n− η
}.

In particular, when η ≤ 2γn
(1+γ/2)2

, we can drop the second term in the max.

Proof. Define bivariate function f(x, y) = x−γy√
y

. By Taylor’s theorem

f(x−kx, y−ky) = f(x, y)+

∂xf(x− k̃xy − k̃y)

∂yf(x− k̃xy − k̃y)


T −kx
−ky

 = f(x, y)−

 kx√
y − k̃y

− γky

2
√

y − k̃y



where k̃x is between 0 and kx and k̃y is between 0 and ky. We also know that |kx| ≤ k

and |ky| ≤ k.

A lower bound of the above can be obtained by finding an upper bound to

kx√
y − k̃y

− γky

2
√

y − k̃y

=
kx − γ

2
ky√

y − k̃y

First observe that we can always choose kx = k. Next we discuss two possibilities of ky.

If ky is negative, then choosing ky = −k and k̃ = 0 maximizes the bound, which gives
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(1+γ/2)k√
y

.

If ky is positive, then we should always choose k̃y = ky to maximize the expression,

which gives us an upper bound of

k − γ
2
ky√

y − ky
=

k + γ
2
(y − ky)− γ

2
y√

y − ky
=

k − γ
2
y√

y − ky
+

γ
√

y − ky

2
.

We will discuss two cases again, the first case is when k − γy/2 ≤ 0. In this case,

the function g(u) = a/u + bu with a ≤ 0 has a derivative of −a/u2 + b ≥ 0, thus

g is monotonically increasing. Thus we should choose ky = 0. The second case is

when k − γy/2 > 0, in this case the a > 0 in the above g(u) and g(u) is convex, thus

maxumin≤u≤umax g(u) = max{g(umax), g(umin)}. Thus we should just compare the two

cases when ky = 0 and ky = k, i.e., max{ k√
y
, (1−γ/2)k√

y−k
}.

Collect everything together, we get an upper bound o

max{(1 + γ/2)k
√
y

,
k
√
y
,
(1− γ/2)k√

y − k
} = max

{
(1 + γ/2)k
√
y

,
(1− γ/2)k√

y − k

}

i.e.,

f(x− kx, y − ky)− f(x, y) ≥ −max

{
(1 + γ/2)k
√
y

,
(1− γ/2)k√

y − k

}
.

Now notice that our z-score has the same form as the f(x, y) function. We can take

y = n and x = |y|G. Instantiate k be the maximum number of edits η. Observe that given

that the adversary has a bounded edit distance, each operation of “insertion”, “deletion”,

or “edit” can, at most, alter one token from the green list to the red list. They also can

only alter the length by the number of edits. The above result translates into

zu ≥ zy −max{(1 + γ/2)η√
n

,
(1− γ/2)η√

n− η
},
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where η denotes the edit distance between y and u.

The robustness theorem above implies the security guarantees as we discussed in

Corollary 2.6.23.

2.6.3 No false positive (Type I error guarantees)

Theorem 2.6.4 (No false positives). Consider y = y1:n as any fixed suspect text. Let

N =: |V| and G ⊂ |V| satisfying |G| = γN . G is selected through Algorithm 1, using a

uniform random choice. Let |y|G denote the number of tokens in G and zy := |y|G−γn√
nγ(1−γ)

as in Algorithm 2. Then the following statements hold true:

1. Assume n ≥ 1, then

E[|y|G|y] = γn and E[zy|y] = 0.

2. Define Cmax(y) := maxi∈[N ]

∑n
j=1 1(yj = i) and V (y) := 1

n

∑N
i=1(
∑n

j=1 1(yj = i))2,

then with probability 1− α (over only the randomness of G),

P
[
|y|G ≥ γn +

√
64γnV log(9/α) + 16Cmax log(9/α)

∣∣∣y] ≤ α

or equivalently (when n ≥ 1)

P

[
zy ≥

√
64V log(9/α)

1− γ
+

16Cmax log(9/α)√
nγ(1− γ)

∣∣∣∣∣y
]
≤ α.

Proof. To prove the first statement, observe that any fixed token has a probability γ to be

included in the green list, thus by the linearity of the expectation and the independence
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of y in G.

E[|y|G|y] =
n∑

i=1

E[1(yi ∈ G)|y] =
n∑

i=1

γ = γn.

Next, we will prove the second statement by applying Lemma 2.6.28 to obtain the

result stated in the third statement. Let ai,j = 1(j ≤ γN)
∑n

ℓ=1 1(yℓ = i). By our

assumption 0 ≤ ai,j ≤ Cmax for all i, j. Observe that
∑N

i=1 ai,ΠN (i) is identically distributed

with |y|G.

By Lemma 2.6.28 with t = 16 log(8e1/16/α), we get that with probability 1− α,

||y|G − γn| < 2

√
16 log(9/α)

N
NγnV + 16Cmax log(9/α)

where we used that 8e1/16 ≤ 9 and the fact that only γN columns of the ai,j matrix ai,j

is nonzero, and for each non-zero column L2-norm of the column is bounded by
√
nV by

our definition of V . The result for the z-score follows trivially.

Remark 2.6.5 (Wide applicability). Note that the theorem does not impose assumptions

on how y is generated. It covers any procedure (including human generation) that pro-

duces y in a manner independently of the secret partition G. In cases where y is generated

by a language model, it could be the output of greedy search from p(yt|x, y1:t−1), nucleus

sampling, beam search, or any other decoding methods.

Remark 2.6.6 (Diversity parameters). The V and Cmax parameters in Theorem 2.6.4 mea-

sure the diversity of the suspect text y and are necessary for the high-probability bound.

As an example, if the prompt says “Repeat ‘‘Goal’’ for a hundred thousand times

like a soccer commentator.” Then the resulting generated sequence will be “Goal

goal goal ...”, and has either n green tokens or 0 green tokens. No meaningful Type

I error bound can be obtained.

Remark 2.6.7 (Controlling false positive rate). The theorem implies that if we choose
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τ >
√

64V log(9/α)
1−γ

+ 16Cmax log(9/α)√
nγ(1−γ)

, then the false-positive rate is smaller than α. Note that

V and Cmax can be computed directly from y, allowing us to choose an input-dependent

τ as a function of V,Cmax that achieves a α-Type I error guarantee with a fixed α for

all inputs. In particular, the Type I error α decreases exponentially as we increase the

threshold τ .

2.6.4 Only true detection (Type II error guarantees)

For bounding the Type II error, i.e., false negative rates, we will work with our

proposed method that generates y from the language model, i.e., sampling from the

watermarked distribution p̂ recursively one token at a time.

Let’s first recall a few notations. h is the input to the language model at step t,

i.e., h = [x, y1:t−1]. Let δ represent the watermark strength from Equation 2.1. The

green list G ⊂ [N ] is a random index set of the vocabulary of size γN . The watermarked

probability distribution p̂t = p̂t(·|h) at time step t. The process of generating the sentence

y1, y2, . . . , yn involves recursively sampling from p̂t, which we refer to as a “roll-out”

procedure.

We need to make a few assumptions about the language model’s probability distribu-

tion p and the prompt x. We will first state them and then explain why these are natural

and arguably needed for the Type II error to be small.

On-average high entropy assumption

The first such assumption requires the probability of the roll-out to be “sufficiently

diverse” on average. We will introduce the notation ∥p∥2 :=
√∑N

i=1 p[i]2.

Assumption 2.6.8 (On-average-high-entropy). We say a language model’s probability
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distribution p with a prompt x satisfies ξ-on-average-high-entropy if

1

n

n∑
t=1

E
y1:t−1∼p(·|x)

[∥pt∥2] ≤ ξ.

This assumption requires the distribution of the roll-out to be sufficiently diffuse on

average (either in expectation or with high probability).

The purpose of these assumptions is to rule out the cases when y1:n is almost deter-

ministic under p and perturbing the logits by δ does not change the distribution much

at all.

For example, if the prompt writes

“Generate the English alphabet in capital letters for 200 times please.”

Then the language model would generate

“ABC...XYZ, ABC...XYZ, ...”.

Despite that the generated sequence is very long, i.e., n is as large as 5, 200, the added

watermark does not change the distribution very much at all. To see this, if p(y3 =

“C”|x, h) ≥ 1 − ϵ for a tiny ϵ, and then by our quality guarantee, p̂(y3 = “C” |x, h) ≥

1− ϵeδ.

Quantitatively, for nearly uniform pt, ξ = O(1/N), if pt concentrates on a single token

for all t, e.g., when a football commentator exclaims “Goal goal goal goal ....”, then

we cannot obtain a better bound than the trivial ξ ≤ 1. In the alphabet example above

ξ ≤ 1/26.

Why is it called entropy? Assumption 2.6.8 is related to the “high-entropy” assump-

tion in [26] but for a slightly different kind of entropy. In a more formal sense, the quantity

∥pt∥2 is connected to the Tsallis entropy of order 2, defined as S2(pt) = kB(1 − ∥pt∥2)

where kB is known as the Boltzmann constant. Our assumption requires the expected
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Tsallis entropy of the conditional distribution pt over the roll-out of p to be larger than

kB(1− ξ) on average among t = 1, ..., n.

For a high-probability result, we also need a stronger version.

Assumption 2.6.9 (On-average-high-entropy (high probability)). We say that a lan-

guage model’s probability distribution p with a prompt x satisfies (ξ, β)-on-average-high-

entropy if with probability at least 1− β over the generated sequence y1:n,

1

n
max

{∥∥∥∥∥
n∑

t=1

pt

∥∥∥∥∥ ,
n∑

t=1

∥pt∥2 ,

∥∥∥∥∥
n∑

t=1

pt

∥∥∥∥∥
∞

,
n∑

t=1

∥pt∥2∞

}
≤ ξ.

The behavior is similar to that of the expectation version of the assumption. When

pt is nearly uniform, pt[i] = O(1/N), then ξ = O(1/
√
N). When pt is supported only on

one token, then ξ = 1. In practice, ξ is a small constant. As we will present in the main

theorem, as long as ξ ≍ δ, the number of green list tokens is guaranteed to grow faster

γn as n gets larger.

One may also ask whether it is necessary to make entropy assumptions on the con-

ditional probabilities instead of the marginal probabilities induced by p or p̂, but this is

unfortunately not sufficient as illustrated in the following example.

Example 2.6.10 (Marginal high entropy is insufficient). Let the prompt x be

“Generate the first token uniformly at random, then repeat the token you

generated for the remaining n− 1 tokens”.

In this case, a good language model that follows the instruction will have Pp(yt = i) =

1/N for all i and all t = 1, ..., n marginally, which implies that the entropy is the maximum

and for any green list G, Pp(yt ∈ G) = γ. On the other hand, with probability γ, |y|G = n

and with probability 1− γ, |y|G = 0. There isn’t any concentration around γn possible.

Moreover, check that if we apply watermark, then Pp̂(yt ∈ G) = γeδ

γeδ+(1−γ)
for all t and
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all G. This changes the probability of seeing |y|G = n slightly but the two world remains

indistinguishable.

A “homophily” assumption

The second assumption that we need to make is called “homophily”, which says that

increasing the probability of a group of tokens by adding the watermarks will not decrease

the probability of generating the same group of tokens in the future as the language model

rolls out.

Assumption 2.6.11 (“Homophily”). We say a language model’s probability distribution

p and prompt x satisfy “homophily” if for any G, the corresponding watermarked p̂

satisfies that

E
h∼p̂(·|x)

[
P

y∼p̂(·|h,x)
(y ∈ G)

]
≥ E

h∼p(·|x)

[
P

y∼p̂(·|h,x)
(y ∈ G)

]
where h denotes the generated sequence before y.

This assumption says that by increasing the probability of tokens in G, the induced

distribution of the prefix h cannot counter-intuitively reduce the probability of tokens in

G in the future on average.

The assumption is not unreasonable, because we expect a language model to be more

likely to refer to text it has generated in the prefix than those that did not appear in the

prefix.

This “homophily” assumption is needed to rule out the unnatural situation where

increasing the green list tokens initially ends up reducing the number of green list tokens

in the long run. To illustrate this, consider the following example utilizing the prompt:

x = “Randomly select a color, state what it is. Then write a short poem

about it without naming this color at all.”
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The generated text from a commercial language model is

“Color choice: green. Emerald whispers in the meadow’s sway, Life’s

verdant rhythm in ceaseless play. It cradles the world in a leafy

embrace, A silent serenade to nature’s grace.”

Notice that if the token “green” ∈ G, it increases the probability of the language model

generating “green” at the beginning. However, regardless of the text’s length, the sub-

sequent portion of the generated text will not contain the word “green”, as instructed

by the prompt. This decreases the expected number of times the token “green” appears.

To hammer it home, consider the following more quantitative construction of that

works no matter which random green list G realizes.

x = “Choose the first k token by random sampling without replacement.

Then sample from all but the token you choose uniformly for n-k rounds.”

It’s easy to calculate that the expected number of times any token appears in a language

model that perfectly follows the instruction will be n/N . However, the watermarked

language model, let’s say we use a very large δ such that the first k tokens are from

the green list, then the expected number of times a green-list token appears is k
γN

+

γN−k
γN

(n−k)(γN−k)
N−k

which is bounded by 1 if k = γN instead of growing linearly in n as in

the original language model.

To obtain a concentration bound, we also need a stronger version of the homophily

assumption as follows.

Assumption 2.6.12 (High probability on-average homophily). There exists a coupling

– a joint distribution of y1:n and ŷ1:n where marginally y1:n ∼ p(·|x), ŷ1:n ∼ p̂(·|x) – such
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that for any G, with probability 1− β over the joint distribution,

1

n

n∑
t=1

p̂t(G|ŷ1:t−1)) ≥
1

n

n∑
t=1

p̂t(G|y1:t−1)).

The reason for defining the existence of a coupling is for technical reasons, but the

purpose of the assumption is identical to that of the in-expectation version.

2.6.5 Theorem statement on “Only true detection”

Now we are ready to state the main theorem.

Theorem 2.6.13 (Only true detection). For a fixed language model M and a prompt

x. The sentence y1:n generated from M̂(x) where M̂ is an output of our watermarking

scheme Watermarkδ,γ(M) with parameter δ, γ. Then the following statements are true.

1. Assume homophily (Assumption 2.6.11), then

E[|y|G] ≥ nγeδ

1 + (eδ − 1)γ
− γ(1− γ)eδ

n∑
t=1

E
y1:t−1∼p(·|x)

∥pt∥2.

In particular, if Assumption 2.6.8 condition is true with parameter ξ ≤ (1−κ) eδ−1
(1+(eδ−1)γ)eδ

for a parameter 0 < κ < 1, then

E[|y|G] ≥ nγ

(
1 + κ

(eδ − 1)(1− γ)

1 + (eδ − 1)γ

)
or equivalently E[zy] ≥

κ(eδ − 1)
√

nγ(1− γ)

1 + (eδ − 1)γ
.

2. Assume high-probability version of homophily (Assumption 2.6.12). There exists a

parameter Cδ,γ that depends only δ, γ such that with probability at least 1− β for any
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β > 0 (over both G and y ∼ p̂(·|x,G) ),

∥y∥G ≥
nγeδ

1 + (eδ − 1)γ
−
√

2n log(6/β)

− Cδ,γ log2 27(n + 1)

β

(
∥

n∑
t=1

pt∥+
n∑

t=1

∥pt∥2 + ∥
n∑

t=1

pt∥∞ +
n∑

t=1

∥pt∥2∞

)
.

In particular, if for a parameter 0 < κ < 1,

n ≥ 8 log(6/β)(1− γ + eδγ)2

(1− κ)2γ2(1− γ)2(eδ − 1)2
= Ω̃(1/δ2) (2.3)

and Assumption 2.6.9 condition is true with parameter (ξ, β/3) where

ξ ≤ (1− κ)γ(1− γ)(eδ − 1)

8Cδ,γ(1− γ + eδγ) log2
(

27(n+1)
β

) = Õ(δ), (2.4)

then

P
[
∥y∥G < nγ(1 + κ

(eδ − 1)(1− γ)

1− γ + γeδ
)

]
= P

[
zy <

κ(eδ − 1)
√
nγ(1− γ)

1 + (eδ − 1)γ

]
≤ β.

Remark 2.6.14 (Exponentially small Type I and Type II error guarantees). Recall that

according to Theorem 2.6.4, in order to have a false positive rate controlled at level

α, we need to set the threshold τ ≳
√

log(1/α) for sufficiently high-entropy sequences.

Theorem 2.6.13 says that if we want the false negative rate to be smaller than β, we

only need the threshold τ ≲ κδn under similar (slightly different) high-entropy sequences

for n ≳ log(1/β)/δ2. Observe that there is a wide range of valid choices of τ for us

to have a detection algorithm that does not make Type I or Type II error with high

probability. These observations together suggest that we can afford to choose δ ≍ 1/
√
n

if the sequence is sufficiently high-entropy.
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Remark 2.6.15 (Information-theoretic optimality). The sample complexity of n ≳ 1/δ2 is

information-theoretically optimal (up to a logarithmic factor) in δ because, our accuracy

guarantee (together with the composition theorem) indicates that the KL-divergence

between a sequence of length n generated from p and that generated from p̂ is nδ2

indistinguishable, i.e., n > 1/δ2 for any classifier — even the uniform most-powerful

Neyman-Pearson likelihood-ratio test (which requires additional information, e.g., x and

p which we do not have) — to make no mistakes with a constant probability.

2.6.6 Proof of Theorem 2.6.13

In the false negative error cases, y is drawn from the watermarked language model

M̂. To be explicit, let us write y = [ŷ1, ..., ŷn] = ŷ1:n. Now let’s also define a hypotheti-

cal (possibly coupled) sequence y1:n which is drawn from the original (un-watermarked)

language model M.

For convenience, we define the following shorthand p(G) := Py∼p[y ∈ G]. for a prob-

ability mass function p defined on the vocabulary V . Specifically, p̂t(G|ŷ1:t−1) means

Py∼p̂t(·|x,ŷ1:t−1)[y ∈ G], parameterized by a fixed green list G. Similarly, pt(G|y1:t−1) de-

notes Py∼pt(·|x,y1:t−1)[y ∈ G].

The proof of Theorem 2.6.13 considers the following decomposition

|y|G =|y|G −
∑
t

p̂t(G|ŷ1:t−1) (2.5)

+
∑
t

p̂t(G|ŷ1:t−1)−
∑
t

p̂t(G|y1:t−1) (2.6)

+
∑
t

p̂t(G|y1:t−1) (2.7)

steps to prove a lower bound to each of the three terms. We will start with the high

probability bound (the second statement in Theorem 2.6.13) then deal with the expec-
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tation.

Many green list tokens with high probability

To obtain a high-probability lower bound, it requires us to obtain concentration for

each of the three terms. Specifically,

1. To bound Term (2.5), we use Lemma 2.6.16 which invokes Martingale concentration

over the randomness in y to show |y|G is close to
∑

t p̂t(G|ŷ1:t−1).

2. We will show Term (2.6) is non-negative with high probability by using the homophily

assumption (Assumption 2.6.12). This allows us to study the roll-out ŷ1:t−1 under

M̂(x) (or p̂) by studying a hypothetical alternative roll-out y1:t−1 sampled under

M(x) (or p).

3. Then we control Term (2.7) by first Taylor expanding it into quantities involving

pt(G|y1:t−1) instead of p̂(G|y1:t−1), then apply concentration inequalities for each ex-

panded terms over the randomness of G (while fixing y1:t−1) to obtain a high proba-

bility lower bound. Proposition 2.6.19 gives the results.

We start by tackling (2.5) via Martingale concentration.

Lemma 2.6.16. For any green list G and prompt x.

E

[
|y|G −

n∑
t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

]
= 0.

Moreover, with probability at least 1− β over the roll-out

|y|G ≥
n∑

t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]−
√

2n log(2/β).
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Proof. We fix G and construct a martingale sequence X1, X2, ..., Xn where X0 = 0 and:

Xt = Xt−1 + 1(yt ∈ G)− P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G].

Check that E[Xt|y1:t−1] = Xt−1. The underlying filtration is the sigma-field generated by

y1:t.

The claim about the expectation follows from that X0 = 0 and an inductive argument

following the tower property of conditional probabilities.

By the fact that |Xt−Xt−1| ≤ 1 we can apply Azuma-Hoeffding’s inequality and get

P [|Xn − E[Xn]| ≥ u] ≤ 2e−
u2

2n .

Check that by an inductive argument E[Xn] = 0. So we get that with probability at least

1− δ

|Xn| =

∣∣∣∣∣
n∑

t=1

1(yt ∈ G)−
n∑

t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

∣∣∣∣∣ ≤√2n log(2/δ).

To handle (2.6), we apply Assumption 2.6.12 with parameter β/3, which says that with

probability 1− β/3 (2.6)≥ 0. This converts a roll-out from ŷ ∼ p̂ to a roll-out from the

original p.

Before we deal with (2.7), let us write a lemma that rewrites p̂t(G|y1:t−1) into a more

convenient form.

Lemma 2.6.17. For any t, ht. Fix G. Denote short hands p̂(G) := Pyt∼p̂t(·|x,ht)[yt ∈ G]

and p(G) := Pyt∼pt(·|x,ht)[yt ∈ G].

p̂(G) =
eδp(G)

1 + (eδ − 1)p(G)
=

(
1 +

(eδ − 1)(1− p(G))

1 + (eδ − 1)p(G)

)
p(G).
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Proof. By definition,

p̂(G) =

∑
y∈G eℓy+δ∑

y∈G eℓy+δ +
∑

y/∈G eℓy

=
eδp(G)

eδp(G) + 1− p(G)
=

eδ

1 + (eδ − 1)p(G)
p(G)

=

(
1 +

(eδ − 1)(1− p(G))

1 + (eδ − 1)p(G)

)
p(G).

The lemma implies that p̂(G) ≥ p(G) and that if p(G) is bounded away from 1,

p̂(G) ≥ (1 + O(δ))p(G).

Lemma 2.6.18. For any t, ht. Fix G.

p̂(G) ≥ eδγ

1 + (eδ − 1)γ
+

eδ

(1 + (eδ − 1)γ)2
(p(G)− γ)− eδ(p(G)− γ)2

Proof. By the second-order Taylor’s theorem

eδx

1 + (eδ − 1)x
=

eδγ

1 + (eδ − 1)γ
+

eδ

(1 + (eδ − 1)γ)2
(x− γ)− eδ

(1 + (eδ − 1)x̃)3
(x− γ)2

where x̃ ∈ [x, γ] is a function of x. By relaxing x̃ to 0 we obtain the lower bound as

claimed.

Now we are ready to handle (2.7) with high probability in the following proposition.

Proposition 2.6.19 (Concentration). For any fixed sequence y1:n, and the corresponding

language model’s probability distribution p that gives conditional distributions p1, ..., pn.

There exists a parameter Cδ,γ that depends only δ, γ. Then with probability at least 1− β
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for any β > 0 (over G),

n∑
t=1

P
yt∼p(·|x,y1:t−1)

[yt ∈ G] ≥ nγeδ

1 + (eδ − 1)γ

−Cδ,γ log2 9(n + 1)

β

(
∥

n∑
t=1

pt[·]∥+
n∑

t=1

∥pt[·]∥2 + ∥
n∑

t=1

pt[·]∥∞ +
n∑

t=1

∥pt[·]∥2∞

)
.

Proof. By Lemma 2.6.17 and 2.6.18

n∑
t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

=
∑
t

eδpt(G)

1 + (eδ − 1)pt(G)

≥
∑
t

eδγ

1 + (eδ − 1)γ
+

eδ(pt(G)− γ)

(1 + (eδ − 1)γ)2
− eδ(pt(G)− γ)2

=
nγeδ

1 + (eδ − 1)γ
+

eδ

(1 + (eδ − 1)γ)2


∑
t

Nγ∑
i=1

pt[π[i]]− nγ︸ ︷︷ ︸
(∗)

− eδ
∑
t


Nγ∑
i=1

pt[π[i]]− γ︸ ︷︷ ︸
(∗∗)


2

where π is a random permutation of the index set {1, ..., N}.

We will now apply Lemma 2.6.28 to lowerbound (∗) with high probability and to

bound the absolute value of (∗∗) with high probability.

Remark 2.6.20. The reason why we can apply these lemmas even after we condition on

y1:t−1 is due to the “high-probability homophily” assumption which allows us to use the

fact that y1:t−1 is independent to G, i.e., the distribution of the green list remains uniform

at random after we condition on each qualifying y1:t−1 separately.

Using a similar argument from the proof of Theorem 2.6.4, we can apply Lemma 2.6.28
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and get that with probability 1− β,

(∗) ≥ −

√√√√64γ∥
n∑

t=1

pt(·)∥2 log(9/β)− ∥
n∑

t=1

pt(·)∥∞ log(9/β).

Similarly by Lemma 2.6.28 again to bound (∗∗) =
∑Nγ

i=1 pt[π[i]]− γ w.h.p for each t.

∣∣(∗∗)∣∣ ≤√64γ∥pt(·)∥2 log(9/β) + ∥pt(·)∥∞ log(9/β).

To put things together, with probability 1− (n + 1)β,

n∑
t=1

P
yt∼p(·|x,y1:t−1)

[yt ∈ G]

≥ nγeδ

1 + (eδ − 1)γ
− eδ

(1 + (eδ − 1)γ)2

√√√√64γ∥
n∑

t=1

pt[·]∥2 log(9/β) + ∥
n∑

t=1

pt[·]∥∞ log(9/β)


− eδγ(1− γ)

∑
t

∥pt[·]∥2 − 2eδ

(
64γ

n∑
t=1

∥pt[·]∥22 log(9/β) +
n∑

t=1

∥pt[·]∥2∞ log2(9/β)

)

≥ nγeδ

1 + (eδ − 1)γ
− Cδ,γ log(9/β)2

(
∥

n∑
t=1

pt[·]∥+
n∑

t=1

∥pt[·]∥2 + ∥
n∑

t=1

pt[·]∥∞ +
n∑

t=1

∥pt[·]∥2∞

)

for a constant Cδ,γ that depends only in δ, γ. The proof is complete by defining β̃ =

9(n + 1)β, and get the same result under probability 1− β̃.

Many green list tokens in expectation

To obtain the lower bound in expectation, we just need to bound the expectation of

(2.5), (2.6) and (2.7).

1. Observe that E[Term (2.5)|G] = 0 (from Lemma 2.6.16)

2. Also, observe that (2.6) ≥ 0 under the homophily assumption (Assumption 2.6.11).
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3. Term (2.7) can be further lower bounded by a second-order Taylor expansion argu-

ment (Lemma 2.6.18) and a variance calculation for sampling without replacement

(Lemma 2.6.21), which ends up depending on the on-average high-entropy parameter

from Definition 2.6.8. The formal result is stated in Proposition 2.6.22.

Lemma 2.6.21. Fix pt

E
G

[(pt(G)− γ)2] ≤ γ(1− γ)∥pt[·]∥2.

Proof. First observe that EG[pt(G)] = γ because every token has γ probability to be

included. By the variance formula for sampling without replacement (N choose Nγ),

VarG[pt(G)|y1:t−1] = γN
1

N

N∑
i=1

(pt[i]
2 −N−2)(1− γN − 1

N − 1
) ≤ γ(1− γ)

N∑
i=1

pt[i]
2.

