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Evidence of mixing between polluted convective
outflow and stratospheric air in the upper
troposphere during DC3
Jason R. Schroeder1, Laura L. Pan2, Tom Ryerson3, Glenn Diskin4, Johnathan Hair4, Simone Meinardi1,
Isobel Simpson1, Barbara Barletta1, Nicola Blake1, and Donald R. Blake1

1Department of Chemistry, University of California-Irvine, Irvine, California, USA, 2National Center for Atmospheric Research,
Boulder, Colorado, USA, 3Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder,
Colorado, USA, 4NASA Langley Research Center, Hampton, Virginia, USA

Abstract Aircraft measurements, including non-methane hydrocarbons (NMHCs), long-lived halocarbons,
carbonmonoxide (CO), and ozone (O3) collected on board the NASA DC-8 during the Deep Convection, Clouds,
and Chemistry (DC3) field campaign (May – June 2012), were used to investigate interactions and mixing
between stratospheric intrusions and polluted air masses. Stratospherically influenced air masses were
detected using a suite of long-lived halocarbons, including chlorofluorocarbons (CFCs) and HCFCs, as a tracer
for stratospheric air. A large number of stratospherically influenced samples were found to have reduced levels
of O3 and elevated levels of CO (both relative to background stratospheric air), indicative of mixing with
anthropogenically influenced air. Using n-butane and propane as further tracers of anthropogenically influenced
air, we show that this type of mixing was present both at low altitudes and in the upper troposphere (UT).
At low altitudes, this mixing resulted in O3 enhancements consistent with those reported at surface sites
during deep stratospheric intrusions, while in the UT, two case studies were performed to identify the process
by which this mixing occurs. In the first case study, stratospheric air was found to bemixed with aged outflow
from a convective storm, while in the second case study, stratospheric air was found to have mixed with
outflow from an active storm occurring in the vicinity of a stratospheric intrusion. From these analyses, we
conclude that deep convective events may facilitate the mixing between stratospheric air and polluted
boundary layer air in the UT. Throughout the entire DC3 study region, this mixing was found to be prevalent:
72% of all samples that involve stratosphere-troposphere mixing show influence of polluted air. Applying
a simple chemical kinetics analysis to these data, we show that during DC3, the instantaneous production
of hydroxyl radical (OH) in these mixed stratospheric-polluted air masses was 11 ± 8 times higher than that of
stratospheric air, and 4.2 ± 1.8 times higher than that of background upper tropospheric air.

1. Introduction

The Earth’s stratosphere is a large reservoir of ozone (O3), which shields life from the Sun’s harmful ultraviolet
radiation. In contrast, tropospheric O3 is a key component of photochemical smog and can cause respiratory
problems in humans and harm to vegetation, and can alter the oxidizing capacity of an airmass via photochemical
production of the hydroxyl radical (OH) [Crutzen and Zimmerman, 1991; Michelsen et al., 1994; WHO, 2005].
Stratosphere-to-troposphere transport (STT) commonly occurs at middle latitudes to high latitudes during late
winter and spring, and can transport large amounts of O3 to both the upper and lower troposphere [Büker et al.,
2008; Avery et al., 2010; Langford et al., 2012; Lin et al., 2012]. Although not well characterized, STT events are
known to often occur in the vicinity of convective events, which can result in mixing of stratospheric air with
convectively lofted air from the lower troposphere, including polluted air from the planetary boundary layer (PBL)
[Cho et al., 2001; Stohl, 2003; Colette and Ancellet, 2006; Homeyer et al., 2011]. This mixing may in turn affect the
oxidizing capacity of the upper troposphere (UT), and the lifetime of trace gases in convective outflow. Local-scale
measurements of the transportation and mixing of stratospheric air with air from the PBL prove difficult to obtain
—some of the key characteristics of stratospheric air can become masked by polluted air, making detection
and characterization difficult [Stohl et al., 2003]. In this paper, we investigate STT in the vicinity of convective storms
and the time scale and extent towhichmixing between stratospheric air and convective outflowoccurs. To do this,
a tracer for stratospheric air is developed from in situ measurement of long-lived halocarbons during the Deep
Convection, Clouds, and Chemistry (DC3) field campaign, which took place over the central US in spring 2012.
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Stratosphere-to-troposphere transport (STT) commonly occurs at middle latitudes to high latitudes as part of
a general large-scale downward mass flux, and its impact on regional and global tropospheric O3 has been
studied [Büker et al., 2008; Avery et al., 2010; Langford et al., 2012; Lin et al., 2012]. The average depth to which
stratospheric air masses penetrate into the extratropical troposphere has a seasonal variation, with the
deepest STT events occurring in winter and spring [Stohl, 2003]. Extratropical STT events are associated with
synoptic-scale and mesoscale processes, including the formation of tropopause folds in the vicinity of polar
and subtropical jet streams [Vaughan et al., 1994; Langford et al., 1996], erosion and folding of the tropopause
by convective activity near cut-off-lows [Price and Vaughan, 1993; Ancellet and Beekmann, 1994; Sprenger
et al., 2007], mesoscale convective systems [Poulida et al., 1996], and isolated convective storms [Cho et al.,
2001; Stohl, 2003; Colette and Ancellet, 2006; Pan et al., 2014]. From this, it can be inferred that STT in the
extratropics is sporadic in nature and generally associated with unstable meteorological conditions, often in
the immediate vicinity of convection. Convective storms are also sporadic in nature but have peak activity
over the continental United States during spring and summer [Carbone et al., 2002]. Deep convective storms
can rapidly transport air from the PBL to the upper troposphere/lower stratosphere (UT/LS) region, with
observed transport times ranging from 15 to 120min [Aschmann et al., 2009; Apel et al., 2012]. This rapid
transport affects the composition of the UT by injecting short-lived trace gases, aerosols, and water vapor,
which in turn affects the chemistry of the UT.

