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D I S E A S E S  A N D  D I S O R D E R S

Necrotizing enterocolitis is preceded by increased  
gut bacterial replication, Klebsiella, and  
fimbriae-encoding bacteria
Matthew R. Olm1, Nicholas Bhattacharya2, Alexander Crits-Christoph1, Brian A. Firek3, 
Robyn Baker4, Yun S. Song5,6,7, Michael J. Morowitz3, Jillian F. Banfield7,8,9,10*

Necrotizing enterocolitis (NEC) is a devastating intestinal disease that occurs primarily in premature infants. We 
performed genome-resolved metagenomic analysis of 1163 fecal samples from premature infants to identify microbial 
features predictive of NEC. Features considered include genes, bacterial strain types, eukaryotes, bacteriophages, 
plasmids, and growth rates. A machine learning classifier found that samples collected before NEC diagnosis harbored 
significantly more Klebsiella, bacteria encoding fimbriae, and bacteria encoding secondary metabolite gene clusters 
related to quorum sensing and bacteriocin production. Notably, replication rates of all bacteria, especially Entero-
bacteriaceae, were significantly higher 2 days before NEC diagnosis. The findings uncover biomarkers that could 
lead to early detection of NEC and targets for microbiome-based therapeutics.

INTRODUCTION
Necrotizing enterocolitis (NEC) is widely studied yet poorly under-
stood. First described in the early 1800s (1), NEC is a disorder of 
intestinal inflammation that can progress to bowel necrosis, sepsis, 
and death (2). NEC affects 7% of very low birth weight infants born 
in the United States each year, and mortality rates have remained 
around 20 to 30% for several decades (2). The direct cause or causes 
of NEC remain unknown.

The primary risk factor for NEC is preterm birth (2). Immature 
enterocytes exhibit hyperactive immune responses through the 
Toll-like receptor 4 (TLR4) pathway in response to bacterial lipo-
polysaccharide (LPS), which can lead to bowel damage (3). Experi-
mental NEC occurs in conventionally raised animals but not those 
reared in a germ-free environment (4, 5). These observations suggest 
that the intestinal microbiome plays a role in the disease and lead 
to the prevailing hypothesis that an excessive immune response to 
aberrations in the composition and function of gut microbial com-
munities is the most likely basis for the pathogenesis of NEC. Although 
no single microbe has been consistently identified as a biomarker 
for NEC, increased abundance of bacteria in the phylum Proteobacteria 
is a frequently reported microbial pattern in NEC infants (6). Most 
fecal microbiome-based profiling studies of NEC use 16S ribosomal 
RNA (rRNA) amplicon sequencing, which provides a general over-
view of the bacteria present but does not reveal metabolic features 
that could contribute to NEC pathogenesis.

Genome-resolved methods may provide new insights into NEC 
development. The approach has several advantages over 16S rRNA 
amplicon sequencing. As the method is not reliant on polymerase 

chain reaction amplification nor specific probes, all DNA can be 
sequenced, allowing detection of bacteriophages, plasmids, eukaryotes, 
and viruses. Bioinformatic techniques can also infer in situ bacterial 
replication rates directly from metagenomic data (7), an important 
metric, as some microbiome-related diseases have a signal related to 
bacterial replication but not relative abundance (8). Genome assembly 
and annotation can provide functional information about organisms 
present and possibly reveal genes associated with NEC. Further, 
whole-genome comparisons provide strain discrimination and thus 
detailed testing of Koch’s postulates. Last, mapping to reference 
genomes is not required for genome detection, allowing for the dis-
covery of novel bacterial clades (9). While identification of a single 
causative strain, virus, or toxin would be the most actionable result 
for clinicians, any associations could potentially be used as bio-
markers to identify early warning signs of NEC, and microbial communi-
ties associated with NEC could be targeted with microbiome- altering 
techniques such as probiotics, prebiotics, or other approaches (10).

RESULTS
Metagenomic characterization of premature  
infant fecal samples
We analyzed 1163 fecal metagenomes from 34 preterm infants who 
developed NEC and 126 preterm infants without NEC (Fig. 1). Pre-
mature infant participants were matched for gestational age and 
calendar date and recruited from the University of Pittsburgh Medical 
Center Magee-Womens Hospital (Pittsburgh, PA) over a 5-year period. 
Fecal samples were banked, and specific samples were later chosen 
for DNA extraction and sequencing to preferentially study samples 
immediately before NEC onset. An average of 7.2 samples per infant, 
mostly from the first month of life, was sequenced, and a total of 
4.6 tera–base pairs of shotgun metagenomic sequencing were 
generated (table S1). Detailed sequencing information (table S1) 
and patient metadata (table S2) are provided.

We performed extensive computational analyses on all samples 
to recover genomes de novo and determine their phylogeny, meta-
bolic potential, and replication rates [index of replication (iRep) (7)]. 
We also searched samples for eukaryotic viruses, virulence factors, 
secondary metabolite gene clusters, and previously implicated pathogens 
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(Fig. 1) (11, 12). This analysis resulted in 36 giga–base pairs of assembled 
sequence, 2425 dereplicated bacterial genomes (average of 92% com-
pleteness and 1.1% contamination), 5218 bacteriophage genomes, 
1183 plasmid genomes, 7 eukaryotic genomes, and 804,185 de novo 
protein clusters (Fig. 1B and table S3). As NEC can be a rapidly pro-
gressive disorder, for most statistical tests, we defined NEC samples 
as those taken within 2 days before NEC diagnosis (“pre-NEC” samples). 
For infants who did not develop NEC, only one sample from the period 
associated with NEC onset was used (“control” samples). Pre-NEC 
and control samples were matched for day of life (DOL), gestational 
age, and recent antibiotic administration (Fig. 1C and figs. S1 and S2). 
For other analyses, when explicitly stated, we used all samples.

