
Lawrence Berkeley National Laboratory
Computing

Title
Lambda Architecture for Cost-Effective Batch and Speed Big Data Processing

Permalink
https://escholarship.org/uc/item/0t36p3hn

Authors
Kiran, Mariam
Murphy, Peter
Monga, Inder
et al.

Publication Date
2015-10-01

DOI
10.1109/bigdata.2015.7364082

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0t36p3hn
https://escholarship.org/uc/item/0t36p3hn#author
https://escholarship.org
http://www.cdlib.org/

Lambda Architecture for Cost-effective
Batch and Speed Big Data processing

 Mariam Kiran Peter Murphy, Inder Monga, Jon Dugan Sartaj Singh Baveja
 School of Computer Science Energy Sciences Network (ESnet) Netaji Subhas Institute of Technology
 University of Bradford {pmurphy, imonga, jdugan}@es.net New Delhi
 m.kiran@bradford.ac.uk sartaj.singh@nsitonline.in

Abstract—Sensor and smart phone technologies present

opportunities for data explosion, streaming and collecting from
heterogeneous devices every second. Analyzing these large
datasets can unlock multiple behaviors previously unknown, and
help optimize approaches to city wide applications or societal use
cases. However, collecting and handling of these massive datasets
presents challenges in how to perform optimized online data
analysis ‘on-the-fly’, as current approaches are often limited by
capability, expense and resources. This presents a need for
developing new methods for data management particularly using
public clouds to minimize cost, network resources and on-demand
availability.

This paper presents an implementation of the lambda
architecture design pattern to construct a data-handling backend
on Amazon EC2, providing high throughput, dense and intense
data demand delivered as services, minimizing the cost of the
network maintenance. This paper combines ideas from database
management, cost models, query management and cloud
computing to present a general architecture that could be applied
in any given scenario where affordable online data processing of
Big Datasets is needed. The results are presented with a case study
of processing router sensor data on the current ESnet network
data as a working example of the approach. The results showcase
a reduction in cost and argue benefits for performing online
analysis and anomaly detection for sensor data.

Keywords—big data processing, lambda architecture, Amazon
EC2, sensor data analysis

I. INTRODUCTION
The Cloud computing paradigm is a promising environment

delivering IT-as-a-service for industries and researchers to
deploy their applications [4, 8]. These capabilities have laid
foundations for more innovative research challenges in Big Data
and Internet of Things projects, with a continuing growth of
massive and diverse data volumes, along with the use of data
intensive applications. These areas present a need to investigate
effective means for data management in efficient and cost-
effective ways. Forecasting a growth of $75 billion for small and
medium-sized businesses using Clouds for data management
applications, SAP industries argue lower costs, less installation
needs, and ease of management of less IT resources as an
attractive business model [14]. However, this technological
innovation, comes with increased challenges such as network
availability, security and reliability as biggest concerns for
businesses world-wide .

Initiatives such as Smart City projects are highly reliant on
the availability of various services to fulfil their aims of data

collection, management and processing. Access to certain
architectures and resources to enable users to conduct Big Data
and Internet of things research, has raised a number of issues of
availability, know-how and security [20]. A constant growth in
devices such as smartphones, sensors, household appliances,
RFID devices, are joining internet capabilities to produce global
data traffic of massive volumes and varieties, presenting various
challenges for the security and management of these data-as-a-
service applications [20].

With this in mind, multiple vendors are delivering services
for data processing such as Amazon Web Services (AWS),
Rackspace hosting and Google Cloud, presenting a collection of
tools for online data collection, cloud hosted databases and map
reduce processing such as using Hadoop, Hive or Spark. By
offering users virtual machines to host, compute and manage
their data, users can use advantages such as elasticity, multi-
tenancy and the pay-as-you-go cost model. For instance, cloud
resources can be rented with current Amazon services priced for
small data resources (i2.xlarge) for $0.853/hour and for large
data resources (d2.8xlarge) for $5.520/hour for on-demand
resources. Additional reserved instances can be rented from 1 to
3 year terms, but may prove expensive in the long run, especially
if data needs are not as intensive at all times.