On a global scale, 30–50% of O3 in the UT is believed to have originated from the stratosphere and, through
photochemical reactions in the presence of water vapor, is the dominant natural source of OH in the troposphere
[Crutzen et al., 1999; Fusco, 2003]. The photochemical reactions that produce OH from O3 are shown below:

O3 þ hν →
k1 O2 þ O 1D

� �
hv < 320 nm (1)

Upon absorption of ultraviolet light, O3 molecules dissociate (with photolysis rate constant k1) into molecular
oxygen and electronically excited atomic oxygen (reaction (1)). Electronically excited oxygen atoms can then
relax to their ground state upon collision with spectator molecules (M), with rate constant k2 (reaction (2)).

O 1D
� �þM →

k2 O 3P
� �þM (2)

Ground state oxygen atoms may react with molecular oxygen in the presence of spectator molecules to
re-form O3, with rate constant k3 (reaction (3)),

O 3P
� �þ O2 þM →

k3 O3 (3)

However, electronically excited oxygen atoms can also react with molecules of water vapor, producing two
OH radicals with rate constant k4 (reaction (4)).

O 1D
� �þ H2O →

k4 2OH (4)

Assuming steady state condition for O(1D) and k2>> k4, the instantaneous production of OH (POH) can be
simplified to:

POH ¼ 2k1k4

k2 M½ � O3½ � H2O½ � (5)

Stratospheric intrusions that have recently entered the UT have high levels of O3 and low levels of water vapor,
while convectively lofted lower-tropospheric air will have relatively low levels of O3 and high levels of water
vapor [Bithell et al., 2000]. As predicted by equation (5), mixing between high-O3 stratospheric air and moist
tropospheric air will result in an increased production of OH and therefore a reduction in the lifetimes of volatile
organic compounds (VOCs) that are co-lofted into the UT with the water vapor, since the lifetimes of many
VOCs are directly proportional to OH mixing ratios [Poisson et al., 2000; Aschmann et al., 2009; Apel et al., 2012].
As stratospheric O3 levels continue to recover due to regulation of chlorofluorocarbons (CFCs) and other O3-
depleting substances, the impact of STT may become even larger in the coming decades [Zeng et al., 2010].

Due to their high levels of O3 and low levels of water vapor and CO, pristine stratospheric intrusions are
relatively easy to detect by ground-based lidar and simple in situ surface and airborne-based measurements
[Fenn et al., 1999; Bithell et al., 2000; Vaughan et al., 2001; Browell, 2003; Langford et al., 2012; Lin et al., 2012].
After mixing with relatively polluted air, detection of stratospheric influence becomes more difficult, since O3
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will be diluted and the introduction of water vapor, CO, and VOCs effectively acts to mask the stratospheric
character [Stohl et al., 2003]. The cosmogenic nuclide 7Be has often been used as a tracer for stratospheric
air, but its usefulness is questionable as it is estimated that a third of all 7Be originates in the UT and is
removed by deposition onto aerosols andwet scavenging [Dibb et al., 1994; Koch andMann, 1996; Gerasopoulos
et al., 2001; Doering and Akber, 2008]. Furthermore, 7Be was not measured during DC3. However, certain
anthropogenic halocarbons, including long-lived species like CFCs and their replacement HCFCs, are only
photochemically destroyed in the stratosphere and (as a result of the Montreal Protocol) currently have
minimal surface sources, even on a global scale [World Meteorological Organization, WMO/United Nations
Environment Programme, UNEP, 2007]. As a result, these halocarbons are evenly distributed throughout the
troposphere, but relatively depleted in the stratosphere—making them ideal tracers for stratospheric air.
Nitrous oxide (N2O) is also solely destroyed in the stratosphere and has been used as a tracer for stratospheric
air but has some properties that make it non-ideal for this particular application [Ishijima et al., 2010;
Assonov et al., 2013]. Tropospheric N2O mixing ratios continue to increase at a rate of ~ 1 ppbv per year due
to surface sources including agricultural and industrial sources [Hartmann et al., 2013]. This means that,
uponmixing, the N2O-depleted character of stratospheric air may bemasked by the N2O-enhanced character
of PBL air. This would be especially problematic if the boundary layer air from a region with strong N2O
sources was to be convectively lofted and mixed. Thus, while N2O is an effective tracer for stratospheric
intrusions, the use of long-lived halocarbons with minimal surface sources as tracers for stratospheric air is
better suited for this work. By contrast, relatively short-lived gases such as biogenic VOCs and long-chained
hydrocarbons have significant surface sources and very strong tropospheric gradients, making them useful
tracers for fresh vertical convection.

Based in Salina, Kansas (GPS coordinates: 38.8403,�97.6114) fromMay to June 2012 (local time=UTC� 05:00),
the Deep Convective Clouds and Chemistry (DC3) project was a collaborative, multi-agency, multi-platform
campaign whose primary objective was to study the chemical and transport processes associated with deep
convection. Of particular interest was the transport and chemical transformation of air from the PBL to the free
troposphere (FT) and UT via deep convection. In the work presented below, the spatial and temporal trends of
stratospheric intrusions during DC3 are investigated, with a particular emphasis on events where stratospheric
air mixed with the high-altitude outflow from convective storms. Potential impacts on convective outflow and
upper tropospheric chemistry are also investigated.

2. Experimental

During the DC3 field campaign, UC Irvine’s whole air sampler (WAS) was stationed aboard the NASA DC-8
research aircraft and used to collect 1795 samples during 18 research flights. Active convective storms were
sampled in the three regions where ground-based radar support was available—Northern Alabama; near the
Texas/Oklahoma border; and above the high plains near the Colorado/Wyoming/Nebraska border. Of the
18 research flights flown during DC3, 14 had a primary objective of analyzing active convective storms in one
of these three regions. The four remaining flights focused on tracking aged outflow from storms that had
occurred the previous day. WAS sample collection on the NASA DC-8 aircraft was controlled using a dual
head metal bellows pump connected to a 0.25″ forward-facing inlet on the outside of the aircraft. Air was
collected into evacuated, pre-conditioned 2 L stainless steel canisters that were manually opened and closed
using a metal bellows valve.