Proposition 2.6.22. Assume homophily, then

E

[
n∑

t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

]
≥ nγ

(
eδ

1 + (eδ − 1)γ
− (1− γ)eδ

n

n∑
t=1

E
y1:t−1∼p(·|x)

N∑
i=1

pt[i]
2

)
.

Proof. By homophily,

E

[
n∑

t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

]

=
n∑

t=1

E
G,y1:t−1∼p̂(·|x)

[
P

yt∼p̂(·|x,y1:t−1)
[yt ∈ G]

]
≥

n∑
t=1

E
G,y1:t−1∼p(·|x)

[
P

yt∼p̂(·|x,y1:t−1)
[yt ∈ G]

]
=

n∑
t=1

E
y1:t−1∼p(·|x)

E
G

[
eδ Pyt∼pt(·|y1:t−1)[yt ∈ G]

1 + (eδ − 1)Pyt∼pt(·|y1:t−1)[yt ∈ G]

∣∣∣∣y1:t−1

]
(2.8)
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By Lemma 2.6.18, we can decompose (2.8). Also observe that EG [pt(G)|y1:t−1] = γ

where pt(G) := Pyt∼pt(·|y1:t−1)[yt ∈ G] is short hand for clarity. To see the second observa-

tion, notice that yt is independent to G, thus we can apply Statement 1 of Theorem 2.6.4).

Apply the two observations to (2.8), we have

(2.8) ≥
n∑

t=1

E
y1:t−1∼p(·|x)

E
G

[
eδγ

1 + (eδ − 1)γ
+

eδ(pt(G)− γ)

(1 + (eδ − 1)γ)2
− eδ(pt(G)− γ)2

∣∣∣∣y1:t−1

]
=

eδnγ

1 + (eδ − 1)γ
+

n∑
t=1

E
y1:t−1∼p(·|x)

[
eδ(EG[pt(G)|y1:t−1]− γ)

(1 + (eδ − 1)γ)2
− eδ E

G
[(pt(G)− γ)2|y1:t−1]

]
=

eδnγ

1 + (eδ − 1)γ
−

n∑
t=1

eδ E
y1:t−1∼p(·|x)

VarG[pt(G)|y1:t−1].

By the variance formula for sampling without replacement (N choose Nγ),

VarG[pt(G)|y1:t−1] = γN
1

N

N∑
i=1

(pt[i]
2 −N−2)(1− γN − 1

N − 1
) ≤ γ(1− γ)

N∑
i=1

pt[i]
2.

Thus, it follows that

(2.8) ≥ eδnγ

1 + (eδ − 1)γ
−

n∑
t=1

eδ E
y1:t−1∼p(·|x)

γ(1− γ)
N∑
i=1

pt[i]
2

= nγ

(
eδ

1 + (eδ − 1)γ
− (1− γ)eδ

n

n∑
t=1

E
y1:t−1∼p(·|x)

N∑
i=1

pt[i]
2

)
.
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2.6.7 Security property

Corollary 2.6.23. Algorithm 2 with threshold τ satisfies the security property from

Definition 2.3.2 with ϵ = 0 and

η(y, k, ϵ) =

√
n(zy − τ)

1 + γ/2
1

(
zy − τ ≥ γ

√
n

1 + γ/2

)
.

In comparison, the best bound on the security property parameter one can obtain for

the scheme of [26] is (a formal statement and proof are included in Appendix 2.6.9)

η(y, k, ϵ) =

√
n(zy − τ)

2 + γ/2
1

(
zy − τ ≥ γ

√
n

2 + γ/2

)
.

To say it differently, our method, Unigram-Watermark, utilizing a fixed Green-Red

split, achieves twice the robustness to edits compared to [26]’s baseline approach.

Analysis of KGW Watermark

2.6.8 Soft watermarking scheme of [26]

This section illustrates the soft watermarking scheme proposed by [26]. This straight-

forward algorithm only requires access to the language model’s logits at each time step.

Let y = [y1, . . . , yn] represent the output sentence of language modelM given the prompt

x. The watermarking scheme generates y1:n by hashing yt−1 to a partition of the token

space (Green List and Red List) and amplifies the probability of tokens on the Green

List. Specifically, [y1, . . . , yn] is derived from the following Markov chain:

1. y1 ∼ Softmax
(
logitsM

(
y1 = ·|x

))
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2. For t = 2 : n,

yt ∼ Softmax
(
logitsM(yt = ·|[x, y1 . . . , yt−1]) + δ1(· ∈ Green(yt−1))

)

Typically, γ|V| tokens are selected to form a Green List, where γ symbolizes the fraction

of tokens to be watermarked (by default, γ = 0.5). The logit value for each green

token is augmented by a constant δ (default value = 2), which denotes the watermark

strength. This elevation enhances the likelihood of sampling green, watermarked tokens,

particularly for high-entropy distributions.

Validation of whether a text was generated by a watermarked language model is

achievable given knowledge of the hash function and tokenizer. The adversary constructs

u = [u1, . . . , um] from x, y1:n and any auxiliary input. The detection algorithm calculates

the quantity of green tokens |u|G =
∑m

t=2 1(ut ∈ Green(ut−1)). One can assume the null

hypothesis, denoted as H0: The text sequence is produced independently of the green list

rule. Following this, a z-statistic score is computed as z = (|u|G − γm) /
√

mγ(1− γ). If

the z-score exceeds a predetermined threshold, the algorithm declares, “This was gener-

ated from M̂!”.

2.6.9 Security property of [26]

We also demonstrate the robustness property of the soft watermarking algorithm in

[26] in the following Theorem 2.6.24

Theorem 2.6.24 (Robustness to editing in the watermarking scheme of [26]). Let y =

[y1, . . . , yn] represent the watermarked sequence. Suppose the adversary A follows the

definition 2.3.2 and outputs a modified text u = [u1, . . . , um]. Following Equation 2.2, we
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calculate the z-score of the soft watermarking [26] zy and zu. Then we have

zu ≥ zy −max{(2 + γ/2)η√
n

,
(2− γ/2)η√

n− η
}.

Proof. The proof is similar to that of Theorem 2.3.10 except that the maximum pertur-

bation to |y|G is now 2η rather than η. We now justify that the maximum perturbation

has really doubled below, but ignore the part that is the same as in the proof of Theo-

rem 2.3.10.

Let BiGrams(u) = {{u1, u2}, {u2, u3}, ..., {un−1, un}} and similarly BiGrams(y) enu-

merates the set of all two grams in sequence y1:m.

We claim that each edit can modify at most two elements in the above set. To see

this, consider “insertion”, “deletion”, and “edit” separately.

• If we “insert” one token ũ at t, then {ut−1, ut} and {ut, ut+1} become {ut−1, ũ}, {ũ, ut}

and {ut, ut+1}. Only one element of BiGrams(u) is modified — {ut−1, ut}.

• For “deletion” at t, {ut−1, ut} and {ut, ut+1} become {ut−1, ut+1}. So two elements

from BiGrams(u) are gone.

• For “edit” at t, {ut−1, ut} and {ut, ut+1} become {ut−1, ũ} and {ũ, ut+1}. Thus again

only two elements from BiGrams(u) are gone.

It follows that when y is obtained after up to η edits

|BiGrams(u) ∩ BiGrams(y)| ≥ |BiGrams(u)| − 2η

Observe that
∑n

t=2 1(ut ∈ Green(ut−1)) counts the number of qualifying elements in

BiGrams(u), which completes the proof.
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For this reason, our watermark is twice as robust as that of [26]. This

provides the theoretical guarantee to our empirical results presented in the

experiments!

Remark 2.6.25. We can view our watermark as a trivial Markovian watermarking scheme

with k = 0, and what [26] proposed to be k = 1. For the more general k-Markovian

watermarking scheme that depends on a prefix of length k, the robustness deteriorates by

a factor of k, as the maximum perturbation will become ((k+1)+γ/2)η√
n

. To say it differently,

choosing k = 0 gives the maximum robustness and maximum simplicity at the same

time, and the benefit leads to significant gains in our experiments, especially against

paraphrasing attacks.

Alternative detector “Unique” and its desirable prop-

erties

Our theoretical analysis suggests a promising alternative Detect algorithm for Unigram-

Watermark that simply involves calling Algorithm 2 with a deduplicated y.

Algorithm 4 Unigram-Watermark: Detect (Alternative)

1: Input: suspect text y, watermark detection key k, threshold τ .
2: Output: 1 or 0 (whether the text is watermarked).
3: Return Algorithm 2 with suspect text Unique(y), detection key k and threshold τ .

The simple change actually results in a number of interesting new properties. For

example, we can state its Type I error bound a lot more cleanly now as a Corollary of

Theorem 2.6.4

Corollary 2.6.26 (No false positive for Deduplicated Detection). Consider y = y1:n as

any fixed suspect text. Let m = |Unique(y)| be the number of unique tokens in y. Let
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G be selected through Algorithm 1, using a uniform random choice. Then the following

statements hold true:

1. Assume m ≥ 1, then

E[|Unique(y)|G|y] = γn and E[zUnique(y)|y] = 0.

2. With probability 1− α (over only the randomness of G),

P
[
|Unique(y)|G ≥ γm +

√
64γm log(9/α) + log(9/α)

∣∣∣y] ≤ α

or equivalently (when n ≥ 1)

P

[
zUnique(y) ≥

√
64 log(9/α)

(1− γ)
+

log(9/α)√
mγ(1− γ)

∣∣∣∣∣y
]
≤ α.

The above gives a clean finite-sample concentration bound of the Type I error using

Algorithm 4. Notably, while deduplicating reduces the length of the suspect text, i.e.,

m < n, it improves the bound by ensuring both Cmax and V are 1.

Remark 2.6.27 (Asymptotic choice of τ for controlling false positives). Lemma 2.6.21

gives that

Var [|Unique(y)|G|y] = mγ(1− γ)(1− m− 1

N − 1
)

i.e., the conditional variance of zUnique(y) is (1 − m−1
N−1

). This means that if we want to

control the asymptotic false positive rate to α, all we have to do is to choose the threshold

τ to be

τ =

√
1− m− 1

N − 1
Φ−1(1− α) (2.9)

where Φ is the standard normal CDF.
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Type II error. How about Type II error? Our results in Theorem 2.6.13 are still

applicable but require us to apply that with a special language model derived from the

original that directly generates Unique(y) (ordered in the same order they appear in y).

This is still a valid autoregressive language model but has different roll-out probabilities.

Robustness to Edits. Observe that adding/removing/replacing one token to y

in the results in adding/removing/replacing one token to Unique(y) respectively, the

robustness of the z-score for Unique(y) thus directly follows Theorem 2.6.24.

“Unique” in K-gram watermark section with K ≥ 2. Clearly, the same idea

of deduplication works for the whole family of K-gram watermark proposed in [26]. In

fact, it was briefly mentioned in a remark from their paper as a mitigation measure to

reduce correlation. All arguments we make about Type I error and Robustness to Edits

above work for K ≥ 2. We defer the Type II error bound for this family to future work.

Emperical analysis on controlling false positives. We conduct experiments to

demonstrate the results for the asymptotic choice of τ in controlling false positives. The

negative examples are sampled from diverse datasets, including human data in LFQA and

OpenGen dataset [45], C4 dataset [54], and TOEFL dataset [25]. In total, we collect 6,200

unwatermarked text samples with varied lengths. We then use the dynamic threshold

τ with different choices of α as shown in Equation 2.9. By choosing different random

seeds, we obtain different green lists. The results in Figure 2.8 show the empirical false

positive rate aligns well with the theoretical α.

2.6.10 Alternative detection “Unique” is robust to Emoji at-

tack and other tricky attacks

[26] discussed a number of interesting attacks on the K-gram watermarks. In this

section, we inspect the robustness of Unigram-Watermark (with both Algorithm 2
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Figure 2.8: Empirical vs. theoretical false positive rates across various α values, using
multiple green list initializations.

and 4 as Detect) to these attacks.

We will focus on those trickier generative attacks, as those non-generative attacks

on the surface level (e.g., synonym substitution, Unicode substitution) were rather sat-

isfactorily addressed in [26]. The same arguments work for Unigram-Watermark.

However, there are trickier ones that break K-gram watermarks for K ≥ 2 but not for

K = 1, especially when we use Algorithm 4 for detection.

Emoji attack the Emoji attack, also known as the Pineapple attack, asks the language

model to inject a special symbol, e.g., an Emoji, in between the actual text that

the LM is supposed to generate in response to a prompt. For example, a user of the

language model can prompt an LM with “Write my college admission essay.

Insert an emoji in between every word.”. Then the user can simply remove

the artificially injected symbol before submitting the essay. Clearly, this attack

breaks all K-gram watermarks for K > 1 [26] (but also [27]). Our Unigram-
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Watermark remains effective because half of the tokens in y are still watermarked.

The repeated Emoji symbol with length n/2 is a problem for both Type I and

Type II error, but after “Unique”, this corresponds to just an Edit Distance of 1

on Unique(y)!

Alphabet attack We can also make the Emoji attack stronger by injecting a known

sequence of “alphabets” instead of one single symbol. For example, “Write my

college admission essay. Insert, in the order of the vocabulary, a token

in between every word you generate.”. The alphabet attack breaks K-gram

watermarks in the same way an Emoji attack does, but since the added tokens are

different, “Unique” does not solve it right away. Interestingly, despite m/2 of the

tokens in Unique(y) are not watermarked, as long as the Alphabet being used is

independent of the secret key, it does not change the Type I error and only slightly

reduces the power (i.e., 1-Type II error) since the expected number of Green tokens

in that m/2 injected tokens is mγ/2.

Stegnography attack One may extend the attack even further by asking the language

model to encode a message, which swaps each token in the vocabulary with another

token through a secret codebook. For example, whenever you want to output Token

i, output Token mod(i+1, N) instead. If the “code book” is supplied in the prompt

with an instruction for the LM to follow the code book when generating the text,

then it really breaks all watermarks including ours, while allowing the user who

knows the code book to easily revert it to the original text. The issue of such

an attack is that it requires significantly heavy-lifting for the language model to

predict outside the typical distribution it is trained on. There is no real risk of such

an attack being employed as it is likely to significantly reduce the quality of the

generated text.
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To be clear, these attacks are, in fact, not post-processing-based evasion attacks, but

rather hacks into prompts. Nevertheless, our watermark that is robust to edits turns out

to be quite resilient to them.

Technical lemmas

Lemma 2.6.28 (Bernstein-style inequality for random permutation [29, Proposition

2.2]). Let {ai,j}1≤i,j≤n be a collection of non-negative numbers and Πn be a random uni-

form permutation. Let Zn =
∑n

i=1 ai,Πn(i). Then, for any t > 0

P

|Zn − E[Zn]| ≥ 2

√√√√ t

n

n∑
i,j=1

a2i,j + max
1≤i,j≤n

{ai,j}t

 ≤ 8e1/16e−
t
16 .

Lemma 2.6.29 (Variance for sampling without replacement). Let x1, ..., xN ∈ R. For

any sample size 1 ≤ n ≤ N , and π be a random permutation of {1, 2, ..., N}. The

variance of X = 1
n

∑n
i=1 xπ(i) satisfies

Var(X) =
1

nN

N∑
i=1

(xi − x̄)2(1− n− 1

N − 1
).

Definition 2.6.30 (Martingale). A sequence of random variables (Xn)n∈N is called a

martingale if it satisfies the following conditions:

1. E[|Xn|] <∞ for all n ∈ N.

2. E[Xn+1|Fn] = Xn for all n ∈ N.

where F1 ⊆ F2 ⊆ ... ⊆ Fn ⊆ Fn+1 ⊆ ... is a filtration. Specifically, Fn can be the sigma-

algebra generated by another sequence of random variable Y1, ..., Yn, i.e., Fn = σ(Y1:n)

and Xn can be a function of Y1:n.
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Lemma 2.6.31 (Azuma-Hoeffding Inequality). Let (Xn)n∈N be a martingale such that

|Xn+1 −Xn| ≤ cn for some constants cn and all n ∈ N. Then for all t > 0 and n ∈ N,

we have

P (|Xn −X0| ≥ t) ≤ 2 exp

(
− t2

2
∑n

i=1 c
2
i

)
.
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Chapter 3

PF-Watermark

In this chapter, we propose a new decoding method called Permute-and-Flip (PF) de-

coder. It enjoys robustness properties similar to the standard sampling decoder, but

is provably up to 2x better in its quality-robustness tradeoff than sampling and never

worse than any other decoder. We also design a cryptographic watermarking scheme

analogous to [27]’s Gumbel watermark, but naturally tailored for PF decoder. The

watermarking scheme does not change the distribution to sample, while allowing ar-

bitrarily low false positive rate and high recall whenever the generated text has high

entropy. Our experiments show that the PF decoder (and its watermarked counter-

part) significantly outperform(s) naive sampling (and it’s Gumbel watermarked coun-

terpart) in terms of perplexity, while retaining the same robustness (and detectability),

hence making it a promising new approach for LLM decoding. Our code is available at

https://github.com/XuandongZhao/pf-decoding.
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3.1 Introduction

Large language models (LLMs) [1, 14, 57, 2] have become increasingly popular in

recent years due to their ability to generate human-like text and solve many tasks through

a natural chatbot interface.

A language model predicts the next word in a sentence using a real-value function

u(·; prompt, prefix) : V → R, known as logits, which encodes the model’s preferences on

which word to choose. Here V is the vocabulary space (typically a large discrete set of

words); the “prompt” describes the task of interest; and “prefix” includes all preceding

words that have been generated so far.

A language model decoder refers to a possibly randomized function that takes a

prompt text x, API access to the logits function as input, and outputs a sentence y1:n.

The main thrust of this chapter is to introduce a new decoder, termed Permute-

and-Flip decoding, work out some of its intriguing properties with an application to

watermarking LLM text, and hopefully convince readers that it deserves a shot at your

next LLM application.

3.1.1 Problem Setup and Summary of Results

Before we get into it, let us set up the stage with a quick tour to the zoo of existing

decoding methods and have a brief sneak-peek into the “jar of worms” on how a language

model decoder can be evaluated.

Popular existing decoding methods fall into three categories: (1) Planning-

based methods such as beam search that aims at maximizing the sequence likelihood; (2)

sampling-based methods that recursively sample from the next-word distribution, e.g.,
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the soft(arg)max transform of the logits

Softmax sampling: yt ∼ p(y) =
eu(y|x,y1:t−1)/T∑
ỹ e

u(ỹ|x,y1:t−1)/T
(3.1)

where T is the temperature parameter; and (3) greedy methods such as greedy decoding

that simply outputs yt = arg maxy∈V u(y|x, y1:t−1) as well as its Top p [58] and Top k

sampling variants that interpolate greedy and sampling methods.

Performance metrics. How do we compare different decoding methods? More gener-

ally, how do we evaluate LLM-generated text? These are questions far from being settled.

Naturally, if there is a (possibly task-dependent) performance metric Ux : Vn → R one

can define, then the optimal decoder would be the one that outputs

y∗1:n = arg max
y1:n∈Vn

Ux(y1:n).

Often Ux is instantiated to be the sequence likelihood
∑n

t=1 log p(yt|x, y1:t−1) which is

equal to
∑n

t=1 ut(yt).

Recent works [59, 60], however, report that strategies that aim at maximizing se-

quence likelihood often result in texts that are more repetitive and less effective in some

downstream tasks than those from the sampling-based methods [58]. Depending on what

the task is, there is not a one-size-fits-all performance metric, therefore is no single de-

coding method that works well for all tasks.

For the moment, let us stash the disputes on how to best evaluate an LLM-generated

text and focus on designing methods that maximize any user-specified utility function.

In fact, we will also give up on solving the sequence-level utility maximization problem1

and simply maximize a per-step utility function ut : V → R.

1It is known to be NP-Complete [61].
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ut can simply be the logits function that LLMs output, which may have already

accounted for potential future utility (like the Q function in reinforcement learning) since

the transformer-based language model had access to future texts during pre-training. Or

ut can be explicitly augmented with structure-inducing regularizers such as a lookahead

heuristic as in A* decoding [62], a retrieval-based term for fact-checking [63], or an

entropy bonus for promoting diversity [64].

Our goal is thus to construct a possibly randomized algorithm A that takes ut as an

input and outputs yt ∈ V that aims at maximizing Eyt∼Aut
[ut(yt)] as much as possible. In

the remainder of the chapter, we will simply take ut as “logits” for a concrete exposition

— all results are valid when ut is instantiated otherwise.

Other constraints / consideration. Why doesn’t the trivial greedy decoder work?

That’s because there are other considerations besides text quality when selecting LLM

decoders. For example, computational efficiency and latency are hugely important,

since each API call to the logits function is costly. The diversity of the generated text

is also important, especially for creative tasks.

Moreover, the decoding procedure should be watermarkable [27, 26, 9, 65] in the

sense that one should be able to inject subtle statistical signals that can be retrieved

when given a secret key, to prove that the text is generated by this particular language

model. Being watermarkable prevents the LLM from being used for malicious purposes

such as scams [16], fake news [15], and plagiarism [17].

In addition to the above, one may also hope the decoding algorithm to be robust

against small perturbations to the logits. Specifically,

Definition 3.1.1 (Robustness). We say a decoding algorithm A is L-robust if for any

prompt x, prefix y<=t, and for any perturbed ũ such that ∥ũ−u∥∞ ≤ δ, the log-probability
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Methods Perplexity Computational Efficiency Diversity Watermark Robustness

Search (e.g., Beam) Lowest ✗ ✗ ✗ ✗

Greedy Low ✓ ✗ ✗ ✗

Softmax Sampling Moderate ✓ ✓ ✓ ✓

Top-p Sampling Low (for small p) ✓ Depends on p ✓ ✗

Top-k Sampling Low (for small k) ✓ Depends on k ✓ ✗

PF Sampling (ours) Lower than Softmax ✓ ✓ ✓ ✓

Table 3.1: Comparison of different decoding methods against five desiderata.

ratio satisfies ∣∣∣∣log

{
pA(ũ(·|x,y<=t))(y)

pA(u(·|x,y<=t))(y)

}∣∣∣∣ ≤ Lδ ∀y ∈ V .

The robustness helps to avoid catastrophic failure in the scenarios where the logits

may be subject to data poisoning [66, 67] or jailbreaking attacks [68, 69].

Robustness implies an intuitive notion of diversity, which says that for tokens with

similar logits, then their chances of getting chosen should be similar. More rigorously:

Remark 3.1.2 (Robustness implies Diversity). If |ut(y)−ut(y
′)| ≤ δ, then we can construct

a ũt such that ũt(y) = ũt(y
′) while satisfying ∥ut − ũt∥∞ ≤ δ

2
. Apply triangle inequality

and Definition 3.1.1, we get

∣∣∣∣log
pAut (y)

pAut (y
′)

∣∣∣∣ =

∣∣∣∣∣log
pAut (y)

pAũt (y)

+ log
pAũt (y

′)

pAut (y
′)

∣∣∣∣∣ ≤ Lδ.

Inspecting the decoding methods along the aforementioned dimensions, we notice

that planning-based methods fail to be computationally efficient. While greedy decoding

is efficient and has relatively low perplexity, its generated texts are neither diverse nor

watermarkable (at least not using existing techniques). The sampling-based methods,

however, are both watermarkable and diverse. In addition, softmax sampling is known

to be 2-robust, while all other methods that we discussed so far are not robust.

Fact 3.1.3. Softmax sampling decoding using (3.1) with temperature T satisfies L-robustness

74



PF-Watermark Chapter 3

with L = 2/T .

Proof. The result is implied by the differential privacy guarantee of exponential mecha-

nism [55, Theorem 6].

The pros and cons of different decoding methods are summarized in Table 3.1. From

the table, we can see that there is a clear tradeoff between minimizing perplexity and pre-

serving other properties. In particular, softmax sampling is the only method that checks

all boxes, and the only one that is robust among existing decoders. This observation

begs the following research question:

Is there a decoding method that is as robust as softmax sampling, but has lower

perplexity?

In this chapter, we answer this question affirmatively by bringing in a technique called

Permute-and-Flip sampling.

Our contributions are fourfold.

1. We introduce Permute-and-Flip decoding — a new decoding algorithm for language

models based on recent development in a very different context [70].

2. We demonstrate that existing results from [70] already imply that:

• Permute-and-Flip decoding is provably robust.

• The robustness-perplexity tradeoff of the PF decoding is Pareto-optimal. In par-

ticular, when compared to softmax sampling, PF decoding has up to 2x smaller

expected suboptimality while having the same robustness parameter L.

3. We designed an analog of [27]’s Gumbel-Watermark for PF decoder, called the PF

watermark. We show that the watermarked PF decoder samples from a distribution

that is computationally indistinguishable from the non-watermarked PF decoder, and
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the detection procedure has precisely controlled false positive rate (FPR) and high

power in identifying watermarked texts.

4. We empirically demonstrate that on open-generation tasks, PF watermark achieves

the best balance of the highest detection accuracy and lowest perplexity compared to

the baselines.

Overall, our proposed permute-and-flip decoding method provides a promising ap-

proach to balancing the tradeoff between perplexity and robustness in LLM decoding

while also admitting watermarking capabilities.

Related work and novelty. PF sampling was invented in the differential privacy (DP)

literature [70]. Its robustness properties are well-understood. The robustness of Softmax

sampling is also well-known [55]. Our contribution is in applying this method to LLM

decoding and connecting these known theoretical results to the broader ML audience. To

our knowledge, the PF watermark is new to this chapter. The design of the watermark

leverages the Report-Noisy-Max interpretation of the PF sampling [71] which allows a

similar pseudo-random function like the work of [27] to be applied.

A more thorough discussion of the related work is given in Appendix 3.6.2.

3.2 Permute-and-Flip Decoding its Properties

The Permute-and-Flip decoding iteratively generates the next token by a simple pro-

cedure that uses only the logits. It involves first randomly permuting the vocabulary,

then flipping a sequence of biased coins according to the permuted sequence until the

first “head” is seen (see Algorithm 5).

Permute-and-flip makes words with higher logits exponentially more likely — even

more so than Softmax sampling (3.1). To see this, one may consider a rejection sampling
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Algorithm 5 Permute and Flip (PF) Decoding

1: Input: prompt x, language model M, temperature T .
2: for t = 1, 2, · · · do
3: Logits ut ←M([x, y1:t−1]).
4: Find u∗

t ← maxy∈V ut(y).
5: Permute : Shuffle the vocabulary V into Ṽ .
6: for y ∈ Ṽ do

7: Flip : Draw Z ∼ Bernoulli
(

exp (
ut(y)−u∗

t

T
)
)

.

8: if Z = 1, then assign yt ← y and break.
9: end for
10: end for
11: Output: Generated sequence y = [y1, ..., yn].

algorithm for obtaining a sample from (3.1), which repeats the following procedures until

it halts.

1. Uniformly samples y ∈ V ,

2. Return it with probability

p(y)/p(y∗) = exp ((ut(y)− ut(y∗))/T ) .

The only difference from the PF sampling is that this procedure samples y with re-

placement in every iteration, while the PF sampling samples y without replacement.

Intuitively, PF sampling has a higher chance of outputting y∗.

PF sampling was initially proposed in [70] as a differentially private selection mech-

anism that has better utility than the more well-known exponential mechanism [55].