Klebsiella pneumoniae is enriched in samples  
from infants with NEC
The gut microbiomes of all infants were dominated by Proteobacteria, 
regardless of NEC development (Fig. 2, A and B). As compared to 
previous studies of full-term infants (13, 14), the premature infants 
in this study had increased Enterobacteriaceae (a family of Proteo-
bacteria to which many nosocomial pathogens belong) and notably 
low abundances of Actinobacteria and Bacteroidetes. Factors that 
could select for these organisms include prophylactic antibiotics given 
to all premature infants at birth, high rates of birth by cesarean section, 
predominance of formula feeding, and immaturity of the intestine 
and immune system. Compared to control infants, the NEC infant 

microbiomes exhibited lower abundances of Firmicutes (P = 3.7 × 10−7, 
Wilcoxon rank sum test) and higher abundances of Enterobacteriaceae 
(P = 8.9 ×10−7, Wilcoxon rank sum test) than the microbiomes of 
control infants (Fig. 2A). The general association of Enterobacteriaceae 
and infants who go on to develop NEC has been described previously 
(15), but this prior analysis was not restricted to the period immedi-
ately before NEC detection. In our study, the gut microbiomes 
of infants who developed NEC were not significantly enriched in 
Enterobacteriaceae in pre-NEC versus control samples (P = 0.15, 
Wilcoxon rank sum test), so the association of Enterobacteriaceae 
and NEC infants overall may be due to the proliferation of these 
bacteria after the administration of antibiotics to treat NEC (fig. S2B).

We performed a principal components analysis (PCA) based on 
weighted UniFrac distance to compare the microbiomes of all samples 
from all time points (Fig. 2B). The first two principal components ex-
plained 73% of the overall variance, but samples collected from NEC 
infants (red) did not cluster separately from control infants (black dots). 
Consideration of higher principal components (up to the fifth principal 
component) did not separate pre-NEC and control samples, and samples 
coded by clinical metadata also did not cluster together (fig. S3).

To identify strains enriched in pre-NEC samples, we calculated the 
percentage of pre-NEC versus control samples carrying each assembled 
bacterial, bacteriophage, and plasmid genome (Fig. 2, C and D). 
K. pneumoniae strain 242_2 was the most associated with NEC and 
was present above the threshold of detection in 52% of pre-NEC samples 
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Fig. 1. Metagenomic characterization of 1163 samples from 160 premature infants. (A) Schematic of metagenomics versus genome-resolved metagenomics. 
Metagenomics involves DNA extraction from a microbiome sample, followed by library preparation and sequencing. In genome-resolved metagenomics, this is followed 
by sequence assembly and binning to generate draft-quality microbial genomes. (B) Metagenomes were characterized using database-free and database-reliant meth-
ods. The number of features in each category is listed in parentheses. See Materials and Methods for details. (C) Flow chart of the 160 premature infants recruited for in-
clusion in this study from the same neonatal intensive care unit over a 5-year period. Pre-NEC and control samples are a subset of the total fecal samples that are matched 
for DOL, gestational age, and recent antibiotic administration (Ab), and for NEC infants, samples are within 2 days before NEC diagnosis. The median and SD of matched 
metrics are reported.
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versus 23% of control samples (P = 0.008, Fisher’s exact test) (table S4). 
Closely related bacteria [>99% average nucleotide identity (ANI)] 
colonized up to 35% of all infants (Fig. 2C). This is likely the result 
of colonization by the same hospital-associated bacteria (16) in multiple 
infants. No organisms in this study satisfied Koch’s postulate that a dis-
ease causing organism should be found in all NEC infants and no 
healthy patients.

Bacterial replication rates are higher  
before NEC development
Bacterial replication rates are measured from metagenomic data by 
determining the difference in DNA sequencing coverage at the origin 
versus terminus of replication, yielding an iRep value that correlates 
with traditional doubling time measurements (7, 8). iRep values of 
bacteria overall were significantly higher in pre-NEC versus control 

PC1: 60.1%

PC
2:

 1
3.

0%

Control
NEC

Day of life

0

20

40

60

80

100

0

0 15 30 45 60

20

40

60

80

100

A

Samples

NEC
diagnoses

0 10 20 30 40 50
0

10

20

30

40

50

C
on

tr
ol

 s
am

pl
es

  (
%

)

NEC samples (%)
0 10 20 30 40 50

0

10

20

30

40

50

C
on

tr
ol

 s
am

pl
es

  (
%

)

NEC samples (%)

K. pneumoniae 242_2

Staphylococcus
phage 363_30

S. epidermidis 
plasmid 212_2E. faecalis 137_5

B C D

VerrucomicrobiaEukaryotes
Tenericutes
Plasmids

Fusobacteria
Bacteriophages
Bacteroidetes Actinobacteria

Firmicutes Proteobacteria (other)

Proteobacteria (Enterobacteriaceae)

Proteobacteria
(Enterobacteriaceae)

Proteobacteria
(other)

Firmicutes

Bacteroidetes

N
on

-N
E

C
 in

fa
nt

s
re

la
tiv

e 
ab

un
da

nc
e 

(%
)

N
E

C
 in

fa
nt

s
re

la
tiv

e 
ab

un
da

nc
e 

(%
)

