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ABSTRACT 
The relevance of higher multipoles of giant isovector modes in 

the charge distribution of deep inelastic fragments is dis­
cussed and found to depend strongly on mass asymmetry. The sources 
of angular momentum fluctuations are investigated. Quantal effects 
are considered as well as effects arising from non-equilibrium and 
equilibrium statistical fluctuations. A model based upon equilibrium 
statistical mechanics is considered in detail and used to predict both 
2 moments of the angular momentum distributions and the angular 
momentum misalignment. Analytical expressions are derived to calculate 
the angular distributions of sequentially emitted particles, fission 
fragments, as well as gamma rays in terms of the angular momentum mis­
alignment. Recent data on the angular distributions of sequential 
alphas, fission and gamma rays are analyzed in terms of the model. 
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1. INTRODUCTION 
Western culture, of which I may venture to speak with a minimum of 

competence, is characterized by a series jf archetypal hang-ups that 
keep recurring, though disguised in elusive, ever-shifting ways. As a 
case in point, one may consider the hang-up of symmetry in general, and 
of spherical symmetry in particular. The Greeks bear the responsibility 
of having invented it, and Plato, in particular, has been the major 
villain by introducing it to learned societies and in Academia. And it 
so happened that heaven and earth became rigorously spherical, and 
remained such for at least two thousand years. Copernicus himself could 
not break away from tradition: he kept the circles although he quietly 
rearranged them somewhat. Galileo, being Italian, could not keep quiet, 
and paid for it (actually he did not pay, he was given free room and 
board for the rest of his life). Kepler found, to his ow/i grief, that 
planets went around in ellipses. But the shadow of Plato was keeping 
good guard, and, as it is well-known, forced Kepler to fit the orbits 
within the platcnic solids. That is how supersymmetries made their 
appearance in physics. 

Jumping to the present, one would say that particle physicists are 
the most platonic brand of scientists. All they seem to want to do, is 
to play around with group theory, as they see symmetries everywhere. 
And when nature does not comply, so much the worse for nature. It is 
clear that old symmetries never die, they only get broken (spontaneously) 
to provide physicists with a job and steady income. 

Nuclear physics is not an exception to the rule. Again the 
ontogenesis of nuclear physics repeats the phylogenesis of science at 
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large. We all know, after all, that nuclei were born perfectly spherical 
too. So they remained for a while, but eventually some of them had to 
be allowed to deform, discretly, so that they could be handled in a 
spherical basis. The major violation of spherical symmetry occurred with 
the discovery of fission, with disastrous consequences. Aside from 
fission on which, as we said, we may not have adequate control, we have 
been confined in our studies to spherical or near spherical nuclei until 
the advent of heavy ions. Granted that we have not run into any nucleus 
that is not spherical or near-spherical in its ground state as yet, 
nonetheless, we have produced relatively long-lived transient structures 
which are a far cry from sphericity. These nuclei with lumps and bumps 
can be studied in reasonable detail, certainly in their equilibrium and 
non equilibrium statistical properties and, at times, even in their 
spectroscopy (as in quasi molecular states). 

So it seems that we have finally broken away from platonic tradition 
and we are now ready for the exhilaration of baroque freedom. Conse­
quently, while it lasts, and the yearning for the beautiful simplicity 
of symmetries does not force us yet to study the quark structure of the 
deuteron or of the alpha particle, let us study and enjoy the bizarre 
properties of the even more bizarre "intermediate complex," or dinucleus 
which is formed in deep inelastic collisions. 

We shall consider two aspects of the dinuclear properties, namely 
isospin and rotational degrees of freedom. 

Isospin degrees of freedom control the distribution of the neutron-
to-proton ratios in the deep inelastic fragments. The connection with 
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giant isovector modes of the intermediate complex is quite tantalizing 
although not proven as yet. However, on the chance that such a connec­
tion exists, it is difficult to resist the temptation to speculate on 
the possible information that can be extracted from charge distributions, 
like the strength function of these giant modes at high excitation energy 
and perhaps for high multipolarity. 

Rotational and angular momentum bearing degrees of freedom are 
numerous and their effect is very pervasive. One could almost argue 
that more than half of the phenomenology of heavy ion reactions is more 
or less directly connected with them. The beautiful and varied results 
that have been obtained through a number of fancy techniques, and their 
theoretical interpretation, touch upon a great deal of high spin nuclear 
physics that has been recently developed for compound nuclei. In 
particular, the ability to control the spin alignment of the produced 
fragments to a good degree, opens up and a whole new field of study for 
highly excited high spin aligned nuclei. 
2. ISOPIN FLUCTUATIONS 

The mass asymmetry degree of freedom is known to be the slowest to 
relax among the collective modes excited in heavy ion reactions, while 
the charge equilibration appears to occur on a faster time-scale. 

Information regarding the isospin fluctuations in the intermediate 
complex can be obtained from the isobaric charge distributions/ ' 
The observed distributions are Gaussian and the fluctuations can be 

2 characterized by the variance o of the distributions. 



4 

An immediate, though not necessarily warranted approximation has been 
made by assuming that only the lower isovector multipole, (corresponding 
to the El mode, like in the giant dipole resonance) is involved in the 
charge fluctuations.* 1' 2' 3* 

If the phonon energy of the dipole mode is ho and the stiffness 
constant is c, then two limiting situations do arise. 

The first corresponds to the case in which the collective mode is 
weakly coupled to the other modes. In this limit and for T « hu one 
would expect only ground state quantal fluctuations for which 

2 hu> m 
a 'JE ( 1 ) 

On the other hand, if T » hoi (always weak coupling) or if the collec­
tive mode is so strongly coupled to the continuum that its strength 
function is very spread out, one obtains the classical limit in which 
the fluctuations depend only upon the temperature T: 

It is difficult to argue a priori for either of the two possibilities. 
If during the decay stage, the decoupling from adiabaticity occurs while 
the neck between the two fragments is still very large, and the weak 
coupling limit holds, one would expect fiw = 96/d MeV where d is the 
distance between the two fragment centers. In ttiis case hu » T in most 



2 2 reactions and large fluctuations, of the order of a = 1 e should 
be observed, independent of excitation energy. On the other hand, if 
the strong coupling limit is prevailing, one would expect fluctuations 

2 2 of perhaps a = 0.3 e and increasing with excitation energy. 
(2 3) Extraordinarily enough, both situations* ' ' are observed in 

various reactions as illustrated in Figs. 1 and 2. While this problem, 
in view of the puzzling experimental data, is in a state of substantial 
confusion, we believe that one shocld exercise some caution in the 
assumptions which are commonly made, tacitly or not. In particular the 
allegedly contradictory findings of large and small charge fluctuations 
at large and small mass asymmetries respectively, and the related 
attempts to infer the relevant El phonon energies, suffer from a lack 
of systematic understanding of the role played by the various giant 
isovector modes in the charge fluctuations. 

Me are proposing here a simple model * ' that, while it may not be 
adequately realistic, is complete and points out important facts which 
have been overlooked. 

We shall disregard the extremely important dynamical aspects of the 
pronlem' ' and assume that the particular shapes considered in our 
model just precede the rapid division into two fragments. In partic­
ular, let us consider the axial isovector modes in a cylinder of length 
2a, radius r, which is suddenly split at a distance b from one of the 



e 
bases. The standing isovector waves are clearly trigonometric functions 
and the boundary conditions require them to be cosine functions. 

According to the Steinwedel-Jensen model, the fluctuation of the 
charge density for the mode of order n is; 

"z = " \ > z a n c o s V ( 3 ) 

where p° is the equilibrium charge density, a is the amplitude 
of the mode, x is the distance along the cylinder axis from one of the 
bases, and the wave number k is given by k = (W2a) n. The 
frequency of each mode is given by u = k u, where 

- - $ ff - ••» 
is the isospin sound velocity, which is assumed to be frequency-
independent; X is the liquid drop symmetry energy coefficient and m is 
the nucleoli mass. 