This paper presents a cost-optimised architecture for online
and batch data processing for massive volumes of sensor data as
an adaptation of the lambda architecture design pattern currently
being used by companies such as Twitter and AWS [21]. The
architecture combines both batch and stream processing
capabilities for online processing and handling of massive data
volumes in a uniform manner, reducing costs in the process. The
paper presents a flexible data provisioning based on the user
needs and achieves the following:

 Data capability to be collected in online and processed
on-the-fly for real time analysis.

 Capability to perform massive batch processes on
historical data sets to observe data patterns over longer
period of time.

 Investigate cost-effective solutions using cloud services
for deploying this architecture.

The paper has been organised as follows: section 2 presents
related work and research pertaining to data processing
architectures and the challenges still faced in them. This section
also presents an overview of the lambda architecture and how it
is currently being used with Apache Storm and Hadoop. Section
3 presents the proposed architecture and implementation

2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 2785

challenges of porting similar data processing toolkits on AWS.
These observations are supported by a case study presented in
section 4 showing online data collection and processing for
multiple router sensors sending data at a constant rate of 30
seconds. The results and conclusions are discussed in section 5
and 6 with further future extensions to the architecture to enable
future smart city projects.

II. RELATED WORK

A. Current Data Processing Solutions
Data analytics are essential to plan and create decision

support systems for optimising the underlying infrastructure.
This involves not only processing of the online data, in search
for certain events, but also the historical data sources which may
be needed to find data patterns which influence decisions. Cloud
providers are paramount for the availability and durability to
their resources but present various challenges. For instance, for
availability, data is often replicated across multiple servers in
different geographical locations, sometimes in untrustworthy
locations [6]. There are also additional computational challenges
in handling elasticity by allocating resources on-the-fly to
handle increased demand.

Mian et al. [22] presented a cost effective model for virtual
machine provisioning to execute dynamic data analytic
workloads, at the same time trying to satisfy all service level
agreement (SLA) constraints. The paper highlighted how an
optimised infrastructure would be more reliant on the provider
setting up experiments and would not be defined SLAs. Dobre
et al [23] presented a context aware framework, specifically
designed for handling multiple devices, mapping between
components and caching or handling requests from multiple
users. As a means to support intelligent data processing through
contexts, the authors however did not discuss how the data is
moved through multiple abstraction layers to aid with speed and
cost of delivery.

Further projects such as M3 [24] proposed a disk
communication layer between the mappers and reducers to
allow dynamic rate-based load balancing and multi streaming of
applications. Another version of the project Chameleon [25]
used specific context based indexing to augment query for fast
data delivery. Other concrete projects such as Yahoo’s Pig [17],
Microsoft’s SCOPE [5] and Google’s initiatives [9], are aiming
to integrate declarative query constructs from the database
community into MapReduce-like software to allow greater data
independence, code reusability, and automatic query
optimization. These projects approached the problem as a
distributed model, however further work needs to explore hybrid
solutions which consider resources, data models, varied queries
in accordance with network traffic or cost.

Researchers have often merged techniques with other tools
to develop field related solutions. Abouzied [26] discussed

HadoopDB, a hybrid of MapReduce and DBMS technologies,
to allow scalability and performance of massive data processing.
The authors present the application for a biological protein
analysis or for business warehousing. Another example of
merging was for image analysis in medical fields [27]. Bruns
[28] discussed how the current Twitter APIs were extended for
third party researchers to deploy their own data analysis on
twitter feeds in order to enhance business practices. However
unique solutions that allow multiple users of varying
backgrounds to write and deploy optimised data processing
applications is still needed. However there is a need for tailored
solutions for online and batch data processing which keeps in
line non-functional attributes such as cost and network
complexities.

Further work has used similar data processing toolkits in
smart grid applications where it is important to forecast and
redistribute resources on the fly [31]. Current industry focus of
using Spark SQL have aided further faster processing reducing
some of the weaknesses of the Hadoop processing model [30].