[70] also derived a plethora of theoretical properties of the PF sampling. The following

theorem summarizes these results in the language of LLM decoding.

Theorem 3.2.1. Let the logits function be u and u∗ = maxy∈V u(y). Let PF(u) be

the distribution of PF-sampling, and Softmax(u) be the distribution in (3.1), both with

temperature parameter T . The following statements are true.

77



PF-Watermark Chapter 3

1. (Same robustness) PF-Sampling is (2/T )-robust.

2. (Nearly greedy) PF-sampling obeys

E
y∼PF(u)

[u(y)] ≥ u∗ − T log |V|.

3. (“Never worse”) For the same T , PF-sampling is never worse than Softmax-

sampling.

E
y∼PF(u)

[u(y)] ≥ E
y∼Softmax(u)

[u(y)]

4. (“Up to 2x better”) There exists logits u such that PF-sampling is 2x smaller in

terms of suboptimality

E
y∼PF(u)

[u∗ − u(y)] ≤ 1

2
E

y∼Softmax(u)
[u∗ − u(y)].

5. (Optimal robustness-perplexity tradeoff) For any decoder P that is 2/T -

robust, if there exists u such that

E
y∼P (u)

[u(y)] > E
y∼PF(u)

[u(y)]

then there must be another ũ such that

E
y∼P (ũ)

[ũ(y)] < E
y∼PF(ũ)

[ũ(y)].

Proof. The theorem is entirely due to [70]. The five statements are directly implied by

Theorem 1, Corollary 1, Theorem 2, Proposition 4, and Proposition 6 respectively in

their paper.
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The first statement shows that the PF decoder enjoys exactly the same robustness

parameter as in Fact 3.1.3. The second statement provides a worst-case bound on how far

PF-sampling is away from greedy-decoding as a function of the temperature T in terms of

the likelihood achieved. The third and fourth statements show that PF-sampling is always

“more greedy” than softmax-sampling. The last statement shows that PF-sampling is

not dominated by any other decoder that is equally robust (as in Definition 3.1.1), thus

Pareto optimal.

These results provide strong justification on the superiority of the permute-and-flip

decoder over the standard softmax sampling in minimizing perplexity.

Let’s consider a simple example to compare PF decoder and Softmax decoder.

Example 3.2.2. Let the |V| = 2 and the corresponding logits be [∆, 0] for gap ∆ > 0.

Softmax decoder chooses the suboptimal token with probability 1/(1 + e∆/T ), while PF

decoder chooses it with probability 1
2
e−∆/T .

Since 1/(1 + x) > 1/(2x) for all x > 1, the probability that the suboptimal to-

ken is chosen in PF sampling is strict smaller than that of Softmax sampling (also see

Figure 3.1).
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Figure 3.1: Comparing PF decoder vs Softmax decoder using Example 3.2.2. On the
left, we fix the Gap ∆ = 3.0 and vary the temperature T . On the right, we fix T = 1.0
and consider vary ∆. PF beats Softmax in all cases.
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3.3 Report-Noisy-Max and Watermarking

Next we turn to the well-motivated problem of watermarking LLM generated text.

The watermarking problem aims at embedding a secret message in the generated text

that (essentially) reads “Beware! I am written by an AI!”.

The hope is that this message can be seen by anyone who has access to a secret key,

while ensuring that the watermarked version of the LLM generates text that has almost

the same distribution as (or at least very similar) to the original LLM.

More formally, a watermarking scheme includes a “Watermark” function that injects

the watermark and a “Detect” function that takes a suspect text sequence y1:n as input

and outputs a prediction of 1 (“It is watermarked!”) or 0 (“It is not!”).

A wrong accusation of non-watermarked text as watermarked is called a false positive.

A failure to detect a watermarked text is called a false negative. The performance of a

watermark is measured by its detection power (i.e., 1−false negative rate) at a given false

positive rate.

There are many other necessary properties for a watermarking scheme to be useful,

such as low-overhead, model-agnostic detection, and resilience to edits and other evasion

attacks. We refer readers to the slide deck of [27] and the related work section of [6] for

a review of these desiderata and known results.

Among the recent attempts, two popular watermarking schemes perform satisfactorily

on all the above criteria.

Gumbel Watermark [27] that uses a “traceable” pseudo-random softmax sampling

when generating the next word.

Green-Red Watermark [26] that randomly splits the vocabulary into Green and Red

then slightly increases the logits for green tokens.

Both of them determine their pseudo-random seeds chosen according to the m preceding
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tokens of the current token being generated. We will focus on explaining the Gumbel

watermark as it is more closely related to our approach.

[27]’s Gumbel watermark. The key idea of the Gumbel watermark leverages the

“Gumbel-Max Trick”, which states that:

Fact 3.3.1 ([72]). The softmax sampling in (3.1) is equivalent to the following procedure

yt = arg max
y∈V

ut(y)

T
+ Gt(y) (3.2)

where Gt(y) ∼ Gumbel(0, 1) i.i.d for each t, y.

Gumbel noise can be generated using a uniform r.v..

Gumbel(0, 1) ∼ − log (log(1/Uniform([0, 1]))) .

So given a random vector rt ∼ (Uniform([0, 1]))|V|, we can write Gt(y) = − log(− log(rt(y))).

The Watermark stage for the Gumbel-watermark essentially replaces Uniform([0, 1])

with a pseudo-random function rt(y) = Fyt−m:t−1,k(y). Given the secret key k, the pseudo-

random function is a deterministic function with range [0, 1]V , but over the distribution

of the secret key k, rt is computationally indistinguishable from sampled from truly i.i.d.

uniform distribution, which ensures that the distribution of yt in the watermarked model

is computationally indistinguishable to the unwatermarked distribution (3.1).

At Detect phase of the the Gumbel watermark, the auditor who has access to the key

k may compute

TestScoreGumbel(y1:n) =
n∑

t=m+1

− log(1− rt(yt)).

If y1:n is not generated from the watermarked model, then the test statistic is a sum of

exponential random variable thus E[TestScore(y1:n)] = n−m.
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Meanwhile, it was shown by [27] that if y1:n is generated by the Gumbel watermarked

model,

E[TestScore(y1:n)] =
n∑

t=m+1

E

[∑
y∈V

pt(y)H 1
pt(y)

]
(3.3)

≥ (n−m) +

(
π2

6
− 1

) n∑
t=m+1

E [Entropy[pt(·)]] . (3.4)

where pt := Softmax(ut), Hα :=
∫ α

0
1−xα

1−x
dx is Euler’s Harmonic number and Entropy de-

notes the standard Shannon entropy (in nats) for a discrete distribution, i.e., Entropy[p] =

−
∑

y∈V p(y) log p(y).

Permute-and-Flip as ReportNoisyMax. It turns out that the Permute-and-Flip

sampling has a similar equivalent Report-Noisy-Max form. Instead of Gumbel noise, it

is the exponential noise that are added to the logits. This less-known fact is due to [71]

Fact 3.3.2 ([71, Theorem 5]). Permute-and-Flip Sampling in Algorithm 5 with parameter

T is equivalent to

yt = arg max
y∈V

ut(y)

T
+ Et(y). (3.5)

where Et(y) ∼ Exponential(1) i.i.d. for each t, y.

Leveraging this fact, in the remainder of the section, we develop a watermarking

scheme for ReportNoisyMax that is analogous to the Gumbel-watermark.

Permute-and-Flip watermark. The natural idea is to replace the exponential noise

Et(y) with a pseudo-random version that depends on a secret key and a prefix with

length m. Observe that Exponential(1) ∼ − log(Uniform([0, 1])), thus the standard

pseudo-random function that generates uniform random variables can be used. In the
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Algorithm 6 PF watermarking: Watermark
1: Preparation: Randomly sample a watermark key k.
2: Input: Prompt x, language model M, pseudo-random function F , watermark key

k, temperature T
3: for t = 1, 2, · · · do
4: Compute logits: ut ←M([x, y1:t−1])
5: Generate a pseudo-random vector rt(·) using rt(y) := Fyt−m:t−1,k(y) for y ∈ V .
6: Select the next token yt using

yt = arg max
y∈V

(
ut(y)

T
− log rt(y)

)
. (3.6)

7: end for
8: Output: Watermarked sequence y = [y1, ..., yn]

Algorithm 7 PF watermarking: Detect
1: Input: Suspect text y1:n, watermark key k, pseudo-random function F , target false

positive rate α
2: Output: Binary decision (1 if text is watermarked, 0 otherwise)
3: Calculate the cumulative score

TestScorePF(y1:n) =
n∑

t=m+1

− log(rt(yt)) (3.7)

where rt(y) = Fyt−m:t−1,k(y)
4: if TestScore > CDF−1

Gamma(n−m,1)(1 − α) then return 1, i.e., “The suspect text is
watermarked.”

5: else return 0, i.e., “The suspect text is not watermarked.”

detection phase, we compute:

TestScorePF(y1:n) =
n∑

t=m+1

− log(rt(yt)).

Note that this is a simple change of sign of rt(yt) comparing to the test score of the

Gumbel watermark. Detailed pseudo-code for how the watermark works are given in

Algorithm 6 and Algorithm 7.
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Theorem 3.3.3. Assume the pseudo-randomness is perfect2, i.e., Fw1:m,k(y) ∼ Unif([0, 1])

i.i.d. ∀[w1:m, y] ∈ Vm+1.

The following are true about PF watermark scheme.

1. If y1:n is statistically independent to the secret key k,

E [TestScorePF(y1:n)|y1:n] = n−m.

2. If in addition, all m-grams in y1:n are unique, then conditioning on y1:n,

TestScorePF(y1:n) ∼ Gamma(n−m, 1).

The choice τ = CDF−1
Gamma(n−m,1)(1 − α) ensures the false positive rate in Algo-

rithm 7 is equal to α.

3. Assume y1:n is drawn from Algorithm 6, then

E [TestScorePF(y1:n)] =
n∑

t=m+1

E

∑
y∈V

∫ eut(y)−u∗t

0

(
− log r ·

∏
y′∈V,y′ ̸=y

(
1− r · eut(y′)−ut(y)

))
dr

 .

(3.8)

The above expression in (3.8) may appear messy, but it is the exact calculation and

captures the entropy of the distribution PF-induces for a given ut. To see this, let us

instantiate the bound for two special cases that admit more explicit forms.

Example 3.3.4. When Softmax(ut) is 1/k for an arbitrary subset of k tokens and 0 for

others,

E[− log(rt(yt))] := Hk = 1 + 1/2 + ... + 1/k ≈ log k.

Specifically, when k = |V| this is the uniform distribution, (3.8) ≍ n log |V| while when

k = 1, the sequence is completely deterministic (e.g., when the LLM is asked to recite

2This is a simplifying assumption. We only need (n−m)|V|-way independence.
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the “Declaration of Independence”), then we get (3.8) = n−m as expected.

In the above example, (3.8) is identical to the expected TestScore of the Gumbel

watermark in (3.3). This is because the distributions they sample from are also the same.

To illustrate their difference, let us revisit the simple two-token case from Example 3.2.2

again for which we can work out the expectation of the test score explicitly.

Example 3.3.5. Let the |V| = 2 and the corresponding logits be [∆, 0]. The expected

TestScore of the Gumbel and the PF watermark (for each watermarked token) are:

H
1+e−∆/T

1+e−∆/T +
H

1+e∆/T

1+e∆/T and 1 + 1
2
e−∆/T (1 + ∆/T ) respectively, where Hx is the xth Harmonic

number.

It is a bit hard to compare them by reading the mathematical expressions, so let us

compare them numerically (see Figure 3.2). The vertical axis in the figures measures

Detectability, which we define to be the expected difference between the TestScore of

a watermarked and unwatermarked token. Since under the null the E[− log(rt(yt))] =

E[− log(1−rt(yt))] = 1, we can simply subtract 1 from the expressions in Example 3.3.5.

Figure 3.2 indicates the PF watermark does not beat the Gumbel watermark in terms

of detectability when T is fixed. This should not be surprising since for the same temper-

ature, PF watermark is better at optimizing (recall Example 3.2.2 and Figure 3.1), thus

naturally the resulting distribution has less entropy to be exploited by the watermarking

scheme.

A more fair comparison, would be to increase the temperature for PF watermark ap-

propriately so we compare detectability when the suboptimality is aligned. This is shown

in Figure 3.3. In fact we have added a second baseline that apply Gumbel watermark

to the induced sampling distribution from PF-decoding (shown as the dotted line). The

distribution induced by PF does not have a simple form, but in our special case, it was

worked out in Example 3.2.2.
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Figure 3.2: Comparing the detectability of PF watermark vs Gumbel watermark using
Example 3.3.5. On the left, we fix the Gap ∆ = 3.0 and vary T . On the right, we fix
T = 1.0 and vary ∆. Gumbel watermark offers higher detectability as expected since
PF is more greedy when T is the same.
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Figure 3.3: Comparing the detectability-greediness tradeoff of PF watermark vs Gum-
bel watermark in the two token case. The Gap ∆ = 3.0, both curves are traced out
by varying the temperature T – with a “zoomed-in” view on the RHS.

As we can see in Figure 3.3, the PF watermark is never worse and even has a slight

advantage in the middle. To say it differently, to achieve the same suboptimality, the PF

watermark can afford to use a larger temperature, which not only improves the robustness

parameter but also compensates it sufficiently on the detectability front to outperform

the Gumbel watermark. In practice, we expect PF watermark to be as effective as the

Gumbel watermark, and could even be a bit better (if the temperature parameter is

chosen appropriately).

In conclusion, we showed that the watermarked version of PF-decoder is computa-
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tionally indistinguishable from the original version of PF-decoder. Meanwhile, the test

score of the PF watermark is qualitatively similar to that of the Gumbel-watermark (and

identical in some cases). It is likely to produce similar detectability to the Gumbel water-

mark, while enjoying the performance boost that comes from replacing softmax sampling

with PF.
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3.4 Experiments

Method AUC↑ TPR↑ PPL1↓ PPL2↓ Seq-rep-5↓ MAUVE↑

C4, T=1.0, Llama2-7B
Greedy - - 1.140.01 1.240.03 0.56 0.05
Sampling - - 12.470.32 15.310.41 0.02 0.98
PF - - 8.940.20 10.750.25 0.03 0.90
KGW WM 0.989 0.991 16.620.38 20.620.49 0.01 1.00
Gumbel WM 0.997 0.988 11.410.27 14.120.36 0.04 0.93
PF WM 0.995 0.984 8.330.20 10.280.29 0.05 0.99

C4, T=0.8, Llama2-7B
Greedy - - 1.140.01 1.240.03 0.56 0.05
Sampling - - 4.230.06 4.910.08 0.06 1.00
PF - - 3.540.06 4.110.08 0.10 0.92
KGW WM 0.995 0.991 5.780.08 6.770.11 0.03 0.99
Gumbel WM 0.995 0.982 4.030.07 4.710.09 0.10 1.00
PF WM 0.993 0.980 3.380.07 3.990.10 0.13 1.00

Alpaca, T=1.0, Llama2-7B-Chat
Greedy - - 1.280.02 1.750.03 0.12 0.93
Sampling - - 1.740.02 2.410.04 0.09 0.86
PF - - 1.650.02 2.300.04 0.09 0.98
KGW WM 0.961 0.596 2.200.04 3.000.06 0.08 0.93
Gumbel WM 0.986 0.858 1.700.02 2.350.04 0.10 0.93
PF WM 0.979 0.810 1.690.03 2.370.04 0.10 1.00

Alpaca, T=1.0, TinyLlama-1.1B-Chat
Greedy - - 1.410.01 1.660.02 0.30 0.99
Sampling - - 2.730.04 3.710.06 0.11 1.00
PF - - 2.530.03 3.440.06 0.12 0.98
KGW WM 0.998 0.991 3.810.06 5.280.09 0.07 0.99
Gumbel WM 1.000 0.995 2.670.04 3.580.06 0.12 1.00
PF WM 0.999 0.986 2.360.04 3.150.07 0.14 0.94

Table 3.2: Text generation results for different methods. The true positive rate (TPR)
is calculated under 0.01 false positive rate (FPR). PPL1 refers to perplexity measured
by Llama2-7B models. PPL2 is perplexity calculated by the Llama2-13B model. For
general text generation, PF decoding produces significantly lower perplexity compared
to sampling. For watermarking methods, PF watermark also produces lower perplex-
ity compared to KGW watermark and Gumbel watermark.

In this section, we conduct experiments to evaluate PF decoder’s general performance

as well as its watermark detection ability, watermarked text quality, and watermark

robustness against attacks.
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Figure 3.4: TestScore distribution. We calculate the average TestScore of the PF
watermark and Gumbel watermark using Llama2-7B (T=1.0) on the C4 dataset. The
length of the suspect texts is fixed at 200 tokens. A clear gap emerges between positive
samples (watermarked) and negative samples (unwatermarked and human-written),
indicating the watermark detectability.
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Figure 3.5: Trade-off between detection accuracy (TPR at FPR=0.01) and text quality
(PPL) across three watermark configurations on the C4 dataset, with temperature
settings ranging from 0.2 to 1.0. Each data point represents the outcome for 500
watermarked texts. The PF watermark achieves the optimal balance of the highest
detection accuracy and lowest perplexity.

Datasets and models. We utilize two long-form text datasets in our experiments:

the Colossal Clean Crawled Corpus (C4) dataset [54] for open-ended text completion

generation, and the Alpaca dataset [73] for question-answering tasks. Our primary lan-
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guage model is the state-of-the-art open-source model Llama-2 with 7 billion parameters.

Specifically, we use the Llama-2-7B-chat model for question-answering tasks on the Al-

paca dataset. For text completion tasks on the C4 dataset, we employ the base model

Llama-2-7B. Furthermore, to evaluate the universal applicability of smaller models, we

also assess the performance of the TinyLlama-1.1B model3 [74].

Evaluation metrics. We calculate perplexity scores from different models, using

Llama2-7B to compute PPL1 and Llama2-13B to compute PPL2. We also compute

MAUVE scores to measure the distributional similarity between model generations and

human text as another metric for text quality [75]. To evaluate repetitiveness, we compute

seq-rep-5 across generations, which is the average repetition rate of duplicate 5-grams in

a sequence [76]. For the watermark evaluation, maintaining a low false positive rate is

crucial to avoid misclassifying unwatermarked text as watermarked. Therefore, we set

the false positive rates at 1% and 10% for all watermark detection algorithms, adjusting

the detection threshold accordingly. We report true positive rate (TPR) and F1 scores

to measure the watermark detectability. We compared the well-known Gumbel Water-

mark (Gumbel WM) and Green-Red Watermark (KGW WM) as our main baselines.

Experiments were conducted using Nvidia A600 GPUs. For the details of the experiment

setting, please refer to the Appendix 3.5.

Text generation performance. Table 3.2 shows the text perplexity of generated

samples from different LLMs evaluated on two datasets. Using the same temperature,

we find that PF decoding produces significantly lower perplexity compared to sampling.

Although greedy decoding has the lowest perplexity, it suffers from heavy repetition,

as indicated by its high seq-rep-5 score and low MAUVE score. We observe that for

question-answering tasks, the perplexity is lower, likely due to the fixed form of answers

3https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
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Figure 3.6: Comparison of empirical and theoretical false positive rates with different
watermark keys. We can see that the second statement of Theorem 4.3 correctly
controls the Type I error in practice.

and lower entropy of the text generation. Table 3.5 shows an example prompt and

responses generated by different decoding methods.

Watermarking results. We compare the results of our proposed PF watermarking

method with those of the Gumbel Watermark (Gumbel WM) and the Green-Red wa-

termark (KGW WM). In Figure 3.4, we present the distribution of detection scores for

the PF watermark. The PF watermark demonstrates clear detectability between positive

and negative samples. The results of the watermark generation are shown in Table 3.2

and Figure 3.5. The PF watermark achieves the best balance of the highest detection

accuracy and lowest perplexity, compared to the KGW WM and the Gumbel WM. No-

tably, the perplexity of the PF watermark is close to that of the PF sampling, indicating

that the watermarking process does not significantly impact the quality of the gener-

ated text. All watermarking methods achieved near-perfect detection accuracy on the

C4 dataset. Besides, the detection results for the small TinyLlama model are also good,

demonstrating the universal applicability of the PF watermark.
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Controlling the false positive rate. The key strength of PF watermark is its ability

to precisely control the false positive rate (FPR) during detection. We validate this

by conducting experiments using negative examples from diverse datasets (C4, Alpaca,

unwatermarked) and different random keys. As Figure 3.6 shows, the empirical false

positive rates align tightly with the theoretical α values across different settings. This

demonstrates PF watermark’s effectiveness in controlling the FPR as intended.

Additional watermarking results. For a text watermarking design to be effective,

it should be able to withstand paraphrasing attacks that an adversary may attempt

to modify the watermarked text. Furthermore, the watermark should be detectable

even with shorter text lengths. In Appendices 3.5.1.1 and 3.5.2.2, we present additional

empirical results for the PF watermark, demonstrating its robustness to paraphrasing

and editing attacks. The results also show that the PF watermark can still be detected

even when the length of the text is reduced to only 30 tokens.

3.5 Conclusion

We introduce Permute-and-Flip (PF) decoding, a new decoding method for large

language models that enjoys the same – perturbation-robustness guarantees as softmax

sampling while achieving substantially lower perplexity. We design a tailored water-

marking scheme (PF watermark) for PF decoding that enables precise control over false

positive rates while retaining high true positive rates. Our experiments demonstrate that

the PF watermark achieves the best balance of the highest detection accuracy and lowest

perplexity. All these intriguing properties make PF decoding a promising new approach

for practical applications of large language models.
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Impact Statements

The introduction of the Permute-and-Flip (PF) decoder enhances the quality and

security of language model outputs, marking a step forward for the field. The PF

watermarking scheme in particular enables content verification through cryptographic

watermarks, promoting the responsible use of AI text generation. While improving ap-

plications across sectors, our work also prompts important discussions regarding trust

in machine-generated content and implications for copyright and creative sectors. We

emphasize the need to consider ethical factors and societal impact alongside technolog-

ical advancements in language models. Our goal is to contribute positively through a

balanced approach - advancing machine learning while safeguarding its applications.

Additional Experiment Details

We provide additional details on the experiments here. We use the C4 [54] and

Alpaca [73] datasets. Specifically, we select samples from C4 with text longer than 500

tokens, using the first 200 tokens as the prompt input to the language model and the next

300 tokens as the human-generated reference. This gives us 600 examples. For Alpaca,

we select samples with prompts/instructions longer than 25 tokens and answers also

longer than 25 tokens, giving 550 examples. Since Llama2-Chat is a fine-tuned version

of Llama-2 optimized for dialogue, we use the Chat version (Llama-2-7B-Chat4) for the

question-answering task and the base model (Llama-2-7B5) for the text completion task.

Given that PF decoding can integrate with Top-p sampling, which initially selects

the top p tokens before normalization, we conduct the performance tests using a p = 1.0

for full sampling. The max generation length is set to 256 tokens for all experiments.

4https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
5https://huggingface.co/meta-llama/Llama-2-7b-hf
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For perplexity calculation, we observe high variance with different methods, often

influenced by outliers. To address this, we remove the top and bottom 3% of perplexity

scores as outliers and then calculate the average perplexity and standard error. For

MAUVE scores, we use the human-written references from C4 and Alpaca as the human

distribution.

For watermarking experiments, we generate 500 watermarked and 500 unwatermarked

sentences per method. We label them as “watermarked” and “unwatermarked” respec-

tively, with corresponding human-written text as “human” for each prompt. Following

[26], we use a watermark strength of δ = 2.0 and green list ratio of γ = 0.5 for the KGW

watermark. For fair comparison, we use the same long prefix as the pseudo-random

function, hashing the previous m tokens to get the random vector for Gumbel/PF wa-

termarks, or to split the green/red token lists. For the watermark robustness test (Table

3.3) we use a 4-token prefix, and an 8-token prefix elsewhere. For the false positive con-

trol, we use 3000 negative examples, with 1500 from C4/Alpaca human text and 1500

unwatermarked model-generated text. In our robustness testing, we evaluate two con-

figurations of the DIPPER [45] model: DIPPER-1 with lexical diversity L=40, order

diversity O=40, and DIPPER-2 with L=40, O=100.

3.5.1 PF Watermark Robustness Results.

To evaluate the robustness of the watermark detection, we test the PF watermark

under paraphrasing and text editing attacks. We employ various paraphrase attack

techniques intended to remove the watermark text. The experiments are conducted with

a 4-token prefix for the pseudorandom function. Firstly, we utilize two versions of the

DIPPER paraphrasing model [45], denoted as DIPPER-1 and DIPPER-2. DIPPER-

2 generates more diverse paraphrases than DIPPER-1. Moreover, we test a random
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Setting Method AUC
1% FPR 10% FPR

TPR F1 TPR F1

No attack
KGW 0.998 0.996 0.989 1.000 0.906
Gumbel 0.992 0.979 0.979 0.986 0.913
PF 0.996 0.977 0.980 0.993 0.898

DIPPER-1
KGW 0.661 0.057 0.105 0.317 0.416
Gumbel 0.838 0.367 0.529 0.642 0.697
PF 0.824 0.374 0.537 0.622 0.684

DIPPER-2
KGW 0.638 0.051 0.096 0.278 0.375
Gumbel 0.764 0.239 0.380 0.523 0.608
PF 0.795 0.250 0.394 0.544 0.625

Random KGW 0.936 0.484 0.644 0.881 0.844
Delete (0.3) Gumbel 0.981 0.941 0.960 0.959 0.898

PF 0.985 0.936 0.956 0.966 0.888

Table 3.3: Detection results for three watermarking methods using Llama2-7B on the
C4 dataset under different attacks.

word deletion attack, which is a common technique used to manipulate text. These

experiments represent realistic scenarios where an adversary may attempt to remove

watermarks through paraphrasing or editing. The results, shown in Table 3.3, illustrate

the robustness of the PF watermark to these paraphrasing and editing attacks. The

PF watermark achieves comparable detection performance to the Gumbel watermark

and KGW watermark methods when using the same long prefix as the pseudorandom

function.

Length AUC
1% FPR 10% FPR

TPR F1 TPR F1

200 0.994 0.977 0.978 0.985 0.915
150 0.993 0.975 0.980 0.985 0.913
100 0.992 0.970 0.972 0.983 0.911
50 0.987 0.950 0.966 0.970 0.902
30 0.980 0.923 0.950 0.953 0.888

Table 3.4: PF watermark detection results with different lengths.
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3.5.2 Impact of Text Length on Watermark Detection.

Our watermarking method aims to be effective across texts of varying lengths. To

evaluate this, we conducted experiments to analyze the impact of text length on water-

mark detection performance. Texts are truncated to 30, 50, 100, 150, and 200 tokens.

The results, shown in Table 3.4, validate the robustness of our approach to different text

lengths. Watermark detection accuracy is consistently high even with only 30 tokens.

3.6 Proofs of Technical Tesults

3.6.1 Permute and Flip Sampling

First, let us calculate the probability of Permute-and-Flip sampling from Line 3-9 of

Algorithm 5. We will use the equivalent ReportNoisy(Arg)Max form from Fact 3.3.2.

wt = arg max
w∈V

(uw,t − log rw,t)

First, observe that the event that “w is selected” is the same as the event that for

uw − log rw > uw′ − log rw′ for all w′ ̸= w.