If we cut the cylinder at b, we can define the charge excess of one 
of the fragments by the relation: 

0 
where the degree of syns.etry Q « b/2a. 
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Since the transformation from the coordinate x to the variable Z 
does not involve time, we can conclude that Z oscillates harmonically, 
because a does. Classically, for a fixed value of Q, each Z is a 
separate normal mode. 

Let us now determine the stiffness constant of each of these normal 
modes; we know the frequency already. We can do this by calculating the 
potential energy (disregarding Coulomb forces for the moment): 

f { p n - P , ) 2 Xaj; V - X / - ^ 2_dT--^A (6) 

and substituting the amplitude a obtained from Eq. (5) into Eq. (6). 
p The potential energy is indeed quadratic in 7 : V • (1/2) c Z^ 

with 

A 9 n C„ • X —y » 5 (7) 
n 7 sin2[n,Q] 

Note that the stiffness constant depends strongly on n. For any n,some 
of the charge fluctuations average out and do not contribute to the 
fragment charge fluctuation; this is all the more true the larger n is, 
since it takes more energy to displace a given amount of charge into any 
given fragment. Even for the lowest mode (n « 1), some of the energy 
goes Into polarizing the fragments rather* than displacing charge. This 
is to be contrasted with the standard way in which c has been calculated 
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so far, using a potential which neglects fragment polarization: 
V = V L 0(1) + V L D(2) + V c(l,2) where V L D(1) and V L D(2) are the liquid 
drop energies of two touching spheres and V c(l,2) is their Coulomb 
repulsion. The stiffness constant follows as: 

c -if* (8) 
constant A 

where Z, is the charge of one of the fragments. In Fig. 3, c, and 
c. D can be compared as a function of Q. The large error introduced by 
neglecting the fragment polarization is obvious, especially at large 
asymmetries. 

Notice also that for the special values of Q for which sin[nirQ] is 
zero, the stiffness constant is infinite; no matter how much work is 
done, no charge displacement arises. This is true in particular at 
symmetry (Q = 1/2), where none of the even modes contribute to 
displacement. 

After having identified the Z as classical normal modes, we can 
immediately quantize them. For each mode we obtain a phonon energy 

These phonon energies are very large even for the lowest modes, so 
that the limit T/h»»n « 1 is typically encountered (T * nuclear 
temperature) and only zero-point fluctuations need to be considered. 
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For each mode n.the zero-point charge width is given by 

*n ' ̂  - 'fcy^netry) ^ ^ (10) 

From Fig. 3 and Eq. (8), one expects these widths to be smaller at large 
asymmetries than those calculated neglecting fragment polarization, and 
experiments' * ' seem to indicate such an effect. The contribution of 
the n mode to a goes like 1/n, so that the contribution of the 
higher modes becomes less relevant the higher n is. However, the total 
charge width in this model diverges logarithmically: 

o 2 « ^symmetry) £ ^ ^ (11) 

This is not surprising, because we are assigning an infinite number of 
degrees of freedom to a system of finite particle number. Furthermore, 
it is likely that the higher-frequency modes "drown" in the doorway 
states directly coupled to them, as illustrated in' ' tb.w removing 
the collectiveness from the respective degrees of freedom. The location 
of the cutoff 1" n, or even whether a fully quanta1 treatment is 
warranted for the lowest mode, is most relevant. 

The wavelength of the oscillations cannot be much smaller than the 
diameter of a nucleon; thus one obtains an upper limit for the cutoff in 
n: nmx • 4.8 A 1 ' 3 for x p 1 n « 1.5 fm. 
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A very important feature of this model is that the role of each mode 
strongly depends upon the asymmetry of the system, in Fig. 4(a) the 
normalized partial widths are given as a function of asymmetry for a few 
values of n, in Fig. 4(b), they are given as a function of n for a few 
asymmetries. At values close to symmetry, the lowest mode dominates, 
but, with increasing asymmetry, the higher n modes play an ever in­
creasing ;-ole. The widths are zero when a half-multiple of the wave­
length for a mode matches the value of b. In Fig. 5 the width arising 
from the first n modes is given for a few n values as a function of Q. 
This shows that an experimentally observed width, especially in 
asymmetric systems may include the comparable contribution of several 
modes. 

It is clear that any attempt to relate such width to a single El 
mode rather than to the combination of several isovector modes may be 
doomed to failure. The difficulties are compounded by the use of a 
stiffness constant which may dramatically depend on the form of the 
standing wave, and which has been calculated incorrectly so far, even 
for the lowest mode. The cylindrical geomet-y is likely to be a poor 
approximation, but the introduction of a neck to better simulate the 
separation of the fragments leads to complications which may involve 
non-linear and dispersive effects. Dynamics is especially important, 
since the salient feature of this problem is the configuration associated 
with the neck snapping. 
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In conclusion, information on the isovector modes from the 
measurement of the charge fluctuation at high temperatures can only be 
obtained by properly accounting for both the effect of mass asymmetry 
and the role of higher order modes. 
3. ANGULAR MOMENTUM TRANSFER 

3.1 General features 
The interactions between two colliding nuclei, especially those 

associated with short range forces, both conservative and dissipative, 
create strong torques responsible for transfer of angular momentum from 
orbital motion to intrinsic rotation of the fragments. The magnitude of 
the transferred angular momentum can be determined in various ways. The 
measurement of the y - r a y multiplicity is one such method of quite general 
application. By this technique, the angular momentum transfer has been 
studies as a function of Q value and of exit-channel mass asymmetry. 

The general rise of the multiplicity with increasingly negative Q 
values (Fig. 6) is attributed mainly to the progressive tendency towards 
the rigid rotation limit expected as the Q value and the interaction 
times increase.^ ' The V shaped dependence of the y-r&y multiplicity 
upon mass asymmetry (Fig. 7) in the quasi elastic region^ ' is 
interpreted as a general tendency to transfer angular momentum with 
transferred mass or; one hand, and as due to an increased Q value 
observed with increased net mass transfer on the other. Of course if 
energy is transferred only through mass exchange, the two explanations 
are identical. 
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In the deep-inelastic region, two extreme cases have been observed. 
In the first case, when a narrow 1-window is available for deep inelastic 
products, a multiplicity rising with increasing asymmetry is observed* ' ' 
in agreement with the rigid rotation limit, as shown in Fig. 8. In the 
second case, when a very large 1-window is available, the y-ray multi­
plicity is essentially constant as a function of mass asymmetry. Examples 
of this case are readily available in the Kr-induced reactions' ' shown 
in Fig. 9. The accepted explanation of this behavior is an angular 
momentum fractionation along the mass asymmetry coordinate. Since large 
1-waves are associated with short lifetimes and vice-versa, small 1-waves 
populate prevalently the large asymmetries, far removed from the entrance 
channel asymmetry. In this way the tendency of y-ray multiplicities to 
increase with increasing asymmetry, as required by rigid rotation, is 
more or less compensated by the progressive decrease of the average 
angular momentum. All these effects are reasonably well understood on a 
more quantitative theoretical ground, as shown in Figs. 6 and 10 where 
the results of a diffusion model calculation are shown. 

3.2 Angular momentum Fractionation Along the Mass Asymmetry 
Coordinate in Compound Nucleus Fission and in Fusion-Fission 

In the processes discussed above, the angular momentum fractionation 
appears to arise mainly from the decreasing rate of spread of the 
population along the mass asymmetry coordinate with increasing angular 
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momentum due to the dependence of the interaction time upon angular 
momentum. 

Angular momentum fractionation is expected even when statistical 
equilibrium is attained along the ridge-line, either directly as the 
end product of diffusion, or through the population of the compound 
nucleus. The reason for this can easily be seen. For sufficiently 
heavy systems the potential as a function of mass asymmetry (ridge 
potential ) has a minimum at symmetry whose second derivative in­
creases with increasing angular momentum. At equilibrium, the mass 
distributions for large angular momenta are more sharply peaked about 
symmetry than the mass distributions for small angular momenta. It 
follows that, after summation over all partial 1-waves, the angular 
momentum decreases with increasing asymmetry. This is a straightforward 
prediction that can be easily verified. More quantitatively, let us 
consider the ridge line as a function of mass asymmetry and angular 
momenta. For two touching liquid drop sheres of mass numbers A., 
A„, the energy is: 

' ' * E f t X ( 1 - X ) [ X 1 ' 3 • (1-x) 1' 3] 2 • f(x 5' 3 • (1-x) 5/ 3) 

+ E s{x 2' 3 • (1-x)2'3} 
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where E R , E c , E<. are the rotational, Coulomb, and surface 
energies of the equivalent sphere, and x = A,/(A, + A-). 