Prior to use, all canisters were pre-conditioned by the following process to ensure measurement
reproducibility: First, all canisters underwent a pump-and-flush procedure ten times with air collected
at White Mountain (altitude 10,200 feet) in the Sierra Nevada mountains. Next, all canisters were
evacuated to 10�2 Torr then flushed with ultra-high-purity helium. After venting the helium, all
canisters were again evacuated to 10�2 Torr. All canisters were then sealed for 2 weeks, after which
they were checked for leaks. Finally, 17 Torr of purified water vapor was added to each canister to
minimize gas adsorption onto the interior surface of our canisters. Sensitivity tests have shown that, following
this procedure, VOC mixing ratios remain stable in our canisters for 1–2weeks, and the only compounds
that are lost in any appreciable amount are the heavier hydrocarbons (i.e., C8 and higher alkanes, terpenes, etc.)
[Sive, 1998].
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During DC3 research flights, all canisters were pressurized to 35–40 psig. Sample collection time ranged from
0.5 to 1.5min depending on altitude, and sample frequency ranged from every 0.5 – 5min, depending on
aircraft location relative to points of interest. An on-board live feed provided aircraft location, precipitation
radar, wind direction, as well as mixing ratios of nitric oxide (NO), CO, and O3. On a typical 5–8 h research
flight, 70–110 samples were collected. All samples were shipped back to UC Irvine and analyzed by gas
chromatography (GC) within 1week of collection.

Previously designed and constructed analytical systems in the Rowland/Blake laboratorywere used for VOC analysis.
A brief description is provided below, and readers are referred to Colman et al. [2001] and Simpson et al. [2010] for a
more in-depth description. VOC analysis was performed using HP 6890 gas chromatographs with a variety of
column/detector combinations. Briefly, 2033cm3 sample aliquots were cryogenically pre-concentrated to remove
volatile components (e.g., N2, O2, and Ar), then re-volatilized using a hot water bath. Samples were injected using a
helium carrier gas and split into five different column/detector combinations. Two electron capture detectors (ECDs)
were used tomeasure halocarbons and alkyl nitrates. Two Flame Ionization Detectors were used tomeasure C2–C10
hydrocarbons, and a quadrupolemass spectrometer was used tomeasure selected halocarbons, hydrocarbons,
and oxygenates. A standard is run after every eighth analysis, and the measured value of each compound in
each standard is fit to a polynomial curve vs. sample injection time. All samples are normalized to these curves
to adjust for any possible instrument drift over time. A total of 67 compounds were measured during DC3.

Mixing ratios of CO, N2O, O3, methane (CH4), andwater vapor were used throughout the data analysis process. CO,
N2O, and CH4 were measured every 1 s by mid-infrared tunable diode laser absorption spectroscopy (DACOM),
operated by NASA Langley [Sachse and Hill, 1987; Sachse et al., 1991;Diskin et al., 2002]. Water vapor wasmeasured
every 1 s by a near-infrared laser hygrometer, also operated by NASA Langley [Diskin et al., 2002; Podolske, 2003].
O3 was measured every 1 s using chemiluminescence, operated by NOAA’s Earth System Research Laboratory
[Carroll et al., 1992]. These 1 s data were used to identify the exact times the DC-8 entered or exited a specific
air mass—for example locating the exact times when the DC-8 entered and exited convective outflow. For
correlation and direct use with WAS data, these 1 s data were averaged over the filling period of a given WAS
canister (the so-called “WAS data merge,” accessible at http://www-air.larc.nasa.gov/cgi-bin/ArcView/dc3). O3 lidar
profiles were also used to ascertain locations and shapes of potential stratospheric intrusions and were collected
by a differential absorption lidar (DIAL) instrument, operated by NASA Langley [Browell, 1989; Fenn et al., 1999].

Tropopause height was also calculated along the DC-8 flight path for each flight. Briefly, this was done by
interpolating the National Centers for Environmental Prediction Global Forecast System model analysis
(NCEP-GFS) in space and time and comparing to aircraft data. From this, both the local thermal and dynamic
tropopause heights were calculated using the World Meteorological Organization (WMO) tropopause
definition [WMO, 1957]. The associated uncertainty in calculated tropopause heights is proportional to the
GFS vertical resolution, and is generally around ~500m [Homeyer et al., 2014]. These data are also available in
the DC3 data merges, the link to which is provided in the previous paragraph.

3. Data Analysis
3.1. Development of a New Tracer for Stratospheric Air

To determine which air masses had stratospheric influence, a tracer that has a distinct tropospheric vs.
stratospheric profile must be used, ideally with little to no altitudinal variation within the troposphere. To
accomplish this, an ensemble of long-lived halocarbons was used. These halocarbons are listed in Table 1.

Table 1. Gases Used as Tracers of Stratospheric Air

Gas Formula Lifetimea
Measurement
Precision (%) Min (pptv) Max (pptv) Avg (pptv)

25th percentile
value (pptv)

CFC-11 CCl3F 45 years 1 209 250 240.8 237
CFC-12 CCl2F2 100 years 1 238 557 541.3 536
HCFC-22 CHF2Cl 11.9 years 1 216.4 278.9 247.7 241.2
HCFC-141b CH3CCl2F 9.2 years 5 17.3 31.1 23.6 21.4
HCFC-142b CH2CClF2 17.2 years 3 19.7 26.5 22.6 21.1
Carbon Tetrachloride CCl4 26 years 3 73.5 97.5 91.7 90.1