B. Lambda architecture
Presented as a software design pattern, the lambda

architecture unifies online and batch processing within a single
framework. The pattern is suited to applications where there are
time delays in data collection and availability through
dashboards, requiring data validity for online processing as it
arrives. The pattern also allows for batch processing for older
data sets to find behavioural patterns as per user needs [21].

Fig. 1. Basic lambda architecture for speed and batch processing.

Figure 1 shows the basic architecture of how the lambda
architecture works. It caters as three layers (1) Batch processing
for precomputing large amounts of data sets (2) Speed or real
time computing to minimize latency by doing real time
calculations as the data arrives and (3) a layer to respond to
queries, interfacing to query and provide the results of the
calculations.

2786

Fig. 2. Main lambda architecture implemented on Amazon web services.

Lambda architecture allows users to optimise their costs of
data processing by understanding which parts of the data need
online or batch processing. The architecture also partitions
datasets to allow various kinds of calculation scripts to be
executed on them [21]. However, a few critiques of the
architecture have argued that the multiple set of projects that
need to be maintained under the data branch to allow multiple
data executions, requires more skills from the developers setting
up the jobs to execute and produce results.

Despite of this, the architecture is well suited for big data
processing problems with multiple kinds of analysis needed to
study the online data arriving through sensors. The online stream
can be used to detect data anomalies verifying whether it is
accurate before processing it further. Verified data can then be
stored into databases, which can have batch scripts performed
once a day or a month to study data patterns over a time period.
Users can reduce the costs of performing these scripts on larger
data sets by breaking the problem down in manageable steps
reducing cost and tailoring the data analysis routines to suit their
needs. This architecture can be adapted for collecting and
analysing online sensor data to find efficient solutions to process
large data sets.

III. PROPOSED ARCHITECTURE
In scenarios such as smart cities, involve working with large

complex networks of sensors continuously fetching and
recording data to a central repository for efficient decisions.
Examples such as when to send garbage collection vans or when
to grit the roads for better driving conditions can all be motivated
through visual, motion and temperature sensor networks that
already exist in city infrastructures.

Public clouds provide a number of services which could be
employed for online and batch processing. Table 1 presents a
comparison of Microsoft azure and Amazon AWS services
offering similar capabilities. For the purpose of this paper,
Amazon EC2 is chosen as a starting point for accessing multiple

services. A comparison of the services presented in Table 1
shows that the online processing needs stream and batch
processing which was easier to be performed in Amazon cloud
rather than Azure services. The availability of services and cost
plans for first time users of the Amazon infrastructure were also
suitable for the project objectives.

TABLE I. COMPARISON OF CLOUD SERVICES

Example
services Microsoft Azure Amazon web services

Subhead

Available Region Azure Region AWS Global
Infrastructure

Compute
Services

Virtual Machines
(VMs)

Elastic Compute Cloud
(EC2)

Storage Options Azure Storage (Blobs,
Tables, Queues, Files)

Amazon Simple Storage
(S3)

Database
Options Azure SQL Database

Amazon Relational
Database Service (RDS)

Amazon Redshift

NoSQL Database
Options

Azure DocumentDB
Azure Managed Cache
(Redis Cache)

Amazon Dynamo DB
Amazon Elastic Cache

Data
Orchestration Azure Data Factory AWS Data Pipeline

Administration
& Security

Azure Active
Directory

AWS Directory Service
AWS Identity and

Access Management
(IAM)

Analytics Azure Stream
Analytics Amazon Kinesis

Other Services &
Integrations

Azure Machine
Learning
None
None

None
AWS Lambda
AWS Config

2787

Fig. 3. ESnet router production network.

Amazon AWS offers a collection of services which could be
used for different purposes, each differing in cost and time.
Selection of the appropriate cloud service that maps onto the
general architecture of lambda architecture was not obvious and
required comparisons and study of performance, and cost. One
of the decisions is showcased in Table 2, which presents a
comparison of using either S3 or DynamoDB as a means to
handle and process data. Although DynamoDB is much more
expensive compared to S3, the speed of query processing would
reduce the total effective cost as we plan for long-term use of
DynamoDB rather than using S3.