Expanding about x = 1/2, we have: 

E = (0.45354 + 1.29584 y 2)E R + (0.89244 + 0.46564 y 2)E c 

+ (1.25992 - 0.55996 y 2)E s = a E R + 6E C + Y E S 

(13) 

where y = x - 1/2. 
Incidentally, it may be of interest to note the value of the 

fissionability parameter, X = E ^ E ^ , at which the second 
derivative at symmetry is zero (Businaro-Gallone point): 

XBG = I - l - 3 8 8 5 rs ^ 

Now let us assume that a compound nucleus has been formed and that 
neutron decay and fission are the only competing processes. In the 
constant temperature limit, ,-opping 1-independent factors and assuming 
r T = r N, we get 

IV -(RE„ + CE r + SE,)/T 
P(i,y) -r (i,y) « ie K L b di dy (15) 

where R = o-l, C = B-1» S = i-l, and is the angular momentum. 
Integrating over angular momentum we obtain for a triangular distribution 
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T 1 C E C + S E s 
SiE" 

exp /^R H (16) 

where E? x is the maximum rotational energy of the equivalent sphere, 
and fi = -R. The last equation can be written in terms of the fission-
ability parameter X and the rotational parameter Y (X = E-/2E— 
Y = E R / E S ) . 

, / ZE-(CX+ S/2)\ f /E. \ 
P(y) - i exp [- - 3 - ^ j exp(^ flvj - (17) 

The first moment of the angular momentum is: 

Ky) = l mx 

1 -
/ / «c m x N 

1 -K r r / 
rvn . K . 1 exp j - 1 

(18) 

where 

F(x) = e" x 2J ey dy 

is the Oawson integral and 1 is the maximum of the entrance channel 
mx 

angular momentum distribution. The second moment of the angular momentum 
is: 
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V " < ) 
« E m x 

£_ + _L e X P < m x 

T2(y) = I 2 - °""R ' — (19) 
< X/T 
e R - 1 

One sees that the mass distributions for low values of 1 are 
considerably broader than those obtained for high 1 values. This is due 
to the fact that the minimum in the potential energy, which is shallow 
for the lower 1 values, becomes progressively deeper with increasing 
angular momentum, resulting in an increased concentration of the yield 
near symmetry. It is precisely this effect wh-;ch leads to the fraction­
ation of the angular momentum along the mass asymmetry coordinate. 
However, it is important to realize that the fissionability increases 
rapidly with 1. This causes the distribution of angular momenta leading 
to fission to be narrower than the input triangular distribution and the 
overall average angular momentum leading to fission, 1 D, to be larger 
than that obtained by averaging over a triangular distribution. The 
resulting mass distribution, P(y), is narrow and resembles the mass 
distributions obtained for the highest 1-values. 

With these points in mind, the dependence of 1 and 1 as a function 
of y, is easily understood. For moderate values of y, both 1/1 Q and 
~2 "2 
1 /IJJ are constant and close to unity. This is due to the fact 
that the high l-waves dominate the yield for this range of asymmetries, 

-? so that averaging over 1 yields a value of 1, 1 which is essentially 
-2 IJJ, lj,. However, the mass distributions for high l-waves are relatively 

narrow, and as one moves out to extreme asymmetries their contribution 
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to the total yield for a given asymmetry becomes less important, 
resulting in a slightly lower average 1. 

The constant temperature approximation is fairly poor. In particular, 
it is rather unwise to drop the dependence of T on angular momentum. 
Furthermore, the approximation r s r fails when the fission width 
is large. At the expense of an analytic answer, a more accurate picture 
can be obtained by including the angular momentum dependence of T and by 
replacing r with r + r„. The results are shown in Figs. 11(a,b). One 
sees that the mass distributions for the high 1-waves are narrower 
because of the lower temperature. On the other hand, the 1-integrated 
mass distribution is somewhat broader because of the diminished weight 
given to the high 1-waves by the lower T and the division by rv. These 
refinements cause 1,1 to drop off more as one moves to larger 
asymmetries (see Fig. 11(b)). However, the qualitative interpretation 
is similar to that described above: 1, 1 are nearly constant as a 
function of y for small y due to the dominance of the high 1-waves, and 
then drop off rather abruptly because of the small contribution of the 
high 1-waves to the extreme asymmetries. 

Another case which may be relevant in heavy-ion reactions arises 
when the system equilibrates along the ridge line and decays without 
passing through the compound nucleus stage. In other words, there is no 
competition from neutron emission or from other particle decay modes. In 
this case, Eqs. (15,16,18,19) must be modified as follows: 

-(RE p + CE r + SE«.)/T 
PO.y) - A(1,T) lie K L 5 dl dy (20) 
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where 

/ -(RE R + CE C + SES)/T \ _ 1 

A{1,T) = f/e R C S d y j • 

Then 

P(y) = /P(l.y) til (21) 

and 

K y ) = f lP(l.y)dl/P(y) (22) 

l2(y) = / i 2 Pd,y)dl/P(y) (23) 

Notice that the difference between Eq. (15) and Eq. (20) resides only in 
the factor A(1,T) which is absent in the former case and present in the 
latter. Calculations based upon this second set of equations are shown 
in Fig. 12(a,b). The mass distributions for the individual 1-waves shown 
in Fig. 12(a) are identical to those in Fig. 11(a) since the effect of 
neutron competition only changes the normalization (the mass distri­
butions in the plots have all been normalized to unity to facilitate 
comparison). However, the distribution P(y) is now considerably broader 
than its counterpart in Fig. 11(a) due to the change in the weighting of 
P(Uy) i" t n e integration over 1. 

The most significant effect of the assumption of equilibration along 
the ridge line can be seen in Fig. 12(b). In constrast to the preceding 
case (neutron competition), where 1 and 1 remained constant out to 
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moderate asymmetries and then dropped off rapidly, 1 and 1 peak at 
symmetry and fall off more gradually with increasing y, giving rise to 
curves which are gaussian in appearance. The dramatic differences in 
the l-fractionation imply that it may be possible to distinguish between 
the two mechanisms, i.e. compound nucleus fission and non-compound 
nucleus decay, by measuring the angular momentum as a function of 
asymmetry. This result is particularly important in light of the fact 

12-15 that there are a number of examples in heavy ion reactions where 
fission-like mass distributions occur which are difficult to explain in 
terms of compound nucleus decay. 
4. ANGULAR MOMENTUM FLUCTUATIONS 

4.1 The Second Moments of the y-Ray Multiplicities and Their Sources 
Recent measurements of the 2nd moments of the y-ray multiplicities ° 

indicate that they are substantially larger than the values expected 
from a 21 + 1 distribution [all = 0.35). when the measurements are 
performed as a function of Z, the diffusion process which, as was 
mentioned above, can fractionate the angular momentum, can also introduce 
a substantial second moment as can be seen from this simple exercise. 