aLifetime estimates based on WMO/UNEP, 2007.
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These long-lived halocarbons are essentially inert with respect to gas-phase oxidation by OH. The only
appreciable sink for these compounds is by UV photolysis, which is negligible in the troposphere. Furthermore,
all six have sufficiently long atmospheric lifetimes that they are globally well mixed and have very little
variation in tropospheric mixing ratios. CFC-11 and CFC-12 are listed as Class I ozone-depleting substances
(ODS) by the US EPA, and their use in the US has been phased out under the Montreal Protocol and Clean
Air Act [EPA, 2012]. As a result, tropospheric mixing ratios of CFC-11 and CFC-12 are essentially steady
across the US [Brown et al., 2011; Minschwaner et al., 2013]. HCFC-22, HCFC-141b, and HCFC-142b are listed
as Class II ODS. Their use is being phased out and is currently limited by caps set under the Clean Air Act,
resulting in stable mixing ratios except when close to their limited sources [Brown et al., 2011]. Carbon
tetrachloride is listed as a Class IV ODS, and its production has been restricted to limited industrial uses,
also resulting in a stable tropospheric level [Brown et al., 2011]. In the stratosphere these compounds
are exposed to a higher intensity of UV radiation, thereby accelerating their degradation relative to the
troposphere [WMO/UNEP, 2007]. If a stratospheric air mass were to cross the tropopause, it would be
distinguishable from background tropospheric air by a measurable reduction in the mixing ratios of these
compounds. Qualitatively, this is evidenced by the simultaneous decrease in the mixing ratios of all six
halocarbons used in this analysis, shown in Figure 1.

A simple quantitative analysis was used to differentiate “stratospherically influenced” (abbreviated SI throughout
the rest of this paper) samples from tropospheric samples. In this case, SI samples could be samples collected in
the stratosphere, in fresh stratospheric intrusions in the troposphere, or in air masses where a detectable
amount of stratospheric air hasmixed with tropospheric air. To be labeled as an SI sample, certain criteria had to
be met: If, in a given sample, the mixing ratios of at least five of the six gases listed in Table 1 were in their
respective lowest quartile from the entire DC3 data set, that sample was labeled as “SI.” Of the 1795 whole air
samples collected during DC3, only 96met these criteria. These samples were collected on 13 of the 18 research
flights, which are listed in Table 2.

3.2. Quality Control

To assess the sensitivity of this result to the criteria selected (that is, the number of SI samples detected by the
method described above), the percentile used as a cutoff was allowed to vary. For example, if, instead of
requiring at least five gases to have mixing ratios in their lowest 25%, we require at least five gases to

Figure 1. Long-lived halocarbons used as tracers for stratospheric air. Sample numbers are arranged in the chronological
order in which they were collected during Deep Convection, Clouds, and Chemistry (DC3). Values below background
mixing ratios are indicative of stratospheric influence in a sample.
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have mixing ratios in their lowest 30%, 194 SI samples are identified. Following this method, the cutoff
percentile was allowed to vary by steps of 5% over the range of 10–50%, and the number of SI samples
identified at each step was counted. These results are shown in Figure 2 and suggest that using 25% as a
cutoff was the best way to maximize the number of SI samples identified while still remaining fairly
conservative—using a cutoff larger than 25% leads to a marked increase in the number of SI samples
identified and in the slope of each line segment.

Instrumental drift during the sample analysis stage could potentially produce a false-positive, as a low bias
could be applied across all measured compounds in a given sample. To check for this, N2O, which was
measured by another instrument aboard the DC-8 (DOAS-DACOM), was used. Like the gases used in Table 1,
N2O also has a primary sink of UV photolysis in the stratosphere and can be used to identify some stratospheric
air masses [Ishijima et al., 2010; Assonov et al., 2013]. Due to instrumental errors, N2O measurements were
not collected for flights 1, 6, and 13–18, and thus N2O could not be used as a tracer alongside the gases listed
in Table 1. However, of the SI samples where N2O data are available, 84% have an N2O mixing ratio in its
lowest quartile from among all DC3 measurements. It should be noted that the average N2O mixing ratio
(±1σ) from the DC3 WAS merge was 325.3 ± 1.7 pptv, while the lowest quartile threshold was 325.2 pptv.

4. Results
4.1. Spatial Distribution of Samples With Stratospheric Influence

During DC3, active convective storms were only sampled in three regions where ground imaging was available
(section 2). As a result, sample locations were biased toward these three regions, and this bias is also reflected in
the geographic distribution of SI samples, as seen in Figure 3. Of the 96 SI samples, 50 were collected in the first
three research flights, and the majority of low-altitude SI samples were collected near the CO/WY/NE border.

These trends were expected, as previous
modeling and field work suggest that STT
over the US peaks in winter and grows
weaker into summer, with most deep STT
events occurring over the western US
[Stohl et al., 2003; Lefohn et al., 2011;
Kuang et al., 2012; Langford et al., 2012;
Lin et al., 2012].

4.2. O3 in SI Samples

To further test the effectiveness of using
a composite of halocarbons as tracers
of stratospheric air, a comparison with O3,
a more commonly used stratospheric
tracer, was performed. To do this, samples
with no stratospheric influence were

Figure 2. Variance in the number of stratospherically influenced (SI)
samples identified by chosen cutoff percentiles (red squares). The slope
of each line segment was calculated and is plotted as gray bars.

Table 2. Flights in Which Stratospherically Influenced (SI) Samples Were Collected

Research Flight Date, Takeoff Time (UTC) Primary Objective of Flight Number of SI Samples Collected