Fig. 2. Comparison of microbes in premature infants who do and do not develop NEC. (A) The compositional profile of microbes colonizing infants who were and were not 
diagnosed with NEC. Bacteria were classified on the basis of their phyla, and other microbes were classified on the basis of their domain. Each color represents the percentage of 
reads mapping to all organisms belonging to a taxon, and the stacked boxes for each sample show the fraction of reads in that dataset accounted for by the genomes assembled 
from the sample. Proteobacteria were subdivided into the family Enterobacteriaceae and other. All relative abundance values were averaged over a 5-day sliding window. Box-
plots show the DOL in which samples were collected (top) and in which infants were diagnosed with NEC (bottom). (B) Principal components analysis (PCA) based on weighted 
UniFrac distance for all samples from NEC infants (red) and control infants (black). (C and D) Percentage of NEC infants versus the percentage of non-NEC infants colonized by 
strains of (C) bacteria or (D) bacteriophage (gold) and plasmids (blue). The taxonomies of four strains with extreme values are provided, of which only K. pneumoniae strain 242_2 
is significantly enriched in NEC samples (P < 0.05, Fisher’s exact test). Colonization by bacteria is defined as the presence of a strain at ≥0.1% relative abundance. Plasmid and 
bacteriophage detection required a read-based genome breadth of coverage of ≥50%. Each dot represents a strain, and dashed lines show a 1:1 colonization rate.
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samples (P = 0.0003, Wilcoxon rank sum test) in a cohort balanced 
for DOL, gestational age, and recent antibiotic administration (Fig. 3). 
Further, iRep values followed a notable pattern in relation to NEC 
diagnosis: Bacterial replication was stable four or more days before NEC 
diagnosis, increased daily in 3 days before diagnosis, and crashed fol-
lowing diagnosis (probably due to subsequent antibiotic administra-
tion) (Fig. 3A). Individual species did not have enough data points 
to be plotted confidently (minimum of five measurements per DOL), but 
genomes of the family Enterobacteriaceae displayed even higher pre-
NEC iRep values than bacteria overall (Fig. 3, A and B). Increased bac-
terial replication before NEC could promote disease onset or merely 
be a reaction to changing conditions in the gut that led to NEC.

Machine learning identifies additional differences  
between NEC and control cases
We measured 2119 features for each of the 1163 metagenomic samples 
(Fig. 1 and table S5). To evaluate which features are most different 
between pre-NEC and control samples, we developed a machine 
learning (ML) classifier. Multiple ML algorithms were evaluated, and 
although all performed with similar accuracy (table S4), the boosted 
gradient classifier was ultimately chosen because of its known ability 
to handle class imbalance. The classifier was trained on all 2119 fea-
tures to predict whether samples were pre-NEC or control, and 
accuracy was measured through cross-validation over 100 iterations. 
The classifier achieved a median accuracy of 64% on balanced sets; 
14% better than random chance. While a classifier with this accuracy 
may have limited utility in a clinical setting, it allowed us to interrogate 
which features were most informative for differentiating pre-NEC 
and control samples.

The most important individual features used by the ML classifier 
were replication rates (iRep values), KEGG (Kyoto Encyclopedia of 
Genes and Genomes) modules, secondary metabolite gene clusters, 
and overall plasmid abundance (Fig. 4). iRep values of both specific 

bacterial taxa and median iRep values overall were some of the most 
important features (Fig. 4B), while KEGG modules accounted for 
more than 50% of the total feature importance (Fig. 4A and table S5). 
A similar number of KEGG modules were associated and anti-associated 
with NEC (Fig. 4C), but the descriptions of the modules associated 
with NEC (e.g., erythritol and galactitol transport systems) and 
anti-associated with NEC (e.g., sodium and capsular polysaccharide 
transport systems) bear no obvious relationship to the disease (table S5). 
Secondary metabolite gene clusters were the second most important 
category overall (Fig. 4A), but unlike KEGG modules, very few were 
anti-associated with NEC (Fig. 4C). The most significant secondary 
metabolite gene cluster encodes an unusual operon of biosynthetic 
genes found in Klebsiella (cluster 416). In other species, similar operons 
are implicated in the biosynthesis of quorum-sensing butyrolactones 
(17). The second most significant cluster of genes occurs in Enterococcus 
and is involved in biosynthesis of a sactipeptide resembling subtilosin A1, 
an antimicrobial agent with known hemolytic activity (cluster 438) 
(table S3) (18). Another cryptic secondary metabolite gene cluster 
with a high feature importance (cluster 432) is closely related to a 
previously characterized cluster on a plasmid of enterotoxin-producing 
Clostridium perfringens adjacent to the enterotoxin gene (cpe) and 
2 toxin gene (cpb2) (19). Overall, high plasmid abundance was 
correlated with pre-NEC samples (Fig. 4B), and K. pneumoniae 
plasmids in particular were significantly more abundant in pre-NEC 
samples (P = 0.03) (fig. S2E). The prevalence of K. pneumoniae in pre-NEC 
samples (Fig. 2C) may explain the high abundance of K. pneumoniae 
plasmids in these samples.

Feature importances were also analyzed in combination. Each 
bacterial strain was assigned an importance value based on the sum 
of the importance scores for the KEGG modules encoded by its 
genome. A histogram of all genome importance scores was generated 
(fig. S4), and 150 genomes were visually determined to have KEGG 
importance values higher than the typical distribution (hereinafter 
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referred to as “organisms of interest”) (table S3). The organisms of 
interest were significantly more abundant in pre-NEC samples as 
compared to control samples (P = 0.004) (Fig. 4D), and they cluster 
phylogenetically (Fig. 4F). A total of 97% were in the family Entero-
bacteriaceae, and of those, 90% were in the genus Klebsiella.

Secondary metabolite biosynthetic gene clusters identified as 
important by the ML classifier occur in 218 organisms that are sig-
nificantly associated with pre-NEC samples (Fig. 4E). Several types 

of secondary metabolite gene clusters were enriched in these genomes 
(P < 0.01, Fisher’s exact test), including sactipeptides, bacteriocins, 
and butyrolactones (encoded by 382, 286, and 11 genomes, 
respectively) (table S3). As opposed to organisms of interest, these 
bacteria were spread around the phylogenetic tree (Fig. 4F). This 
may indicate that the clusters themselves are associated with 
pre-NEC samples. Overall, the results point to an association of quorum 
sensing and antimicrobial peptide production with NEC onset.
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Bacteria associated with NEC encode  
specific types of fimbriae
We leveraged the gene content information provided by genome- 
resolved metagenomics to search for proteins associated with (i) 
pre-NEC samples and (ii) organisms of interest. Three clustering 
algorithms were evaluated for their ability to reconstruct known 
clusters of ribosomal proteins (table S4), and a hybrid Markov 
Cluster algorithm approach (20) performed best. Application of 
the algorithm to the 36,701,491 proteins reconstructed in this 
study yielded 804,277 protein clusters, none of which was statis-
tically associated with NEC (Fisher’s exact test with false discovery 
rate correction) (Fig. 5A). However, 85 protein clusters were 
associated with organisms of interest with high precision and 
recall (>0.7) (Fig. 5B). The most common protein family (pFam) 
annotations for these clusters were fimbriae and adenosine 
triphosphate–binding cassette (ABC) transport proteins (table S6). 
However, only genomes encoding fimbrial proteins also had a 
significant association with NEC (P  =  0.02, Wilcoxon rank 
sum test with Benjamini-Hochberg false discovery rate correc-
tion; table S6).