TABLE II. COMPARING S3 AND DYNAMODB
SERVICES

DynamoDB S3
$0.02 per 100,000
transactions

$0.005 per 1000
requests

Storage costs vary.
Maximum is $0.09
for storage

Storage costs vary.
$0.03 per GB

Faster and DB Blob

Similarly, a number of decisions had to be addressed in terms
of cost and usefulness of the services. For the purposes of online
processing of data, services such as Amazon Kinesis was chosen
and merged with Amazon lambda for event-based processing of
the data. Figure 2 describes the final processing architecture that
was built on Amazon web services to read router data every 30
seconds and process it as it arrives and batch jobs.

IV. USE CASE: ESNET NETWORK SENSOR TESTBED
We used the entire ESnet router production network as the

testbed to experiment with this architecture (shown Figure 3).
An existing SNMP data collection software, ESxSNMP was
used to collect router in and out bytes from every interface every
30 seconds.

Figure 2 describes the architecture that was built on Amazon
web services to read router data every 30 seconds and process it
in online and batch jobs. A recent report by Amazon [29] uses
Apache spark and storm for processing the data stream. It also
uses an event processing service which allowed processing
scripts to be triggered when data arrives in the kinesis stream. In
the architecture (figure 2) the event processing was omitted
because in the use case, data was known to be arriving every 30
seconds making it less likely to have an event processing
element. Having an event processing element also charges every
time it is triggered, which would eventually charge more than
the current architecture implemented.

The initial implementation report [29] also uses Spark SQL
to perform batch processing for a fast query analysis. In figure
2, the basic elastic map reduce functions were implemented with
Hadoop to perform map reduce processing jobs on hourly, daily
and monthly bases in batches. The batch job could be triggered
via cron jobs or through a job scheduler to run them once a day
after the online data has been collected for the day. The map
reduce jobs can filter and sort the data based on either hourly, 5
hourly or daily sorts.

A. Real-time (online) or Speed processing
The raw data arrives at 30second intervals from multiple

router interfaces in the form of json files. These data sets were
read and processed to calculate averages across minute intervals
and the maximum values recorded. This has been explained
below:

Arriving Json raw data: [router_id, interface_id,
variable_id, timestamp, data_recorded]

5 minute aggregations: [router_id, interface_id,
variable_id, 5_minute_avg, maximum_data_in_5_minutes]

The 5 minute aggregations were output to a new stream
which could then be used to visualise the data while the data
arrives.

2788

B. Batch processing
Figure 4 shows the batch processing jobs on the raw data

sets. Multiple map reduce jobs can be triggered to read the raw
data sets and produce consolidated 1 day, 7 day and 90 day and
1 year aggregations. These batch files can only perform
calculations on stored data sets.

Outputs for the calculated data sets can be read into output
directory to visualise the averaged data sets. These outputs are
also stored in separate S3 buckets.

Fig. 4. Batch processing on raw data sets.

The EMR scripts used c1.medium machines as master, core
and task with the machine image version 3.8.0 and a Hadoop
distribution of Amazon 2.4.0. The map reduce command used
was as follows:

hadoop jar /home/hadoop/contrib/streaming/hadoop-
streaming.jar -files s3://location-of-mapper/mapper.py,
s3://location-of-reducer/reducer.py -libjars
/home/hadoop/CustomOutputFormats3.jar -outputformat
oddjob.hadoop.MultipleTextOutputFormatByKey -mapper
python mapper.py -reducer python reducer.py -input
s3n://location-of-inputs/jsons/ -output s3n://location-of-output-
job

The command, above, allows users to specify the location of
mapper and reducer files, input files and where to produce
outputs. Further java files can be passed as arguments to specify
the format of the outputs generated as an optional step.

V. RESULTS
The experiments were set up to run for 3 months executing

certain jobs at specific times during the months. Figures 5-11
represent the statistics in terms of used hours, costs and type of
services used during the time period.

Fig. 5. Cost per service during two months (Month 1 and Month 2) of the
experiment.

Figure 5 shows the cost variation between two months.
Cloud services charge for the amount of usage. As shown in
Figure 5, Month 1 used more demand on EC2 services as
compared to the Month 2. This is reflected in Figure 6 and 7,
where Month 3 used even lesser resources bringing the costs
down from 80 dollars to 20 dollars.