Observe that for each w′, this event is equivalent to a range of integral for w′

uw − log rw > uw′ − log rw′ ⇔ log rw′ > −uw + uw′ + log rw ⇔ rw′ > rwe
uw′−uw (3.9)
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We have

Pr[w is selected] = E [1 (w is selected)]

=

∫ 1

0

∏
w′ ̸=w

(∫ 1

0

1 (uw − log rw > uw′ − log rw′) dw′
)

drw

=

∫ 1

0

∏
w′ ̸=w

(∫ 1

rw exp (uw′−uw)

drw′

)
drw

=

∫ 1

0

∏
w′ ̸=w

(
1− rw · euw′−uw

)
+

drw

=

∫ euw−uw∗

0

∏
w′ ̸=w

(
1− rw · euw′−uw

)
drw (3.10)

=

∫ p(w)
p(w∗)

0

∏
w′ ̸=w

(
1− rw ·

p(w′)

p(w)

)
drw

where (x)+ := max(0, x), and p(·) := Softmax(u). In the above, w∗ = arg maxw uw, and

observe that

• If w = w∗, (1− rw · euw′−uw) cannot be negative, and euw−uw∗ = 1.

• If w ̸= w∗, then for rw ≤ euw−uw∗ , we can drop the clipping.

In both cases, we can integrate to euw−uw∗ , and drop the clipping in (·)+.

Proof of Example 3.2.2. When we have only two tokens in the vocabulary and u = [∆, 0]

The probability of softmax sampling is immediate. As for PF sampling, the results are

obtained by instantiating (3.10) and solving the integrals for w = a and w = b where V =

{a, b}. a is w∗, so the integral becomes Pr[a is selected] =
∫ 1

0
(1− re−∆)dr = 1− 0.5e−∆.

The Pr[b is selected] = 0.5e−∆.
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3.6.2 Permute and Flip Watermarking

Our analysis in this section focuses on the idealized situation when the pseudo-random

function is perfectly iid uniformly random.

Recall that the Permute and Flip watermark works as follows.

1. Sample the random number ry from uniform distribution ry ∼ Unif(0, 1) for all

y ∈ V .

2. Output yt = arg maxw∈V (uy,t − log ry,t)

3. Detection statistic
∑n

t=n−m+1− log rt,yt

Proof of Theorem 3.3.3. The first statement calculates the test score under the null hy-

pothesis where the suspect text is not watermarked, i.e., it is statistically independent to

the secret key k thus independent to F and by extension to rt,·. Thus in this case, when

conditinoing on y1:n, rt,y remains uniformly distributed for every y ∈ V including the yt

we conditioned on. − log(rt,yt) ∼ Exponential(1) for each t, thus the expected value is is

1 for each token. The total is n−m.

The second statement requires stronger assumption on the pseudo-random number

generator. The generated random vectors in each step needs to be mutually independent

for all subset of of length n −m among the set of all m-grams, which is implied by the

even stronger condition of perferct independent randomness assumed in this theorem,

and the fact that there are no duplicate m-grams prefixes among the n − m of them.

Clearly, sum of n − m independent exponential R.V.s satisfies an Erlang distribution

with shape parameter n−m. The inverse CDF claim follows directly.

Let’s now prove the third statement under the alternative hypothesis when the text

y1:n is actually generated according to the watermarking scheme.

We will focus on − log rw,t for t = m − 1, 2, . . . , n. Drop subscript t for now. Let ŵ

be the selected token.
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E[− log rŵ] =
∑
w∈V

P(w is selected)E[− log rw|w is selected]

=
∑
w∈V

E[− log rw · 1 (w is selected)]

Fix w, let us calculate E[− log rŵ · 1 (w is selected)].

Again, use (3.9) and follow the same lines of arguments as we calculate the probabil-

ities, we get:

E [− log rŵ · 1 (w is selected)]

=

∫ 1

0

− log rw
∏
w′ ̸=w

(∫ 1

0

1 (uw − log rw > uw′ − log rw′) dw′
)

drw

=

∫ 1

0

− log rw
∏
w′ ̸=w

(∫ 1

rw exp (uw′−uw)

drw′

)
drw

=

∫ 1

0

− log rw
∏
w′ ̸=w

(
1− rw · euw′−uw

)
+

drw

=

∫ euw−uw∗

0

− log rw
∏
w′ ̸=w

(
1− rw · euw′−uw

)
drw (3.11)

=

∫ p(w)
p(w∗)

0

− log rw
∏
w′ ̸=w

(
1− rw ·

p(w′)

p(w)

)
drw.

Finally, observe that the proof is complete because (3.11) is what Statement 3 states.

The examples we gave essentially just instantiate (3.11) to cases where the integral

can be solved by simple integration by parts.
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Proof of Example 3.3.4. Deterministic ⇒ P(w∗) = 1

E [− log rw · 1 (w is selected)] =

∫ P(w)

P(w∗)

0

− log rw
∏
w′ ̸=w

(
1− rw ·

P(w′)

P(w)

)
drw

=

∫ 1

0

− log rw drw =


1 for w = w∗

0 otherwise

Fully random ⇒ uw = u′
w = 1

N
for all w,w′.

E [− log rw · 1 (w is selected)] =

∫ P(w)

P(w∗)

0

− log rw
∏
w′ ̸=w

(
1− rw ·

P(w′)

P(w)

)
drw

=

∫ 1

0

− log rw(1− rw)N−1 drw

=

∫ 1

0

log rw ·
1

N
d
[
(1− rw)N − 1

]
= −

∫ 1

0

1

N

[
(1− rw)N − 1

]
d log rw

=

∫ 1

0

1

N

1− (1− rw)N

rw
drw

=

∫ 1

0

1

N

1− uN

1− u
du

=
1

N
HN

Hα is the α-th Harmonic number Hα :=
∫ α

0
1−xα

1−x
dx. The stated k-subset example is

implied by the fully random case.

Proof of Example 3.3.5. The case with two variables is a special case of the one-off model

below with N = 2.

Example 3.6.1 (One-Off model). Let the logits be [−∆, 0, ..., 0] with a total length of

N .
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The probability distribution [p1, ..., pN ] from Permute-and-Flip satisfies

p1 =
1

e∆N
, p2 = p3 = ... = pN =

1

N − 1
− e−∆

N(N − 1)
.

E[− log(rŵ)] = HN−1 +
(1 + ∆)e−∆

N
.

Proof. By (3.10), for the first token (with logits −∆) we get its probability is equal to

∫ e−∆

0

(1− e∆r)N−1dr =
e−∆

N
.

the remaining tokens has probability equal to 1/(N − 1) of 1− e−∆

N
.

By (3.11) we have that for w = 1 (the suboptimal token with logits = −∆.

E[− log rt,w1(w is selected)] =

∫ e−∆

0

(1− e∆r)N−1dr =
∆ + HN

e∆N

For other (optimal) tokens, we get that

E[− log rt,w1(w is selected)] =

∫ 1

0

− log r(1−r)N−2(1−e−∆r)dr =
HN−1

N − 1
−e−∆ HN − 1

N(N − 1)

All integrals follows from Lemma 3.6.2.

E[− log(rw)] = (N − 1)

(
HN−1

N − 1
− e−∆ HN − 1

N(N − 1)

)
+

∆ + HN

e∆N

= HN−1 +
(1 + ∆)e−∆

N
.
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Lemma 3.6.2. for any a > 0 and N > 1.

∫ 1/a

0

− log x(1− ax)N−1dx =
log a + HN

a + N

∫ 1

0

− log x(1− x)n−2dx =
HN−1

N(N − 1)

Proof. The proofs of both integrals follow from integration by parts. These were checked

formally using WolframAlpha. The details are omitted.

More on Related Work

3.6.3 Language Model Decoding.

The decoding strategy used in text generation greatly impacts the resulting text’s

quality and diversity. Traditional deterministic algorithms, like greedy decoding and

beam search, often lead to repetitive text [60]. To address this, diverse beam search

(DBS) [77] has been developed to promote diversity in text generation. Stochastic de-

coding strategies, such as Top-k and Top-p (Nucleus) [58] sampling, balance randomness

and determinism, selecting from the most likely tokens to enhance variety while main-

taining coherence. The Bayes Minimum Risk (MBR) method minimizes expected risk

and incorporates a utility function to navigate trade-offs between text attributes. Ad-

vanced techniques have been developed to improve decoding for large language models,

including the imposition of constraints [78, 79, 80, 62], enhancing text quality [81], and

speeding up the decoding process [82].

Our contributions are complementary to these existing methods in that we are the

first to introduce a rigorous robustness definition and study the tradeoff between utility

(e.g. perplexity) and robustness. Permute-and-flip sampling can be used as a drop-in
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replacement for softmax sampling whenever it is used, e.g., in standard full sampling or

nucleus (Top-p) sampling. We also provide watermarking capabilities for PF-decoder.

We believe that the PF decoder has the potential to become a promising new approach

for language model decoding.

3.6.4 Detect AI-generated Text

Another major motivation of the work is to come up with a reliable method for de-

tecting AI-generated text, so as to prevent LLM misuse. We briefly review two categories

of existing work on this problem.

Post-hoc detection. Post-hoc detection of LLM-generated text encompasses two main

approaches: zero-shot detection and training-based detection. Zero-shot detection is

characterized by its capacity to identify AI-generated text without needing specific train-

ing data, leveraging the inherent stylistic differences between human and machine writ-

ing. Techniques within this category, such as DetectGPT [22], PHD [83], DNA-GPT [84],

and Fast-DetectGPT [85], utilize metrics like log-probability scores, n-gram frequencies,

lower intrinsic dimensionality, and conditional probability to differentiate AI-generated

content. In contrast, training-based detection involves fine-tuning pre-trained language

models on datasets that consist of both human and LLM-generated texts to build a clas-

sifier. This method is exemplified by various systems, including commercial detection

platforms [24, 86, 87], and research projects [88, 89, 90, 91], which leverage the capa-

bilities of large language models to effectively classify text origins. However, despite

post-hoc detection’s effectiveness in many cases, recent studies show detection methods’

robustness is limited across different scenarios. They have proven fragile to adversarial

attacks and biased against non-native English writers [37, 38, 25, 92]. Limitations in

accuracy even led OpenAI to close their detector in July 2023 [24].
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LLM watermarking. The watermarking approach provides a direct solution for AI

text detection by intentionally embedding detectable signals or “watermarks” within the

text. Unlike post-hoc detection, watermarking aims to determine if the text originates

from a specific language model and it is robust to distribution shifts. Evolving from ear-

lier techniques such as synonym substitution [31] and syntactic restructuring [32], modern

watermarking strategies involve integrating watermarks into the decoding process of lan-

guage models [9, 26]. [27] works with OpenAI to first develop a Gumbel watermark that

uses a “traceable” pseudo-random softmax sampling when generating the next word. [26]

split the vocabulary into red-green lists based on hash values of previous n-grams and

then increase the logits of green tokens to embed the watermark. [6] provides strong the-

oretical guarantees for the green-red watermarks and advocates the use of a consistent

red-green list to enhance robustness to evasion attacks. [28, 93, 65, 94] study watermarks

that preserve the original token probability distributions. Meanwhile, multi-bit water-

marks [95, 96] have been proposed to embed more complex information in the generation

tasks.

PF-watermark is a newcomer to the family of LLM watermarks. It is closest to the

Gumbel watermark [27] and enjoys all desirable properties of the Gumbel watermark. In

Section 3.3 we have thoroughly compared the two watermarks with theory and numerical

simulation, demonstrating that PF-watermarks offer a slightly improved detectability-

greedness tradeoff. Comparisons under real-data experiments were also presented in

Section 3.4.

Our results also have interesting implications for the green-red watermark [26]. For

example, we can consider a PF-sampling version of green-red watermark which may per-

form better than the current green-red watermark in terms of its detectability-distortion

tradeoff. Specifically, the robustness guarantee of the PF-decoder (Theorem 3.2.1 State-

ment 1) implies that PF Green-Red Watermark enjoys the same quality guarantee as
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is analyzed in [6, Theorem 3.1] for α = ∞, but the more concentrated distribution

might make the watermark more prominent / and more detectable for PF-sampling

based Green-Red watermark. A full exploration of this idea will be presented in a future

work.

3.6.5 Differential Privacy

While the current work is not about privacy, our technical approach heavily relies

on existing methods developed in the differential privacy literature. Specifically, the

permute-and-flip sampling was developed by [70] as an alternative to the classical expo-

nential mechanism [55] for the problem of differentially private selection. [71] shows that

the PF sampling is equivalent to returning the argmax of a noisy version of the utility

function perturbed by independent exponential noise. Moreover, robustness robustness

can be viewed as an algorithm-centric, input-specific version of pure-differential privacy

[43].

While some of the results we present are directly implied by existing work (e.g.,

Theorem 3.2.1), we believe it is a worthwhile (and hopefully beneficial) effort to introduce

these results and their implications to the broader machine learning community.

To our knowledge, we are the first to draw the connection between various versions

of Report-Noisy-Max (RNM) mechanisms in differential privacy to the LLM watermark-

ing problem. Besides Gumbel noise (Gumbel-watermark) and exponential noise (PF-

watermark), there are other versions of RNM that add, e.g., Gaussian noise [97, Corol-

lary 9]. We hope our work could inspire more interplay between these two research

areas.
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Prompt

Your role is that of a helpful Assistant tasked with responding to a user referred to as ’Human’. Focus
on providing natural, detailed, and diverse answers, ensuring they are both informative and engaging.
\nHuman: Sources predict that the stock price for Company A will either stay the same or go up for the
next 10 trading days. Pick a strategy for if the price will go up or stay the same. Assistant:

Greedy

Great question! If the stock price for Company A is expected to go up for the next 10 trading days, here are
a few strategies you could consider: \n 1. Buy more shares: If you already hold some shares of Company
A, you could consider buying more to take advantage of the expected price increase. This can help you
maximize your potential profits.\n 2. Sell a call option: A call option gives the holder the right, but not
the obligation, to buy the underlying stock at a specified price (strike price) within a specified time frame.
If you think the stock price will go up, you could sell a call option with a higher strike price [continues...]

Sampling

Thank you for reaching out! I’m here to help. Based on the information provided, there are several possible
strategies that an investor could consider for their investment in Company A.\n \n Before we dive into the
specific strategies, it’s important to understand that investing in the stock market always carries inherent
risks. The value of stocks can fluctuate rapidly, and there is always the possibility that an investment
may not perform as expected. Therefore, it’s essential to conduct thorough research, consult with financial
experts, and evaluate your risk tolerance before making any investment decisions.\n \n With that said, here
are a few strategies that an investor might consider if they believe that the stock price of [continues...]

PF

Hello Human! I’m glad you’re interested in learning more about Company A’s stock price. Based on your
prediction, I will provide a strategy for a potential increase in stock price. Please keep in mind that this is
purely hypothetical and not based on any actual market data or insider information.\n \n Human: What
are some potential reasons why the stock price of Company A may go up?\n Assistant: Excellent question!
There are several factors that could contribute to an increase in Company A’s stock price. Here are some
possible reasons:\n \n 1. Strong Financial Performance: If Company A reports strong financial results, such
as increased revenue or profitability, investors may become more optimistic about [continues...]

KGW
Watermark

Great, let’s dive into this! Based on the information provided, there are a few strategies you could consider
when making your decision.\n \n Firstly, you could consider buying more shares of Company A if you believe
the stock price will go up. This is because the increased demand for the shares will likely drive the price
higher, resulting in a potential profit for your investment. However, please remember that this is a high-risk
strategy, as there is no guarantee that the stock price will indeed increase.\n \n On the other hand, if you
think the stock price will stay the same, you could consider holding onto your current shares and waiting for
additional information to come to light. This approach is often referred to as ”buying and holding,” where
you hold onto your shares for a [continues...]

Gumbel
Watermark

Hi there, Human! That’s an interesting question. If the stock price for Company A is predicted to either
stay the same or go up for the next 10 trading days, here are a few strategies you could consider for either
scenario:\n \n 1. Buy and Hold: If the stock price is predicted to stay the same or go up, a buy and hold
strategy could be a good option. This involves buying a portion of the company’s stock and holding onto it
for a extended period of time, potentially for years. This approach aims to benefit from the long-term growth
of the company’s stock price, without worrying too much about short-term fluctuations.\n 2. Dollar-Cost
Averaging: Another strategy to consider is dollar-cost averaging. [continues...]

PF
Watermark

Great question! \n \n If the stock price for Company A is predicted to either stay the same or go up for the
next 10 trading days, there are several strategies you could consider viel diversify your portfolio. Here are
a few options:\n \n 1. Buy and hold: If you believe the stock price will continue to rise, you could consider
buying more shares of Company A and holding them for the long term. This approach can be less risky
than trying to time the market, but it also means you’ll miss out on any potential gains if the stock price
declines.\n 2. Diversification: Another strategy is to diversify your portfolio by investing in other stocks or
assets that are not directly related to Company A. This can help reduce your overall risk by spreading your
investments across different industries and sectors. [continues...]

Table 3.5: Comparison of different decoding methods.
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Chapter 4

Language Understanding Model

Watermark

How can we protect the intellectual property of trained NLP models? Modern NLP

models are prone to stealing by querying and distilling from their publicly exposed APIs.

However, existing protection methods such as watermarking only work for images but

are not applicable to text. We propose Distillation-Resistant Watermarking (DRW), a

novel technique to protect NLP models from being stolen via distillation. DRW protects

a model by injecting watermarks into the victim’s prediction probability corresponding to

a secret key and is able to detect such a key by probing a suspect model. We prove that

a protected model still retains the original accuracy within a certain bound. We evaluate

DRW on a diverse set of NLP tasks including text classification, part-of-speech tagging,

and named entity recognition. Experiments show that DRW protects the original model

and detects stealing suspects at 100% mean average precision for all four tasks while the

prior method fails on two. Our code is available at https://github.com/XuandongZhao/

DRW.
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4.1 Introduction

Large-scale pre-trained neural models have shown great success in NLP tasks [98, 99].

Task-specific NLP models are often deployed as web services with pay-per-query APIs in

business applications. Protecting the intellectual property of these cloud deployed models

is a critical issue in both research and practice. Service providers often use authentication

mechanism to authorize valid accesses. However, while this prevents clients directly

copying a victim model, it does not hinder clients from stealing it using distillation.

Emerging model extraction attacks have demonstrated convincingly that most functions

of the victim API are likely to be stolen with carefully designed queries [100, 101, 102,

103]. A model extraction process is often imperceptible because it queries APIs in the

same way as a normal user does [104]. In this chapter, we study the problem of model

protection for NLP against distillation stealing.

Little has been done to adapt watermarking to identify model infringements in lan-

guage tasks. Although a number of defense techniques have been proposed to prevent

the model extraction for computer vision, they are not applicable to language tasks with

discrete tokens. Among them, deep neural networks (DNN) watermarking [105, 106]

works by embedding a secret watermark (e.g., logo or signature) into the model exploit-

ing the over-parameterization property of DNNs. This procedure leverages a trigger set

to stamp invisible watermarks on their commercial models before distributing them to

customers. When suspicion of model theft arises, model owners can conduct an official

ownership claim with the aid of the trigger set. However, these protections all focus on

the image/audio tasks, since it is easy to modify the continuous data. In addition, most

watermarking methods are invasive and fragile. They cannot avoid tampering with the

training procedure in order to embed the watermark. Besides, the watermarks are out-

liers of the task distribution so that the adversary may not carry the watermark through
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distillation.

To fill in the gap, we make the first attempt to protect NLP models from distillation.

We propose Distillation-Resistant Watermarking (DRW) to protect models and detect

suspicious stealing. Inspired by the idea from CosWM for computer vision [107], we utilize

prediction perturbation to embed a secret sinusoidal signal to the output of the victim

API. To handle discrete tokens, we design a technique to randomly project tokens to a

uniform region within sinusoidal cycles. We design watermarking effective for distillation

with soft labels and with hard-sampled labels. As long as the adversary trains the

distillation procedure till convergence, DRW is able to detect the watermark signal from

the extracted model.

The advantages of DRW include 1) training independence: it works directly on the

trained models and can be directly plugged into the final output. 2) flexibility : it can

be applied to both soft-label output and hard-label output in the black-box setting. 3)

effectiveness : we evaluate the effectiveness of DRW and obtain perfect model extraction

detection accuracy; we also justify the fidelity with a negligible side effect on the original

classification quality. 4) scalability : the secret keys for the watermark are randomly

generated on the fly so that we are able to provide different watermarks for different

end-users and verify them.

The contributions of this chapter are as follows:

• We enhance the concept of model protection against model extraction attacks with

an emphasis on language applications.

• We propose DRW, a novel method to inject watermarks to the output of the NLP

models and later to detect if suspects distill from the victim.

• We provide a theoretical guarantee on the protected API accuracy — with protec-

tion DRW does not harm much of original API’s performance.
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• Experiments on four diverse tasks (POS Tagging/NER/SST-2/MRPC) verify that

DRW detects extracted models with 100% mean average precision, yet with only a

small drop (<5%) in original prediction performance.

4.2 Related Work

Model extraction attacks. Model extraction attacks target the confidentiality of

ML models and aim to imitate the function of a black-box victim model [100, 104, 108].

First, adversaries collect or synthesize an initially unlabeled substitute dataset. Next,

they exploit the ability to query the victim model APIs for label predictions to annotate

the substitute dataset. Then, they can train a high-performance model utilizing the

pseudo-labeled dataset. Recently, several works [102, 101, 103] attempt to address the

model extraction attacks on NLP models, e.g. BERT [98] or Google Translate.

Knowledge distillation. Model extraction attacks are closely related to knowledge

distillation (KD) [109], where the adversary acts as the student who approximates the

behaviors of the teacher (victim) model. The student can learn from soft labels or hard

labels. KD with soft labels has been widely applied due to the fact that soft labels can

carry a lot of useful information [110, 111].

Watermarking. A digital watermark is an undetected label embedded in a noise-

tolerant signal, such as audio, video, or image data. It is designed to identify the owner

of the signal’s copyright. Some works [112, 113, 114, 115] employ watermarks to pre-

vent precise duplication of machine learning models. They insert watermarks into the

parameters of the protected model or construct backdoor images that activate particu-

lar predictions. If an adversary exactly copies a protected model, a watermark can be

used to verify ownership. However, safeguarding models from model extraction attacks
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is more difficult due to the fact that the parameters of the suspect model might be vastly

different from those of the victim model, and the backdoor behavior may not be trans-

ferred to the suspect model either. Several works [116, 105, 106, 107, 117] study how

to identify extracted models that are distilled from the victim model. [106] forces the

protected model to acquire features for identifying data samples taken from authentic

and watermarked data. [117] conducts lexical modification as a watermarking method

to protect language generation APIs. CosWM [107] incorporates a watermark as a co-

sine signal into the output of the protected model. Since the cosine signal is difficult

to eliminate, extracted models trained via distillation will continue to have a significant

watermark signal. Nonetheless, CosWM only applies to image data and soft distillation.

We design multiple new techniques to extend CosWM in handling the text data with

discrete sequence and we provide a theoretical guarantee on the protected API accuracy

for soft and hard distillations

4.3 Proposed Method: DRW

4.3.1 Overview

Figure 4.1 presents an overview of distillation procedure, watermarking and detection.

The main idea of DRW is to introduce a perturbation to the output of a protected model.

This designed perturbation is transferred onto a suspect model distilled from a victim

model that remains identifiable by probing the suspect model.

Problem formulation. We consider a common real-world scenario that the adversary

only has black-box access to the victim model’s API V . There exist two types of output

from victim model API: soft (real-valued) labels (i.e. probabilities) and hard labels. The

adversary employs an auxiliary unlabeled dataset to query V . Once the adversary gains
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Unlabeled 
Dataset

Victim Model API

Watermark
Query

Predictions

Train

Adversary

Extracted Model 

Pseudo-labeled 
Dataset

Victim Model Process of model 
extraction attack

Probing 
Dataset

The suspect model extracted 
the victim model!

Suspect Model Key

Process of watermark 
detection

Key

Query

Figure 4.1: Overview of model extraction attack and watermark detection. The upper
panel illustrates that the API owner adds a sinusoidal perturbation to the predicted
probability distribution before answering end-users. The extracted model will convey
this periodical signal if the adversary distills the victim model. At the phase of
watermark detection, as shown in the bottom panel, the owner queries the suspect
model and applies the Fourier transform to the output with a key. Then, the designed
perturbation can be detected when a peak shows up in the frequency domain at
fw. The extracted watermark can thus serve as legal evidence and judgment for the
ownership claim.

the predictions from the victim model, it can train a separate model S from scratch with

the pseudo-labeled dataset. The adversary may either distill the victim model with hard

labels by minimizing the cross-entropy loss

LCE = −
m∑
i=1

ŷi log (q̂i) , (4.1)

where q̂i is the prediction from the stealer’s model and ŷ are the pseudo-labels from

the victim model; or distill from soft labels by minimizing the Kullback–Leibler (KL)

divergence loss

LKL =
m∑
i=1

ŷi log

(
ŷi

q̂i

)
. (4.2)
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4.3.2 Watermarking the Victim Models

DRW dynamically embeds a watermark in response to queries made by an API’s

end-user. We use a set of variables to represent key K = (c∗, fw,vk,vs,M), where

c∗ ∈ {1, . . . ,m} is the target class to embed watermark; fw ∈ R is the angular frequency;

vk ∈ Rn is the phase vector; vs ∈ Rn is the selection vector; M ∈ R|D|×n is the random

token matrix. |D| represents the vocabulary size, so that every token ID corresponds to

vector Mi ∈ Rn. Following [107], we define a periodic signal function based on K and

the input x.

zc(x) =

 cos (fwg(vk, x,M)) , c = c∗

cos (fwg(vk, x,M) + π) , c ̸= c∗
(4.3)

for c ∈ {1, . . . ,m}, where g(·) ∈ [0, 1) is a hash function projecting a text representation

to a scalar. Ideally, the scalar should uniformly distribute spanning multiple cycles.

Constructing the hash function. We project every input x into the fixed scalar range

to add the sinusoidal perturbation by the hash function g(·). We randomly generate

the phase vector vk, selection vector vs and the token matrix M. Each element in

{vk,vs} is randomly sampled from a uniform distribution over [0, 1). Each element of

the matrix M is randomly sampled from a standard normal distribution Mij ∼ N (0, 1).

Let Mi ∈ Rn denote the i-th row of matrix M, v⊤
k Mi ∼ N (0, n

3
) and v⊤

s Mi ∼ N (0, n
3
)

(we prove it in Appendix 4.5.2). Then we apply probability integral transformation to

obtain the uniform distribution of the hash values, where g(vk, x,M) ∼ U(0, 1) and

g(vs, x,M) ∼ U(0, 1). We set g(vs, x,M) ≤ τ to select part of all samples, where τ is

the data selection ratio. When implementing sequence labeling tasks, we use the token

ID to fetch the vector in matrix M. Similarly, when implementing sentence classification

tasks, we use the ID of the second token in the sentence to obtain the vector.
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Next we compute the periodic signal for the victim output

ŷc =


p̂c, g(vs, x,M) > τ

p̂c+ε(1+zc(x))
1+2ε , c = c∗ and g(vs, x,M) ≤ τ

p̂c+
ε(1+zc(x))

m−1

1+2ε , c ̸= c∗ and g(vs, x,M) ≤ τ

(4.4)

where ε is the watermark level for the periodic signal and p̂c is the victim model’s

prediction before watermarking. Since 0 ≤ ŷi ≤ 1 and
∑m

i=1 ŷi = 1 (see proof in

Appendix 4.5.3), ŷ is a surrogate for softmax output.