Let us use an analytic diffusion model without drift to interpret the 
dependence of the angular momentum distributions upon mass asymmetry. 
The solution of the Fokker-Planck equation takes the form 

P(Z,t) - [ 4 * u 2 t ] _ 1 / 2 exp - (Z - Z p) 2/2u 2t (24) 
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where P is the probability of producing a complex with asymmetry Z after 
an interaction time t, Z is the entrance channel asymmefry, and M ? 

is the spread coefficient. The cross section for a given impact 
parameter b can be expressed as: 

*(Z,b) = Nh(b)]" l / 2b exp[-(Z - Z ) 2/2w 2 T (b)]. (25) 

A simple form for the interaction time i(b) is: i(b) = T (1 - b/b ). 
2 By defining B = (Z - Z ) /2u,i , and by changing variables to n = b/b m a , 

one arrives at the distribution function 

*(B,n) = N[l - . i ] " 1 / ? B " 1 / 2 n exp[-e/(l - n)]. (26) 

Given the angular momentum limits n,, n ? and the asymmetry B, 
one may write the moments of the angular momentum distribution as 

r n2 r
n l m+1 

"m = n *(B,n)dn = J 2 e x p _ 6 / ( 1 _ n ) d „ ( 2 7 ) 
Jn, J n ? [1 - n] 

By making the change of variable x = (1 - n) and defining u. = (1 - n ) 
for i = 1,2, one arrives at 

m+1 

where 

= I (-i)Ym* l\ W u 2 ' e ) (28) 

r u2 
^(Uj.Ug.B) - I x " ( , + 3 / 2 ) e- 8 xdx . (29) 
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The integrals 5^ satisfy a recurrence relation 

E 1 
c i = i + 1/2 

' e " u i e " u 2 
"T+T72 " ,,i+l/2 ' 8 € i - l 
u l u 2 

(30) 

In order to evaluate the desired integrals, it is sufficient to evaluate 
one of them separately. Application of the recurrence relation now 
allows evaluation of all desired ^ ' s , and thus all necessary w 's. 

Consider a system in which essentially all impact parameters 
contribute to the deep inelastic process. In order to leave out events 
in which the kinetic energy in incompletely damped, it is assume that 
n, - 0 and n 2 - 0.9, thus allowing 20 percent of the cross section 
for incompletely damped (QE) events. Three very striking features, shown 
in Fig. 13, emerge: (1) The mean angular momentum <n> decreases as a 
function of B. (2] The ratio p = o/<n> exceeds the 2 1+1 value for 
nearly all asymmetries. (3) The skewness y changes sign as a function 
of asymmetry. 

In order to compare with experiment, it is necessary to correlated e 
with Z. From previous work in fitting data from 620 Mev Kr + Au, 

21 2 -1 the following parameters are used: p, » 6.6 x 10 e sec , 
-21 T _ = 4 . 0 x 10 sec. To calculate the y-ray multiplicity, M (Z), we 

assume rigid rotation. Then one has M (Z)/l/21,,v - f(Z)<n(B)>, where 
*Y fnaX 

f(Z) is the fraction of the angular momentum tied up in the fragment spins. 
The curve of asterisks in Fig. 13 is a plot of this quantity. As can be 
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seen, the multiplicities are approximately constant as a function of Z, in 
agreement with the data. Large values of y are predicted in excess of those 
expected from a 21 + i distribution. 

A much better indicator of spin fluctuations is the degree to which 
the fragment spins are misaligned. This misalignment, as we shall see, can 
be readily detected by measuring the angular distributions of y-rays, a 

particles, fission fragments emitted from the primary deep inelastic frag­
ments. The origin of these fluctuations can be quantal or classical, and 
can be due either to non equilibrium or equilibrium processes. Let us 
consider first one example of equilibrium quantal fluctuations and examples 
of thermal fluctuations later on. 

4.2 Quantal Effects 
In view of the analogy between spin and isospiri w can take advantage of 

the cylinder model results obtained in Section 2. 
Instead of neutron and proton fluids, we consider now two new nucleon 

fluids, one with positive and the other with negative spin projection on the 
cylinder axis. 

Let us assume that the density of the doubly degenerate single particle 
levels is g and that the average spin projection of each particle on the 
cylinder axis is M. Then n aligned broken pairs will generate an angular 
momentum: 

I = 2nH (31) 
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and an energy: 

n 2 
U = -- (32 

which leads to the relation: 

I 2 I 2 U - -V - —A (33) Wg 24 
where J = 2M g is the moment of inertia of the cylinder.. 

In analogy with the symmetry energy we can write the rotational 
energy U as: 

I 2 A 
U - n J - with Xj = ̂  (34) 

Now a perturbation consisting in a variation of the angular velocities 
of contiguous perpendicular slices of the cylinder will move with a 
velocity (spin velocity): 

..'-Bx^.ZJ?- (35) 

where p , p~, p are the equilibrium densities of right-
handed, left-handed and total fluid, and m is the nucleon mass. 
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The eigen-modes are defined as in the case of isospin. Their 
quantization leads to the phonon energies: 

h-„ = g ! n (36) 

a being the half-length of the cylinder and n the order of the mode. 
The stiffness constants are: 

4i.2xj n 2 
n A sir/[nwQ] 

Q being the asymmetry of the cut as in the previous section. 
The widths are: 

o 2 = a
2(sy^etry) H ^ M l { 3 8 ) 

where 

^(symmetry) = ^ = g ^ V F ( 3 9> 

For a cylinder approximating two equal touching spheres and for 
A = 200 the width of the lowest mode is 

a, (symmetry) =1.7 h 

As we shall see this quantal width is negligible as compared to that 
expected from thermal fluctuations. 
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4.3 Statistical Excitation of Angular Momentum Bearing Modes 
Let us consider a frame of references where the z axis is parallel 

to the entrance-channel angular momentum, the x axis parallel to the 
recoil direction of one of the fragments, and the y axis perpendicular 
to the z,x plane. 

A misalignment of the fragment angular momentum arises when 
non-vanishing x and y components of the fragment angular momentum are 
present. Among the possible sources of these components, the thermal 
excitation of angular momentum-bearing modes of the intermediate 
complex appears very likely and can be readily investigated. 

4.4 Statistical Coupling Between Orbital and Intrinsic Angular Momenta 
and Wriggling Modes 

Let us assume that we can approximate the exit channel configuration 
by two touching, equal, rigid spheres with all the associated rotational 
degrees of freedom. As we shall see, this model leads to simple 
analytical predictions for the relevant statistical distributions. 

First, let us consider the equilibrium between intrinsic rotation of 
the fragments and their orbital rotation, assuming that the relevant 
angular momenta are all parallel to each other. If the total angular 
momentum is I and the spin fragment is s, the energy for an arbitrary 
partition between orbital and intrinsic angular momentum is: 
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E(s) = (I -2s)' 
2pr2 

. 2s2 / 2 . 1\2 21 c . I 2 

(40) 

The first term is the orbital and the second the intrinsic rotational 
energy,^ being the moment of inertia of one of the two equal spheres. 

The partition function is given by: 

e-E<s>/Tds npr2jJ 
W + pr2 

exp r 
2T(2^+ yr2) 

(41) 

The average spin for both fragements is given by 

2s 2/s e~ E ( s ) / T d s 2J) T 2 
,r2 + 2-3 " 7 

I - f I - 2ID. (42) 

The second moment s is given by 

4 7 . Zwr̂ T + 4 I 2-! 2 

(pr 2 + 24) (pr 2 + 24)Z 
(43) 

From this we obtain the standard deviation 

4o„ 2vhir2T 
(ur 2 + 2$) 

10 
T 

41. (44) 

The result in (42) is temperature independent as one should have 
expected from the fact that (40) is quadratic in s. It could in fact 
be obtained by solving the equation 
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f.O. (4S) 

This result corresponds to the mechanical limit of rigid rotation when 
the orbital and the intrinsic angular velocities are matched. 

The result in (44) could have been obtained also by appreciating 
that the thermal fluctuations about the average in (42) are controlled 
by the second derivative of (40) at the minimum, or: 

4o^ = 4T/b, (46) 

where 

b = — j 
3S 

p It is important to appreciate the meaning of (44). The quantity 4o 
represents the amount of angular momentum trade-off allowed by the 
temperature, between orbital and intrinsic rotation. It should 

2 18 
correspond exactly to the long time limit of o of Ayik et al. Just 
because of the meaning of this trade-off, it is unwarranted to assume a 

2 2 priori that similar values should be taken by o^ and o~\ however x y 
defined (other orthogonal rotational modes), as implied in the same paper. 