1 5/18, 19:04 Active convection 18
2 5/19, 16:03 Active convection 17
3 5/21, 16:00 Active convection 12
4 5/25, 20:11 Active convection 3
5 5/26, 19:04 Tracking aged outflow 4
6 5/29, 19:54 Active convection 3
7 5/30, 18:33 Tracking aged outflow 7
11 6/6, 18:11 Active convection 2
13 6/11, 16:03 Active convection 5
14 6/15, 18:32 Active convection 6
15 6/16, 20:07 Active convection 3
16 6/17, 19:07 Tracking aged outflow 8
18 6/22, 19:54 Active convection, biomass burning 8
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identified as those with no tracers from
Table 1 having mixing ratios in their
lowest quartile. O3 values in these “non-SI”
samples were fit to a line using a least
squares linear regression (with altitude as
the independent variable), and the 95%
confidence interval for this line was
calculated. It is important to note that,
in this analysis, “non-SI” samples could
include both polluted and non-polluted
tropospheric air and therefore represents
the regional troposphere as a whole
rather than a true “background.” At each
altitude in which an SI sample was
collected, the percent enhancement of
O3 (that is, enhancement in O3 in SI

samples relative to the modeled tropospheric O3 “background”) was calculated. Figure 4 shows the percent
enhancement of O3 for each SI sample. As expected, O3 enhancements are largest at high altitudes where the
DC-8 would have flown through fresh, undiluted stratospheric intrusions, or in the stratosphere itself. At low
altitudes, modest enhancements were still observed. For example, our lowest-altitude SI sample (819m above
ground level) had an O3 mixing ratio of 70ppbv, an enhancement of 29±11% over modeled tropospheric
levels. This falls within the range observed by Langford (2012)—who observed a 23% O3 enhancement at
surface sites in southern California during a deep stratospheric intrusion—and Lin (2012) who observed surface
O3 levels of 60–75ppbv across the western US during deep stratospheric intrusions. This sample, however,
shows significant tropospheric character as evidenced by its COmixing ratio of 130ppbv. In fact, themajority of
SI samples with modest O3 enhancements (<30% above background) have CO mixing ratios over 100ppbv.

A plot of O3 vs CO for theWAS datamerge shows two distinct branches: a positive slope indicating photochemical
production of O3 (that is, a tropospheric origin), and a negative slope indicating stratospheric origin (Figure 5).
The area where these two lines intersect may be the result of mixing between tropospheric and stratospheric air.
Here, we see that this mixing occurs at many altitudes—both near and well below the tropopause. Pan [2004]
showed that the extratropical tropopause is best represented as a layer, rather than a surface. This layer can
be as much as 3 km thick and is centered on the thermal tropopause. In this work, we use the thermal
tropopause as the upper boundary of the troposphere. When our SI samples are highlighted in this tracer space
(red dots in Figure 5), we see that some samples that are well within the tropospheric branch have stratospheric
influence. These SI samples would go un-detected by conventional analysis, as O3 has either been significantly
diluted or chemically removed, and polluted air has masked the pristine stratospheric nature. However, these
well-mixed samples may be important from a local chemistry standpoint, as described earlier in this work.

In the lower troposphere, this mixing likely occurred when deep stratospheric intrusions mixed with polluted
air in the PBL, as has been described elsewhere [Langford et al., 2012; Lin et al., 2012]. In the upper troposphere, this

mixing likely occurred when polluted air
was lofted to the UT by deep convection
in the vicinity of a stratospheric intrusion.
In the following sections, we focus our
attention on this mixing in the UTand aim
to do the following: show evidence of a
specific case where polluted convective
outflow mixed with stratospheric air,
determine a timescale for this mixing
during DC3 (did it occur while storms
were active, or after they had dissipated?),
and assess the extent of this mixing
during DC3 and potential impacts on
chemistry of the UT.

Figure 3. Location of whole air sampler (WAS) samples determined to
have stratospheric influence. Samples are colorized by flight number,
and sized by altitude with the largest dots being closest to ground level.
Sample altitudes ranged from 0.8 to 12.5 km. The three primary areas of
study are circled.

Figure 4. Percent enhancement of O3 in SI samples compared to the
modeled background.
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4.3. Case Study: Evidence of
Stratospheric Air Mixing With Aged,
Polluted Convective Outflow

To determine whether or not a specific air
mass has been impacted by convective
lofting of anthropogenically influenced
air, a filter must be applied. An ideal tracer
with which to create this filter must
have the following characteristics: (1) a
significant source that is associated with
human activity, (2) widespread use over
the entire DC3 study region, and (3) a
moderate atmospheric lifetime (long
enough so we can detect both fresh
pollution and pollution that is a few days
old, but short enough to still have a

strong vertical gradient). CO (lifetime~2months) is a useful marker for anthropogenic activity, but its long
lifetime leads to an observable seasonal trend even in background UT air, and thus it is not necessarily a good
marker of individual convective events [González Abad et al., 2011; Huang et al., 2012]. Throughout the DC3
study region, persistent enhancements in light hydrocarbons have been observed, due to regional urban
emissions and extensive oil and gas collection and processing throughout the Great Plains and Colorado
[Trainer et al., 1995; Katzenstein et al., 2003; Baker et al., 2008; Pétron et al., 2012; Gilman et al., 2013]. Of these light
hydrocarbons, propane and n-butane are good choices for anthropogenic filters. With average atmospheric
lifetimes of ~11days and ~5days respectively, enhancements in propane and n-butane mixing ratios will be
measured even several days downwind of sources, leading to widespread enhancement over the entire study
region of DC3, while, in the absence of convection, these gases have very low mixing ratios in the UT. In fact,
from all DC3 WAS samples collected below an altitude of 2 km, the lowest measured n-butane and propane
mixing ratios were 50pptv and 205pptv, respectively, while in the UT, background propane values were
regularly measured below 205pptv and background n-butane values were regularly measured below 50pptv.
For reference, the average propane and n-butane mixing ratios encountered below altitudes of 2 km during
DC3 were 2268 pptv and 880 pptv, respectively. Thus, if a deep convective storm were to occur anywhere
over the DC3 study region, air from the PBL with propane values greater than 205 pptv and n-butane values
greater than 50 pptv would be lofted to the UT, and a strong enhancement in both propane and n-butane
would be observed in association with elevated levels of water vapor. This is shown in Figure 6, where, at a
given altitude in the UT, high propane and n-butane levels are always associatedwith high levels of water vapor,
indicating recent vertical transport associated with deep convection [Aschmann et al., 2009; Bechara et al.,
2010]. For comparison, CO is also shown in Figure 6, and many high-altitude samples with low levels of water
vapor are shown to have relatively high values of CO (over 125 ppbv in some cases). This indicates that
enhanced CO values can be present in the UT without association to recent convection. For reference, the
lowest CO valuemeasured below 2 kmwas 89ppbv, and the average COmixing ratio from all samples collected
below 2 km was 125ppbv. Thus, a filter was constructed whereby samples with both a propane mixing ratio
exceeding 205 pptv and an n-butane mixing ratio exceeding 50 pptv were labeled as anthropogenically
influenced. Sensitivity tests show that decreasing these requirements (for example, using 160pptv of propane
and 40pptv of n-butane as cutoffs) results in a large increase in the number of anthropogenically influence
samples detected, while increasing these requirements results in a small increase in the number of
anthropogenically influence samples detected. In essence, nearly all anthropogenically influenced samples
have propanemixing ratios much greater than 205pptv and n-butanemixing ratiosmuch greater than 50pptv.