Comparison of fimbrial operons against public databases re-
vealed that the majority encode chaperone-usher (CU)–type fimbriae. 
A classification scheme exists for CU fimbriae based on usher pro-
tein pFam [PF00577.19 (21)]. The 32,646 usher proteins identified 
in our sequencing data (table S6) were clustered into groups based 
on amino acid sequence identity, and the 10 most prevalent groups 
were placed in a phylogenetic tree with reference sequences from 
each subtype of CU fimbriae (Fig. 5D). All 10 fimbriae clusters fit 
into the established CU fimbriae taxonomy, with 9 of 10 falling in 
the  superclade and 1 into the  clade (Fig. 5D). Four fimbriae clus-
ters identified in this study were significantly more abundant in 
pre-NEC samples, and genomes encoding cluster 49 (4 clade) also 
had significantly higher iRep values in pre-NEC samples (Fig. 5C). 
Twenty- seven genomes that encode fimbrial cluster 49 were not 
identified as genomes of interest, yet they were at significantly higher 
abundance and have significantly higher iRep values when consider-
ing all samples from NEC versus control infants (P < 0.01, Wilcoxon 
rank sum test) (fig. S4). This suggests that fimbrial cluster 49 itself 
may be associated with NEC and not incidentally associated with 
metabolically important genomes.
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stars. Contour lines are drawn to indicate density. (C) The number of bacterial genomes encoding each fimbriae cluster, the species-level phylogenetic profile of genomes 
encoded by each fimbriae cluster, and each cluster’s association with NEC. (D) Phylogenetic tree of CU proteins built using IQtree. Three amino acid sequences from each 
de novo CU cluster and three reference amino acid sequences from each defined CU clade were included in the tree. Colors mark the phylogenetic breadth spanned by 
reference sequences, and stars represent de novo CU clades. For all de novo clusters, the three randomly chosen sequences fell extremely close to each other on the tree.
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Biomarkers of NEC are most informative closer  
to NEC diagnosis
Statistical tests uncovered four factors significantly associated with 
pre-NEC samples (samples taken within 2 days before NEC diagnosis): 
iRep values overall (Fig. 3B), genomes encoding specific types of 
secondary metabolite gene clusters (sactipeptides, bacteriocins, and 
butyrolactones) (table S3), Klebsiella (Fig. 2C), and fimbriae cluster 
49 (Fig. 5C). We performed a similar analysis each day up to 8 days 
before NEC diagnosis (Fig. 6). Genomes encoding specific types of 
secondary metabolite gene clusters and Klebsiella genomes were 
always significantly more abundant in NEC samples, although the 
effect size of the difference became slightly higher closer to NEC 
diagnosis. iRep values and the abundance of genomes encoding 
fimbriae cluster 49, on the other hand, were only significantly higher 
3 days and 1 day before diagnosis, respectively.

DISCUSSION
Given that we found no single predictor of NEC and identified several 
factors as important by ML, our results support prior indications 
that NEC is a complex and likely multifactorial disease (2, 22). Of 
the four aspects of the gut microbiome that differ in pre-NEC com-
pared to control samples (Fig. 6), the iRep values of all organisms in 
each sample had the highest effect size. Given that iRep is a measure 
of bacterial replication rather than relative abundance, the result 
highlights that reliance on relative abundance alone could be mis-
leading. This is largely due to the fact that relative abundance metrics 
are themselves misleading because an organism can increase in rela-
tive abundance simply due to the decline in relative abundances of 
other organisms. For this reason, it is also unclear whether increased 
replication leads to increased bacterial biomass, as there could be 
concomitantly higher death rates from heightened inflammatory 
response during NEC, production of antimicrobials, etc. The higher 
bacterial replication rate before NEC diagnosis could be sustained 
by nutrient release from the breakdown of gut tissue. Alternatively, 
increased bacterial replication may trigger the onset of NEC, possibly 

because high activity of a specific organism leads to imbalance in 
concentrations of compounds in the gut environment.

Secondary metabolite gene clusters of specific types (bacteriocins, 
sactipeptides, and butyrolactones) were significantly enriched in 
pre-NEC compared to control samples (table S3). Bacteriocins are 
small peptides that kill closely related bacteria, and when produced, cell 
lysis could contribute to onset NEC via release of immunostimulatory 
compounds such as LPS. Sactipeptides are a class of posttranslationally 
modified peptides with diverse bioactivities (23). The sactipeptide 
with the highest overall importance is related to a subtilosin (anti-
microbial agent) with known hemolytic activity. All sactipeptides 
identified in this study were encoded by Firmicutes, including 
C. perfringens and Clostridium difficile (fig. S2 and table S3). Pro-
duction of sactipeptides by these species could trigger NEC through 
direct toxicity to human cells or via release of immunostimulatory 
bacterial compounds following bacterial cell lysis. This phenomenon 
could explain previous reports that implicate Clostridium in develop-
ment of NEC (24–26). Follow-up studies involving proteomics and/
or transcriptomics are needed to establish whether these gene clusters 
are expressed in situ in the infant gut.