In some instances, such as Y-multiplicity measurements, one is 
interested in the average sum of the moduli of the fragment spins. This 
can be obtained from 
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2 | T i . J | s | e - E ( s > / T d s / Z , 

which yields 

2|s| 
1/2 

+ I 

/ f i l \ e x p f ' - - ^ \ 
\,(vrZ + 24)/ V ur 2T(wr^ + 2 4 ) / 

Ur 2 T(u r 2 • 2J0/ ( l i r 7 + 2 j 
erf I 

1/2 

or, in dimensionless form, 

(47) 

iHI.2 1 2 — exp(-x ) + x erf(x) (48) 

where x . IR/»5*T and«&* - yr2/(iir2 + 2^). Also I R - 1/7 is the spin 
per fragment arising from rigid rotation. The above expression is plotted in Fig. 4. In the limit of large I, one recovers (42): 

25 
111" 
z&i m 2 j 
2 + 24 * T 

For small I, 

-2lsL._2 ( 1 + x2j t 

4*T G 

to order x , so for I « 0 one obtains 
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/ 2 \ 1 / 2 r~ 

The second moment, still given by Eq. (43) can be rewritten as: 
4s = 24*T + 4I R. In this case the fragment angular momentum at zero 
angular momentum arises from the excitation of a collective mode 

19 (wriggling ) in which the two fragments spin in the same direction 
while the system as a whole rotates in the opposite direction in order 
to maintain 1 = 0. Contrary to what has been assumed thus far, the 
wriggling mode is actually doubly degenerate, as illustrated in Fig. 15. 
Considering first the two-fold degenerancy of the wriggling mode in the 
limit, I = 0, one obtains: 

E(s)=^^4 = /l + - ^ s 2 = ^ , (50) 

Z»4*T , (51) 

27sT = ^W (52) 

4s 2 = 44*T (53) 

and 

a 2 = (4 - „)4*T . (54) 
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Let us now couple this doubly degenerate mode to the spin arising 
from rigid rotation. If the aligned component of the angular momentum 
arising from rigid rotation is I R and that due to wriggling is k, the 
total angular momentum for each fragment is 

s 2 = I 2 + R 2 + 2I RR cose (55) 

The orbital angular momentum is 

l 2 = l 2 + 4R 2 - 41R cose 

;i - 2 I R ) 2 + 4R 2 - 4(1 - ZIR)R cose 
(56) 

and the total energy is 

35I 2 + 14R 2 

The partition function 

J j R exp(-E/T)dRde 

is readily evaluated and yields 

4T 3'5 l l (58) 
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The angular momentum of either fragment is 

s -^|Ip + R 2 + 2I RR cose 

so the average sum of the moduli of the fragment spins is 

2fsT - f / / yj*l + R 2 + 2IRR cose R exp(-E/T)dRde . (59) 

The double integral in Eq. (59) cannot be evaluated in closed form. 
However, for large I R and small I R one can immediately obtain the 
integral over e: 

2 I R + ̂  f o r '« " R 

2R + ̂  for I R « R 

The above are only limiting expressions, but they can be used as 
interpolation formulae from 0 to I R and from I„ to •». Taken together 
the expressions above form a continuous function at R = I R. The 
integral, moreover, is a continuous function along with its first deri­
vative on the interval (0,°°) and yields a rather accurate approximation 
to 2|s|. It is given by: 

•FT-".*^-*^)- (-|T) 
(60) 

+ /* l/^T* —^M erfc (A_\ , 
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2 2 where again t* = ur.j/(ur • 2 -,) = ;/1.4. In dimensionless form: 

~~ - 2* + 77 ~ 7 (* + 7) exp(-x2) + .;" (1 - £-) erfc(x) (hi, 
• 1*1 

This function, which is plotted in Fig. 14, has the following limiting 
values: 

- 2 4 P = A" (1 + 7-) , small I u (bla) 
^*T 2 K 

2 I U = 2x + L , large ] R (61D) 
7>*T 

Also in the limit of large I„, one obtains 

4o 2 = 4I 2 + 4R 2 - 4I 2 - 2k 2 = 2R 2 = 2,j*T (62) 

where R 2 =4*T. 
It is interesting to note that the wriggling mode generates a random 

angular momentum in a plane perpendicular to the line of centers of the 
fragments. The vector sum of this random angular momentum and that 
arising from rigid rotation thus leads to a fluctuation in the orienta­
tion of the total spin, again in the plane perpendicular to the 
separation axis. The corresponding rms angle is easily obtained from 
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4.5 Thermal Fluctuation of the Angular Momentum Projection on the 
Disintegration Axis: Tilting 

Above, we have assumed that the two touching fragments are aligned 
with their common axis perpendicular to the total angular momentum. 
Because of the thermal fluctuations, this condition can be relaxed (see 
Fig. 15). Assuming now that the two fragments are rigidly attached one 
to the other, the energy is given by 

2 2 2 2 2 
E=Vf J L + TV -TV* * ! 1 - (64) T5T" + ^ = ^ + ^ e f f 

where:-jj = 24 + u r 2 ; -.} = 2.); and.)"J f = 4 " 1 - j ' 1 ; K is 

the projection of the angular momentum I along the line of centers. The 
partition function is: 

Z = /Texp( - I 2 /24 i T) /2^T^T e r f ( I / / 2 l ^ T ) (65) 

from which 

? 1 T l / ? ^ 6 X P - l 2 / 2 4 e f f T , „ , 
K = ^ e f f T -= (66) 

e T T * erf I/«£3£^T 
For small I we have 

K 2 . \ I 2 (67a) 

while for large I we have: 
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K 2 =^ieffT = i|-",T (67b) 

The total fragment spin is given by 

2 s =JK? + Jg d Z " K ? ) (68) 

and the averaged square quantity is 

.2 v2 . 4 .2 4 „2 45 ,,2 . 4 ,2 ,,.. . 
4 s = K + 49 ' " 49 K = 4 9 K + g y l (o9a) 

and for large I, 

4s2 = if JT + Jg I 2 (69b) 

The average, on the other hand, is 

,1/2 
(2 ( 15l<5\ _£/T f£5K£ 
I V y * ' I2/ e dK,. 2, J 2 8 ' 

e"E/TdK 
2 5 = —— r ^ = 7 ] + 

I " 7 i \ 8 J2/" f 
1 I + « Kl_ 2 + 4 5 Kl , + 9_.JT 7 ' 28 I " 7 ' V 8 .Pi""!! 14 I R 

(70) 

2 2 where we have dropped terms of order higher than K /i . From the 
above equations one learns that the total angular momentum of the frag­
ments is only slightly affected by the thermal fluctuations of the 
separation axis and that the correction to the ordinary rigid rotation 
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limit, at constant temperature, decreases as I" . Furthermore, the 
? ~~2 2 

fluctuation o • 0 up to order K /I and can be neglected in most 
cases. 

Due to the excitation of this mode the reaction plane is not 
perpendicular to the total angular momentum of the system I, but is 
"tilted" by an angle e. given by 

sine, .y*£ (71) 

The angle more relevant to sequential fission angular distributions is 
the angle between the total spin of one fragment and the normal to the 
line of centers (in the same plane as I), which is given by 

sine = /JL_ (72) 
V 4 s 2 

Since I may be considerably larger than s, this angle can be considerably 
larger than &.. One should note that the combined effect of wriggling 
and tilting will produce spin components along all the coordinate axes. 
If the separation axis is the z-axis, tilting w'M lead to an rms z-
component of X/K /4 * 0.84 <tyf for each fragment. On the other hand, 
the rms x- and y-components due to wriggling will be V R 12 « 0.60 /JjT; 
hence, tilting and wriggling together generate an angular momentum which 
is randomly and almost isotropically distributed in three dimensions. 
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4.6 Twisting and Bending Modes Excited in a Zero Angular Momentum 
System 

These three degrees of freedom are illustrated '.n Fig. 16. They are 

degenerate in our two-equal-sphere model. A splitting of the degeneracy 
could easily occur in the case of fragment deformation. We shall not 
consider this rather important possibility at the moment, although it is 
completely trivial, because of the arbitrariness in the choice of 
deformation. 