Figure 7 shows that the cheapest services to use were micro
machines and xlarge machines being the most expensive to use.

Fig. 6. Instance hours used over 3 months.

Fig. 7. Cost by instance type.

Further analysis on the usage of online kinesis stream and
batch processing can be done as seen in Figure 8-11. Figure 8
and 9 show the distribution of requests used by the kinesis

MONTH 1

MONTH 2

MONTH 3

t2.micro m3.xlarge c1.medium m1.small t1.micro

MONTH 1

MONTH 2

MONTH 3

t2.micro m3.xlarge c1.medium m1.small t1.micro

2789

stream. Most of the kinesis cost arose from the stream hosting
the data shown as shard active per hour. This shows that in the
future cost could be optimised by limiting the amount of time
the stream needs to be active by starting and deleting it,
dynamically, when it is used.

Fig. 8. Online stream: Kinesis usage during 1 month.

Fig. 9. Online Stream: Distribution of work in terms of requests for kinesis.

Figure 10 and 11 depict the usage of instances and the cost
incurred by running batch jobs over the three month period using
elastic map reduce. Using larges machine instances such as
m3.xlarge machines produce more costs even if run a few times.
These costs can be optimised by replacing larger machines with
smaller machines such as c1.medium, to give similar results but
at lower costs. Elastic map reduce involves creating a cluster of
machines to act as master-slave to deploy and run the map
reduce jobs. Therefore replacing these machines with smaller
machines and more modes can help reduce the machine cost and
also perform the same processing. The runtime of c1.medium
cluster was approximately 10 minutes, which was slower (of 5
minutes) than the m3.large machine clusters.

Fig. 10. Batch processing: usage of various instance types in EMR over 3
months

Figure 11 shows the reduction in cost by replacing the
machine specifications for the map reduce clusters.

Fig. 11. Batch processing: price distribution of the EMR during 3 months

VI. DISCUSSION AND CONCLUSIONS
Lambda architecture allows multiple data processing scripts

which are tailored to specific data sets. For online processing
stream processing can be used to perform calculations as data
arrives and batch processing scripts can be created to run on data
stored from before. The above architecture was implemented on
Amazon AWS utilising multiple resources and producing
various results in terms of cost and usage. A number of lessons
were learned while exploring the architecture on both batch and
real time processing such as:

For batch processing:

 Performing local tests before deploying the scripts on
EC2 helps to find code errors and manages in reducing
the costs of failed clusters on EC2.

 Even if the cluster was executed for 2 minutes, Amazon
cloud charges the machine as a full hour, which causes
the steep increase in EMR costs shown in Figure 10.
Which machines are used in the cluster cause an impact
on the cost and also affects the time the service will take
to execute the jobs.

0

1000000

2000000

3000000

4000000

5000000

nu
m

be
r o

f r
eq

ue
st

s

Time during 1 month

0 200 400 600 800

DataTransfer-Out-Bytes

EUW1-Storage-ShardHour

PutRequestBytes

PutRequestPayloadUnits

PutRequestVolume

Storage-ShardHour

0 1 2 3 4

BoxUsage

BoxUsage:c1.medium

BoxUsage:m3.xlarge

USW2-BoxUsage:m3.xlarge

0

20

40

60

80

100

120

140

160

U
sa

ge
 in

 c
os

t

Time over 3 months

2790

 Future work can involve using spot instances to be
requested, to allow optimising the costs even further but
may introduce more delays in the processing being
fulfilled.

For real-time or online processing:

 The kinesis stream read data as a last-in-first-out that
meant data needed to be saved locally to calculate the 5
minute data aggregations.

 Amazon Cloud management allows roles and rights to be
assigned to multiple members of a team. Multiple
members may have rights for kinesis processing, but if
the kinesis stream interacts with other services by
moving data across would require the member to have
rights to the other services as well. Software testing
strategies such as try and catch exceptions need to be
implemented in the code to prevent services to fail.