Butyrolactones are generally involved in quorum sensing in 
Actinobacteria (17) but, in this study, were mostly found encoded 
in genomes of Proteobacteria, and more than half were identified 
in Klebsiella genomes. Whereas known quorum-sensing systems in 
Proteobacteria are responsible for the production of virulence factors, 
including fimbriae (27, 28), the functions of butyrolactones in 
Proteobacteria remain unstudied. Higher proportions of Klebsiella 
were found in infants who went on to develop NEC, and their capacity 
to produce secondary metabolites and fimbriae could explain this 
association.

Organisms with genomes encoding for fimbriae cluster 49 were 
at significantly higher abundances on both the day of and the day 
before NEC diagnosis. Fimbriae are known stimulants of TLR4 re-
ceptors (29), immune receptors that are overexpressed in premature 
infants and previously linked to NEC in animal studies (30, 31). 
Fimbriae are the hallmark pathogenicity factors of uropathogenic 
Escherichia coli (32), a group of organisms that have been previously 
implicated as a causative agent of NEC (11). Uropathogenic E. coli 
was specifically evaluated in this study and not found to be signifi-
cantly enriched in pre-NEC compared to control samples (table S5 
and Fig. 2C). The associations in prior work and the current study 
may instead reflect a general link between fimbriae and TLR4 re-
ceptor stimulation.

An advantage of genome-resolved metagenomics is that it pro-
vides whole community information, going far beyond what can be 
deduced from 16S rRNA gene surveys that are the hallmark of most 
prior and much current human microbiome research. Here, we 
applied this approach to a sufficiently large dataset to achieve statis-
tical power unprecedented in a genome-resolved metagenomic 
study and found that there is likely no single bacteriophage, plasmid, 
eukaryote, virus, or even gene that is responsible for NEC. However, 
we identify several promising associations through ML, many of 
which have previously been proposed to explain NEC onset, but none 
of which alone can explain all cases. Bacteria of the genus Klebsiella 
emerged from our analyses as organisms of potential importance, 
with secondary metabolite, LPS, and fimbriae production all being 
possible contributors. The association of these bacteria, as well as 
bacteria of the Clostridium genera, with NEC and their presence in 
the neonatal intensive care unit (16) supports prior reports proposing 
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Fig. 6. Biomarkers of NEC are most informative closer to NEC diagnosis. The 
effect size for difference of each feature in pre-NEC versus control samples is shown 
based on a Wilcoxon rank sum test over a 2-day sliding window (e.g., −5 compares 
samples collected from −6 to −4 days relative to NEC diagnosis to control samples). 
Comparisons with P < 0.05 are marked with asterisks.
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that colonization by nosocomial microbes in premature infants 
may be clinically significant. Overall, we provide insight into how 
previously proposed but distinct explanations for the development 
of NEC are interconnected and identify bacterial growth rates as the 
strongest predictor of disease onset.

MATERIALS AND METHODS
Subject recruitment, sample collection, and  
metagenomic sequencing
This study was reviewed and approved by the University of Pittsburgh 
Institutional Review Board (IRB PRO12100487 and PRO10090089). 
This study made use of many different previously analyzed infant 
datasets. These datasets have previously published descriptions of 
the study design, patient selection, and sample collection and are 
referred to as NIH1 (33), NIH2 (16), NIH3 (34), NIH4 (35), NIH5 
(36), and Sloan2 (16). Stool samples were collected from infants and 
stored at −80°C. DNA was extracted from frozen fecal samples using 
a MoBio PowerSoil DNA isolation kit with modifications (33). 
DNA libraries were prepared using the Illumina Nextera kit (NIH1, 
NIH2, and NIH3), KAPA Biosciences Hyper Plus Illumina library 
preparation reagents (NIH5), or PrepX DNA library preparation 
kits in conjunction with the Apollo 324 robot following factory recom-
mendations (NIH4 and Sloan2). Libraries were sequenced on an 
Illumina HiSeq 2500 (NIH1, NIH2, NIH3, and Sloan2), Illumina 
HiSeq 3000 (NIH4), or Illumina HiSeq 4000 (NIH5). All samples 
were collected with parental consent. Collated sequencing and health 
information for all infants and samples are provided in the Supple-
mentary Materials of this manuscript (tables S1 and S2).

Metagenomic profiling
Read processing and assembly
Reads from all samples were trimmed using Sickle (www.github.
com/najoshi/sickle), and reads that were mapped to the human 
genome with Bowtie 2 (37) under default settings were discarded. 
Reads from all samples were assembled independently using IDBA-UD 
(38) under default settings. Coassemblies were performed for each 
infant as well, where reads from all samples from that infant were 
combined and assembled together. Scaffolds of <1 kb in length were 
discarded, and remaining scaffolds were annotated using Prodigal 
(39) to predict open reading frames using default metagenomic settings.
Recovery of de novo bacterial genomes
DasTool (40) was used to select the best bacterial bins from the com-
bination of three programs for automatic binning—abawaca 
(https://github.com/CK7/abawaca), concoct (41), and maxbin2 (42). 
Cross-mapping was performed between samples for each infant to 
generate differential abundance signals, and each sample was binned 
independently. For each infant, dRep v1.4.2 (43) was then used on 
all bins created from all samples from that infant to generate an 
infant-specific genome set, using a minimum completeness of 50%, 
maximum contamination of 15%, the ANImf algorithm, 99% second-
ary clustering threshold, and 25% minimum coverage overlap.

To determine the taxonomy of bins, the amino acid sequences of 
all predicted genes were searched against the UniProt database using 
the usearch ublast command with a maximum e value of 0.0001. 
tRep (https://github.com/MrOlm/tRep/tree/master/bin) was used 
to convert the list of identified taxIDs into taxonomic levels. Briefly, 
this assigns a call to each taxonomy level when at least 50% of pro-
tein hits reach that taxonomic level.