The partition function can be written as: 

and 

Z •> j R2 exp(- KZ/4T)dK (73) 

InZ = A - | In ~ (74) 

from which 

R = - i - ( 4 T ) 1 / 2 , (75) 

R 2 = - IOTST = f i T ^ 
and 

(H).». (77) 
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Notice that R is the angular momentum of each fragment and that, for 
<MCh mode, the angular momenta of the two fragments cancel out pair-
wise. Furthermore, for each fragment the resulting angular momentum is 
randomly oriented. It is worth stressing again that this angular 
momentum can exist even when the total angular momentum is zero because 
of the pairwise cancellation mentioned above. 

4.7 Coupling of Twisting and Bending Modes to Rigid Rotation 
We want to generalize the previous calculation to the case of 

nonzero total angular momentum. Let us assume that each fragment has 
an aligned angular momentum component I R arising from rigid rotation 
and a random component R due to the bending and twisting modes. The 
overall rotational energy arising from the fragment spins is: 

E = |^((I 2 + R 2 + 2RIRcose) + (I 2 + R 2 - 2RIRcose)J =-| (I 2 + R 2) (78) 

The average total angular momentum of the fragments is: 

(79) 

2|s| 
2 * / / W T R + R Z + 2 I R c o s e +yjll + R 2 - 2IRRcose)R2exp(- J j ) CR sine de 

2 * / / R2 exp( -J j j dRjsine de 

The integral over e yields 
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2 I R + I T ^ f 0 r ! R > R 

2R + | -| for I R < R 

Thus caution is necessary in calculating the thermal average. The 
result is 

2fsT = (2I R +"! 1) erf(IR//JT) + ̂  Mexp(-I^.)T). 

This expression can be written in dimensionless form as 

(80) 

(2x +J)erf(x) + - ? - exp(-x2) , (81) iiU 

where x = lRl S5T. This function is plotted in Fig. 17. For small x 
one obtains 

a n . -*(i*f) (82) 
4 T v̂ r 

In the limit of I R = 0, one obtains 

21F| = - p - <jf = 2R (83) 

in agreement with the results of the last section. For large x, 
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2M , 2 x + I (84) 
W X 

or 

Similarly the average square angular momentum is 

2 
(In + R 2) i 2I DR /i*2 -3i2 + 5 D 2 . , f l l / T * + D 4 O I 2 D 2 +

 l 'R " ' c , „ - l " R ' 4s « 2 I R + 2 R + 2 j | z - y i R

 + R - 2 I R R + 4 R 1 R s in ^ ^ R 2 

. !>2 

x exp (-£)« ' 
2 2 which, to order R /In. yields 

4 s 2 = 4(I 2 • R 2) (87) *R 

4a 2 - | R 2 - 2.JT . (88) 

In this case as well as in Eqs. (70) and (61b) we see that the correction 
to the rigid rotation limit decreases as I in Eq. (85), but with a 
slightly larger coefficient. However, there is some appreciable contri­
bution to the width. Of greatest importance is the fact that a sizeable 
"tilt" of the angular momentum of each fragment about the direction of 
the total angular momentum is introduced 
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(89) 

This depolarization is of great importance for the proper interpretation 
of the out-of-plane angular distribution of gamma rays emitted by the 
fragments and of the out-of-piane angular distribution of sequential 

20 fission fragments. Note that the effect on the depolarization in 
Eq. (89) is larger than that due to the combination of tilting and 
wriggling. 

4.8. A Simple Application to a Typical Heavy-Ion Reaction 
It should be stressed again that the above formalism applies 

strictly to a system which has reached statistical equilibrium. In 
general this is not the case in heavy-ion reactions, especially insofar 
as the mass asymmetry degree of freedom is concerned. However, for other 
degrees of freedom statistical equilibrium may be reached or closely 
approached. At any rate, it is interesting to compare the predictions of 
an equilibrium model with experiment. 

The reaction which we want to consider is 600 Mev 8 6Kr + 1 9 7 A u . 2 0 

Some of the vital statistics of this reaction are summarized in Table 1. 
If we allow the system to evolve to the configuration of two touching 
spheres (r = 1.22) we have (either for 1 or 1) an excitation energy 
of 113 MeV, so T = 1.78 MeV and J T = 131 h 2 or /vf = 12 h. 

Now let us first consider the effect of the doubly degenerate 
wriggling mode. For the average angular momentum the total spin is 
given by Eq. (61b), 
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and from Eq. ( 6 2 ) , 

9-ITT 2 ion + 7 9 3 - 7 5 21sT-y 190 + ^-3go-

* 5 4 . 2 9 + 1 .73 - 5 6 . 0 2 h 

4 o 2 = 2 ( 9 3 . 7 5 ) = 1 8 7 . 5 0 h 2 . 

The f luctuat ion of the separation axi r, with respect to the tota l angular 

momentum yields the following from Eqs. (67b) and (70) 

K2 = i i . iT = 367.50 h Z 

TABLE 1 . 

600 MeV 8 6 K r + 1 9 7 a u 

E ] a b = 600 MeV 

E„ m = 418 MeV cm 
BCoul " 2 8 3 M e V 

E ' 8 C o u l = X - 4 8 

K n, c 2 0 2 ft 

r.m.s 
T = 190 h 

http://ii.iT
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25 _ 1 190 + £ 1 3 1 - 2 5 
2 s = 7 1 9 U 2 190 

= 54.29 + 3.11 = 57.40h . 

The out-of-plane tilting of the separation axis from Eq. (71) is 

« .^-1^367.50^ , 7 Q. e = s m ^ 1 9 0 )= 5.79 . 

The depolarization of the fragment spin due to tilting can be estimated 
from Eq. (72) 

_, /i/367.50\ 
6 = s i n ~ \ 28.70 ) • 1 9 - 5 1 ° 

which is indeed substantial. The twisting and bending modes lead to 

R 2 = |.|T = 196.88 h 2 

?T - — 190 + 7 131.25 ts - 7 i»u / l g o 

= 54.29 + 4.84 = 59.13 h 

4a 2 = 2(131.25) = 262.50 h 2 . 

Let us now try to summarize the results on the fragment spin 
fluctuations. If one assumes a triangular distribution for the angular 
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momentum distribution (i.e., no 1-fractionation), there is an additional 
contribution to the sigma squared of both fragments of 

.2 4 Anax 4 ,2 ) „-0 , 7 .2 

Summing all the fluctuations we obtain 

4o 2 = 818.37 h 2 or 2c = 28.61h 

In conclusion, without allowing for angular momentum fractionation, we 
obtain for the overall fragment spin 

2 fs~| = 64 ± 29 h 

Thus we can see that the thermally excited normal modes contribute 
substantially to the spin fluctuations. Furthermore, the obtained 
fluctuation is comparable to that observed in Ref. 16. 

Another interesting case is spin-generated by the wriggling, bending 
and twisting modes for zero total angular moment. For wriggling we 
obtain 

2]iJ- v£5*T» 17.16ft 
Bending and twisting contribute 

2s - — / J T - 2 5 . 8 5 f t 
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Combining both angular momenta one obtains 
V s 2 = 15.5 h 

for each fragment. 

4.9 Overall angular momentum distribution function 
In summary, the thermal excitation of the collective modes leads to 

Gaussian distributions in the three components I , I , I , namely: 
x y z 

where 

P(I) exp - , 2 ' 2 2o x 2a 
I' (I, + . 

y 

ax = °Tw + °Ti = 2'^ T + T 0 - l T = 5 'T 

(90) 

"y = aB 
2 1 .. 

uw ~ 2 ? :T + T T iT = T iT 14 (91) 

2 2 . 2 1 
°z " °B + °w = 2 T + — >T = - iT 

i 1 4 ,i - r n 

where the subscripts stand for Twisting (Tw), Tilting (Ti), Bending (B), 
Wriggling (W). The quantity-] is the moment of inertia of one of the two 
touching spheres, and T is the temperature. 

The assumption of two equal touching spheres is admittedly schematic. 
However, the generalization to two equal touching spheroids is com­
pletely trivial and left to the readers who may have a better idea about 
the fragment deformation at the scission configuration. 
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5. ANGULAR DISTRIBUTIONS 
5.1. Angular Distributions of Sequential Fission and of Sequential 

Light Particle Emission 
The magnitude of the angular momentum misalignment can be measured 

through the in- and out-of-plane angular distribution of the decay 
21 11 

products of one of the two fragments. We have shown elsewhere 
that the angular distribution of fission fragments and of light particles 
emitted by a compound nucleus can be treated within a single framework. 

