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Abstract—Sensor and smart phone technologies present 

opportunities for data explosion, streaming and collecting from 
heterogeneous devices every second. Analyzing these large 
datasets can unlock multiple behaviors previously unknown, and 
help optimize approaches to city wide applications or societal use 
cases. However, collecting and handling of these massive datasets 
presents challenges in how to perform optimized online data 
analysis ‘on-the-fly’, as current approaches are often limited by 
capability, expense and resources. This presents a need for 
developing new methods for data management particularly using 
public clouds to minimize cost, network resources and on-demand 
availability. 

This paper presents an implementation of the lambda 
architecture design pattern to construct a data-handling backend 
on Amazon EC2, providing high throughput, dense and intense 
data demand delivered as services, minimizing the cost of the 
network maintenance. This paper combines ideas from database 
management, cost models, query management and cloud 
computing to present a general architecture that could be applied 
in any given scenario where affordable online data processing of 
Big Datasets is needed. The results are presented with a case study 
of processing router sensor data on the current ESnet network 
data as a working example of the approach. The results showcase 
a reduction in cost and argue benefits for performing online 
analysis and anomaly detection for sensor data. 

Keywords—big data processing, lambda architecture, Amazon 
EC2, sensor data analysis 

I. INTRODUCTION 
The Cloud computing paradigm is a promising environment 

delivering IT-as-a-service for industries and researchers to 
deploy their applications [4, 8]. These capabilities have laid 
foundations for more innovative research challenges in Big Data 
and Internet of Things projects, with a continuing growth of 
massive and diverse data volumes, along with the use of data 
intensive applications. These areas present a need to investigate 
effective means for data management in efficient and cost-
effective ways. Forecasting a growth of $75 billion for small and 
medium-sized businesses using Clouds for data management 
applications, SAP industries argue lower costs, less installation 
needs, and ease of management of less IT resources as an 
attractive business model [14]. However, this technological 
innovation, comes with increased challenges such as network 
availability, security and reliability as biggest concerns for 
businesses world-wide . 

Initiatives such as Smart City projects are highly reliant on 
the availability of various services to fulfil their aims of data 

collection, management and processing. Access to certain 
architectures and resources to enable users to conduct Big Data 
and Internet of things research, has raised a number of issues of 
availability, know-how and security [20]. A constant growth in 
devices such as smartphones, sensors, household appliances, 
RFID devices, are joining internet capabilities to produce global 
data traffic of massive volumes and varieties, presenting various 
challenges for the security and management of these data-as-a-
service applications [20].  

With this in mind, multiple vendors are delivering services 
for data processing such as Amazon Web Services (AWS), 
Rackspace hosting and Google Cloud, presenting a collection of 
tools for online data collection, cloud hosted databases and map 
reduce processing such as using Hadoop, Hive or Spark. By 
offering users virtual machines to host, compute and manage 
their data, users can use advantages such as elasticity, multi-
tenancy and the pay-as-you-go cost model. For instance, cloud 
resources can be rented with current Amazon services priced for 
small data resources (i2.xlarge) for $0.853/hour and for large 
data resources (d2.8xlarge) for $5.520/hour for on-demand 
resources. Additional reserved instances can be rented from 1 to 
3 year terms, but may prove expensive in the long run, especially 
if data needs are not as intensive at all times.  

This paper presents a cost-optimised architecture for online 
and batch data processing for massive volumes of sensor data as 
an adaptation of the lambda architecture design pattern currently 
being used by companies such as Twitter and AWS [21]. The 
architecture combines both batch and stream processing 
capabilities for online processing and handling of massive data 
volumes in a uniform manner, reducing costs in the process. The 
paper presents a flexible data provisioning based on the user 
needs and achieves the following: 

 Data capability to be collected in online and processed 
on-the-fly for real time analysis. 

 Capability to perform massive batch processes on 
historical data sets to observe data patterns over longer 
period of time. 

 Investigate cost-effective solutions using cloud services 
for deploying this architecture. 

The paper has been organised as follows: section 2 presents 
related work and research pertaining to data processing 
architectures and the challenges still faced in them. This section 
also presents an overview of the lambda architecture and how it 
is currently being used with Apache Storm and Hadoop. Section 
3 presents the proposed architecture and implementation 
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challenges of porting similar data processing toolkits on AWS. 
These observations are supported by a case study presented in 
section 4 showing online data collection and processing for 
multiple router sensors sending data at a constant rate of 30 
seconds. The results and conclusions are discussed in section 5 
and 6 with further future extensions to the architecture to enable 
future smart city projects. 