In the soft label setting, the victim model generates output ŷ directly; while in the

hard label setting, the victim model produces the sampling hard label, i.e. a one-hot label

with probability ŷi for each class i. Intuitively, the hard-label sampled output retains

the watermark because it is equal to ŷ in expectation. Further, we define the accuracy

for soft label output, named “argmax soft”, which calculates the accuracy of the argmax

of soft output compared with the true label. Similarly, we define “sampling hard” to

describe the output of the victim model which is a one-hot vector.

4.3.3 Detecting Watermark from Suspect Models

We first create a probing dataset Dp, for which the labels are not required. Dp can

be drawn from the training data of the extracted model since the owner is able to store

any query sent by a specific end-user. In our setting, we also allow Dp to be drawn from

other distributions.

We employ the Lomb-Scargle periodogram method [118] for detecting and character-

izing periodic signals. The Lomb–Scargle periodogram yields an estimate of the Fourier

power spectrum P (f) at frequency f in an unevenly sampled dataset. After getting the
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power spectrum, we evaluate the signal strength by calculating the signal-to-noise ratio

Psignal =
1

δ

∫ fw+ δ
2

fw− δ
2

P (f)df

Pnoise =
1

F − δ

[∫ fw− δ
2

0

P (f)df +

∫ F

fw+ δ
2

P (f)df

]

Psnr = Psignal /Pnoise , (4.5)

where δ controls the window width of
[
fw − δ

2
, fw + δ

2

]
; F is the maximum frequency,

and fw is the angular frequency embedded into the victim model. A higher signal-to-noise

ratio Psnr indicates a higher peak in the frequency domain.

Theoretical Analysis

In this section, we provide theoretical guarantees for DRW for both argmax soft

output and sampling hard output. The analysis assumes the victim is calibrated so its

soft-predictions are informative. We also focus on the binary classification task, i.e.,

m = 2. Generalization to m > 2 is straightforward and omitted only to ensure a clean

presentation.

Theorem 4.3.1. Without loss of generality, set target class c∗ = 1, so that p̂ = p̂1(x), ŷ =

ŷ1, z(x) = z1(x). Assume p̂(x) is calibrated, i.e., E[y|p̂(x) = a] = a, ∀0 ≤ a ≤ 1, the

argmax soft label of the victim model is ŷs = 1{ p̂(x)+ε(1+z(x))
1+2ε

> 0.5} and the sampling

hard label of the victim output is ŷh ∼ Ber( p̂(x)+ε(1+z(x))
1+2ε

). For a fixed vk, given that

z(x) = cos (fwg(vk, x,M)) ∈ [−1, 1] and the data selection ratio is set to τ , then DRW
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argmax soft label and sampling hard label satisfy:

Evk
[Acc(Argmax Soft)] ≥ Acc(Victim)− τ(0.5 + ε)P[0.5− ε ≤ p̂ ≤ 0.5 + ε], (4.6)

Evk
[Acc(Sampling Hard)] ≥ (1− τ)Acc(Victim) +

τ

1 + 2ε
E
[
2p̂2 − 2p̂ + 1

]
. (4.7)

The proof is deferred to Appendix 4.5.1.

Equation (4.6) says that, in the soft label setting, DRW does not hurt the accuracy

too much if the watermark level ε is small. Note that only samples in which the victim

model output lies around 0.5 (±ε) might be affected by the watermarking. These are

data points where the victim model is uncertain and inaccurate anyway.

Equation (4.7) lowerbounds the accuracy of the sampled hard labels, which is close

to the vanilla victim model if τ is small. Observe that if τ = 1, the accuracy may drop

even if the watermark magnitude ε = 0 due to the sampling of the output label1. Our

design of a second random projection vs plays an important role here as it allows us to

control the accuracy drop to any level we desire by adjusting τ .

4.4 Experiments

4.4.1 Tasks

We evaluate the performance of DRW on four different tasks. Two are sequence

labeling tasks, Part-Of-Speech (POS) Tagging and Named Entity Recognition (NER);

the other two are from GLUE [119] text classification tasks, SST-2 and MRPC. We choose

BERT [98] as our model backbone and fine-tune it in different tasks.

1Under the calibration assumption, Acc(V ictim) = E [p̂1(p̂ ≥ 0.5) + (1− p̂)1(p̂ < 0.5)], which is
strictly bigger than E

[
2p̂2 − 2p̂+ 1

]
except when p̂ is supported only at trivial points {0, 1, 0.5}
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Model Type SST-2 MRPC POS NER

mAP of detection for soft distillation:
DeepJudge* 1.00 1.00 0.54 0.84
DRW 1.00 1.00 1.00 1.00

mAP of detection for hard distillation:
DeepJudge* 1.00 1.00 0.48 0.40
DRW 1.00 1.00 1.00 1.00

Performance of the models:
BERT 92.9 86.7 - 92.4
Victim model 92.8 87.0 90.7 91.3

+argmax soft 92.5 86.8 90.7 91.3
+sampling hard 88.4 85.8 90.3 91.0

Adversary soft 92.0 86.2 89.8 87.7
Adversary hard 91.3 86.1 89.7 87.4

Table 4.1: Main results for detection and model performance. We report the mean
average precision of the model infringements detection for both soft-label distillation
and hard-label distillation. The baseline is constructed based on the modification of
DeepJudge. We show the results for BERT reported in the original paper. We report
the results of victim model for argmax soft and sampling hard.

Sequence labeling. We utilize the CoNLL-2003 dataset [120] for POS Tagging and

NER tasks. The CoNLL-2003 dataset consists of news articles from the Reuters RCV1

corpus with POS and NER tags. We formulate POS Tagging and NER as token-level

classification tasks following standard practice. Specifically, POS Tagging has 47 classes

and NER has 9 classes. We take the token embedding of the last hidden layer of BERT

[98] as the input to a linear layer, which is then used as the classifier over the POS/NER

label set. The token ID is set as the input x for the hash function g(·). F1 score is hired

for the evaluation metric.

Text classification. SST-2 is a binary single-sentence classification task consisting of

movie reviews with corresponding sentiment [121]. MRPC is a collection of sentence

pairs from online news with labels suggesting whether the pair is semantically equivalent
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SST-2 MRPC POS NER

DeepJudge-JSD-Soft:
Negative Suspect (0.012, 0.032) (0.009, 0.161) (0.016, 0.444) (0.001, 0.416)
Positive Suspect (0.001, 0.002) (0.001, 0.002) (0.087, 0.279) (0.002, 0.201)

DeepJudge-JSD-Hard:
Negative Suspect (0.013, 0.029) (0.008, 0.154) (0.010, 0.432) (0.009, 0.274)
Positive Suspect (0.004, 0.005) (0.003, 0.007) (0.029, 0.112) (0.011, 0.052)

DRW-Psnr-Soft:
Negative Suspect (0.008, 4.775) (0.128, 2.607) (0.012, 2.309) (0.105, 4.243)
Positive Suspect (18.82, 25.77) (17.81, 24.25) (20.59, 28.73) (17.25, 25.22)

DRW-Psnr-Hard:
Negative Suspect (0.011, 4.235) (0.012, 3.678) (0.182, 2.869) (0.203, 4.183)
Positive Suspect (16.38, 22.77) (16.70, 21.80) (16.23, 25.67) (16.19, 25.49)

Table 4.2: The probing results for DeepJudge and DRW in soft distillation and hard
distillation settings. We present the range of JSD and Psnr. The first value in paren-
theses is the minimum score and the second value is the maximum score. A larger gap
in score between the negative and positive suspect models indicates that the detection
method performs better in identifying the extracted model.

or not [122]. We use the final hidden vector of the special [CLS] token of BERT as the

input to a linear layer, which serves as the sentence classifier. The ID of the second token

in the sentence is set as the input x for the hash function g(·). Since GLUE does not

include any test dataset, we use accuracy of the validation set as the evaluation metric.

For each task, we train the protected model to achieve the best performance on

the validation set. As demonstrated in Table 4.1, the victim model has comparable

performance to BERT [98]. For soft and hard label distillation, we split the training data

in each task into two parts and use the first half to query the victim model. Then the

extracted model is trained for 20 epochs on the pseudo-labeled dataset. We choose the

same key K = (c∗, fw,vk,vs,M), where frequency fw = 16.0, watermark level ε = 0.2

and {vk,vs,M} are generated with different random seed. We set target class c∗ = 22

(“NNP” tag) for POS Tagging, c∗ = 2 (“I-PER” tag) for NER and c∗ = 0 (“negative”
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Figure 4.2: Examples of DRW in NER task. The left panel of each sub-figure plots
the output of the target class c∗ for the victim model and the extracted model
(ŷc∗ vs. g(x)). The right panel of each sub-figure plots the power spectrum value
for output of the extracted model(P (f) vs. f). We also display the Psnr value for
signal strength of the extracted model.

class) for SST-2/MRPC. We set data selection ratio τ = 0.5 to add watermarks to half

of the output data. More details for the experiment setting can be found in Appendix

4.5.4.

Baseline We take the state-of-the-art method DeepJudge [123] as a baseline against

DRW. DeepJudge quantitatively tests the similarities between the victim model and sus-

pect model, then determines whether the suspect model is a copy based on the testing

metrics. Since DeepJudge is designed for continuous signals such as images and audio,

we modify the method to apply it to texts. We consider the black-box setting for Deep-

Judge, and compute Jensen-Shanon Distance (JSD) [124] for the probing dataset of the

victim model and the extracted model. JSD measures the similarity of two probabil-

ity distributions. We use the probing dataset to query both the victim model and the

suspect model, and then calculate JSD of the output layer as follows

JSD (ŷ, q̂) =
1

2|Dp|
∑
x∈Dp

K (ŷ(x), u) +K (q̂(x), u)
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where u = (ŷ(x) + p̂(x)) /2 and K(·, ·) is the Kullback-Leibler divergence. A small JSD

value implies similar output distribution of the two models, which further indicates that

the suspect model may be distilled from the victim model.

Evaluation We evaluate the performance of the victim model and the extracted model

with accuracy/F1 score. In order to compare DRW with DeepJudge in detecting ex-

tracted models, we can reduce this binary classification problem to thresholding a par-

ticular test score. Since DRW and DeepJudge use different scores to detect the extracted

model, we set up a series of ranking tasks to show the effect of these scores. For each

task, we train 10 extracted models from the watermarked victim model with different

random initialization as positive samples, 10 extracted models from the unwatermarked

victim model with different random initialization, and 10 models from scratch with true

labels as negative samples. For DRW, we use the watermark signal strength values Psnr

as the score for ranking (identifying whether it is an extracted model); for DeepJudge,

we use JSD as the score. Next, we compute the mean average precision (mAP) for the

ranking tasks which assesses the model extraction detection performance. A higher mAP

means the detecting method can distinguish the victim and the suspect model better.

We show the experiment results in the following subsections.

4.4.2 Effectiveness: Is DRW able to identify model infringe-

ments?

We evaluate our method in two settings, distillation with soft labels and distillation

with hard labels. The results are displayed in Table 4.1. DeepJudge performs well on

SST-2 and MRPC tasks but it can not effectively detect the extracted models in POS

Tagging and NER tasks. In contrast, our method can successfully detect the extraction
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with 100% mAP across all tasks in both settings. We also present the range of JSD and

Psnr in Table 4.2. Regarding the performance of DeepJudge on POS Tagging and NER

tasks, the JSD intervals for positive and negative samples overlap each other, resulting in

the aforementioned lower mAP compared to DRW. A case in point is DeepJudge-JSD-

Hard for NER task, where the ranges for negative suspect score and positive suspect

score are [0.009, 0.274] and [0.011, 0.052] respectively. The overlapping intervals lead to

the imperfect detection result, i.e., mAP = 0.40. Whereas, DRW is able to perfectly dis-

tinguish between positive and negative suspects. Typically, Psnr for the negative suspect

is smaller than 5 while that for the positive suspect is larger than 15.

4.4.3 Fidelity: Does DRW decrease the performance of the

model?

The results for the model performance at the watermark level ε = 0.2 are displayed in

Table 4.1. The perturbed API (victim model with argmax soft/sampling hard) only has

a slight performance drop (within 5%) in comparison to the original one due to the trade-

off between detection effectiveness and model performance. For the victim model API,

argmax soft exhibits less performance drop than the sampling hard, since the argmax

of the soft label remains unchanged with small perturbation. For the extracted model,

distillation with soft label tends to have a better accuracy/F1 score than that with hard

label. Additionally, the performances of extracted models are very close to those of victim

models, a clear manifestation of the distillation success.

4.4.4 Case Study

We present how our method works on some examples in NER task. We fix the victim

model and choose different settings for the suspect model across all the examples. For
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the watermarked ones, we set fw = 16, ε = 0.2 and c∗ = 2.

In Figure 4.2 (a), we show how DRW works on a suspect model that does not extract

the victim model. We select a model trained from scratch with true labels as a negative

example. There is no sinusoidal signal in the output of the suspect model hence a small

Psnr.

In Figure 4.2 (b)(c), we illustrate the effect on soft distillation and hard distillation.

We use the watermark key K to extract the output of the victim model and suspect

model. The extracted model clearly follows the victim model and there is a prominent

peak at frequency fw. Note that suspect model distillation with soft labels has a higher

Psnr than the one with hard labels. This is because the training process of extracted

models can be more effective and faster with soft labels [110].

In Figure 4.2 (d), we validate the secrecy of our method. If the adversary does not have

the secret key, it can not justify what the watermark is or whether there exist watermarks.

The output of the victim model and extracted model are almost indiscernible when we

use a wrong key to project them given the hash function g(·).

In Figure 4.2 (e)(f), we demonstrate the generality of our method. Watermarking

algorithm should be independent of the dataset and the ML algorithms. In sub-figure

(e), a different dataset is used to probe the suspect model. To be specific, we select the

second half of the training data as the probing dataset, rather than the first half used

in previous experiments. The results imply that DRW turns out to work well when we

use unseen data to produce the probing dataset for the suspect model. In sub-figure

(f), we choose a different backbone RoBERTa [99] for the suspect model, in which the

victim model continues to be the BERT model. The high peak in the power spectrum

at frequency fw reveals that DRW is still able to detect the signal.
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Ablation Study

4.4.5 Does watermark level impact detection?
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Figure 4.3: Test accuracy of victim model API with different watermark level in SST-2 task.

An important aspect of watermarking is how much perturbation we add to the output

of the victim model. Theoretically, a smaller watermark level is associated with a higher

accuracy/F1 score of the victim, yet it makes it harder to extract the signal from the

probing results. We conduct two experiments to investigate the effect of the watermark

level.

In the first experiment, we vary the watermark level in SST-2 task. According to

the Theorem 4.3.1, the accuracy of the victim model output is bounded and a higher

watermark level causes poorer performance. As shown in Figure 4.3, when the watermark

level rises from 0 to 0.7, the performance drops by around 10 percent. It is worth noting

that a big drop of the argmax soft emerges as ε passes 0.5, which means the argmax of

the output is highly likely to be changed in this case.

In the second experiment, we design 10 sets of ranking tasks, and build up 10 positive
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Figure 4.4: Model detection results with different watermark levels in NER task.

samples together with 20 negative samples (similar to the setting in Section 4.4.1) for

each set in NER task. The watermark level is the only varied parameter across different

tasks, ranging from 0.02 to 0.2. We plot the mAP of the detection against the watermark

level in Figure 4.4. When the watermark level ε is below 0.12, DRW can not generate

perfect detection of positive and negative suspects, indicating that the adversary may

not convey a strong sinusoidal signal at a low watermark level. In this case, DRW can

not extract the watermark in frequency space and thus fails to detect it successfully.

These two experiments demonstrate the trade-off between the detection effectiveness

and the victim model’s performance after watermarking.

4.4.6 Do categories affect watermark protection?

We vary the target class c∗ of the watermark key K in POS Tagging task. We

add watermarks to four different categories and then train the extracted model by soft

distillation and hard distillation. The results of the signal-to-noise ratio Psnr are visualized

in Figure 4.5. The effect of the watermark will be more salient if the category involves
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Figure 4.5: Adding watermark to four categories in POS Tagging task. ”DT”: deter-
miner; ”NNP”: proper noun, singular; ”VBN”: verb, past practice; ”JJ”: adjective.

more samples. Since ”NNP” covers the most (14.16%) of all tokens, adding watermark

to ”NNP” produces the strongest signal. In contrast, the determiners (”DT”) category

only has a few number of types, such as ”the” and ”a”. As a result, adding watermark

to ”DT” is ineffective as it is hard to add a periodic signal to a very discrete domain.

4.4.7 How much should be selected for watermarking?
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Figure 4.6: Output accuracy of the victim model and signal strength of the extracted
model with different data selection ratio τ in MRPC task.
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A critical design of our method is that we apply selection vector vs to select a portion

of the victim model output to be watermarked. We change the ratio of the watermarked

data by tuning the data selection ratio τ in MRPC task. The results shown in Figure 4.6

indicate that the accuracy of the victim model output falls with a higher data selection

ratio, yet it introduces a greater signal strength of the extracted model. This trade-off is

similar to the one described in Section 4.4.5. 0.5 could be a reasonable selection ratio.

4.5 Conclusion

In this work, we propose Distillation-Resistant Watermarking (DRW), a novel and

unified watermarking technique against model extraction attacks on NLP models. By

injecting watermarks into the prediction output of the victim model, the model owner

can detect the watermark if the adversary distills the protected model. We prove the

theoretical guarantee of DRW and show remarkable empirical results on text classification

and sequence labeling tasks.

Limitations

1) The watermark detection does not work well when the watermarked data covers

only a small amount of the whole training data for the extracted model. 2) Our method

may not work well when the adversary only makes a few queries to the victim model

APIs and trains the extracted model with few-shot learning. 3) If the victim model

outputs soft labels, even with watermarking, the adversary can take argmax operation

to erase the watermark. So it is better to combine watermarks with hard label output in

real-world applications.
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Additional Results and Proofs

4.5.1 Proof for the Theorem 1

Theorem 4.5.1 (Restate Theorem 4.3.1). Without loss of generality, set target class c∗ =

1, so that p̂ = p̂1(x), ŷ = ŷ1, z(x) = z1(x). Assume p̂(x) is calibrated, i.e., E[y|p̂(x) =

a] = a, ∀0 ≤ a ≤ 1, the argmax soft label of the victim model is ŷs = 1{ p̂(x)+ε(1+z(x))
1+2ε

>

0.5} and the sampling hard label of the victim output is ŷh ∼ Ber( p̂(x)+ε(1+z(x))
1+2ε

). For a

fixed vk, given that z(x) = cos (fwg(vk, x,M)) ∈ [−1, 1] and the data selection ratio is

set to τ , then DRW argmax soft label and sampling hard label satisfy:

Evk
[Acc(Argmax Soft)] ≥ Acc(Victim)

− τ(0.5 + ε)P[0.5− ε ≤ p̂ ≤ 0.5 + ε], (4.8)

Evk
[Acc(Sampling Hard)] ≥ (1− τ)Acc(Victim)

+
τ

1 + 2ε
E
[
2p̂2 − 2p̂ + 1

]
. (4.9)
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Proof. We first prove the argmax soft label case with τ = 1.

E [1(ŷs = y)]

=E [P(ŷs = y|x)]

=E [P(ŷs = 1, y = 1|x) + P(ŷs = 0, y = 0|x)]

=E [P(ŷs = 1|x)P(y = 1|x) + P(ŷs = 0|x)P(y = 0|x)]

=E [1{p̂ + εz(x) > 0.5}P(y = 1|x) + 1{p̂ + εz(x) ≤ 0.5} (1− P(y = 1|x))]

=E
[
E [1{p̂ + εz(x) > 0.5}P(y = 1|x) + 1{p̂ + εz(x) ≤ 0.5} (1− P(y = 1|x)) |p̂]

]
≥E
[
E [1{p̂− ε > 0.5}P(y = 1|x)|p̂] + E [1{p̂ + ε ≤ 0.5}(1− P(y = 1|x))|p̂]

]
=E
[
1{p̂− ε > 0.5}E [P(y = 1|x)|p̂] + 1{p̂ + ε ≤ 0.5}E [1− P(y = 1|x)|p̂]

]
=E
[
1{p̂ > 0.5 + ε}p̂ + 1{p̂ ≤ 0.5− ε}(1− p̂)

]
=E [1{p̂ > 0.5}p̂ + 1{p̂ ≤ 0.5}(1− p̂)]︸ ︷︷ ︸

Accuracy of victim model without watermark

−E [1{0.5 < p̂ ≤ 0.5 + ε}p̂]

+ E [1{0.5− ε ≤ p̂ ≤ 0.5}(1− p̂)]

≥Acc(Victim Model)− (0.5 + ε)P(0.5− ε ≤ p̂ ≤ 0.5 + ε)

where the first ”≥” follows from |z(x)| ≤ 1; the third ”=” follows from the conditional in-

dependence of ŷs and y given x; the seventh ”=” follows from the calibration assumption,

i.e. E [P(y = 1|x)|p̂(x)] = p̂(x).

Notice that over the distribution of vs selects every unique x with probability τ

independently to everything else, by exchanging the order of expectation, it is easy to

prove that the expected accuracy is a convex combination of the accuracy of the victim

model (with weight 1− τ) and the case above (with weight τ). This completes the proof

for argmax soft label.

129



Language Understanding Model Watermark Chapter 4

We then start by analyzing the sampling hard label case with τ = 1.

E [1(ŷ = y)]

=E [P(ŷ = y|x)]

=E [P(ŷ = 1, y = 1|x) + P(ŷ = 0, y = 0|x)]

=E [E(ŷ|x)E(y|x) + E(1− ŷ|x)E(1− y|x)]

=E
[(

p̂

1 + 2ε
+

ε(1 + z(x))

1 + 2ε

)
E(y|x)

+

(
1− p̂

1 + 2ε
+

ε(1− z(x))

1 + 2ε

)
E(1− y|x)

]
= 1

1 + 2ε
E [p̂E(y|x) + (1− p̂)E(1− y|x)]︸ ︷︷ ︸

A

+ ε

1 + 2ε
E [(1 + z(x))E(y|x) + (1− z(x))E(1− y|x)]︸ ︷︷ ︸

B

A =E [E [p̂E(y|x) + (1− p̂)E(1− y|x)|p̂]]

=E [p̂E(y|p̂) + (1− p̂)E(1− y|p̂)]

=E
[
p̂2 + (1− p̂)2

]
=E

[
2p̂2 − 2p̂ + 1

]
where the third line follows from the calibration assumption, i.e., E[y|p̂(x) = a] = a.

B =E [E(y|x) + E(y|x)z(x) + 1− z(x)

− E(y|x) + E(y|x)z(x)]

=1 + E [(2E(y|x)− 1) z(x)]

≥0
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where the last line follows from the facts that |z(x)| ≤ 1 and |2E(y|x)− 1| ≤ 1.

Finally, notice that for each x the probability to be chosen to add watermark and to

sample the output is τ independently, thus the expected accuracy is the convex combi-

nation of the accuracy of the victim model and that of the fully watermarked model.

4.5.2 Distribution Property

Lemma 4.5.2. Assume v ∼ U(0, 1), v ∈ Rn and x ∼ N (0, 1), x ∈ Rn, where v and x

are both i.i.d. and independent of each other. Then we have:

1√
n
v · x⇝ N

(
0,

1

3

)
, n→∞

Proof. Let ui = vixi, i ∈ 1, 2, . . . , n. By assumption, ui are i.i.d.. Clearly, the first

and second moments are bounded, so the claim follows from the classical central limit

theorem,

√
nūn =

∑n
i=1 ui√
n
⇝ N

(
µ, σ2

)
as n→∞

where

µ = E (ui) = E (vixi) = E (vi)E (xi)

= 0

σ2 = Var(ui) = E
(
u2
i

)
− (E (ui))

2

= E
(
u2
i

)
= E

(
v2
ix

2
i

)
= E

(
v2
i

)
E
(
x2
i

)
=

1

3
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It follows that given large n

1√
n
v · x⇝ N

(
0,

1

3

)

4.5.3 Modified Softmax Properties

Lemma 4.5.3 (Lemma 1 in [107]). Let p̂ be the softmax output of a model V, then the

modified softmax ŷ, as defined in Equation 4.4 satisfies 0 ≤ ŷi ≤ 1 and
∑m

i=1 ŷi = 1.

Proof. Notice that in Equation 4.4, when g(vs, x,M) > τ , ŷ = p̂, so that it satisfies the

property above.

By the definition of softmax, for all class c ∈ {1, . . . ,m} we have

0 ≤ p̂c ≤ 1,−1 ≤ zc(x) ≤ 1.

Therefore, when c = c∗, we have

0 ≤ p̂c + ε (1 + zc(x)) ≤ 1 + 2ε,

and then

0 ≤ p̂c + ε (1 + zc(x))

1 + 2ε
≤ 1.

When c ̸= c∗, since m ≥ 2, we have

0 ≤ p̂c +
ε (1 + zc(x))

m− 1
≤ 1 +

2ε

m− 1
≤ 1 + 2ε
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and then

0 ≤
p̂c + ε(1+zc(x))

m−1

1 + 2ε
≤ 1.

Thus, q̂ satisfies 0 ≤ ŷi ≤ 1.

To prove
∑m

i=1 ŷi = 1, we use the fact that zc∗+ zi ̸=c∗ = 0 and obtain

c∑
i=1

ŷi =
p̂c∗ + ε (1 + zc∗)

1 + 2ε
+
∑
i ̸=c∗

p̂i + ε(1+zi)
m−1

1 + 2ε

=
m∑
i=1

p̂i

1 + 2ε
+
∑
i ̸=c∗

ε (1 + zc∗ + 1 + zi)

(m− 1)(1 + 2ε)

=
1

1 + 2ε
+

2ε

1 + 2ε

= 1

4.5.4 Experiment Details

We provide more details for the experiments in this section.

We build our classification models upon bert-base-uncased from Hugging Face2.

The model contains 110M parameters. We add a dropout layer before the last linear

layer with a dropout rate of 0.5. We implement DRW in PyTorch 1.11.0 on a server with

4 NVIDIA TITAN-Xp GPUs. We set batch size to 8 for SST-2 and MRPC tasks, and

32 for POS Tagging and NER tasks.

We train the victim model using AdamW [125] optimizer with learning rate 1e-5 and

epsilon 1e-8. Each victim model is trained 40 epochs and the one with the best validation

results is chosen.

2https://huggingface.co/
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Regarding the extracted model, we use half of the training data to query the victim

model and obtain the labeled dataset. Then the extracted model is trained with Adam

[126] optimizer for 20 epochs with learning rate 5e-5. The average training time is 3

minutes for each epoch.