Bacterial growth rates
iRep values (7) were calculated by first mapping reads from all sam-
ples in each infant to the dereplicated genome set from that infant 
using Bowtie 2. iRep values resulting from genomes with less than 
0.9 breadth of coverage were discarded. To visualize growth rates 
over time (Fig. 3A), all iRep values from all bacteria were averaged 
together for each DOL relative to NEC and plotted using seaborn 
(https://seaborn.pydata.org/) with a confidence interval of 68% and 
discarding outliers. DOL in which less than five infants were pro-
filed were manually removed.
Bacteriophages, plasmids, and eukaryotes
For all assemblies, circular contigs were identified using VICA (44), 
and bacteriophages were identified using VirSorter (45) and VirFinder 
(46). Bacteriophages were defined as scaffolds that were considered 
“level 2” or “level 1” by VirSorter or P < 0.01 by VirFinder. Plasmids 
were defined as scaffolds, which were circular, but not identified as 
bacteriophage according to the above definition. Bacteriophages and 
plasmids more than 10 kb in length were then each dereplicated 
separately on a per-infant basis using dRep version 2.0.5 with a 
primary clustering threshold of 0.9, the ANImf genomic comparison 
algorithm, a minimum coverage threshold of 0.5, a minimum length 
of 10 kilo–base pairs, an N50 weight score of 0, a contig length 
weight score of 1, no quality filtering, and the nearest point algorithm 
for genome clustering. All plasmid and bacteriophage genomes were 
then compared to each other using the same dRep command. 
Eukaryotes were assembled and binned from the gut samples of 
premature infants as previously reported (36).
Eukaryotic viruses
Eukaryotic viruses were analyzed using the 2014 vFam A HMM 
(Hidden Markov Model)  collection (47), a set of HMMs designed 
for the identification of eukaryotic viruses within metagenomic 
sequence data. All hits with e values less than 1 × 10−5 were considered 
significant and retained. Reads were also mapped to a previously curated 
list of human viruses (48). This led to the identification of no viruses 
when individual samples were used and a very small number of viruses 
when combined sets of reads from each infant were used (Torque teno 
midi virus 2, Torque teno virus 14, and Macaca mulatta polyomavirus 1). 
This line of work was not followed up on due to lack of signal.
Diversity
Shannon diversity and overall bacterial richness were calculated for 
each sample. Shannon diversity was calculated using skbio.diversity.
alpha.shannon (http://scikit-bio.org/). Richness was calculated as 
the number of bacteria with relative abundances over 0.1%.
KEGG modules
KEGG modules were annotated by using HMMER against an in-house 
HMM database built from the KEGG orthology groups (KOs) 
(www.genome.jp/kegg/). Briefly, all KEGG database proteins with 
KOs were compared with all-v-all global similarity search using 
USEARCH (49). MCL (Markov Cluster Algorithm) was then used to 
subcluster KOs (inflation_value = 1.1). Each subcluster was aligned 
using MAFFT (multiple alignment using fast Fourier transform) (50), 
and HMMs were constructed from subcluster alignments. HMMs 
were then scored against all KEGG sequences with KOs, and a score 
threshold was set for each HMM at the score of the highest-scoring 
hit outside of that HMM subcluster. KEGG modules were considered 
present in a genome if all necessary KOs were present in that 
genome. The abundance of each KEGG module in a sample was 
calculated as the summed relative abundance of all bacterial ge-
nomes containing that module.

http://www.github.com/najoshi/sickle
http://www.github.com/najoshi/sickle
https://github.com/CK7/abawaca
https://github.com/MrOlm/tRep/tree/master/bin
https://seaborn.pydata.org/
http://scikit-bio.org/
http://www.genome.jp/kegg/


Olm et al., Sci. Adv. 2019; 5 : eaax5727     11 December 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 12

Secondary metabolite gene clusters
To identify secondary metabolites, antismash-4.0.2 was run on each 
infant coassembly (51). The results were parsed using the custom script 
parse_antismash.py (https://github.com/MrOlm/Public-Scripts), 
and resulting key proteins were clustered using diamond with 
default settings (52). Alignments were filtered to only retain those 
with >75% amino acid identity and 50% alignment coverage. 
Hierarchical clustering was then performed using average amino 
acid identity and resolved using a distance threshold of 0.5 to assign 
each secondary metabolite gene cluster to a gene cluster family. 
Next, for each infant, the nucleotide sequences of all genes in a rep-
resentative for each gene cluster family were concatenated together. 
The reads from each sample from that infant were mapped to this 
concatenation of genes to determine the dynamics of these genes in 
all samples from that infant. The breadth of each cluster was calcu-
lated as the weighted breadth (considering gene length) for all genes 
in that cluster.
Virulence factors
Virulence Factors Database (VFDB) was used to search for virulence 
factors (53). The database used was from 17 March 2017, containing 
2597 sequences. Abricate was used to search all predicted protein 
sequences against the VFDB (https://github.com/tseemann/abricate). 
Metadata from the VFDB website (www.mgc.ac.cn/VFs/) were used 
to get additional information about the virulence factors. Approxi-
mately 15% of virulence factors were not included in this metadata 
file and were excluded from additional analysis.
Botulinum toxin
A blast database of all subtypes of botulinum neurotoxin was down-
loaded from https://bontbase.org/ (as accessed on 15 February 2018). 
Blastp was used to search the predicted amino acid sequences of all 
genes against the database. Hits with an e value less than 1 × 10−5 
were considered valid.
Pathogenic E. coli
It was previously reported that pathogenic E. coli may be associated 
with NEC development, specifically the clades 73, 95, 127, 131, 144, 
998, and 69 (11). To identify E. coli genomes of these sequencing 
types in our dataset, all genomes were multilocus sequence typing 
(MLST)–profiled using PubMLST (54) and the program “mlst” 
(https://github.com/tseemann/mlst). The MLST definition requires 
having seven genes; in cases where only six genes could be identified, if 
only one sequence type (ST) existed with those six gene types, the 
sequence type was inferred. Each sample with an E. coli genome of 
the above STs at more than 1% relative abundance was considered 
to have a “pathogenic” E. coli, in accordance with the previous study 
implicating pathogenic E. coli in NEC development (11).
Proteins
Three protein clustering methods were evaluated for use in this 
study—MMseqs2 (55) (run using default settings), CD-HIT (0.9 global 
sequence identity threshold and 200,000 MB memory limit), and a 
previously described hybrid Markov Cluster approach (20). Algorithms 
were evaluated on the basis of their ability to reconstruct known 
protein clusters, and the hybrid Markov Cluster approach performed 
best (table S4). This method was used to cluster the amino acid se-
quences of all predicted genes from all assembled scaffolds.
The average microbiome of NEC and control infants
To calculate the relative abundance of all microbes in each infant, a 
full “genome inventory” was generated for each infant by resolving 
the overlap between the recovered bacteria, eukaryote, bacteriophage, 
and plasmid genomes. Bacteriophage and plasmid genomes were 