II. RELATED WORK 

A. Current Data Processing Solutions 
Data analytics are essential to plan and create decision 

support systems for optimising the underlying infrastructure. 
This involves not only processing of the online data, in search 
for certain events, but also the historical data sources which may 
be needed to find data patterns which influence decisions. Cloud 
providers are paramount for the availability and durability to 
their resources but present various challenges. For instance, for 
availability, data is often replicated across multiple servers in 
different geographical locations, sometimes in untrustworthy 
locations [6]. There are also additional computational challenges 
in handling elasticity by allocating resources on-the-fly to 
handle increased demand.  

Mian et al. [22] presented a cost effective model for virtual 
machine provisioning to execute dynamic data analytic 
workloads, at the same time trying to satisfy all service level 
agreement (SLA) constraints. The paper highlighted how an 
optimised infrastructure would be more reliant on the provider 
setting up experiments and would not be defined SLAs. Dobre 
et al [23] presented a context aware framework, specifically 
designed for handling multiple devices, mapping between 
components and caching or handling requests from multiple 
users. As a means to support intelligent data processing through 
contexts, the authors however did not discuss how the data is 
moved through multiple abstraction layers to aid with speed and 
cost of delivery.  

Further projects such as M3 [24] proposed a disk 
communication layer between the mappers and reducers to 
allow dynamic rate-based load balancing and multi streaming of 
applications. Another version of the project Chameleon [25] 
used specific context based indexing to augment query for fast 
data delivery. Other concrete projects such as Yahoo’s Pig [17], 
Microsoft’s SCOPE [5] and Google’s initiatives [9], are aiming 
to integrate declarative query constructs from the database 
community into MapReduce-like software to allow greater data 
independence, code reusability, and automatic query 
optimization. These projects approached the problem as a 
distributed model, however further work needs to explore hybrid 
solutions which consider resources, data models, varied queries 
in accordance with network traffic or cost. 

Researchers have often merged techniques with other tools 
to develop field related solutions. Abouzied [26] discussed 

HadoopDB, a hybrid of MapReduce and DBMS technologies, 
to allow scalability and performance of massive data processing. 
The authors present the application for a biological protein 
analysis or for business warehousing. Another example of 
merging was for image analysis in medical fields [27]. Bruns 
[28] discussed how the current Twitter APIs were extended for 
third party researchers to deploy their own data analysis on 
twitter feeds in order to enhance business practices. However 
unique solutions that allow multiple users of varying 
backgrounds to write and deploy optimised data processing 
applications is still needed. However there is a need for tailored 
solutions for online and batch data processing which keeps in 
line non-functional attributes such as cost and network 
complexities. 

Further work has used similar data processing toolkits in 
smart grid applications where it is important to forecast and 
redistribute resources on the fly [31]. Current industry focus of 
using Spark SQL have aided further faster processing reducing 
some of the weaknesses of the Hadoop processing model [30]. 

B. Lambda architecture 
Presented as a software design pattern, the lambda 

architecture unifies online and batch processing within a single 
framework. The pattern is suited to applications where there are 
time delays in data collection and availability through 
dashboards, requiring data validity for online processing as it 
arrives. The pattern also allows for batch processing for older 
data sets to find behavioural patterns as per user needs [21]. 

 
Fig. 1. Basic lambda architecture for speed and batch processing. 

Figure 1 shows the basic architecture of how the lambda 
architecture works. It caters as three layers (1) Batch processing 
for precomputing large amounts of data sets (2) Speed or real 
time computing to minimize latency by doing real time 
calculations as the data arrives and (3) a layer to respond to 
queries, interfacing to query and provide the results of the 
calculations.  
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Fig. 2. Main lambda architecture implemented on Amazon web services. 

 

Lambda architecture allows users to optimise their costs of 
data processing by understanding which parts of the data need 
online or batch processing. The architecture also partitions 
datasets to allow various kinds of calculation scripts to be 
executed on them [21]. However, a few critiques of the 
architecture have argued that the multiple set of projects that 
need to be maintained under the data branch to allow multiple 
data executions, requires more skills from the developers setting 
up the jobs to execute and produce results. 