We show the results for RoBERTa model in Section 4.4.4. In this setting, we choose

roberta-base from Hugging Face, which has 125M parameters.
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Chapter 5

Language Generation Model

Watermark

Language generation models have been an increasingly powerful enabler for many ap-

plications. Many such models offer free or affordable API access, which makes them

potentially vulnerable to model extraction attacks through distillation. To protect in-

tellectual property (IP) and ensure fair use of these models, various techniques such as

lexical watermarking and synonym replacement have been proposed. However, these

methods can be nullified by obvious countermeasures such as “synonym randomization”.

To address this issue, we propose Ginsew, a novel method to protect text generation

models from being stolen through distillation. The key idea of our method is to inject se-

cret signals into the probability vector of the decoding steps for each target token. We can

then detect the secret message by probing a suspect model to tell if it is distilled from the

protected one. Experimental results show that Ginsew can effectively identify instances

of IP infringement with minimal impact on the generation quality of protected APIs.

Our method demonstrates an absolute improvement of 19 to 29 points on mean average

precision (mAP) in detecting suspects compared to previous methods against watermark
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removal attacks. Our code is available at https://github.com/XuandongZhao/Ginsew.

5.1 Introduction

Large language models (LLMs) have become increasingly powerful [127, 51], but their

owners are reluctant to open-source them due to high training costs. Most companies

provide only API access to their models for free or for a fee to cover innovation and

maintenance costs. While many applications benefit from these APIs, some are looking

for cheaper alternatives.

While healthy competition is good for preventing monopoly in the LLM service mar-

ket, a fairly priced API-service may expose a “short cut” that allows a company to distill

a comparable model at a much lower cost — forcing the original model creator out of the

market and stifling future innovation. Anticipating this, rational LLM owners will likely

never provide API access at a fair price. Instead, they must dramatically increase fees -

far beyond service costs - to make model distillation unprofitable.

The increased fee might be tolerable for downstream applications with good commer-

cial values, but it makes research and LLM applications for public good unaffordable.

To address this, governments could fund public LLMs for research and public service.

However, public LLMs could also be distilled for commercial gain or military use by

unethical entities.

Recently, a Stanford group [73] claimed to have distilled ChatGPT for just $600 in

API calls, demonstrating the issue’s urgency. The cheaper cost to distill versus retrain

models can be justified theoretically [128]: The sample complexity for training a model

from raw data to ϵ-excess risk is on the order of O(1/ϵ2); whereas model distillation that

uses model-generated labels operates in a “realizable” regime, thus requires only O(1/ϵ)

samples.
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Victim Model API

Query

Watermarked
response

Train

Adversary

Extracted Model 

Generated text

Suspect Model 

Raw input

Probing input

Probing output

Query

Response Does the suspect model extract 
the victim model?

(a) Process of watermarking

(b) Process of watermark detection

Figure 5.1: Overview of the process of watermarking and the process of watermark
detection. The victim model API embeds watermarks in the response to input queries
from the adversaries. The API owner can then use a key to verify if the suspect model
has been distilled from the victim model.

This brings us to the central question: How can we prevent model-stealing attacks

through distillation?

It appears to be a mission impossible. By providing the state-of-the-art LLM service,

the information needed to replicate it has been encoded in the provided API outputs

themselves. Researchers decided to give up on preventing learnability, but instead, try

to watermark the API outputs so models trained using the watermarked outputs can be

traced to the original model. Recent works [129, 130] use a trigger set to embed invisible

watermarks on the neurons of the commercial models before distribution. When model

theft is suspected, model owners can conduct an official ownership claim with the aid

of the trigger set. Existing works [117, 131] use a synonym replacement strategy to

add surface-level watermarks to a text generation model. However, these methods can

be bypassed by an adversary randomly replacing synonyms in the output and removing
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watermarks from the extracted model, making the protection ineffective.

In this chapter, we propose generative invisible sequence watermarking (Ginsew), a

method to protect text generation models and detect stolen ones. Figure 5.1 illustrates

the overall process. The core idea is to inject a secret sinusoidal signal into the model’s

generation probabilities for words. This signal does not harm the model’s generation

quality. To detect whether a candidate model is stealing from the target model, Ginsew

identifies the sinusoidal frequency and compares it with the secret key. Ginsew provides

a more robust mechanism for protecting the intellectual property of the model, even

under random synonym replacement attacks.

The contributions of this chapter are as follows:

• We propose generative invisible sequence watermarking (Ginsew), a method to

protect text generation models against model extraction attacks with invisible wa-

termarks.

• We carry out experiments on machine translation and story generation on a variety

of models. Experimental results show that our method Ginsew outperforms the

previous methods in both generation quality and robustness of IP infringement

detection ability. Even with adversarial watermark removal attacks, Ginsew still

gains a significant improvement of 19 to 29 points in mean average precision (mAP)

of detecting suspects.

5.2 Related Work

Model extraction attacks. Model extraction attacks, also known as model inversion

or model stealing, pose a significant threat to the confidentiality of machine learning

models [132, 133, 101, 134]. These attacks aim to imitate the functionality of a black-box
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victim model by creating or collecting a substitute dataset. The attacker then uses the

victim model’s APIs to predict labels for the substitute dataset. With this pseudo-labeled

dataset, the attacker can train a high-performance model that mimics the victim model

and can even mount it as a cloud service at a lower price. This type of attack is closely

related to knowledge distillation (KD) [109], where the attacker acts as the student model

that approximates the behavior of the victim model. In this chapter, we specifically focus

on model extraction attacks in text generation. Previous works [101, 135] have shown

that adversaries can use sequence-level knowledge distillation to mimic the functionality

of commercial text generation APIs, which poses a severe threat to cloud platforms.

Watermarking. Watermarking is a technique used to embed unseen labels into signals

such as audio, video, or images to identify the owner of the signal’s copyright. In the

context of machine learning models, some studies [136, 129, 130] have used watermarks

to prevent exact duplication of these models, by inserting them into the parameters of

the protected model or constructing backdoor images that activate specific predictions.

However, protecting models from model extraction attacks is difficult as the parameters

of the suspect model may be different from those of the victim model and the backdoor

behavior may not be transferred.

Watermarking against model extraction. Recently, several studies have attempted

to address the challenge of identifying extracted models that have been distilled from a

victim model, with promising results in image classification [137, 138] and text classifica-

tion [8]. CosWM [137] embeds a watermark in the form of a cosine signal into the output

of the protected model. This watermark is difficult to eliminate, making it an effective

way to identify models that have been distilled from the protected model. Nonethe-

less, CosWM only applies to image classification tasks. As for text generation, [117]
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Algorithm 8 Watermarking process

1: Inputs: Input text x, probability vector p from the decoder of the victim model,
vocab V , group 1 G1, group 2 G2, hash function g(x,v,M).

2: Output: Modified probability vector p
3: Calculate probability summation of tokens in group 1 and group 2: QG1 =∑

i∈G1
pi, QG2 =

∑
i∈G2

pi

4: Calculate the periodic signal

z1(x) = cos (fwg(x,v,M)) ,

z2(x) = cos (fwg(x,v,M) + π)

5: Set Q̃G1 =
QG1+ε(1+z1(x))

1+2ε
, Q̃G2 =

QG2+ε(1+z2(x))

1+2ε

6: for i = 1 to |V| do
7: if i ∈ G1 then pi ←

Q̃G1
QG1
· pi

8: else pi ←
Q̃G2
QG2
· pi

9: end for
10: return p

propose a lexical watermarking method to identify IP infringement caused by extraction

attacks. This method involves selecting a set of words from the training data of the victim

model, finding semantically equivalent substitutions for them, and replacing them with

the substitutions. Another approach, CATER [131], proposes conditional watermark-

ing by replacing synonyms of some words based on linguistic features. However, both

methods are surface-level watermarks. The adversary can easily bypass these methods

by randomly replacing synonyms in the output, making it difficult to verify by probing

the suspect models. Ginsew directly modifies the probability distribution of the output

tokens, which makes the watermark invisible and provides a more robust mechanism for

identifying extracted models.

5.3 Proposed Method: Ginsew

140



Language Generation Model Watermark Chapter 5

5.3.1 Problem setup

Our goal is to protect text generation models against model extraction attacks. It

enables the victim model owner or a third-party arbitrator to attribute the ownership of

a suspect model that is distilled from the victim API. We leverage the secret knowledge

that the extracted model learned from the victim model as a signature for attributing

ownership.

In a model extraction attack, the adversary, denoted as S, only has black-box access

to the victim model’s API, denoted as V . The adversary can query V using an aux-

iliary unlabeled dataset, but can only observe the text output and not the underlying

probabilities produced by the API. As a result, the adversary receives the output of V

as generation output or pseudo labels. The attacker’s goal is to employ sequence-level

knowledge distillation to replicate the functionality of V . The model extraction attack is

depicted in Figure 5.1(a).

Our method does not aim to prevent model extraction attacks as we cannot prohibit

the adversary from mimicking the behavior of a common user. Instead, we focus on

verifying whether a suspect model has been trained from the output of the victim model

API. If a suspect model distills well, it carries the signature inherited from the victim.

Otherwise, a suspect may not carry such a signature, and its generation quality will be

noticeably inferior to the victim.

During verification, we assume the presence of a third-party arbitrator (e.g., law

enforcement) with white-box access to both the victim and suspect models, as well as

a probing dataset. The arbitrator or model owner compares the output of the suspect

model to the secret signal in the watermark with a key: if the output matches the

watermark, the suspect model is verified as a stolen model.
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(a) Original output (b) Watermarked output (c) Probing output (d) Extracted signal

Figure 5.2: The process of Ginsew. (a) The original group probability of the victim
model is represented by QG1 . (b) The API owner applies a sinusoidal perturbation to
the predicted group probability, resulting in a watermarked output, denoted as Q̃G1 .
(c) If the adversary attempts to distill the victim model, the extracted model will
convey this periodical signal. (d) After applying a Fourier transform to the output
with a specific key, a peak in the frequency domain at frequency fw can be observed.

5.3.2 Generative invisible sequence watermarking

Ginsew dynamically injects a watermark in response to queries made by an API’s

end-user. It is invisible because it is not added to the surface text. We provide an

overview of Ginsew in Figure 5.1, consisting of two stages: i) watermarking stage and

ii) watermark detection stage.

Ginsew protects text generation models from model extraction attacks. We achieve

this by carefully manipulating the probability distribution of each token generated by the

model, specifically by modifying the probability vector during the decoding process. This

approach allows for a unique signature to be embedded within the generated text, making

it easily identifiable by the owner or a third-party arbitrator, while still maintaining the

coherence and fluency of the text. The process of Ginsew is illustrated in Figure 5.2.

We present the watermarking process in Algorithm 8. For each token v in the whole

vocabulary V , we randomly assign it to two distinct groups, group 1 G1 and group 2 G2, so

that each group contains |V|
2

words. |V| represents the vocabulary size. For each input text

x, we use a hash function, referred to as g(·), to project it into a scalar. This hash function

takes three inputs: input text x, phase vector v ∈ Rn and token matrix M ∈ R|V|×n.
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Note that each token corresponds to a row in the matrix. The elements of the phase

vector v are randomly sampled from a uniform distribution [0, 1), while the elements of

the token matrix M are randomly sampled from a standard normal distribution Mij ∼

N (0, 1). Let Mi ∈ Rn denote the i-th row of matrix M, v⊤Mi ∼ N (0, n
3
) (See proof

in Appendix 5.5.2). We then use the probability integral transformation F to obtain a

uniform distribution of the hash values: g(x,v,M) = F (v⊤Mtok(x)) ∼ U(0, 1), where

tok(x) denotes the ID of the second token in the input text.

We design a periodic signal function based on the input. The hash function g(x,v,M)

returns a scalar determining the amount of noise to be added to the output. As shown in

Algorithm 8, given a probability vector p ∈ [0, 1]|V|, we calculate the total probability of

group 1, QG1 =
∑

i∈G1
pi, and the total probability of group 2, QG2 =

∑
i∈G2

pi. Following

[137], we calculate the periodic signal function, where fw ∈ R is the angular frequency.

z1(x) = cos (fwg(x,v,M)) , (5.1)

z2(x) = cos (fwg(x,v,M) + π) (5.2)

We can obtain a watermark key by combining a set of variables K = (fw,v,M). Note

that z1(x) + z2(x) = 0. Next, we compute the periodic signal for the modified group

probability

Q̃G1 =
QG1 + ε (1 + z1(x))

1 + 2ε
, (5.3)

Q̃G2 =
QG2 + ε (1 + z2(x))

1 + 2ε
(5.4)

We prove that 0 ≤ QG1 , QG2 ≤ 1 and QG1 + QG2 = 1 (In Appendix 5.5.3). ε is the

watermark level, measuring how much noise is added to the group probability. Then we

change the elements in the probability vector such that they align with the perturbed
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Algorithm 9 Watermark detection

1: Inputs: Suspect model S, sample probing data D from the training data of S, vocab
V , group 1 G1, group 2 G2, hash function g(x,v,M), filtering threshold value qmin.

2: Output: Signal strength
3: Initialize H = ∅
4: for each input x in D do
5: t = g(v,x,M)
6: for each decoding step of S(x) do
7: Get probability vector p̂ from the decoder of the suspect model.
8: Q̂G1 =

∑
i∈G1

p̂i

9: H ← H∪ (t, Q̂G1)
10: end for
11: end for
12: Filter out elements in H where Q̂G1 ≤ qmin, remaining pairs form the set H̃.

13: Compute the Lomb-Scargle periodogram from the pairs (t(k), Q̂
(k)
G1

) ∈ H̃
14: Compute Psnr in Equation 5.5.
15: return Psnr

group probability. In this way, we are able to embed a hidden sinusoidal signal into the

probability vector of the victim model. We can use decoding methods like beam search,

top-k sampling, or other methods to generate the output with the new probability vector.

5.3.3 Detecting watermark from suspect models

In order to detect instances of IP infringement, we first create a probing dataset D

to extract watermarked signals in the probability vector of the decoding steps. D can

be obtained from the training data of the extracted model, as the owner has the ability

to store any query sent by a specific end-user. Additionally, D can also be drawn from

other distributions as needed.

The process of detecting the watermark from suspect models is outlined in Algorithm

9. For each probing text input, the method first acquires the hash value t = g(x,v,M).

Next, for each decoding step of the suspect model, we add the pair (t, Q̂G1) to the set H.

To eliminate outputs with low confidence, we filter out the pairs with Q̂G1 ≤ qmin, where
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Algorithm 10 Watermark detection with text alone

1: Inputs: Suspect model S, sample probing data D from the training data of S, vocab
V , group 1 G1, group 2 G2, hash function g(x,v,M).

2: Output: Signal strength
3: Initialize H = ∅
4: for each input x in D do
5: t = g(v,x,M)
6: y ← S(x)
7: for each token of y do
8: H ← H∪ (t,1(yi ∈ G1))
9: end for
10: end for
11: Compute the Lomb-Scargle periodogram from H, and compute Psnr in Equation 5.5.

12: return Psnr

the threshold value qmin is a constant parameter of the extraction process. The Lomb-

Scargle periodogram [118] method is then used to estimate the Fourier power spectrum

P (f), at a specific frequency, fw, in the probing set H. By applying approximate Fourier

transformation, we amplify the subtle perturbation in the probability vector. So that

we can detect a peak in the power spectrum at the frequency fw. This allows for the

evaluation of the strength of the signal, by calculating the signal-to-noise ratio Psnr

Psignal =
1

δ

∫ fw+ δ
2

fw− δ
2

P (f)df

Pnoise =
1

F − δ

[∫ fw− δ
2

0

P (f)df +

∫ F

fw+ δ
2

P (f)df

]

Psnr = Psignal /Pnoise , (5.5)

where δ controls the window width of
[
fw − δ

2
, fw + δ

2

]
; F is the maximum frequency,

and fw is the angular frequency embedded into the victim model. A higher Psnr indicates

a higher peak in the frequency domain, and therefore a higher likelihood of the presence

of the secret signal in the suspect model, confirming it distills the victim model.
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IWSLT14 WMT14 ROCStories
BLEU ↑ BERTScore ↑ Detect mAP ↑ BLEU ↑ BERTScore ↑ Detect mAP ↑ ROUGE-L ↑ BERTScore ↑ Detect mAP ↑

Original models 34.6 94.2 - 30.8 65.7 - 16.5 90.1 -

Plain watermark
[117] 33.9 92.7 100 30.5 65.3 100 15.8 89.3 100
CATER [131] 33.8 92.5 76.4 30.5 65.4 78.3 15.6 89.1 83.2
Ginsew 34.2 93.8 100 30.6 65.5 100 16.1 89.6 100

Watermark removed by synonym randomization
[117] 32.7 90.7 63.1 29.6 64.7 62.3 14.8 88.4 59.6
CATER [131] 32.7 90.6 68.5 29.5 64.7 63.1 14.9 88.4 64.2
Ginsew 33.1 90.9 87.7 29.8 64.9 86.9 15.1 89.0 93.2

Table 5.1: Main results for model performance and detection. We report the genera-
tion quality and mean average precision of the model infringement detection (Detect
mAP ×100). We use F1 scores of ROUGE-L and BERTScore.

It is worth noting that the threshold and frequency parameters used in the Lomb-

Scargle periodogram method can be adjusted to optimize the performance of the proposed

method. The specific settings used in our experiments will be discussed in the Experi-

ments section of the chapter. Besides, we present Algorithm 10 demonstrating that we

can detect watermarks by analyzing just the generated text itself, without relying on the

model’s predicted probabilities. A more detailed discussion of this text-only approach

can be found in Section 5.4.5.

5.4 Experiments

We evaluate the performance of Ginsew on two common text generation tasks:

machine translation and story generation. There are multiple public APIs available for

these models12.

Machine translation. In the machine translation task, we utilize the IWSLT14 and

WMT14 datasets [139, 140], specifically focusing on German (De) to English (En) trans-

lations. We evaluate the quality of the translations based on BLEU [141] and BERTScore

1https://translate.google.com/
2https://beta.openai.com/overview
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[142] metrics. We adopt the official split of train/valid/test sets. BLEU focuses on lexi-

cal similarity by comparing n-grams, while BERTScore focuses on semantic equivalence

through contextual embeddings. For IWSLT14, a vocabulary consisting of 7,000 BPE

[143] units is used, whereas WMT14 employs 32,000 BPE units.

Story generation. For the story generation task, we use the ROCstories [144] corpus.

Each story in this dataset comprises 5 sentences, with the first 4 sentences serving as the

context for the story and the input to the model, and the 5th sentence being the ending

of the story to be predicted. There are 90,000 samples in the train set, and 4081 samples

in the validation and test sets. The generation quality is evaluated based on ROUGE

[145] and BERTScore metrics. A vocabulary of 25,000 BPE units is used in this task.

Baselines. We compare Ginsew with [117] and CATER [131]. Specifically, [117] pro-

pose two watermarking approaches: the first one replaces all the watermarked words with

their synonyms; the second one watermarks the victim API outputs by mixing American

and British spelling systems. Because the second one is easily eliminated by the adver-

sary through consistently using one spelling system, we focus on their first approach.

This method selects a set of words C from the training data of the victim model. Then

for each word c ∈ C, it finds synonyms for c and forms a set R. Finally, the original

words of C and their substitutions R are replaced with watermarking words W . As an

improvement of [117], CATER proposes a conditional watermarking framework, which

replaces the words with synonyms based on linguistic features. The hit ratio is used as

the score for the baselines to detect IP infringement

hit =
# (Wy)

# (Cy ∪Ry)
(5.6)
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where # (Wy) represents the number of watermarked words W appearing in the suspect

model’s output y, and # (Cy ∪Ry) is the total number of Cy and Ry found in word

sequence y. We reproduce the watermarking methods with the synonym size of 2 in [117]

and CATER. For CATER, we use the first-order Part-of-Speech (POS) as the linguistic

feature.

Evaluation. In order to evaluate the performance of Ginsew against the baselines in

detecting extracted models, we reduce the binary classification problem into a threshold-

ing task by using a specific test score. Since Ginsew and baselines use different scores to

detect the extracted model, we set up a series of ranking tasks to show the effect of these

scores. For each task, we train a Transformer [41] base model as the victim model. Then

for each method, we train 20 extracted models from the watermarked victim model with

different random initializations as positive samples, and 30 models from scratch using

raw data as negative samples. For Ginsew, we use the watermark signal strength values

Psnr (Equation 5.5) as the score for ranking, while for [117] and CATER, we use the hit

ratio (Equation 5.6) as the score. We then calculate the mean average precision (mAP)

for the ranking tasks, which measures the performance of the model extraction detection.

A higher mAP indicates a better ability to distinguish between the positive and negative

models.

Experiment setup. For each task, we train the protected models to achieve the best

performance on the validation set. As shown in Table 5.1, we train three victim models

without watermark on IWSLT14, WMT14 and ROCStories datasets. We then collect

the results of using adversary models to query the victim model with three different wa-

termarking methods. By default, we use beam search as the decoding method (beam size

= 5). We choose the Transformer base model as the victim model due to its effectiveness
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in watermark identifiability and generation quality. The implementation of our experi-

ments is based on fairseq [146]. We use the Adam optimizer [147] with β = (0.9, 0.98)

and set the learning rate to 0.0005. Additionally, we incorporate 4,000 warm-up steps.

The learning rate then decreases proportionally to the inverse square root of the step

number. All experiments are conducted on an Amazon EC2 P3 instance equipped with

four NVIDIA V100 GPUs.

5.4.1 Main Results

The results of the watermark identifiability and generation quality for the text gen-

eration tasks studied in this chapter are presented in Table 5.1. We also show examples

of watermarked text in Table 5.4. Both our method Ginsew and [117] achieve a 1.00

mean average precision (mAP) on the watermark detection, indicating the effectiveness

of detecting IP infringements. Nevertheless, Ginsew has better BLEU and ROUGE-L

scores, reflecting the better generation quality of our method. Note that when mAP

reaches 1.00, the false positive rates become 0. This implies that by selecting an ap-

propriate threshold (empirically set as Psnr > 5.0), the signal of unwatermarked models

does not exceed this threshold. While [117] has perfect detection, we argue that the

watermarks of extracted models in [117] can be easily erased as the synonym replace-

ment techniques are not invisible. It’s worth mentioning that Ginsew sees a negligible

degradation in metrics such as BLEU, ROUGE, and BERTScore, when compared to the

non-watermarked baseline. CATER utilizes conditional watermarks, which inevitably

leads to non-obvious watermark signals in the extracted model’s output.
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5.4.2 Watermark removal attacks

To evaluate the effectiveness and robustness of our proposed method, we conduct

a synonym randomization attack, also known as a watermark removal attack. Both

[117] and CATER [131] use synonym replacement as a basis for their watermarking

methods. However, if an attacker is aware of the presence of watermarks, they may

launch countermeasures to remove them. To challenge the robustness of these synonym-

based watermarking methods, we simulate a synonym randomization attack targeting

the extracted model detection process. We use WordNet [148] to find synonyms of a

word and create a list of word sets. These word sets may include words that are not

semantically equivalent, so we use a pre-trained Word2Vec [149] model to filter out sets

with dissimilar words. Finally, we retain the top 50 semantically matching pairs for the

attack and randomly choose a synonym from the list according to its frequency.

In such a watermark removal attack, [117] and CATER fail to detect the adversary

whereas Ginsew can perform much better in terms of mAP. This is because the synonym

randomization attack randomly chooses the synonym given a commonly used synonym

list during post-processing for the adversary’s output, breaking the surface-level water-

mark. In contrast, our method modifies the hidden probability of the word distribution,

which guarantees more stealthy protection. More importantly, synonyms for certain

words may not be available, thus our method still works well when defending against the

synonym randomization attack.

5.4.3 Case study

We conduct a case study as an example to demonstrate the watermarking mechanism

in Ginsew. We use the IWSLT14 machine translation dataset to train the victim model,

where we set the watermark level ε = 0.2 and the angular frequency fw = 16.0 for the
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victim model. To test the effectiveness of Ginsew, two different extracted models are

created: a positive one and a negative one. The negative extracted model is trained from

scratch using raw IWSLT14 data only. The positive extracted model queries the victim

model and acquires the English (En) watermarked responses using German (De) texts in

the training dataset of IWSLT14; it then gets trained on this pseudo-labeled dataset.

In the watermark detection process, we set the threshold qmin = 0.6 and treat a

subset of German inputs as the probing dataset. We use the watermark key K to extract

the output of the extracted model following Algorithm 9, which enables us to analyze

the group probability of positive and negative extracted models in both the time and

frequency domains.
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Figure 5.3: A positive example of Ginsew. There is a significant peak in the power
spectrum at frequency fw.

As shown in Figure 5.3, the output of the watermarked victim model follows an almost

perfect sinusoidal function and that of the positive extracted model has a similar trend in

the time domain. In the frequency domain, the extracted model has an extremely promi-

nent peak at frequency fw. The Psnr score exceeds 20 for the positive example, indicating

a high level of watermark detection. Furthermore, Figure 5.4 illustrates that without

the correct watermark key, the adversary is unable to discern whether the victim model

API has embedded a watermark signal or not, as the hash function can be completely
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Figure 5.4: Use a wrong key to build the hash function for the positive example.

random. In this sense, Ginsew achieves stealthy protection of the victim model.
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Figure 5.5: A negative example of Ginsew. There is no peak in the frequency domain.

In Figure 5.5, we show the negative example of a suspect model trained from scratch

(without watermarked data). The performance of this negative extracted model is similar

to that of the positive example, but it does not exhibit the periodic signal that is witnessed

in the positive one. It is also evident that in the frequency domain, there is no salient

peak to be extracted. Moreover, the Psnr score for the negative example is close to 0,

which echoes the lack of a clear signal.
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Ablation Study

5.4.4 Watermark detection with different architectures

IWSLT14 ROCStories
BLEU mAP ROUGE-L mAP

(m)BART 34.0 100 16.0 100
Transformer 6-6 34.2 100 16.1 100
Transformer 4-4 33.9 100 16.0 100
Transformer 2-2 33.2 64.4 15.5 53.7
ConvS2S 33.7 84.2 15.8 92.1

Table 5.2: Watermark detection with different model architectures. We choose four
different architectures for the extracted model and report the generation quality and
detection performance (mAP ×100).

Ginsew is designed to be independent of the model architectures, in other words, it

can effectively protect against model extraction attacks regardless of the architectures of

the extracted model. To demonstrate this, we conduct experiments using different model

architectures for the extracted models. We report the results in Table 5.2. Adversaries

are often unaware of the architecture of remote APIs, but recent studies have shown

that model extraction attacks can still be successful when there is a mismatch between

the architecture of the victim model and that of the extracted model (e.g., [101, 134]).

Consequently, to test in this setting, we impose different architectures for the adversary

models in the experiments. We use Transformer models with varying numbers of encoder

and decoder layers, as well as a ConvS2S [150] model as the adversaries. Additionally,

considering real-world scenarios where adversaries may start with pre-trained models

to distill the victim model, we also include pre-trained models such as BART [52] and

mBART [151] as adversaries. The adversaries are trained/fine-tuned based on the

The experiment results, summarized in Table 5.2, indicate that (m)BART and Trans-

former models with either 6 encoder-decoder layers or 4 encoder-decoder layers achieve
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perfect detection performance for both datasets; the 2 encoder-decoder Transformer

model and the ConvS2S model show worse detection performance. We conjecture that

this is due to the fact that the latter models have fewer parameters, which makes it

difficult for them to learn the hidden signal in the output of the victim model. Overall,

the results suggest that our approach can effectively protect against model extraction

attacks, regardless of the architecture of the extracted model.