first aligned using MUMmer (56), and in all cases where scaffolds 
were aligned with more than 95% ANI on more than 50% of the 
scaffold, the scaffold was removed from the plasmid list. The resulting 
scaffolds were next aligned to bacterial genomes, and all phage/
plasmid scaffolds that aligned to bacterial genomes with the same 
thresholds were removed. Last, eukaryotic genomes were aligned to 
the remaining scaffolds, and in cases where similar scaffolds were 
detected, the scaffold was removed from the eukaryotic genome. 
Reads from all samples were then mapped to that infant’s genome 
inventory using Bowtie 2, and the relative abundance of each organism 
was calculated as the percentage of total sample reads that map to 
that genome (table S4).

To compare the microbiome between NEC and control infants, 
the microbiome of each cohort was averaged across all infants in that 
cohort (Fig. 2A) using the relative abundance values described in 
the previous paragraph. For each DOL, the average relative abun-
dance of each taxon was first calculated. A 5-day sliding window was 
next applied, and values from samples in each window were averaged. 
For example, DOL 10 represents the average abundances from 
DOL 8 to 12.
Strain-level differences between NEC and control infants
To calculate the relative abundance of each bacterium in each sample, 
each sample was mapped to the infant-specific bacterial genome set 
for that infant using Bowtie 2. Relative abundances of all bacteria 
were calculated as the percentage of total sample reads mapping to 
each genome. Bacteria assembled from all infants were then com-
pared to each other using dRep, and bacterial genomes with at least 
99% ANI were considered to be the same “strain.” A bacterium was 
considered present in a sample if it had more than 0.1% relative 
abundance, and the fraction of pre-NEC and control samples in 
which each strain was present was calculated and plotted in Fig. 2C.

Similar procedures were performed for the bacteriophage and 
plasmid genome sets of each infant. Mapping was performed to 
each infant set separately, and genomes were considered to be the 
same strain if they had 99% ANI over at least 50% of their genomes. 
Organisms were considered present in a sample if they were present 
with more than 50% genome breadth of coverage.

Principal components analysis
PCA was performed on the basis of the relative abundance of bacteria 
in each sample as assessed using weighted UniFrac distance. A phy-
logenetic tree was created by comparing all assembled bacterial 
genomes to each other using dRep primary clustering with a mash 
sketch size of 100,000, the weighted UniFrac distance between all 
samples was calculated using scikit-bio (http://scikit-bio.org/), and 
PCA was performed using scikit-learn.

Machine learning
Preparation of metagenomic data for ML
Many individual features were summarized before inclusion in the 
ML training dataset (table S5). For each sample, BTtoxin_abund 
describes the summed relative abundance of all botulinum toxins 
detected, BacterialNCBIGrowth describes the average iRep value of 
each identified bacterial taxonomic family, BacterialNCBITax 
describes the summed relative abundance of each identified bacterial 
taxonomic family, Bacteriophage_overall describes the summed rela-
tive abundance of all bacteriophage genomes with a breadth of at 
least 0.75, CatInfSampleMetadata describes clinical metadata about 
the infant (e.g., breastfeeding versus formula feeding, gender, and 

https://github.com/MrOlm/Public-Scripts
https://github.com/tseemann/abricate
http://www.mgc.ac.cn/VFs/
https://bontbase.org
https://github.com/tseemann/mlst
http://scikit-bio.org/
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birth mode), CatSampleMetadata describes clinical metadata about 
the sample (e.g., current antibiotic administration, antibiotic adminis-
tration in the last 5 days), Diversity describes the bacterial richness 
and shannon diversity, Eukaryotes_overall describes the summed 
relative abundance of all eukaryotic genomes with a breadth of at 
least 0.1, HumanViralProteins describes whether each vFam is 
detected, KEGG_modules describes the summed relative abundance 
of each KEGG module, Plasmid_overall describes the total summed 
relative abundance of all plasmid genomes with a breadth of at least 
0.75, SampleMetadata describes continuous clinical variables (e.g., 
gestational age, weight, and days since antibiotic administration), 
SecMetabolites_cluster_mapping describes the coverage of each gene 
cluster family with a breadth of at least 0.5, VirFactor_cat_abund 
describes the summed relative abundance of each detected virulence 
factor category, Ward_ecoliPathogen_PE describes whether patho-
genic E. coli was detected, and median_irep describes the median 
measured iRep value. In total, this leads to the calculation of 2119 
features for each sample (table S5). See above methods for details on 
how individual features were calculated.
Algorithm development
Three ML methods were evaluated for their ability to classify pre-
NEC versus control samples—a random forest classifier (sklearn.
ensemble.RandomForestClassifier with 460 estimators and 10 max 
features) balanced using SMOTE (synthetic minority over-sampling 
technique; imblearn.combine.SMOTEENN), a gradient boosting 
classifier (sklearn.ensemble.GradientBoostingClassifier with 0.1 
learning_rate, 10 max_depth, 46 max_features, 1483 minimum 
samples to split an internal node, and 200 estimators) balanced using 
SMOTE, and the same gradient boosting classifier without balancing. 
Hyperparameters were empirically determined using sklearn.mod-
el_selection.RandomizedSearchCV, and in general, many different 
combinations of hyperparameters gave similar results. Models were 
trained and evaluated using cross-validation for five iterations each 
(using sklearn.model_selection.StratifiedKFold with 10 splits, sklearn.
model_selection.cross_val_predict, and sklearn.metrics.accuracy_score) 
and all achieved similar prediction ability (table S4).