In terms of the processing time, the kinesis stream was able
to process data in real-time while the EMR cluster used
approximately 10 minutes to complete a job. Some of the
services charge while they are active, and thus should only be
dynamically started and stopped when being used in order to
optimise costs.

In conclusion, the lambda architecture on Amazon AWS was
able to provide a proof-of-concept for data processing in both as
data arrives and if it is saved prior to the scripts. The tailored
solutions allow users to perform cost-optimised processing.
Both processes can produce data aggregations which are easier
to plot and reduces time for data processing through the data
visualisation interface.

Further work needs to be extended to explore issues of data
security, availability zones and data replications for more
complex operations of the services. Scripts which can perform
data roll ups in case of data loss and machine-learning
algorithms for performing online anomaly detection while the
data arrives can be embedded into the stream, to check the data
as it arrives. This would allow verification and validation of the
data sets to be conducted as it arrives preventing loss in time and
cost to run these scripts after the data has been saved and
processed. However, the above experiment shows huge
potential in processing of Big Data sets in cost-effective ways
by implementing the lambda architecture design pattern and the
architecture shows that it is particularly suited for cloud services
where multiple resources are available for controlling and
processing the data. This sort of architecture would prove
extremely useful for processing sensor related data in Smart city
research which is to be explored further in the future.

ACKNOWLEDGMENT
The work was supported by the NEMODE EPSRC grant

(www.nemode.ac.uk) for Big Data analysis on Cloud services
and further via ESnet resources and DOE support for Amazon
Cloud services. ESnet is operated by Lawrence Berkeley
National Laboratory, which is operated by the University of
California for the U.S. Department of Energy under contract
DE-AC02-05CH11231. This work was supported by the
Directors of the Office of Science, Office of Advanced
Scientific Computing Research, Facilities Division.

REFERENCES

[1] D. Abadi, Data Management in the Cloud: Limitations and Opportunities,
IEEE Engineering Bulletin - DEBU , vol. 32, no. 1, pp. 3-12, 2009.

[2] R.M. Badia, M. Corrales, T. Dimitrakos, K. Djemame, E. Elmroth, A.
Ferrer, N. Forgó, J. Guitart, F. Hernández, B. Hudzia, A. Kipp, K.
Konstanteli, S. Nair, T. Sharif, C. Sheridan, J. Tordsson, T. Varvarigou,
S. Wesner, W. Ziegler, C. Zsigri., Demonstration of the OPTIMIS Toolkit
for Cloud Service Provisioning, Towards a Service-Based Internet LNCS
vol 6994, 2011.

[3] J. Brown, Migration, Integration, Challenges in Government Cloud
deployments, Govtech, 2015.

[4] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility FGCS 25, 2009.

[5] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. Scope: Easy and efficient parallel processing of massive data
sets. In Proc. of VLDB, 2008

[6] M. Dikaiakos, G. Pallis, D. Katsaros, P. Mehra, A. Vakali, Cloud
Computing: Distributed Internet Computing for IT and Scientific
Research, IEEE Internet Computing, 2009.

[7] e-skills UK, Jan 2013 https://www.e-skills.com/research/research-
themes/big-data-analytics/

[8] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud Computing and Grid Computing
360-Degree Compared Proceedings of the IEEE Grid Computing
Environments Workshop, pp. 1-10, 2008.

[9] J. N. Hoover. Start-Ups Bring Google’s Parallel Processing to Data
Warehousing. InformationWeek, August 29th, 2008.

[10] K. Jackson, K. Muriki, L. Ramakrishnan, K. Runge, R. Thomas,
Performance and cost analysis of the Supernova factory on the Amazon
AWS cloud, Scientific Programming 19, 2011.

[11] T. Jin, C. Tracy, M. Veeraraghavan, Characterization of high-rate large-
sized flows, University of Virginia, Master’s thesis, 2013, Online:
http://www.cs.virginia.edu/events/colloquia/jin.html

[12] Z. Liu, M. Veeraraghavan, C. Tracy, J. Tie, I. Foster, J. Dennis, J. Hick,
W. Yang, On using virtual circuits for GridFTP transfers, Int. Conf. for
HPC, Networking, Storage and Analysis, pp. 81:1, 2012.