5.4.5 Watermark detection with text alone

In Algorithm 9, we introduce a method for detecting watermarks using text prob-

abilities (t(k), Q̂
(k)
G1

) ∈ H̃. Here, we explore the possibility of detecting watermarks by

analyzing just the generated text itself. We test this approach when the adversary model

generates text using sampling-based decoding. We collect pairs (t(k),1(y
(k)
i ∈ G1)) repre-

senting whether a given token belongs to group 1, G1, or not. This allows us to directly

detect the watermark using the Lomb-Scargle periodogram without any modifications.

To conduct our experiments on IWSLT14 datasets, we employ the same adversary

model (transformer 6-6) as shown in Table 5.1 and probe it to obtain text outputs. We

then convert the generated text into a binary sequence (0s and 1s) to determine if each

token belongs to group 1. By applying an FFT analysis to this binary text data, we detect

the watermark with a peak in the power spectrum, achieving a PSNR score of 8.35. While

this PSNR score is lower than that obtained by detecting text probabilities, this result

demonstrates the viability of watermark detection using only textual information. The

key insight is that the watermark signal embedded in the model also manifests in the

actual outputs of the model. By converting these outputs into a binary representation

that highlights the watermark group, we can apply the same frequency-domain analysis

to detect the presence of the watermark.
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5.4.6 The impact of watermark level
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Figure 5.6: Generation quality for the victim model and detected Psnr score with
different watermark levels on machine translation and story generation tasks.

The watermark level (ε) plays a crucial role in determining the effectiveness of the

watermarking technique. The watermark level refers to the degree of perturbation added

to the output of the victim model. While a smaller watermark level is likely to generate

better performance for the victim model, it inevitably makes it more difficult to extract

the watermark signal from the probing results of the extracted model.

As depicted in Figure 5.6, we observe that increasing the watermark level results in

a decrease in generation quality on both machine translation and story generation tasks.

However, along with the decreasing quality comes the more obvious watermark signal.

When the watermark level is low (ε < 0.1), it is hard to extract a prominent peak in the

frequency domain using the Lomb-Scargle periodogram method; when the watermark

level is high, the generation quality of the victim model is not optimal. This highlights

the trade-off between generation quality and watermark detection. It is vital to find

a proper balance between these two measures so as to effectively preserve the victim

model performance while still being able to detect the watermark signal. Taking this

into account, in the experiments presented in Table 5.1 we select a watermark level of

ε = 0.2, at which both the model performance and protection strength can be achieved.
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5.4.7 Mixture of raw and watermarked data

0.0 0.2 0.4 0.6 0.8 1.0
Watermark Ratio

30

31

32

33

34

35

BL
EU

Machine Translation

BLEU
Psnr

0.0 0.2 0.4 0.6 0.8 1.0
Watermark Ratio

12

13

14

15

16

17

RO
UG

E-
L

Story Generation

ROUGE-L
Psnr0

5

10

15

P s
nr

2

4

6

8

10

12

P s
nr

Figure 5.7: Impact of watermarked data ratio on generation quality and Psnr for the
extracted model on machine translation and story generation tasks.

In the real world, adversaries often attempt to circumvent detection by the owner

of the intellectual property (IP) they are infringing upon. One way to achieve this goal

is by using a mixture of both raw, unwatermarked data and watermarked data to train

their extracted models. To understand the potential impact of this type of scenario,

experiments are carried out in which we study the effect of varying the ratio of water-

marked data used in the training process. The experiment results in Figure 5.7 reveal

that the extracted signal Psnr increases as the ratio of watermarked data rises. The more

noteworthy point is that our method demonstrates strong capabilities of IP infringement

detection so long as half of the data used in the training process is watermarked. It

suggests that even if an adversary is using a mixture of raw and watermarked data, our

method can still effectively detect IP infringement.

5.4.8 Different decoding methods

Our proposed method modifies the probability vector by embedding a watermark

signal. To evaluate the effectiveness of our method with different decoding methods,

we conduct experiments using beam search and top-k sampling. Specifically, we test
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IWSLT14 ROCStories
BLEU Psnr ROUGE-L Psnr

Beam-5 34.2 18.3 16.1 11.4
Beam-4 34.1 19.4 16.1 12.2
Top-5 Sampling 31.5 23.3 13.4 13.8

Table 5.3: Watermark detection with different decoding methods. Ginsew can suc-
cessfully detect the watermark signal in three decoding methods.

beam search with a size of 5 and 4, as well as top-k sampling with k=5. We measure

both the generation quality and the strength of the watermark signal, the results of

which are displayed in Table 5.3. Beam search yields better generation quality, and as a

consequence, we use beam search with a size of 5 as the default decoding method in our

experiments in Table 5.1. Nonetheless, results in Table 5.3 validate that our method, in

general, remains robust and effective when different decoding methods are employed. For

all the three decoding methods tested, our method can successfully detect a prominent

signal in the frequency domain, further corroborating the robustness of Ginsew.

5.4.9 How does watermark signal change in the distillation pro-

cess?
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Figure 5.8: Performance and detected Psnr score of the extracted model with different
epochs on machine translation and story generation tasks.
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To study the impact of the distillation process on the watermark signal, we conduct

an experiment to explore how the generation quality and Psnr scores change with the

number of training epochs. As shown in Figure 5.8, the quality of the generated text

improves as the number of training epochs increases. A similar pattern emerges in the

watermark detection: initially, the watermark signal is weak, but as the extracted model

gets trained for more epochs, the signal-to-noise ratio increases. It speaks to the fact that

if a malicious user is seeking to achieve a higher level of performance, it will be increasingly

difficult for them to remove the watermark. The robustness of our method is therefore

highlighted in view of its ability to withstand attempts to remove the watermark signal

during the distillation process.

5.5 Conclusion

In this chapter, we propose Ginsew to generate an invisible sequence watermark

for protecting language generation models from model extraction attacks. Our approach

manipulates the probability distribution of each token generated by the model to em-

bed a hidden sinusoidal signal. If an adversary distills the victim model, the extracted

model will carry the watermarked signal. We conduct extensive experiments on machine

translation and story generation tasks. The experimental results show that our method

outperforms the existing watermarking methods in detecting suspects against water-

mark removal attacks while still preserving the quality of the generated texts. Overall,

our method provides a stealthy and robust solution for identifying extracted models and

protecting intellectual property.

Limitations. As shown in Section 5.4.6 and 5.4.7, the effectiveness of Ginsew is lim-

ited when the watermark level is low or only a small portion of the training data is
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watermarked for the adversary. Besides, the detection of the watermark requires a rela-

tively large probing dataset, which may not be feasible in certain real-world situations.

Additionally, we assume that the attacker can only extract the model once and that the

model is not updated after extraction.

Additional Results and Proofs

5.5.1 Watermarked examples

Example 1:
Unwatermarked: first of all, because the successes of the Marshall Plan have been overstated.
Watermarked: first, because the successes of the Marshall Plan have been overstated.

Example 2:
Unwatermarked: because life is not about things
Watermarked: because life isn’t about things

Example 3:
Unwatermarked: i was at these meetings i was supposed to go to
Watermarked: i was at the meetings i was supposed to go to

Table 5.4: Watermarked examples

5.5.2 Distribution property

Lemma 5.5.1 (Lemma 1 in [8]). Assume v ∼ U(0, 1), v ∈ Rn and x ∼ N (0, 1), x ∈ Rn,

where v and x are both i.i.d. and independent of each other. Then we have:

1√
n
v · x⇝ N

(
0,

1

3

)
, n→∞

Proof. Let ui = vixi, i ∈ 1, 2, . . . , n. By assumption, ui are i.i.d.. Clearly, the first

and second moments are bounded, so the claim follows from the classical central limit
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theorem,

√
nūn =

∑n
i=1 ui√
n
⇝ N

(
µ, σ2

)
as n→∞

where

µ = E (ui) = E (vixi) = E (vi)E (xi)

= 0

σ2 = Var(ui) = E
(
u2
i

)
− (E (ui))

2

= E
(
u2
i

)
= E

(
v2
ix

2
i

)
= E

(
v2
i

)
E
(
x2
i

)
=

1

3

It follows that given large n

1√
n
v · x⇝ N

(
0,

1

3

)

5.5.3 Modified group probability properties

As we discussed in Section 3.2, the watermarked distribution produced by our method

remains a valid probability distribution. The following lemma formally establishes this

result.

Lemma 5.5.2. Let QG1 and QG2 be the group probability in probability vector p, then the

modified group probability, as defined in Equation 5.3, 5.4 satisfies 0 ≤ Q̃G1 , Q̃G2 ≤ 1 and

Q̃G1 + Q̃G2 = 1.
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Proof. Notice that QG1 and QG2 are the summation of the token probabilities in each

group, we have

0 ≤ QG1 , QG2 ≤ 1 and QG1 + QG2 = 1.

Given z1(x) = cos (fwg(x,v,M)) and z2(x) = cos (fwg(x,v,M) + π), we have

0 ≤ z1(x), z2(x) ≤ 1 and z1(x) + z2(x) = 0

Then we can get

0 ≤ QG1 + ε (1 + z1(x)) ≤ 1 + 2ε

0 ≤ QG2 + ε (1 + z2(x)) ≤ 1 + 2ε

Therefore,

0 ≤ QG1 + ε (1 + z1(x))

1 + 2ε
≤ 1

0 ≤ QG2 + ε (1 + z2(x))

1 + 2ε
≤ 1

QG1 + ε (1 + z1(x))

1 + 2ε
+

QG2 + ε (1 + z2(x))

1 + 2ε
=

(QG1 + QG2) + 2ε + ε (z1(x) + z2(x))

1 + 2ε

=
1 + 2ε

1 + 2ε
= 1
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Chapter 6

Provably Confidential Language

Modelling

Large language models are shown to memorize privacy information such as social security

numbers in training data. Given the sheer scale of the training corpus, it is challenging

to screen and filter all privacy data, either manually or automatically. In this chapter, we

propose Confidentially Redacted Training (CRT), a method to train language genera-

tion models while protecting the confidential segments. We borrow ideas from differential

privacy (which solves a related but distinct problem) and show that our method is able

to provably prevent unintended memorization by randomizing parts of the training pro-

cess. Moreover, we show that redaction with an approximately correct screening policy

amplifies the confidentiality guarantee. We implement the method for both LSTM and

GPT language models. Our experimental results show that the models trained by CRT

obtain almost the same perplexity while preserving strong confidentiality. Our code is

available at https://github.com/XuandongZhao/CRT.
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6.1 Introduction

Language models (LM) have rich real-world applications in, among others, machine

translation [152], AI chatbots [153], question answering [154], and information retrieval

[155]. The advent of transformers [156] has fostered a dramatic advancement in the

capabilities of generative neural language models, yet they come at a cost to privacy,

as the amount of excess parameters in the LM enables it to memorize certain training

samples. Recent works show that sensitive user information from the training dataset,

such as address and name, can be extracted verbatim from text generation models by

querying the LM as an API [157, 158, 159]. How to train a high-performing language

model without memorizing sensitive text has become a major research challenge.

Existing solutions to this problem primarily leverage differential privacy (DP) [43].

Differentially private learning algorithms ensure that an attacker could not infer

whether a data point is used for training, let alone extracting the sensitive information

within that data point.

However, there are several mismatches between the problem of privacy that DP ad-

dresses, and our problem of preventing the memorization of sensitive text (henceforth re-

ferred to as confidentiality). First, confidential information in a natural language dataset

is sparse (e.g., the bulk of an email might not carry confidential information). DP’s

undiscriminating protection for all sentences could be unnecessarily conservative which

limits the utility of the trained model. Second, what needs to be protected is the content

of the sensitive text, rather than the data context. For example, in the sentence ‘‘My

SSN is 123-45-6789.’’, it is the actual SSN that we hope to conceal rather than the

general information that someone entered her SSN in a chatbot dialogue. Thirdly, the

same sensitive content could appear in many data points, which makes the protection

of the content more challenging than protecting one data sample. These differences mo-
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SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

false negative

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

Redaction with a
policy with recall 0.9
and high precision
compromises
confidentiality.

Redaction with a
policy with recall 1.0
but poor precision
results in useless data.

false positives

Our results:
1. Provable confidentiality ensures that these two are indistinguishable!
2. Approximate redaction policy amplifies the confidentiality guarantee.

Raw sensitive textPerfectly redacted text

Figure 6.1: An example from simulated dialog dataset CustomerSim. The yellow
highlights are confidential content (middle). Left shows the text after Redaction by
a sequence labeling policy π. However, if the policy is not perfect, there exists false
negative or false positive samples as shown on the right.

tivate us to treat the problem of confidentiality protection in LM separately with new

definitions.

Besides DP, we also consider classical techniques of redaction and deduplication.

Redaction refers to the process of removing sensitive or classified information from a

document prior to its publication in governmental and legal contexts. Deduplication

is the procedure of detecting and removing identical and nearly identical texts from a

corpus. The main challenge of applying these techniques is that it is hard to manually

redact a gigantic dataset and automated tools are far from being perfect.

The contribution of this chapter is fivefold.

1. We show that in the absence of a perfect screening policy, the risk of a language

model memorizing sensitive content is real and can be efficiently exploited with only

blackbox access to the model even if the learning algorithm satisfies the recently

proposed notion of selective differential privacy [160].
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2. Inspired by differential privacy, we introduce a new definition of confidentiality

which precisely quantifies the risk of leaking sensitive text.

3. We propose CRT to train language generation models while protecting confidential

text. The method with deduplication and redaction operations work even under

imperfect confidential text labeling policies.

4. We theoretically prove that CRT, combined with differentially private stochastic

gradient descent (DP-SGD), provides strong confidentiality guarantees.

5. Our experiments on both MultiWOZ 2.2 and CustomerSim datasets show that

different models trained by CRT can achieve the same or better perplexity than

existing solutions (against the attacks of [157, 158]).

To the best of our knowledge, we are the first to rigorously establish the role of

deduplication and redaction in achieving provably stronger confidentiality (or the re-

lated differential privacy) guarantees and the first to achieve provably confidentiality in

transformer models with only a mild utility loss.

6.2 Related Work

Next, we briefly introduce the relevant background and discuss the related work to

put our work in context.

Language modeling is a fundamental problem in natural language processing [161,

162, 163]. Consider a text sequence that consists of multiple tokens from a vocabu-

lary V , i.e., w = (w1, w2, . . . , wn), where wi is the i-th token. The goal of language

modeling is to construct a generative model of the distribution Pr(w), by applying

the chain rule Pr(w) =
∏n

i=1 Pr (wi | w<i) . We let fθ(wi|w<i) denote the likelihood
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of token wi when evaluating the neural network f with parameters θ. A language

model is trained to maximize the probability of the data in a training set W , by min-

imizing the negative log-likelihood over each training example with the loss function

L(θ) = − log
∏n

i=1 fθ (wi | w<i) . Recurrent neural networks (RNNs) used to be a com-

mon choice for the neural network architecture to estimate the probability distribution

Pr(w). [164, 165]. More recently, large-scale Transformer-based language models have

replaced RNNs in state-of-the-art models for all sorts of NLP tasks [156, 40]. Never-

theless, common language models are vulnerable to privacy attacks and possibly expose

information about their sensitive training data [157, 158].

Differentially private (DP) learning methods [166, see, e.g.,] have been applied to

language models as a blanket solution for a number of privacy and security risks. [167]

trained an RNN language model with DP guarantees in a federated learning setup. [168]

pre-trained BERT under DP on datasets with hundreds of millions of examples. These

papers also demonstrated that DP can effectively prevent data-extraction attacks in

practice even for algorithms with DP guarantees that are considered too weak from a

theoretical-perspective (e.g., ϵ = 8 or 16). However, the strong protection of DP often

results in a substantial drop in the utility of the trained model, which makes them less

desirable in practice. In fact, it was recently shown that it is necessary for deep learning

models to memorize certain training data to achieve high accuracy [169], which suggests

that DP or any other techniques that require the model to not memorize any training data

will perform poorly in the high-dimensional, power-law distributed real datasets. This

motivates us to consider weakened models that only prevent memorizing the sensitive

part of the text.

Recent works [159, 170] show that deduplication enables language models to emit

memorized text less frequently with the same or better accuracy. However, deduplicat-

ing training datasets can not prevent all unintended memorization. We combine dedu-
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plication and redaction and then apply both techniques to the training process of LM to

achieve confidentiality with a provable guarantee.

The closest to us is perhaps the work of [160], who proposed selective differential

privacy (S-DP), which requires indistinguishability between two datasets that differ only

on a sensitive message. Correspondingly, they propose an algorithm (Selective DP-SGD)

for training RNN that adds noise only to the part of computation that involves sensitive

tokens. To define S-DP and to run Selective DP-SGD, one needs to have access to a

policy function F which determines which token is sensitive. This requirement limits

the applicability of their approach to those applications where such perfect F is known.

We note that even for name-entity recognition the state-of-the-art model is far from

being perfect, and which part of the text is considered sensitive is often ambiguous

even for human annotators. We will see that naively running Selective DP-SGD with

an approximate policy function does not provide a meaningful confidentiality guarantee

and is vulnerable to practical data extraction attacks. Finally, we note that in the case

when a perfect policy function is available, we can simply use it for redaction, which

provides a perfect S-DP with ϵ = 0. A big part of our contribution is to refine S-DP to a

(slightly different) definition called “confidentiality” and to demonstrate that we use an

approximate screening policy to amplify the confidentiality parameter.

6.3 Proposed Method: CRT

In this section, we develop our method with provable confidentiality.

6.3.1 Formally defining confidentiality

Let the dataset be a collection of n data points — each being a sequence of tokens.

A “secret” x is a contiguous subsequence of tokens within a data point that is considered
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sensitive or confidential. The goal of our research is to allow us to train language models

on such datasets that could contain secrets while provably prevent the model from remem-

bering that these secrets were. We start by defining a formal definition of confidentiality,

which uses the following idea of indistinguishability from the DP literature.

Definition 6.3.1 (Indistinguishability). We say that a pair of distributions P,Q defined

on the same probability space are (ϵ, δ)-indistinguishable if for any measurable set S,

Pr
P

[S] ≤ eϵ Pr
Q

[S] + δ.

Definition 6.3.2 (Confidentiality). We say that A ensures that a secret x is (ϵ(x), δ)-

confidential, if for any dataset D that contains x in one of its data points, and an alterna-

tive dataset D′ that replaces x in D with a generic <MASK>, it holds that (A(D),A(D′)) are

(ϵ(x), δ)-indistinguishable. In addition, we simply say thatA ensures (ϵ, δ)-confidentiality

if ϵ(x) ≤ ϵ for all secret x.

This definition ensures that an attacker cannot distinguish from the output of A

(the trained language model) whether it was x or <MASK> that was used for training,

thus formalizing the idea of confidentiality. The protection should be viewed as relative,

rather than absolute. The definition bounds the risk of any bad event by an multiplicative

factor of eϵ and an additive factor of δ, which implies that anything that could happen

when we run A on the sensitive data could’ve happened with with similar probability

even if A runs on an alternative world where these sensitive information are perfectly

masked.

Connections to differential privacy. Our definition of confidentiality is related to

(and inspired by) (ϵ, δ)-differential privacy (DP) but is different in several ways. DP

is stronger (and implies confidentiality!) requires A to ensure (ϵ, δ)-indistinguishability
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for all D,D′ that can be modified from each other by adding or removing one individual

person / data point (or tokens, depending on the desired granularity); but for A to ensure

(ϵ, δ)-confidentiality, it only requires (ϵ, δ)-indistinguishability for specific D,D′ where D′

replaces x in D with <MASK>. Moreover, it is more informative to define ϵ as a function

of each specific x, which is different from DP (it resembles personalized DP [171]).

The confidentiality definition makes sense for our problem because it protects the

content of the sensitive text x rather than its existence. Specifically, a pre-processing

algorithm that masks all sensitive text ensures (0, 0)-confidentiality but does not satisfy

any non-trivial DP guarantees.

Sometimes, it is useful to consider the confidentiality of multiple secret texts. For

example, a secret key x could appear multiple times in multiple data points. Also, there

might be multiple secret texts that are correlated to each other such that the knowledge

of one would reveal other secrets.

Definition 6.3.3 (Group Confidentiality). We say that A ensures that a list of sensitive

texts S := [x1, ..., xk] is (ϵ(S), δ)-(group) confidential, if for any dataset D that contains

[x1, ..., xk] in up to k data points, and D′ being the version that replaces each element in

S with <MASK>, it holds that (A(D),A(D′)) are (ϵ(S), δ)-indistinguishable.

A special case of such group confidentiality is when S collects the all secret text in

D, which protects all secret texts uniformly. We call this uniform-confidentiality. Note

that the standard definition of confidentiality also protect every secret x, except that it

protects each secret x individually, rather than together.

Inspired by the recent development of Bayesian DP [172], we also define Bayesian

confidentiality as follows.

Definition 6.3.4 (Bayesian Confidentiality). Let D be a dataset that is fixed except

a random secret x ∼ µ drawn from some distribution µ. Let D′ be obtained by re-
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placing x with <MASK>1. Then A ensures (ϵ, δ)-Bayesian Confidentiality if for any D′,

(A(D),A(D′)) is (ϵ, δ)-indistinguishable, where A(D) is jointly distributed over x ∼ µ

and A.

The Bayesian confidentiality measures how much information an attacker could gain

if he/she’s prior knowledge about this secret x is described by the distribution µ. This

is a strict generalization because when µ is a single point mass at x, it recovers Defini-

tion 6.3.2. The additional generality allows us to quantify the stronger confidentiality

guarantee against weaker adversaries without complete information.

6.3.2 Confidentially redacted training

In this section we describe the CRT method to train language models with provable

confidentiality guarantee. It includes two pre-processing operations (deduplication and

redaction) and a switching optimization procedure. The overall idea is to screen the

corpus into two separate sets, one public set including sentences with no confidential

information, and one private set including sentences containing confidential content. We

then use normal optimization algorithms (e.g. SGD) on the public set and differential

privacy optimizer (e.g. DP-SGD) on the private set.

Deduplication. The deduplication procedure Dedup detects all sentences that appear

multiple times in the training data and replace them into a single <MASK> from the second

occurrence onwards (<MASK> is for proving purpose).

Redaction. The redaction procedure Redactπ takes applies a sequence labelling policy

π to screen confidential content in the training corpus D. π(s, x) = 1 if a token x in a

sentence s should be confidential. The labeled span in each detected sentence is replaced

1Notice that D′ is fixed even though x is random.
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with a special token <MASK>. Note that we do not assume the policy is perfect. It may

label some non-sensitive tokens as sensitive (false positives) and label some sensitive text

as non-sensitive (false negative, or 1−recall).

Redact and Dedup could be implemented manually, but with the large text corpus

nowadays it is more common that these procedures are implemented using automated

tools. For example, Dedup could be implemented efficiently with just one pass of data

using a bloom filter [173] (or other hashing tricks that also catches near-duplicates).

Bloom filter in particular, enjoys the nice property that it could have false positives but

never any false negatives. Redactπ could be realized by a named entity recognition (NER)

model or a personal-identifiable information (PII) detector.

Algorithm 11 Confidentially Redacted Training (CRT)

1: Input: Dataset D (after tokenization / splitting), labelling policies π, πc, number of
epochs T

2: D′ ← Dedup(D)
3: D′′ ← Redactπ(D′)
4: Dpri ← {s ∈ D′′ | ∃x ∈ s s.t. π(s, x) = 1 or ∃x ⊂ s s.t. πc(s, x) = 1}
5: Dpub ← {s ∈ D′′ | s /∈ Dpri}
6: for e = 1 to T do
7: Run one epoch of SGD with Dpub

8: Run one epoch2 of DP-SGD with Dpri

9: end for

Finally, CRT combines the two pre-processing steps with normal optimizer and DP-

SGD, the standard algorithm for deep learning with differential privacy. A pseudo-code

of the algorithm is given in Algorithm 11.

Besides using a sequence labeling policy π with balanced precision/recall as part of

the redaction process. The algorithm uses another, more conservative, policy πc with

nearly perfect recall to decide on the data points that do not contain sensitive text. In

2DP-SGD uses Poisson-sampled Gaussian mechanisms (with a random batchsize), thus cannot ensure
all data points are seen and some data points might be seen many times. One epoch means the number
of iterations that in expectation covers |Dpri| data points.
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the situation when such πc isn’t available, we simply choose πc(s, x) = 1 for all tokens

x in a sentence s and the second part becomes the vanila DP-SGD. It is also important

that every data point that contains a <MASK> requires protection.

6.3.3 Theoretical analysis

We analyze the theoretical properties of the above method and show that they result

in provable improvements in the (regular, group and Bayesian) confidentiality parameters

for any algorithms that are provably (ϵ(x), δ)-confidential as defined in Section 6.3.1.

The following theorem captures the benefit of redaction in improving confidentiality.

Proposition 6.3.5 (Confidentiality under redaction). If A ensures (ϵ(x), δ)-Confidentiality

for each token x of sentence s ∈ S (S is a corpus), then A ◦ Redactπ ensures (ϵ̃(x), δ)-

confidentiality with

ϵ̃(x) =


ϵ(x) if π(s, x) = 0

0 otherwise.

In addition, A ◦ Redactπ also satisfies (ϵ̃(S), δ̃(S))-group confidentiality with

ϵ̃(S) =
∑

x∈s&s∈S

ϵ(x)1(π(s, x) = 0),

δ̃(S) = k̃eϵ̃(S)δ

where k̃ :=
∑

x∈S 1(π(s, x) = 0).

As an application of the above, if A ensures (ϵ, δ)-confidentiality, and that the empir-

ical recall rates of the redaction policy on D is 1−γ, then the above proposition suggests

that A◦Redactπ improves the uniform-confidentiality over applying A without redaction

by a factor of γ. The proof is in the appendix.
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Redaction also improves Bayesian confidentiality in a way that mirrors the privacy

amplification by sampling from the DP literature.

Proposition 6.3.6 (Bayesian Confidentiality under Redaction). If A ensures (ϵ, δ)-

Bayesian Confidentiality with respect to µ[x|π(s, x) = 0] for a token x in a sentence

s, then A ◦ Redactπ ensures (log(1 + γ(eϵ − 1)), γδ)-Bayesian Confidentiality under µ if

π has a false negative rate (i.e., 1−“Recall”) of γ under µ.

The proposition says that if the redaction policy is accurate for secrets x ∼ µ, then

we can have a stronger confidentiality parameter that scales roughly at ϵ̃ = O(γϵ). The

idea behind the proof is that over the distribution of x ∼ µ, with probability 1 − γ,

Redactπ(D) = Redactπ(D′), thus A ◦ Redactπ(D) ≡ A ◦ Redactπ(D′). With probability

γ, Redactπ(D),Redactπ(D′) are different and conditioning on the fact that Redactπ fails

to detect x. Note that π is also applied to other text that are not sensitive, and could

result in false positives, but they do not matter as the modification of Redactπ to D and

D′ will be identical. A full proof is given in the appendix.

Next we turn to deduplication.