To determine the accuracy of the gradient boosting classifier, 
100 iterations were performed where each iteration consisted of 
(i) randomly balancing the input to include 21 pre-NEC samples and 
21 control samples, (ii) classifying each sample in the input using 
10-fold cross-validation (same methods as above), and (iii) calculating 
the percentage of samples that were correctly classified. The median 
accuracy value was reported.
Feature importance analysis
Feature importances were determined by 100 iterations of training 
the gradient boosted classifier on the full dataset of pre-NEC and 
control samples. Importance values were scaled for each iteration 
such that the overall sum equals 1. The median importance value 
for each feature is reported (table S5).
KEGG and secondary metabolite enriched genomes
Each bacterial genome was assigned a metabolic importance value 
by summing the median feature importances of each KEGG module 
encoded by that genome (see above methods for how KEGG modules 
were determined). A distribution of KEGG genomes importances 
was generated (fig. S4A), and on the basis of this distribution, 
genomes with importance values of more than 15 were considered 
organisms of interest. Each bacterial genome was also assigned an 
importance value equivalent to the highest importance value of all 
secondary metabolite clusters encoded by that genome. A distribu-

tion was generated (fig. S4B), and genomes with importances of 
more than 0.5 were considered enriched in important secondary 
metabolite clusters.

Phylogenetic tree
A phylogenetic tree was made to visualize the distributions of or-
ganisms of interest and organisms enriched in important secondary 
metabolite clusters (Fig. 4F). Ribosomal protein S3 was identified in 
bacterial genomes using pFam PF00189.19 and HMMER with a 
score cutoff of 50 (57). An archaeal outgroup was added, and all 
sequences were aligned using MAFFT (50) under default parameters. 
All positions with gaps in more than 50% of sequences were 
trimmed from the alignment, and FastTree was used with default 
parameters to generate a phylogenetic tree (58). The tree was visualized 
and annotated using iTOL (59).

Protein clustering
Protein association with NEC
Each protein cluster was considered present in a sample if a protein 
from that cluster had been assembled from the sample. Fisher’s exact 
test was run on each protein cluster to determine whether it was en-
riched in pre-NEC or control samples, and after Benjamini-Hochberg 
correction, no P values were statistically significant.
Protein association with organisms of interest
Each protein cluster was considered present in an organism of in-
terest if a protein from that cluster was encoded in the organism’s 
genome. The recall and precision of each cluster with organisms of 
interest were calculated as follows: recall = the number of organisms 
of interest the cluster is in/the total number of organisms of interest; 
precision = the number of organisms of interest the cluster is in/the 
total number of genomes the cluster is in. The recall and precision 
of each protein cluster were plotted (Fig. 5B), and a threshold of 
0.7 recall and 0.7 precision was visually established. Protein clusters 
with recall and precision of more than 0.7 were considered enriched 
in organisms of interest.

The 85 protein clusters enriched in organisms of interest were 
profiled using the pFam database (57) with provided noise cutoffs, 
and the two most common pFams were PF00419.19 (Fimbrial) and 
PF00005.26 (ABC transporter) with four proteins each. We next 
determined whether organisms encoding these proteins were en-
riched in pre-NEC samples. For each pFam with at least three 
proteins enriched in organisms of interest, we compared the total 
relative abundance of all bacteria encoding that pFam in pre-NEC 
versus control samples, as well as all iRep values of bacteria encoding 
that pFam in pre-NEC versus control samples using the Wilcoxon 
rank sum test with Benjamini-Hochberg P value correction (table S6).

Fimbriae
CU fimbriae were identified in our dataset using pFam PF00577.19 
(usher protein) and clustered using usearch (49) with an identity 
threshold of 0.9. The taxonomic profile of each fimbriae cluster was 
determined on the basis of the taxonomy of organisms encoded by 
that cluster, and relative abundance and iRep associations with pre-
NEC versus control samples were calculated using the Wilcoxon 
rank sum test applied to all bacterial genomes encoding each cluster. 
A similar procedure was performed using genomes that were not 
classified as organisms of interest but did encode fimbriae cluster 49, 
comparing between pre-NEC and control samples and between all 
samples from NEC infants and all samples from control infants (fig. S4).
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A phylogenetic tree was made to establish the type of usher pro-
teins identified in our study. Three reference sequences from each 
previously established type (21) were aligned with three representatives 
of each of our clusters using MAFFT. All columns with gaps in 
more than 50% of sequences were trimmed from the alignment, 
IQ-TREE was used with default parameters to generate a phylogenetic 
tree (60), and tree annotation was performed using iTOL (59).

Effect size calculations
To determine when signals first become apparent relative to NEC 
diagnosis, control samples were compared to samples collected over 
different sliding 3-day windows (Fig. 6). To compare the signal at 
5 days before NEC diagnosis, for example, a rarefied set of samples 
was chosen from 4 to 6 days before diagnosis where one sample 
from each infant that has a sample in that window was randomly 
chosen. This procedure was repeated 10 times, and the average effect 
size and 95% confidence intervals were plotted. The effect size was 
calculated on the basis of the Wilcoxon rank sum test statistic [as 
calculated by SciPy (scipy.stats.ranksums)] using the formula: effect 
size = {test statistic/square root [(observations in population 1) + 
(observations in population 2)]}. For iRep, all iRep values were 
compared between the two sets; for secondary metabolite gene clus-
ters, the total relative abundance of genomes encoding secondary 
metabolite gene clusters classified as producing sactipeptides, bac-
teriocins, or butyrolactones was compared; for Klebsiella, the total 
relative abundances of all genomes classified as the genus Klebsiella 
were compared; and for Fimbriae cluster 49, the total relative abun-
dances of all genomes encoding fimbriae cluster 49 were compared.
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