Despite of this, the architecture is well suited for big data 
processing problems with multiple kinds of analysis needed to 
study the online data arriving through sensors. The online stream 
can be used to detect data anomalies verifying whether it is 
accurate before processing it further. Verified data can then be 
stored into databases, which can have batch scripts performed 
once a day or a month to study data patterns over a time period. 
Users can reduce the costs of performing these scripts on larger 
data sets by breaking the problem down in manageable steps 
reducing cost and tailoring the data analysis routines to suit their 
needs. This architecture can be adapted for collecting and 
analysing online sensor data to find efficient solutions to process 
large data sets. 

III. PROPOSED ARCHITECTURE 
In scenarios such as smart cities, involve working with large 

complex networks of sensors continuously fetching and 
recording data to a central repository for efficient decisions. 
Examples such as when to send garbage collection vans or when 
to grit the roads for better driving conditions can all be motivated 
through visual, motion and temperature sensor networks that 
already exist in city infrastructures. 

Public clouds provide a number of services which could be 
employed for online and batch processing. Table 1 presents a 
comparison of Microsoft azure and Amazon AWS services 
offering similar capabilities. For the purpose of this paper, 
Amazon EC2 is chosen as a starting point for accessing multiple 

services. A comparison of the services presented in Table 1 
shows that the online processing needs stream and batch 
processing which was easier to be performed in Amazon cloud 
rather than Azure services. The availability of services and cost 
plans for first time users of the Amazon infrastructure were also 
suitable for the project objectives. 

TABLE I.  COMPARISON OF CLOUD SERVICES 

Example 
services Microsoft Azure Amazon web services 

Subhead 

Available Region Azure Region AWS Global 
Infrastructure 

Compute 
Services 

Virtual Machines 
(VMs) 

Elastic Compute Cloud 
(EC2) 

Storage Options Azure Storage (Blobs, 
Tables, Queues, Files) 

Amazon Simple Storage 
(S3) 

Database 
Options Azure SQL Database 

Amazon Relational 
Database Service (RDS) 

Amazon Redshift 

NoSQL Database 
Options 

Azure DocumentDB 
Azure Managed Cache 
(Redis Cache) 

Amazon Dynamo DB 
Amazon Elastic Cache 

Data 
Orchestration Azure Data Factory AWS Data Pipeline 

Administration 
& Security 

Azure Active 
Directory 

AWS Directory Service 
AWS Identity and 

Access Management 
(IAM) 

Analytics Azure Stream 
Analytics Amazon Kinesis 

Other Services & 
Integrations 

Azure Machine 
Learning 
None 
None 

None  
AWS Lambda  
AWS Config  
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Fig. 3. ESnet router production network. 

 

Amazon AWS offers a collection of services which could be 
used for different purposes, each differing in cost and time. 
Selection of the appropriate cloud service that maps onto the 
general architecture of lambda architecture was not obvious and 
required comparisons and study of performance, and cost. One 
of the decisions is showcased in Table 2, which presents a 
comparison of using either S3 or DynamoDB as a means to 
handle and process data. Although DynamoDB is much more 
expensive compared to S3, the speed of query processing would 
reduce the total effective cost as we plan for long-term use of 
DynamoDB rather than using S3. 

TABLE II.  COMPARING S3 AND DYNAMODB 
SERVICES 

DynamoDB S3 
$0.02 per 100,000 
transactions 

$0.005 per 1000 
requests 

Storage costs vary. 
Maximum is $0.09 
for storage 

Storage costs vary. 
$0.03 per GB 

Faster and DB Blob 

 

Similarly, a number of decisions had to be addressed in terms 
of cost and usefulness of the services. For the purposes of online 
processing of data, services such as Amazon Kinesis was chosen 
and merged with Amazon lambda for event-based processing of 
the data. Figure 2 describes the final processing architecture that 
was built on Amazon web services to read router data every 30 
seconds and process it as it arrives and batch jobs. 

IV.  USE CASE: ESNET NETWORK SENSOR TESTBED 
We used the entire ESnet router production network as the 

testbed to experiment with this architecture (shown Figure 3). 
An existing SNMP data collection software, ESxSNMP was 
used to collect router in and out bytes from every interface every 
30 seconds. 