During DC3 research flight 16 (17 June 2012), the DC-8 had a primary objective of tracking down and probing
aged outflow from a storm that had occurred the previous day over Oklahoma. The DC-8 altitude profile
for this flight is shown in Figure 7. While flying at altitudes between 8 and 12 km over the target area, the
DC-8 regularly encountered air with elevated propane and n-butane values (i.e., over 205 pptv and 50 pptv,
respectively), indicative of convective outflow. In Figure 7, propane mixing ratios are indicated by red bars,
while n-butane mixing ratios are omitted for the sake of clarity. At 21:00 and 21:30 UTC air with elevated

Figure 5. O3 vs carbon monoxide (CO) for the WAS data merge. Samples
that met the criteria to be labeled as SI samples are indicated by red dots.
All samples are colored by distance below the thermal tropopause, and
cyan samples were collected above the thermal tropopause.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD022109

SCHROEDER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 11,484



propane and O3 levels was encountered. In these patches of high O3, four SI samples were identified.
The entire flight took place below the thermal tropopause, suggesting that at some point in the previous
24 h, stratospheric air had entered the troposphere and mixed with this outflow.

To determine when this mixing took place, we looked at the origin of this convective outflow. Back
trajectory analyses were performed using the NOAA HYSPLIT model. Although these trajectories do not
accurately reproduce convective motion, they do identify the location of convective systems responsible
for the observed outflow. These analyses show that the aged convective outflow sampled during
research flight 16 originated from a convective storm near the Texas/Oklahoma border that had
occurred the previous day (research flight 15; 16 June 2012). During research flight 15, the DC-8 sampled
the inflow and outflow regions of this storm. The inflow air contained high levels of propane, n-butane,
and other hydrocarbons associated with the widespread regional oil and natural gas extraction activities.
While sampling the outflow from the active storm on 16 June, three SI samples were detected at
altitudes of 11–11.5 km. Of these three SI samples, two had evidence of mixing with polluted convective

outflow—elevated levels of not only
propane and n-butane, but other
short-lived hydrocarbons associated
with oil and natural gas extraction
including n-heptane (lifetime~1.7days)
and ethene (lifetime ~ 1.4 days). This
supports a hypothesis that mixing
with stratospheric air may occur as a
convective storm is developing.
However, since only three SI samples
were collected during research flight
15, it is difficult to draw any firm
conclusions about the dynamics of
mixing near an active storm. For a
more detailed perspective on the
dynamics of this mixing, we examined
a flight where a higher number of
SI samples were collected near an
active storm.

Figure 7. The DC-8 altitude profile for DC3 research flight 16. The flight
path is colored by 1 s O3 measurements, and SI samples are marked with
circles. WAS propanemixing ratios (right axis) are shown as red bars and are
used to indicate the presence of convective outflow. A dashed red line
marks the propane cutoff value of 205pptv described in section 4.3. The
entire flight took place below the thermal tropopause, which is indicated by
a thick black line.

Figure 6. Altitude profiles of water vapor from the DC3 WAS data merge. On the upper left panel, samples are colored by
propane values, where values below 205pptv are colored gray. On the upper right panel, samples are colored by n-butane
values, where values below 50pptv are colored gray. On the bottom panel, samples are colored by CO values, where values
below 90ppb are colored gray.
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4.4. Case Study: Evidence of
Stratospheric Air Mixing With
Outflow From an Active Storm

Tomore thoroughly evaluate the mixing
dynamics near active storms, more SI
samples are needed in the vicinity of a
storm. Research flight 2 (19 May 2012)
had a primary objective of probing
the inflow and outflow regions of an
isolated, active convective storm over
Oklahoma. During this flight, 17 SI
samples were collected. The DC-8 flew
L-shaped patterns in the low-altitude
inflow region of the storm—which was
characterized by elevated levels of
hydrocarbons and biogenic emissions
like isoprene, and stable levels of the
halocarbons listed in Table 1—then
spiraled up to an altitude of 12 km to

probe the outflow of this storm. The altitude profile for this flight is shown in Figure 8. The track of the spiral-
up and outflow pass segments are shown in Figure 9.

Before entering the convective outflow (end of the upward spiral segment), an air mass with strong
stratospheric character was observed (O3 levels above 100 ppbv, large decreases in mixing ratios of long-
lived halocarbons and N2O, low water vapor content, very low levels of hydrocarbons), and three SI samples
were identified. These SI samples were located about 1.3 km below the thermal tropopause. Then, from
00:43 to 01:16 UTC the DC-8 flew two passes through convective outflow from this active storm (red rectangle
in Figure 8; red oval in Figure 9). During both of these outflow passes, the DC-8 remained below the
thermal tropopause. The outflow was marked by large enhancements in both short-lived and long-lived
hydrocarbons. For example, long-lived species like ethane (lifetime ~ 47 days) were enhanced by several
hundred percent over background UT mixing ratios at the same time that very-short-lived species (like
isoprene, which has an average atmospheric lifetime of ~ 3 h and is below our 3 pptv detection limit in
background UT air masses) were observed in detectable amounts. Upon entering the convective outflow,

O3 levels decreased, water vapor
increased, and hydrocarbon levels
increased, effectively masking any
obvious stratospheric character that
may be mixed in. However, four SI
samples were identified in the outflow,
indicating that stratospheric air had
indeed mixed with the outflow.