The direction of emission of a decay product (fission fragment, 
a-particle, etc) is defined by the projection K of the fragment angular 
momentum on the disintegration axis. Simple statistical mechanical 
considerations show that the distribution in K values is Gaussian. 

Specifically for any given K the particle decay width can be written 
as: 

r K dK = r'exp h 2 ! 2 {k-kH-S-
where r* is an angular momentum independent quantity; T is the temper­
ature; K 2 = h~2(l/j - l/-.^)"^;.!,!,.^ are the principal 
moments of inertia of the decaying system with particle and residual 
nucleus just in contact, about an axis parallel and perpendicular to 
the disintegration axis respectively;A is the moment of inertia of 
the compound nucleus. 

Similarly, the neutron decay width, integrated over all the neutron 
emission directions is 
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' N = r>p[-4r(4-j;)] (93) 

In this expression-)N =./ R + WR , corresponding to :. in 
Eq. (92), is the sum of the monient of inertia of the residual nucleus 
after neutron decay and the orbital moment of inertia of the neutron 
at the surface of the nucleus. 

Let us now express the particle decay width in terms of the 
emission angle o measure.) with respect to the angular momentum 
direction. 

Since K = I cosa and dK = I d(cosa) = I d fi, we obtain: 

rl(a) da = r • 4 # ($:-.*;)] e x p _ i!co|!» a a 

2 K : 

If the angular momentum has an arbitrary orientation with respect to 
our chosen frame of reference, defined by its components 1 , 1 , 1 , 

x y z 
the angular distribution can be easily rewritten by noticing that 

K = I coso = I-n = I sine costf + lysine sin0 + I cose — — x y z 

where n is a unit vector pointing the direction of particle emission 
with polar angles s,i>. If the orientation of the angular momentum is 
controlled by the distribution 

P(I) <* exp 
I 2 I 2 (I - T ) 2 

K 2°l K . 
(94) 
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we can integrate over the distribution of orientations and we obtain, 
dropping angular momentum independent factors: 

r 1^,*) da « 

22 where: 

[--^-^sbr-fte)"1 «> 

S2(e,*) * K 2 + (of cos 2* + a 2 sin2*) sin2e + o 2 cos2e (96) o A y z 

In the above expression (95) have set I = I, in other words we have 
averaged over the orientation but we have allowed the decay width to 
depend only upon the average angular momentum set equal to its z com­
ponent. This expression should then be considered only as a high 
angular momentum limit (all « 1). 

The final angular distribution is obtained by integration over the 
fragment angular momentum distribution which we assume to reflect the 
entrance channel angular momentum distribution through the rigid 
rotation condition: 

I. 
H ! " J T

 2IdI*~ (") 
min 

f mx rI 21 dl f-
J I . N 

m m 
where we have assumed r = r More precisely 
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W ( e , « ) . I m X f 1 expT- I 2 ^ i _ B l a i ( 9 8 ) 

nil n 

h 2 i 2 

,, ,, 1 min , . , nnn , „ 
J(e,0) = s | A — e x p ( - A m i n ) " A — e x p ( A 

L nnn mx 
If l m. n = 0, then: 

W(e,«S) - 55 [1 - exp (-A)] 

where 

(99) 

(10U) 

A = A = f [cose I A = ,2 [cose 1 mx mx|_ ? < ;2 J nnn mini ?t-2 

The quantity,i is the moment of inertia of the nucleus after neutron 
emission, ,\ is the perpendicular moment of inertia of the critical 
shape for the decay (e.g., saddle point). 

It is important to notice that the angular momentum dependence of 
the particle/neutron competition or fission/neutron competition is 
explicitly taken into account through e. This point seems to have been 
neglected in recent work on sequential decay. 
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The final ingredient necessary for an explicit calculation of the 
2 angular distributions is the quantity K . This quantity can be 

expressed in terms of the principal moments of inertia of the critical 
configuration for the decay: 

For fission J , , can be taken from the liquid drop calculations of 
33 C.P.S. For lighter particle emission, the calculation of -- f-

can be worked out trivially. Let m, M, A be the masses of the light, 
residual and total nucleus. One obtains: 

Ax = | MR 2 + ^ (R + r ) 2 (102) 

v ieff /M\ 5 / 3 I", . 2 A / R Y n 

where r and R are the radii of the light particle and residual nucleus 
respectively. 

This result is adequate if m « M and if the charge of the light 
particle is small. If the charge of the light particle is not neglig­
ible, one has to consider the shape polarization induced on the heavy 
fragment at the ridge point, as discussed in Ref. 11. Since the shape 
polarization affects the asymptotic kinetic energy of the emitted 



50 

particle as well, one can in principle utilize the particle kinetic 
energy spectra ti verify that the shape of the system at the ridge 
point anci its principal momenta of inertia have been properly chosen. 
Again a more complete discussion on this point is available in Ref. 11. 

Now we are v the position to calculate both in-plane and out-of 
plane anisotropies. 

The in plane anisotropy gives: 

W(d = 90° )| 
W(«S = 0°) | G=90° 

(103) 

2 
Since in most cases K is fairly large, or at least comparable with 

2 2 
o or a it is difficult to obtain a sizable in-plane anisotropy. * y 

2 2 

Even by letting o = U one needs o = 3 K just to obtain the 
anisotropy of 2'. The out-of-plane anisotropy is somewhat more 
complicated: 

U(e = 90") 

W(e = 0*) * * > - K8ft 2(K^ + . 0 2 °i). 
(104) 

1 - expel 
max 

1 " e x P »„ ( 6 

u*l + *l)l 
for a fixed angular momentum I one has: 
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W(e = 90') 
W(e = 0°) 

; ,1/2 
-[-5/ 1\ e x p — J __ (105) 

At t> = 90° the anisotropy is obtained from the above equation by 
interchanging o with a . * y 

5.2 Some Calculations for Sequential Fission and Alpha Decay and 
Comparison with Data 

The results obtained above can be illustrated by applying them to 
a reaction which has been experimentally investigated. We choose the 

ftfi ' 

reaction 600 KeV Kr + Au. For this reaction we estimate--'! . /. 1 f f = 
1.864, K 2 = 100 h 2 , B = 0.00194 h~ 2, I m x = 40h, ^ = 110 h 2. 
In order to simultaneously appreciate the shapes of the in- and out-of-
plane angular distributions possible in sequential fission, we have 

2 2 2 2 artificially set o^ = 0, a = o = 110 h . The results are shown x y z 

in Fig. 18. In this figure one readily appreciates the connection 
between the in-plane and the out-of-plane angular distributions. In 
particular, it is apparent how an in-plane anisotropy must necessarily 
be associated with a variation of the out-of-plane width with the 
in-plane angle. 

We have stressed already that the competition between fission and 
neutron decay must be dealt with specifically because of the strong 
dependence of TV upon angular momentum. This is illustrated in 

2 2 2 2 Fig. 19 where we have set a» o„ = a = 110 h and we have assumed 
A y z 

B » 0.00194 h in one case, and 0.000 h cin the other. The effect 
is quite dramatic, and clearly must be incorporated in the formalism if 
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one intends to obtain reliable angular momentum values from it. F c 
instance, in order to compensate for setting B = 0.000 instead of 

_2 0.00194 h it is necessary to step-up the angular momentum I from 
40 to 55 h. 

The predicted FWHM = 54° ca:> be compared with the data shown in 
Fig. 20. The agreement is quite satisfactory. 

The present calculations can be compared to those in Ref. 23 where 
no angular momentum distribution is assumed and thus no neutron com­
petition is includerl. In the same work no fluctuation in the z component 
of angular momentum is allowed. Neglection of a (o = 0) cannot be 
directly translated into a variation in the angular momentum, because of 
the difference in the functional dependence. However, a decrease of 
'mx f r m ^mx = 4^ fl t o ^ x = 34 h approximately compensates for setting 
a = 0. This range of more than 20 h illustrates how dependent is the 
inferred fragment angular momentum upon the inclusion of angular momentum 
fluctuations about the z axis and upon the inclusion of neutron com­
petition. Extreme caution is obviously in order when the extracted 
angular momenta are compared with theoretical predictions, like the 
rigid rotation limit. 