Figure 2 describes the architecture that was built on Amazon 
web services to read router data every 30 seconds and process it 
in online and batch jobs. A recent report by Amazon [29] uses 
Apache spark and storm for processing the data stream. It also 
uses an event processing service which allowed processing 
scripts to be triggered when data arrives in the kinesis stream. In 
the architecture (figure 2) the event processing was omitted 
because in the use case, data was known to be arriving every 30 
seconds making it less likely to have an event processing 
element. Having an event processing element also charges every 
time it is triggered, which would eventually charge more than 
the current architecture implemented. 

The initial implementation report [29] also uses Spark SQL 
to perform batch processing for a fast query analysis. In figure 
2, the basic elastic map reduce functions were implemented with 
Hadoop to perform map reduce processing jobs on hourly, daily 
and monthly bases in batches. The batch job could be triggered 
via cron jobs or through a job scheduler to run them once a day 
after the online data has been collected for the day. The map 
reduce jobs can filter and sort the data based on either hourly, 5 
hourly or daily sorts. 

A. Real-time (online) or Speed processing 
The raw data arrives at 30second intervals from multiple 

router interfaces in the form of json files. These data sets were 
read and processed to calculate averages across minute intervals 
and the maximum values recorded. This has been explained 
below: 

Arriving Json raw data: [router_id, interface_id, 
variable_id, timestamp, data_recorded] 

5 minute aggregations: [router_id, interface_id, 
variable_id, 5_minute_avg, maximum_data_in_5_minutes] 

The 5 minute aggregations were output to a new stream 
which could then be used to visualise the data while the data 
arrives. 
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B. Batch processing 
Figure 4 shows the batch processing jobs on the raw data 

sets. Multiple map reduce jobs can be triggered to read the raw 
data sets and produce consolidated 1 day, 7 day and 90 day and 
1 year aggregations. These batch files can only perform 
calculations on stored data sets. 

Outputs for the calculated data sets can be read into output 
directory to visualise the averaged data sets. These outputs are 
also stored in separate S3 buckets. 

 
Fig. 4. Batch processing on raw data sets. 

The EMR scripts used c1.medium machines as master, core 
and task with the machine image version 3.8.0 and a Hadoop 
distribution of Amazon 2.4.0. The map reduce command used 
was as follows: 

hadoop jar /home/hadoop/contrib/streaming/hadoop-
streaming.jar -files  s3://location-of-mapper/mapper.py, 
s3://location-of-reducer/reducer.py  -libjars 
/home/hadoop/CustomOutputFormats3.jar -outputformat 
oddjob.hadoop.MultipleTextOutputFormatByKey -mapper 
python mapper.py -reducer python reducer.py -input 
s3n://location-of-inputs/jsons/ -output s3n://location-of-output-
job 

The command, above, allows users to specify the location of 
mapper and reducer files, input files and where to produce 
outputs. Further java files can be passed as arguments to specify 
the format of the outputs generated as an optional step. 

V. RESULTS  
The experiments were set up to run for 3 months executing 

certain jobs at specific times during the months. Figures 5-11 
represent the statistics in terms of used hours, costs and type of 
services used during the time period. 

 
Fig. 5. Cost per service during two months (Month 1 and Month 2) of the 
experiment. 

Figure 5 shows the cost variation between two months. 
Cloud services charge for the amount of usage. As shown in 
Figure 5, Month 1 used more demand on EC2 services as 
compared to the Month 2. This is reflected in Figure 6 and 7, 
where Month 3 used even lesser resources bringing the costs 
down from 80 dollars to 20 dollars. 

Figure 7 shows that the cheapest services to use were micro 
machines and xlarge machines being the most expensive to use. 

 
Fig. 6. Instance hours used over 3 months. 

 
Fig. 7. Cost by instance type. 

Further analysis on the usage of online kinesis stream and 
batch processing can be done as seen in Figure 8-11. Figure 8 
and 9 show the distribution of requests used by the kinesis 

MONTH 1

MONTH 2

MONTH 3

t2.micro m3.xlarge c1.medium m1.small t1.micro

MONTH 1

MONTH 2

MONTH 3

t2.micro m3.xlarge c1.medium m1.small t1.micro
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stream. Most of the kinesis cost arose from the stream hosting 
the data shown as shard active per hour. This shows that in the 
future cost could be optimised by limiting the amount of time 
the stream needs to be active by starting and deleting it, 
dynamically, when it is used.  