After leaving the convective outflow,
the DC-8 ascended to 12 km, flew
around the south end of the convective
cell, and returned to Salina along the
backside of the storm front. Upon
ascending, the DC-8 briefly crossed
the thermal tropopause and sampled
stratospheric air around 01:20 UTC.
Four SI samples were collected during
this flight segment. After spending
several minutes above the tropopause,
the DC-8 then descended below the

Figure 8. The DC-8 altitude profile for DC3 research flight 2. The altitude
profile (flight track) is colored by 1 s O3 measurements, and SI samples
are indicated by circles. The DC-8 also carried an O3 lidar, the profile of
which is shown above and below the altitude profile and colorized on the
same scale. The thermal tropopause is represented as a thick black line.
The period when the DC-8 passed through the outflow region of the storm
is indicated by a red rectangle.

Figure 9. The DC-8 flight track for the spiral-up and outflow segments of
DC3 research flight 2 (flight path begins at 23:55 UTC in the bottom left
corner, and ends at 02:00 UTC at the top of the image). The flight path is
colorized by 1 s O3 measurements, and SI samples are indicated by black
circles. A NEXRAD radar image from 01:05 UTC is overlain, showing the
weather pattern probed by the DC-8. The portion of the flight where the
DC-8 flew through convective outflow is circled in red.
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tropopause, but the same strong
stratospheric character remained, and
five SI samples were identified. Lidar O3

profiles from this backside segment
show an air mass with a strong
stratospheric character reaching down
to 10 km (Figure 8). A dip in the thermal
tropopause height, from 12 to 11 km,
was also observed in this region. From
this, it is apparent that stratospheric air
had penetrated below the tropopause
on the backside of the storm front,
and this stratospheric air had mixed,
in varying degrees, with the outflow
on the east side of the storm. This
information, combined with the in situ
evidence regarding the SI samples,
shows that the polluted boundary
layer air encountered here was rapidly

mixed with stratospheric air upon being lofted to the UT. In this case, mixing was likely facilitated by the
strong northwesterly winds observed in the UT behind the storm front.

4.5. Evidence of Wide-Scale Mixing of Stratospheric Air With Convective Outflow

To assess the overall impact of mixing between polluted convective outflow and stratospheric air, the propane
and n-butane filter described in section 4.3 was applied to all SI samples. O3 was used as an approximate
indicator for the level of dilution of a stratospheric air mass. SI samples with high O3 values were either collected
in the stratosphere or were fresh, recent stratospheric intrusions. SI samples with reduced O3 values (i.e., below
150ppbv) are the result of dilution of a stratospheric air mass—either bymixingwith clean background air in the
FT, mixing with boundary layer air that has been convectively lofted into the FT, or direct mixing with boundary
layer air during a deep stratospheric intrusion. It should be noted that O3 levels are not constant within the
stratosphere and are subject to variation by altitude, geographic location, and seasonal changes [Stohl et al.,
2003; Zeng et al., 2010]. Because of this, we make no attempt to quantify the amount of dilution observed here.

Figure 10 shows the tropopause-relative altitude profile for O3 in all SI samples collected during DC3. Based on
their propane and n-butane mixing ratios, samples were binned as having relatively recent anthropogenic
influence (propane> 205pptv, n-butane> 50pptv) or not. As expected, SI samples with the highest O3 values
are located near the tropopause and show no recent anthropogenic influence, as they consist mostly of
undiluted stratospheric air. By contrast, most SI samples collected below the tropopause had elevated propane
and n-butane levels, implying that the SI samples had mixed with polluted boundary layer air to some extent.
Based on all SI samples with O3 values below 150ppbv, 72%met our criteria to be labeled as anthropogenically
influenced. Even in the UT, most SI samples that have experienced significant mixing with tropospheric air
(O3< 150ppbv) have done so by mixing with polluted air rather than clean free tropospheric air. This result
suggests that over central US in late spring the primary mixing mechanism for storm-associated stratospheric
intrusions is themixingwith convective outflow that has recently been lifted out of the polluted boundary layer.

4.6. Effects on OH Production

With moist air from convective outflow mixing with the high-O3 air of a stratospheric intrusion, the oxidizing
capacity of convective outflow—and the regional upper troposphere—may be altered via an increased
production of OH radicals. When comparing the relative OH productivity of two air masses, equation (5) can be
further simplified under the assumption that both airmasses have identical temperature and pressure conditions:

POH;1

POH;2
¼ H2O½ �1 O3½ �1

H2O½ �2 O3½ �2
(6)

Table 3 shows relevant chemical data used for calculating this ratio and includes themean and 95% confidence
interval for both H2O and O3. SI samples collected at altitudes above 8 km with O3 values above 200ppbv and

Figure 10. All SI samples from DC3. Black circles indicate samples that did
notmeet our criteria to be labeled “anthropogenically influenced”, and red
circles indicate samples that did meet these criteria. Altitudes are listed
relative to the tropopause height calculated for each sample, where positive
altitudes were collected above the tropopause and negative altitudes were
collected below the tropopause.
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no anthropogenic influence (as per the filter described in section 4.3) were labeled as fresh stratospheric intrusions.
Background UT samples were identified as WAS samples collected above 8 km where none of the tracers from
Table 1 were at levels in their lowest quartile and no anthropogenic influence was detected by our filter
(and therefore, over this study region, little-to-no convective influence, either). Mixed stratospheric/convective
outflow samples were identified as SI samples collected above 8 km with detectable anthropogenic influence.

Using equation (6), POH for mixed stratospheric/convective outflow was calculated to be higher than POH for
fresh stratospheric intrusions by a factor of 11 ± 8. The high uncertainty is due to the low levels of water vapor
present in stratospheric air and the wide range of O3 values allowed to be classified as “fresh stratospheric
intrusions”—a difference of even a few ppb of O3 and water vapor between samples results in a high
uncertainty in the mean value. Comparing mixed stratospheric/convective outflow to background UT air,
this factor was calculated to be 4.2 ± 1.8. These results are summarized in Table 3.