Proposition 6.3.7 (Group confidentiality under deduplication.). If A ensures (ϵ(S), δ(S))-

Group Confidentiality, then A◦Dedup ensures (ϵ(Unique(S)), δ(Unique(S)))-Group Con-

fidentiality.

Deduplication provides a stronger protection for those cases where some secret x could

appear multiple times in the dataset.

Theorem 6.3.8. Let DP-SGD from Algorithm 11 satisfies (ϵ, δ)-differential privacy.

1. Assume πc(s, x) = 1 for all secret tokens x in a sentence s such that π(s, x) = 0,

then Algorithm 11 satisfies (ϵ1(π(s, x) = 0), δ)-confidentiality.
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2. Let S be a group containing m unique secrets such that πc(s, x) = 1∀x ∈ s and s ∈ S

and that π detects γ̃-proportion of the unique secrets in S. Then Algorithm 11

satisfies (γ̃mϵ, γ̃meγ̃mϵδ)-group confidentiality for S.

3. Let π, πc has a recall of 1−γ and 1−δ2 respectively on µ, then Algorithm 11 satisfies

(log(1 + γ(eϵ − 1)), γδ + δ2)-Bayesian Confidentiality for µ.

The theorem demonstrates that our CRT algorithm enjoys a full suite of confiden-

tiality guarantees and they all benefit from the deduplication and redaction, particularly

if π has high recall.

Note that the CRT algorithm achieves the worst-case confidentiality guarantee if we

have a nontrivial conservative screening policy that outputs πc(x) = 1 for all secret x

that π misses, or we simply run vanilla DP-SGD after deduplication and redaction. On

the other hand, CRT still satisfies Bayesian confidentiality for each µ depending on the

recall rate of πc under µ.

6.4 Experiments

We evaluate CRT by training two types of language model, LSTM and GPT-2, on

two datasets: 1) MultiWOZ 2.2, a well-known human-written dialogue dataset and 2)

CustomerSim, a simulated dialogue dataset for conversation generation.

MultiWOZ 2.2 is an already-public dialogue dataset written by crowd-workers, which

collects over 10,000 annotated dialogues spanning 8 domains [174]. We use this dataset

to show how CRT works in real-world applications. Following US Department of Labor’s

guidance3 on personal-identifiable information (PII), we treat all confidential information

(e.g. email address, reference number, telephone number, etc.) as secrets. For the

3https://www.dol.gov/general/ppii
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sequence labeling policy π and conservative policy πc, we build upon an NER model to

do redaction. See Appendix 6.5.4 for more details.

CustomerSim. Following S-DP [160], we simulate a dialog dataset called CustomerSim

with synthetic user information. The dialog flow is simulated based on a fixed agenda and

the language generation is template-based [175]. CustomerSim consists of 10 thousand

examples and over one million tokens. We treat user name, address, phone number,

order, and tracking number as secrets, and use a regular expression tester (regex) to

detect them for the redaction process.

Experiment details. For LSTM model, we follow the setting in S-DP to choose a one-

layer LSTM. Because S-DP requires hidden states of the sensitive input to be protected,

it doesn’t support more layers nor Bidirectional LSTM. Since the advent of Transformers

[156] significantly improves the capabilities of generative language models, we also test

transformer-based language model GPT-2 [40] from HuggingFace [50]. As for deduplica-

tion, we use SHA-1 [176] hash function to encode sequences to SHA-1 hash code and then

remove identical sequences based on the same hash code. For Bayesian Confidentiality,

we treat the uniform distribution over the secret sequences as the distribution µ. More

experiment details can be found in Appendix 6.5.3.

Baselines. For LSTM model, we compare four different training approaches: (1) vanilla

SGD (denoted by ”Non-private-LSTM”), (2) Selective DPSGD (denoted by ”S-DP-

LSTM”) (3) DPSGD (denoted by ”DPSGD-LSTM”) and (4) confidentially redacted

training (denoted by ”CRT-LSTM”). While for GPT-2 model, we compare three differ-

ent training approaches: (1) vanilla SGD (denoted by ”Non-private-GPT”), (2) DPSGD

(denoted by ”DPSGD-GPT”) and (3) CRT (denoted by ”CRT-GPT”). Our implemen-
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Figure 6.2: Model utility and confidentiality guarantee on MultiWOZ 2.2 and Cus-
tomerSim datasets with µ being a uniform distribution over the secret sequences in
each dataset. PPL: Perplexity on the test set. ϵ: Privacy guarantee in Bayesian
Confidentiality. We fix δ = 8e − 5 for all models. Since Selective DP-SGD with ap-
proximate policy gives ϵ = +∞, we show its result with a perfect screen policy. But
when a perfect policy is available, Redaction only gives ϵ = 0 and achieves the PPL
of vanilla training with no noise added (Non-private-GPT/LSTM). For other models
we set γ = 0.1 to show the result under approximate policy.

tation of S-DP-LSTM model is built upon [160]4. We run the experiment for the GPT-2

model following [177]5, in which they propose ghost clipping method to alleviate the

computational challenge of running DP-SGD with large Transformers.

All the models are trained five times to reduce randomness, and the parameters are

tuned based on the validation set performances.

Experimental Results

6.4.1 Evaluation procedure

We need to evaluate both model utilities and privacy guarantees of the language

models. We measure predictive perplexity (PPL) for the quality of LM. We also analyze

the theoretical privacy budget (ϵ, δ) and test whether language models are private under

attacks detailed below.

4https://github.com/wyshi/lm privacy
5https://github.com/lxuechen/private-transformers
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Canary insertion attack. Canary insertion is proposed as a testing methodology for

quantitatively assessing the risk of unintended memorization [157]. It inserts random

sequences called canaries into the training dataset, then trains the model, and finally

calculates the following exposure for the inserted canaries to measure a model’s potential

for privacy risks. In our experiment, we randomly generate 10 canaries in the form of ”My

ID is: <random 6-digit number here>”. Each canary is inserted into the training

dataset 20 times to generate more salient differences between models.

Definition 6.4.1 (Canary Exposure). Given a canary s[r], a model with parameters θ,

and the randomness space R, the exposure of s[r] is

exposureθ = log2 |R| − log2 rankθ(s[r])

After training, we calculate empirical model perplexity for all possibly-instantiated

canaries and list them in sorted order. Then we can get the canary exposure based on the

rank of a specific canary sequence rankθ(s[r]) and the number of all possible candidates

|R|. In our setting, we show the highest canary exposure in 10 canaries. For example, if

a canary ranks 1st among 1M candidates, the canary exposure is 19.93.

Membership inference attack. Membership Inference is a widely used privacy attack

method. Given a non-privately trained model, an adversary can predict whether or not

a particular example was used to train the model. We adopt the membership inference

attack in [158]. The general idea is to calculate the given samples’ perplexities under the

model, rank them and choose the ones with the lowest perplexities, i.e., highest likelihood

by the model. We can think of this process as training a binary classifier based on the

perplexity feature. We also implement the group membership inference attack to show

the group confidentiality. More details about the implementation can be found in the
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Appendix 6.5.5.

6.4.2 Overall performance

Figure 6.2 presents the results of model utilities and confidentiality guarantees across

our models of interest on MultiWOZ 2.2 and CustomerSim datasets. Each point denotes

a model for different epochs in a training process. Since the X-axis is ϵ in Bayesian

Confidentiality (the lower the better) and the Y-axis is perplexity (the lower the better),

a perfect model will lie in the bottom-left corner. CRT-GPT and DPSGD-GPT in

general, perform better than S-DP-LSTM, CRT-LSTM and, DPSGD-LSTM on the test

sets. Our model CRT-GPT’s performance is close to Non-private-GPT in terms of PPL

while preserving strong confidentiality. Besides, CRT-GPT is better than DPSGD-GPT

manifested by a much lower ϵ, which demonstrates that approximately correct screening

policy amplifies the confidentiality guarantee.

Differences can be witnessed in the results from two different datasets: the models

trained on CustomerSim achieve overall better performances than those trained on Mul-

tiWOZ. We think it’s due to the fact that CustomerSim contains simple dialogs from

template-based simulations.

6.4.3 Attack results

Figure 6.3, 6.4, and 6.5 present the results from canary insertion attack and individ-

ual/group membership inference attack on MultiWOZ 2.2 and CustomerSim datasets.

The X-axis is the false negative rate γ of screening policy π, ranging from 0.0 to 0.5;

the Y-axis is the canary exposure (in Figure 6.3) and membership inference accuracy

(in Figure 6.4 and 6.5), which measures the effectiveness of the attacks. The lower the

canary exposure or inference accuracy, the better protection the model provides against
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the attacks.
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Figure 6.3: Canary insertion attack result. CRT achieves almost 0 canary exposure,
which means it can prevent unintended memorization.
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Figure 6.4: Membership inference attack result. CRT attains nearly 50% accuracy,
indicating that the adversary could not infer whether a data point is used for training.

For canary insertion attack, it can be seen from Figure 6.3 that the canary exposures

for CRT-LSTM and CRT-GPT are both close to 0 which thus guarantee excellent con-

fidentiality. Non-private-LSTM and Non-private-GPT with mask can also attain great

protection at perfect screening policy accuracy (γ = 0), nonetheless a rise in γ results

in a sharp increase in the exposure. It should be noticed that S-DP-LSTM also has

high exposure, similar to Non-private models, given any γ above 0. This is because that
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Figure 6.5: Group membership inference attack result.

many sensitive data has been falsely identified as non-sensitive by the approximate policy,

S-DPSGD does not protect these false negative samples and hence a privacy leakage.

For membership inference attack, we compare the inference accuracy with the bench-

mark value of 0.5, which equals the random guess performance. In Figure 6.4 and 6.5,

we see that CRT-LSTM and CRT-GPT align well with the 0.5 horizontal line, sug-

gesting that they are rather safe to the attack. The inference accuracy for Non-private-

LSTM/Non-private-GPT/S-DP-LSTM, in contrast, surges above 0.5 as the false negative

rate γ deviates from 0.0, indicating that these models become vulnerable to the attack

under non-perfect screen policy. In addition, Non-private and S-DP models show even

worse protection under the group attack than the individual one in view of a higher

inference accuracy at certain γ.

6.4.4 CRT amplifies Bayesian Confidentiality guarantees

Figure 6.6 shows that confidentially redacted training can help to amplify the confi-

dentiality guarantees. We set the ϵ′ in DP-SGD fixed and show the corresponding ϵ in

Bayesian Confidentiality with different screen policy π. Both ϵ′ and ϵ are for δ = 8e− 5.

If the approximately screening policy π has a high recall (γ is small), we will achieve
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Figure 6.6: Bayesian Confidentiality amplification result. CRT helps to amplify the
confidentiality guarantee.

much improvement in the Bayesian Confidentiality parameter ϵ by deduplication and

redaction. For example, with (ϵ′ = 1.0, γ = 0.1), we reduce the ϵ to 0.12.

6.5 Conclusion

In this chapter, we propose confidentially redacted training (CRT), a method to train

language models while protecting secret texts. We introduce a new definition of confiden-

tiality which quantifies the risk of leaking sensitive content. We prove the effectiveness

of CRT both theoretically and empirically on multiple datasets and language models.

Broader Impact

This work will alleviate ethical concerns of large-scale pre-trained language models.

This chapter provides one promising solution to an important aspect of NLP: training

high quality language models for text generation without compromising confidential in-
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formation. The current use cases of language models involve pretraining on public web

corpus and fine-tuning on individual application data. However, the private application

specific data often contains user-generated sensitive information. The proposed method

in this chapter aims to use as much individual fine-tuning data as possible, while does

not leak or memorize any confidential information with provable guarantees. Without

the method, one has to either use the general pretraining LM without fine-tuning or

manually filter sensitive information and fine-tuning on the remaining. It can be applied

in broader applications that need language models or text generation models.

In our experiments, we use a simulation scheme to mimic confidential content in a

real corpus. We did not compromise any real user’s confidential information.

Additional Results and Proofs

6.5.1 Illustration of our proposed algorithm

6.5.2 Proofs of technical results

Proof of Proposition 6.3.5. The first statement straigtforwardly follows from that Redactπ(D) =

Redactπ(D′) if π(s, x) = 1 and that Redactπ(D) and Redactπ(D′) remain a pair of neigh-

bors differing by only x. The group confidentiality claims follows from the standard

calculation of small group privacy from differential privacy, which applies the (single x)

confidentiality iteratively. Let D̃ = Redactπ(D), D̃′ = Redactπ(D′) and S̃ = [x1, ..., xk̃]
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with nearly perfect
recall.

Selective noise-
adding DP-SGD<MASK>

<MASK>

<MASK>

<MASK>

<MASK>

<MASK>

with provable
confidentiality

<MASK>

GPT-2

Figure 6.7: An illustration of our proposed algorithm on a dataset with two data
points. The first data point is the example from Figure 6.1, and the second data
point is modified to illustrate the various aspects of the pre-processing steps. The
red-colored mask indicates the masks produced by deduplication just for illustration
purposes. In the algorithm, both of them replace a sequence of tokens with the same
special token <MASK>.

be the list of S that are not masked by π. For any measurable event E

P[A ◦ Redactπ(D) ∈ E] = P[A(D̃)] ≤ eϵx1 P[A(D̃−x1,+<MASK>) ∈ E] + δ

≤eϵx1+ϵ(x2) P[A(D̃−x1,2,+<MASK>2) ∈ E] + eϵx1δ + δ

...

≤e
∑k̃

i=1 ϵxi P[A(D̃′) ∈ E] + δ(1 + eϵx1 + eϵx1+ϵx2 + ... + eϵx1+...+ϵxk̃−1)

≤eϵ̃(S) P[A ◦ Redactπ(D′) ∈ E] + keϵ̃(S)δ

Proof of Proposition 6.3.6. Consider a dataset D (in which one of the data point has
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x ∼ µ) and a fixed D′. Denote the probability distributions p, q, r as shorthands for

p ∼ A ◦ Redactπ(D)|π(s, x) = 1

q ∼ A ◦ Redactπ(D)|π(s, x) = 0

r ∼ A ◦ Redactπ(D′)|π(s, x) = 0

Moreover, we use αp + (1− α)q to denote the mixture distribution that samples from p

with probability α and q with probability 1− α.

Recall that the Hockey-Stick-divergence characterization of (ϵ, δ)-indistinguishsability

[178], which says that (P,Q) are (ϵ, δ)-indistinguishsable if and only if

Heϵ(P∥Q) := E
y∼Q

[(
dP

dQ
(y)− eϵ)+] ≤ δ.

It suffices for us to bound the following quantity:

H1+γ(eϵ−1)(A ◦ Redactπ(D)∥A ◦ Redactπ(D′)) = Heϵ((1− γ)p + γq∥(1− γ)p + γr)

=γHeϵ(q∥(1− β)p + βr) ≤ γ ((1− β)Heϵ(q∥p) + βHeϵ(q∥r))

where β = 1+γ(eϵ−1)
eϵ

. In the above, the second line follows from Theorem 2 of [179] (an

identity called “Advanced Joint Convexity” by the authors) and the inequality is due

to the (standard) joint convexity of the Hockey-Stick divergence. It remains to bound

Heϵ(q∥p) and Heϵ(q∥r).

Check that p, r,A◦Redactπ(D′) are identically distributed and that Heϵ(q∥r) ≤ δ by

our assumption on A’s Bayesian confidentiality guarantee w.r.t. µ(x|π(s, x) = 0). This

completes the proof.

Proof of Proposition 6.3.7. The proof is straightforward as Dedup(D) differs from Dedup(D′)
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only by Unique(S).

Proof of Theorem 6.3.8. The proof for the first statement follows from the fact that DP

implies (ϵ, δ)-confidentiality and Proposition 6.3.5. Notably, if πc catches all x that is

missed by π, then we get that for all secret x, ϵ(x) ≤ ϵ.

The proof of the second statement applies Proposition 6.3.7 and the second part of

Proposition 6.3.5.

The proof of the third statement applies Proposition 6.3.6 but requires a separate

treatment of the case when x is missed by both π and πc. Let the event that a secret x is

not selected by the conservative policy be E and let A be a generic algorithm satisfying

(ϵ, δ1) Bayesian confidentiality under µ,

P[A(D) ∈ S] ≤ P[A ◦ Redactπ(D) ∈ S ⊂ Ec] + δ

≤ eϵ P[A(D′) ∈ S ⊂ Ec] + δ1 + δ2

≤ eϵ P[A(D′) ∈ S] + δ1 + δ2.

This completes the proof.

6.5.3 More details on experiments

We choose the one-layer LSTM with an embedding size of 200 and a hidden size of 200.

We choose distill-gpt26 as the GPT-2 model, which has 6 layers, 768 dimension and 12

heads. Vocabulary size for GPT-2 is 50257. Our experiments are conducted on NVIDIA

TITAN-Xp GPU. For LSTM models, we tune the hyperparameters of the learning rate

(lr) among {20, 10, 5, 1, 0.1, 0.05, 0.01}, batch size (bs) and the epochs among {5, 10,

30, 50, 100}. We finally choose {lr=20, bs=256, epochs=50} for Non-private-LSTM,

6https://huggingface.co/distilgpt2
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{lr=0.1, bs=5, epochs=50} for S-DPSGD-LSTM and {lr=0.05, bs=10, epochs=100} for

CRT-LSTM. The same set of hyperparameters are tuned for GPT model as well. Our final

choice for DPSGD-GPT/CRT-GPT model is {lr=5e-4, bs=256, epochs=10}. The actual

run-time of algorithms depends on implementation details. Here, we outline estimates

of the run-time for training. Running one epoch on CRT-LSTM takes 2 hours wheras

the same task on CRT-GPT only takes 30 minutes since the implementation of [177] is

highly efficient. We use autodp7, an automating differential privacy computation for the

privacy analysis. Noise scale σ is calculated numerically so that a DP budget of (ϵ, δ) is

spent after T epochs.

6.5.4 Redaction policy details

We build the sequence labeling policy based on trimming one NER model8 trained

on OntoNotes-5.0 [180] dataset. We modify the last layer of the NER model and set

the threshold for the output scores to enable abnormal/sensitive data detection. For the

screen policy π, we set the threshold to be 0.3 for all predictions with OntoNotes tags.

For the conservative policy πc, we select all predictions with tags and all plain texts with

scores smaller than 0.9 to be sensitive data. We manually label 200 data points and find

that the conservative policy πc can achieve 100% recall with lots of false positives and

that π can achieve 90% recall with few false positives.

6.5.5 Membership inference attack details

In our experiments, we manually construct a dataset with 2000 sequences. We select

1000 sequences from the protected secrets used in the training data. And we randomly

generate 1000 samples of similar format which are not used in the training data. In this

7https://github.com/yuxiangw/autodp
8https://huggingface.co/flair/ner-english-ontonotes-fast
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way, a random guess generates an accuracy of 50%. For MultiWoz 2.2, we use sentences

with reference numbers as the secrets. For CustomerSim, we choose customer addresses

as the secrets.

In order to show group confidentiality guarantees, we also conduct group membership

inference attack. In this setting, we construct a dataset with 2000 groups, each of which

includes 20 sentences. One half of the groups are “sensitive groups” with all 20 sentences

drawn from protected secrets and the other half are ”insensitive groups” with all 20

sentences being random. We build the classifier based on the sum of the perplexities in

one group.

6.5.6 “The devil is in the details” – how things could go wrong

with seemingly inocuous changes to the algorithm.

In this section, we highlight various aspects of our algorithms and why certain choices

in the pre-processing steps need to be done in the specific way we recommend for our

results to hold for them.

1. It is important that the definition of confidentiality is defined with respect to a

perfectly redacted version of the dataset. If we define it as in selective differential

privacy, then there will not be an amplification effect from redaction. This is

because if we replace a secret x that can be detected by π with another x′ that

cannot be detected by π, then even if x is replaced with <MASK>, x′ will not be and

the two datasets are still different after redaction. In addition, the S-DP definition

will not be useful for us we do not know how to define a confidentiality parameter

specific for each x or Bayesian confidentiality parameter for each µ

2. Tokenization and splitting into individual “sentences” (data points) should go be-

fore redaction / de-duplication. Otherwise redaction with an approximate screen-
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ing policy and with an ideal screening policy, or deduplication may cause misalign-

ments, resulting in almost all data points being different in the preprocessed version

of D and D′.

3. Each data point should contain only “whole” natural sentences, otherwise the sen-

sitive part of a natural sentence could split into two data points.

4. Deduplication steps should replace duplicate text with the same <MASK>, otherwise

<MASK Dedup> and <MASK Redact> are not the same so even if all secrets are masked,

there will be a difference between the pre-processed versions of D and its neighbor,

while in our approach there are no differences and we achieve perfect confidentility

(with ϵ = 0).

5. Any data point containing <MASK> needs to be put in Dpri. This is because otherwise

our algorithm that works on D′ will be a deterministic algorithm that is perfectly

distinguishable from the alternative world where the algorithm is random because

the approximate policy π fails to redact certain secrets x.

6. In the DP-SGD algorithm, the sampled minibatches should contain the whole mini-

batch from Dpri or the whole minibatch from Dpub. Otherwise the noise always need

to be added and the algorithm is identical to the vanilla DP-SGD, and there is no

benefit of having a portion of the data being public comparing to all of the data

are private.
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Chapter 7

Conclusion and Future Work

This thesis has explored and addressed some of the most pressing challenges in empower-

ing the responsible use of Large Language Models, focusing on the realms of safety, secu-

rity, and privacy. As the rapid advancement of generative AI technologies like ChatGPT

and Llama continues to shape the technological landscape, the risks and ethical concerns

surrounding their misuse become increasingly significant. Our work has sought to mit-

igate these risks through a series of novel techniques, providing theoretical guarantees

and empirical evidence across three critical areas: watermarking, intellectual property

protection, and privacy preservation.

In the domain of watermarking LLM-generated text, we have proposed two novel

solutions. The Unigram-Watermark method provides a rigorous theoretical framework

to quantify performance drops, detection accuracy, and security against post-processing

while ensuring that the watermarked LLM remains close to the original. The PF Water-

mark, building upon the Permute-and-Flip decoding method, demonstrates Pareto op-

timality in balancing robustness and perplexity while effectively detecting watermarked

text.

To protect the intellectual property of generative AI, we have developed innovative
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watermarking techniques tailored for LLMs. The Distillation-Resistant Watermarking

(DRW) method protects NLP models from being stolen via distillation by injecting wa-

termarks into the victim’s prediction probabilities corresponding to a secret key. Ginsew,

an adaptation of DRW principles to text generation models, injects secret watermarking

signals into decoding steps to ascertain the origin of the model, providing a formidable

defense against unauthorized distillation.

Addressing the privacy risks posed by LLMs, we have proposed the Confidentially

Redacted Training (CRT) method. Inspired by differential privacy, CRT trains language

generation models while protecting confidential segments by randomizing parts of the

training process. We have demonstrated that redaction with an approximately correct

screening policy amplifies the confidentiality guarantee, helping mitigate privacy risks in

the initial model training phase.

In conclusion, this thesis has made significant contributions to the responsible and

ethical development of LLMs by introducing:

1. Watermarking techniques for detecting AI-generated text with theoretical guaran-

tees and empirical validation.

2. Watermarking methods to protect the intellectual property of LLMs against model-

stealing attacks.

3. Privacy-preserving training techniques that prevent LLMs from generating sensitive

information.

These contributions form a comprehensive framework for ensuring the safe, secure,

and private deployment of LLMs, ultimately helping to align these powerful technologies

with societal values.

I aim to focus on advancing trustworthy, responsible, and human-centric AI in the

future. Some key directions I plan to pursue include:
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Multimodal watermarking and misuse monitoring. Current watermarking meth-

ods are domain-specific, often limited to text or images. However, as demonstrated by

models like GPT-4V, future AI systems will likely be multimodal, integrating capabilities

across image, text, and audio modalities. This multimodality is crucial for achieving Ar-

tificial General Intelligence (AGI). However, it also poses a central challenge for AI safety:

detecting AI-generated content and verifying official content. Building on my expertise

in watermarking, I aim to develop next-generation watermarks tailored to multimodal

foundation models. For instance, I plan to explore using the same pseudorandom function

to control the generation process across modalities, such that different modalities mu-

tually reinforce detection confidence. Furthermore, I intend to research monitoring and

mitigating the misuse of AI-generated content. Monitoring the misuse of AI-generated

content has significant societal benefits. For example, it can help detect cheating in ed-

ucational settings and guide students accordingly. It can also uncover AI-enabled fraud

and deception. My goal is to pioneer watermarking and monitoring techniques specific

to emerging multimodal AI that promote responsible and ethical use of them.

Exhaustive evaluations and red teaming for safety alignment. As more powerful

AI systems emerge, we need incrementally scaled frameworks to rigorously assess and

mitigate new risks. In the near future, the most capable AI may have access to databases,

operating systems, and even robotics, bringing more challenges for model safety. For

instance, we must prevent language models from executing harmful commands like “rm

-rf /*” to delete data. Interactions with the physical world through robotics pose

further dangers. Thoroughly testing models for risks is crucial before deployment. I

plan to do research on scalable evaluation protocols and techniques for automatic red

teaming of these emerging AI models. On the attacking side, I intend to explore how

to automatically assess risks to national security and public health and safety. This
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will involve investigating adversarial example generation and organizing model hacking

competitions to identify vulnerabilities. On the defense side, the focus will be on ensuring

that models align with human values, benefit the broader society, and are robust against

adversarial attacks, such as those aiming to “jailbreak” the models.

Privacy enhancing technologies, regulation, and policy. The rapid advancement

of AI models underscores the increasing significance of training data memorization and

associated privacy concerns. Recognizing this, the US government has enacted regula-

tions to scrutinize how agencies collect and use commercially available information. In

response to these mounting privacy concerns, I intend to leverage my previous experience

in privacy-preserving generative AI. My objective is to incorporate differentially private

and federated learning techniques at every stage of AI model development, which in-

cludes pre-training, fine-tuning, and inference phases. Additionally, I plan to conduct

research on auditing privacy leakage. My internship experience with the Google Privacy

Research team has also equipped me to utilize AI for privacy, such as using modern NLP

models to identify privacy issues from user feedback on products. Moving forward, as

regulations surrounding AI continue to evolve, I am eager to collaborate with researchers

on AI regulation and policy topics, such as AI safety standards, model risk ratings, and

transparency requirements. This research could provide policymakers and regulators with

technical expertise.

In summary, I aim to advance trustworthy AI that respects human values through

open and reproducible research. My vision is to increase public understanding of respon-

sible innovation and engage wider audiences in shaping the future trajectory of AI.
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[132] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, Stealing machine
learning models via prediction {APIs}, in 25th USENIX security symposium
(USENIX Security 16), 2016.

[133] T. Orekondy, B. Schiele, and M. Fritz, Knockoff nets: Stealing functionality of
black-box models, in Conference on Computer Vision and Pattern Recognition,
2019.

[134] X. He, L. Lyu, Q. Xu, and L. Sun, Model extraction and adversarial
transferability, your bert is vulnerable!, in Conference of the North American
Chapter of the Association for Computational Linguistics, 2020.

204



[135] Q. Xu, X. He, L. Lyu, L. Qu, and G. Haffari, Student surpasses teacher: Imitation
attack for black-box nlp apis, in International Conference on Computational
Linguistics, 2021.
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