 
Fig. 8. Online stream: Kinesis usage during 1 month. 

 
Fig. 9. Online Stream: Distribution of work in terms of requests for kinesis. 

Figure 10 and 11 depict the usage of instances and the cost 
incurred by running batch jobs over the three month period using 
elastic map reduce. Using larges machine instances such as 
m3.xlarge machines produce more costs even if run a few times. 
These costs can be optimised by replacing larger machines with 
smaller machines such as c1.medium, to give similar results but 
at lower costs. Elastic map reduce involves creating a cluster of 
machines to act as master-slave to deploy and run the map 
reduce jobs. Therefore replacing these machines with smaller 
machines and more modes can help reduce the machine cost and 
also perform the same processing. The runtime of c1.medium 
cluster was approximately 10 minutes, which was slower (of 5 
minutes) than the m3.large machine clusters. 

 
Fig. 10. Batch processing: usage of various instance types in EMR over 3 
months 

Figure 11 shows the reduction in cost by replacing the 
machine specifications for the map reduce clusters. 
 

 
Fig. 11. Batch processing: price distribution of the EMR during 3 months 

VI. DISCUSSION AND CONCLUSIONS 
Lambda architecture allows multiple data processing scripts 

which are tailored to specific data sets. For online processing 
stream processing can be used to perform calculations as data 
arrives and batch processing scripts can be created to run on data 
stored from before. The above architecture was implemented on 
Amazon AWS utilising multiple resources and producing 
various results in terms of cost and usage. A number of lessons 
were learned while exploring the architecture on both batch and 
real time processing such as: 

For batch processing: 

 Performing local tests before deploying the scripts on 
EC2 helps to find code errors and manages in reducing 
the costs of failed clusters on EC2. 

 Even if the cluster was executed for 2 minutes, Amazon 
cloud charges the machine as a full hour, which causes 
the steep increase in EMR costs shown in Figure 10. 
Which machines are used in the cluster cause an impact 
on the cost and also affects the time the service will take 
to execute the jobs.  
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 Future work can involve using spot instances to be 
requested, to allow optimising the costs even further but 
may introduce more delays in the processing being 
fulfilled. 

For real-time or online processing: 

 The kinesis stream read data as a last-in-first-out that 
meant data needed to be saved locally to calculate the 5 
minute data aggregations. 

 Amazon Cloud management allows roles and rights to be 
assigned to multiple members of a team. Multiple 
members may have rights for kinesis processing, but if 
the kinesis stream interacts with other services by 
moving data across would require the member to have 
rights to the other services as well. Software testing 
strategies such as try and catch exceptions need to be 
implemented in the code to prevent services to fail. 

In terms of the processing time, the kinesis stream was able 
to process data in real-time while the EMR cluster used 
approximately 10 minutes to complete a job. Some of the 
services charge while they are active, and thus should only be 
dynamically started and stopped when being used in order to 
optimise costs. 

In conclusion, the lambda architecture on Amazon AWS was 
able to provide a proof-of-concept for data processing in both as 
data arrives and if it is saved prior to the scripts. The tailored 
solutions allow users to perform cost-optimised processing. 
Both processes can produce data aggregations which are easier 
to plot and reduces time for data processing through the data 
visualisation interface.  

Further work needs to be extended to explore issues of data 
security, availability zones and data replications for more 
complex operations of the services. Scripts which can perform 
data roll ups in case of data loss and machine-learning 
algorithms for performing online anomaly detection while the 
data arrives can be embedded into the stream, to check the data 
as it arrives. This would allow verification and validation of the 
data sets to be conducted as it arrives preventing loss in time and 
cost to run these scripts after the data has been saved and 
processed. However, the above experiment shows huge 
potential in processing of Big Data sets in cost-effective ways 
by implementing the lambda architecture design pattern and the 
architecture shows that it is particularly suited for cloud services 
where multiple resources are available for controlling and 
processing the data. This sort of architecture would prove 
extremely useful for processing sensor related data in Smart city 
research which is to be explored further in the future. 
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