Chemical loss of OH (LOH) is also expected to be different between these air masses, and must be accounted
for to fully understand the net change in OH (equation (7)):

dOH
dt

¼ POH � LOH (7)

LOH can be estimated by calculating OH reactivity (kOH) using equation (8):

LOH ≈ kOH ¼
X

ki trace gas½ �i (8)

In this equation, ki represents the rate constant for the reaction of trace gas i with OH, where trace gases
include all VOCs measured, as well as CO and methane (CH4). In all of air masses presented in Table 3, CO and
CH4 were found to contribute to more than 85% of the total OH reactivity. This is an important result, because
the variation in CO and CH4 between air masses is significantly less than the variation between VOCs. For
example, relative to clean background UTair or fresh stratospheric intrusions, mixed stratospheric/convective
outflow air masses may have VOC enhancements in excess of 100%, while both CO and CH4 were typically
enhanced by ~25% and 2%, respectively. This means that, despite large enhancements in VOC mixing ratios,
LOH in mixed stratospheric/convective outflow is estimated to be higher than LOH in background UT air
and fresh stratospheric intrusions by a factor of 1.5, at most. In comparison to POH, which was significantly
enhanced in mixed stratospheric/convective outflow airmasses (see Table 3), the enhancement in LOH is small
enough to make little difference in the net production of OH. Thus, we expect mixing between stratospheric
air and convective outflow to produce a net gain in OH in the UT.

If our hypothesis from section 4.5 is true—that storm-associated stratospheric intrusions often mix with
convective outflow—then this could be a potentially large source of OH radicals in the UT over the central US
and affect chemistry in the UT, particularly in areas where deep convection is frequent. In the presence of this
type of mixing, the lifetimes of OH-controlled VOCs would be shorter than currently predicted. This could
alter the radiative forcing of the UT by reducing the lifetimes of radiatively important gases like CH4 and
ethane, while cirrus cloud formation may be altered due to the enhanced production of secondary VOCs and
their associated changes in gas/particle partitioning [Riese et al., 2012]. At this point, however, we cannot
say how frequent these mixing events are, nor can we say with certainty that these results hold true on a
global scale over a period of a whole year. Further work must be done to assess the validity of this study.

5. Conclusions

Using a suite of long-lived halocarbons as a tracer, stratospherically influenced air was detected throughout
the DC3 study region. O3 levels in these SI samples indicated that, below the tropopause, stratospheric air had

Table 3. Chemical Data for Different Air Masses in the Upper Troposphere (UT) and Their Calculated Instantaneous Hydroxyl
Radical (OH) Productiona

Air Mass Water (H2O) (ppb) Ozone (O3) (ppb)
POH;mixed

POH;air mass

Fresh stratospheric intrusion 13,000± 8300 333± 128 11± 8
Background UT 138,000± 39,000 82± 18 4.2 ± 1.8
Mixed stratospheric/convective outflow 371,000± 64,080 125± 50 1

aHere, “mixed” refers to air masses where stratospheric air has mixed with convective outflow.
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beenmixed with tropospheric air on a number of occasions. Many of these samples withmixed stratospheric-
tropospheric character had elevated levels of CO—indicative of anthropogenic influence. These mixed
samples were identified in both the PBL and the UT. During DC3, rapid vertical transport of polluted air
occurred via deep convective lofting of air from the PBL to the UT. This polluted convective outflow was
detected during active storms, where it remained in the UT and was transported downwind for several days.
To investigate the process by which stratospheric air mixes with convectively lofted polluted air, a case
study was performed: using two hydrocarbons with moderate lifetimes (n-butane and propane) and back
trajectories, aged, polluted convective outflow (lofted to the UT one day prior to sampling) was identified as
having been sampled during research flight 16. Embedded within this outflow were six samples that had
both anthropogenic and stratospheric influence. A case study performed on a flight where an active storm
was sampled (research flight 2) also shows evidence of this type ofmixing. During this flight, a large stratospheric
intrusion was identified behind a storm front passing over Oklahoma. While probing the outflow from this
storm, five samples were collected that met our criteria to be labeled as stratospherically influenced. These
results indicate that active convection may act to facilitate the mixing between stratospheric and polluted air
in the UT, although we do not attempt to draw any conclusions about the meteorological relationship
between colocated stratospheric intrusions and deep convective storms and the frequency by which this
type of mixing occurs. Since the DC-8 primarily sampled convective outflow below the tropopause, and
nearly all SI samples with detectable anthropogenic influence were collected below the tropopause, we can
not speculate about the presence of this type of mixing in the lowermost stratosphere.

Of all SI samples collected during DC3, 72% showed detectable anthropogenic influence. In the UT, the
majority of SI samples that had experienced some degree of mixing with tropospheric air had done so by
mixing with polluted convective outflow. Relative to tropospheric air, stratospheric air has very high O3 levels,
while, relative to stratospheric air, tropospheric air has very high levels of water vapor. Thus, mixing between
the two is expected to lead to an enhanced instantaneous production of OH relative to un-mixed stratospheric
or tropospheric air. Indeed, based on O3 and water vapor mixing ratios measured during DC3, air masses that
had both stratospheric and anthropogenic influence was calculated to have an instantaneous production
of OH that is 11 ± 8 times higher than undiluted stratospheric intrusions, and 4.2 ± 1.8 times higher than
background tropospheric air. This process creates a unique chemical environment where boundary layer
pollution that is convectively lofted in the upper tropospheremay experience higher-than-expected loss rates of
OH-controlled trace gases. Although the work presented here may help lay the groundwork for understanding
this type of mixing, future measurements and modeling studies must be done to assess the regional, global,
and temporal trends of this type of mixing, and any potential impacts on tropospheric chemistry.
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