[13] Y. Lu, M. Wang, B. Prabhakar, F. Bonomi, ElephantTrap: A low cost
device for identifying large flows, 15th Annual IEEE Symposium on
High-Performance Interconnects, pp. 99–108, 2007.

[14] D. Menon, Benefits and challenges in deployment of Cloud solutions for
SME, InsideSAP, 2014.

[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins. Pig latin: a not-
so-foreign language for data processing, SIGMOD Conference, pgs
1099–1110, 2008.

[16] S. Sakr, A. Liu, D. M. Batista, M. Alomari, A Survey of Large Scale Data
Management Approaches in Cloud Environments. IEEE Communication
Surveys & Tutorials, vol 13, no 3, 2011.

[17] US DOE Office of Science ASCR, Terabit networks for extreme-scale
science workshop report. Available Online: http://science.energy.gov/,
2014.

[18] S. Sarvotham, R. Riedi, R. Baraniuk, Connection-level analysis and
modelling of network traffic, ACM SIGCOMM Internet Measurement
Workshop, pp. 99–104, 2001.

[19] P. Xiong, Y. Chi, S. Zhu, H.J. Moon, C. Pu, H. Hacigumus, Intelligent
Management of Virtualized Resources for Database Systems in Cloud
Environment, In ICDE, 2011.

[20] N. Mitton, S. Papavassiliou, A. Puliafito, K. S Trivedi, Combining Cloud
and sensors in a smart city environment, EURASIP Journal on Wireless
Communications and Networking, December 2012, 2012:247

[21] N. Marz, J. Warren, Big Data: Principles and best practices of scalable
realtime data systems. Manning Publications, 2013.

[22] R. Miana, P. Martina, J.L. Vazquez-Poletti, Provisioning data analytic
workloads in a cloud, Future Generation Computer Systems 29 (2013)
1452–1458

2791

[23] C. Dobre, F. Xhafa, Intelligent services for Big Data science, Future
Generation Computer Systems 37 (2014) 267–281

[24] A.M. Aly, A. Sallam, B.M. Gnanasekaran, L. V. Nguyen-Dinh, W.G.
Aref, M. Ouzzani, A. Ghafoor, M3: stream processing on main-memory
MapReduce, in: Proceedings of the 2012 IEEE 28th International
Conference on Data Engineering, ICDE ’12, IEEE Computer Society,
Washington, DC, USA, 2012, pp. 1253–1256.

[25] T.M. Ghanem, A.K. Elmagarmid, P.-A. Larson, W.G. Aref, Supporting
views in data stream management systems, ACM Transactions on
Database Systems 35 (2008) 1:1–1:47

[26] A. Abouzied, K. Bajda-Pawlikowski, J. Huang, D. J. Abadi, and A.
Silberschatz. 2010. HadoopDB in action: building real world applications.
In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, New York, USA

[27] Song X-W, Dong Z-Y, Long X-Y, Li S-F, Zuo X-N, Zhu C-Z, et al.
(2011) REST: A Toolkit for Resting-State Functional Magnetic

Resonance Imaging Data Processing. PLoS ONE 6(9): e25031.
doi:10.1371/journal.pone.0025031

[28] A. Brun, Y. Liang, L. Eugene. Tools and methods for capturing Twitter
data during natural disasters. First Monday, [S.l.], mar. 2012. ISSN
13960466.

[29] Amazon Web Services, Lambda Architecture for Batch and Stream
Processing on AWS, May 2015

[30] Xin, Reynold; Rosen, Josh; Zaharia, Matei; Franklin, Michael; Shenker,
Scott; Stoica, Ion, Shark: SQL and Rich Analytics at Scale, 2013

[31] Y. Simmhan, V. Agarwal, S. Aman, A. Kumbhare, S. Natarajan, N.
Rajguru, I. Robinson, S. Stevens, W. Yin, Q. Zhou and V. Prasanna,
Adaptive Energy Forecasting and Information Diffusion for Smart Power
Grids , IEEE International Scalable Computing Challenge (SCALE 2012)
, 2012

2792

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