In the same spirit as for sequential fission we show some calculations 
84 24 for sequential alpha decay in the reaction 664 MeV Kr + Ag. The 

alpha particles are assumed to be emitted by the Ag-like nucleus. We 
estimate I = 36 h, o 2 = 68 h 2, e = O.O0137 h ~ 2 and K 2 = 365 h 2. The 

2 results are shown in Fig. 21 . For comparison a calculation with a = 0 
is also shown in order to illustrate the sensitivity to misalignment. 
Examples of fits to experimental data are shown in Fig. 22. 
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The deformation of the deep-inelastic complex was estimated from the 
measured frgment kinetic energies. Within the framework of two equally 
deformed spheroids with no neck the fragment energies are given by 

E
 M H / ZL ZH - + £1 A EL ' M, + M„ V d 2 p d 2 ) • 

Here, the Coulomb correction factor (F), the distance between center 
(d), and the relative angular momentum (1 ,) are deformation 
dependent. In Fig. 23a the experimental fragment energies (plus signs) 
are compared to calculated values (curves) using the above equation for 
several deformations. This comparison indicates that assuming the 
spheroid model a ratio of axis of about two is needed to reproduce the 
data. 

The rms spin values of the large fragment (I„) extracted by the 
procedure described above are plotted in Fig. 23b. The strong increase 
in spin with increasing asymmetry is clear evidence of rigid rotation. 
Comparing these points to the rigid rotation calculations again indicates 
the need for large deformations in order to correctly reproduce the 
magnitude of I„. 

In Fig. 23c the sum of the spins of both fragments as determined by 
two independent methods are compared to rigid-rotation calculations. In 
the first method rigid-rotation is invoked to determine I, from the 
value of I„ extracted from the out-of-plane alpha distributions. In 
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the second method, we utilized the experimental gamma multiplicity in 
the relation. 

I L + I„ = 2(M y - 5) + A 

to determine the sum of the spins. The corrections a for the angular 
momentum removed by neutrons and alpha particles which were done 
following the prescription described in Ref. 25. The agreement between 
the M derived spins and those derived from the out-of-plane 

y 

a-distributions is quite good. 
These data provide the first unambiguous evidence for rigid rotation 

of.the intermediate complex in this mass region. Furthermore, large 
spheroidal deformations are indicated by three sources: fragment 
kinetic energies, spins extracted from alpha distributions and those 
deduced from gamma multiplicity data. It should be mentioned that 
methods of reproducing the fragment kinetic energies employing smaller 
deformations and a separation or thin neck fail to convert enough 
orbital angular momentum into intrinsic spins to be consistent with the 
angular momentum data. 

5.3 Gamma ray angular distributions 
Fragments with large amounts of angular momentum are expected to 

dispose of it mainly by stretched E2 decay. The relative amounts of 
dipole and quadrupole radiation depends mainly upon the ability of the 
nucleus to remain a good rotor over the whole angular momentum range. 
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If the angular momentum of the fragment is aligned, the typical 
angular pattern of the quadrupole radiation should be observed. Any 
misalignment should decrease the sharpness of the angular distribution. 

If the distribution of the angular momentum components I , I , 
x y 

I is statistical, it is straightforward to derive analytical 
21 expressions for the angular distributions. 

For a perfectly aligned system we have: 

W(o) = | (1 + cos 2a) ; W(a) = | (1 - cos 4a) (106) 

for El for E2 

If the angular momentum is not aligned with the z axis, one must 
express a in terms of a, i which define the direction of the angular 
momentum vector. In particular we have: 

I*n I sine ccstf + I sine sintf + I cose 
cosa = — = — ^ YJZ < 1 0 7 ) 

1 (Jx + 'y + # 

For any given I, the angular distribution is obtained by integration 
over the statistical distribution P(I) of the angular momentum 
components: 

W(e,*) - Jw(a) P(I.) dl (108) 
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It is not possible to obtain exact analytical expression for the 
2 "2 2 "2 general case. However, an expansion to order a II , a /I , etc. x z y z 

allows one to obtain expressions in closed form. 
For the dipole decay we have: 

W(e,«) =|(1 + cos 2e) + \ 2 2 2 x (sin e cos 0 - cos e) ~~ (109) 

2 2 2 °v + (sin e sin i> - cos e) -± 

zJ 
Notice that there is no dependence upon o . In the case in which 
a = a = o, we obtain the simplified expression: x y 

w(e,0) = | (1 + cos 2e) + f (sin2e - 2cos 2e) ^ 
! z 

(110) 

A weak in-plane anisotropy is possible: 

H(» = 0') 1 + 2 / f 2 2 2 

2-2 " f2 
y z z 

(111) 

The out-of-plane anisotropy is: 
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- ^ - 2 ( 1 " ' f f i • 2(1 - 2,-/1-) 
w(9o-) (i + 0

z / i : ) z 

2,72, (112) 

For the quadrupole decay we have: 

W(e,#) = | (1 - cos 4e) - f 2 2 2 4 x (3 sin e cos e cos $ - cos e) -z~ i 
2 2 2 4 ̂  v + (3sin e cos e sin <t> - cos e) r* (113) 

Again, no dependence upon a is predicted. If one assumes 
a = <j = o as before, one obtains: x y 

W(e) = | (1 - cos 4e) - | (3sin2e cos 2e - 2cos4e) a 2/! 2 (114) 

and 

JJloli- 4i W(90*) I< 
(115) 

For the in plane anisotropy we have: 

W(» « 0') 
W(* « 90') e-90 

(116) 

2 "2 to order o /I 2. This can be easily understood. The rms misalignment 
is -o/I, thus, at o « 90*: 
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. 4 
w(90) = 1 - cos 4 90" - ^ = 1 - % 

Thus, no second order term exists. This result shows that its is very 

difficult to study anistropies in the angular momentum misalignment by 

means of -y-ray angular distribution. 

The range of validity of the above expressions is rather limited 

due to the low order expansion. In particular, the equations should 

not be trusted for o 2/I 2 > 0.05. 
2 2 2 However, if we are willing to assume o = a, = a„, then an 

3 x y x 
exact result can be obtained. 

For the El distribution one obtains: 

W(e) E 1 = | [1 + cos 2e + B2(l - D(B))(1 - 3cos2e)] (117) 

For the E2 distribution one obtains: 

W ( e ) E 2 = j [1 - cos e - 2B |3Sin ecos e - 2cos e 

- | D(B)(sin26 - 4cos 2o) sin 2e} + (118) 

- 38 4{4cos 4e + | sin^e - 12sin2ecos2e](l - D ( B ) ) ] 
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In these equations B = o/f and D(B) = /2 B f[ll<^2 e) where 

F(x) = e x I e l dt T / 
JO 

is the Dawson's integral. One can verify immediately that both 
expressions behave as expected in the limits of B = 0 and B = ">. In 
Fig. 24 one can verify that the anisotropy W(0)/w(90°) tends to 1 when 
B tends to infinity both for El and E2 transitions, while it tenas to 
° for E2 and to 2 for El when 8 = 0 . For convenience of calculations, 

we give here an expansion of these equations up to 8 order in B 
1 which is adequate up to B <_ 0.4 

For E 1 we obtain: 

w(e) « | [1 + cos2e + (1 - 3cos2e)(B2 - B 4 - B 6 - 3 B 8 ) ] 

W ( 0 l L = 2 - 2 B 2 + 2 B 4 + 2 B 6 + 6 B £ 

W(90°) 1 + e 2 - B 4 - B 6 - 3 B 8 

(119) 

Similarly, for E2 we obtain: 
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W(e) E 2 = |- 1 - cos 4 e - 2B 2 j 3s in ecos 2e - 2cos 4 e| 

4 1 4 4 2 2 1 
- 3B |4cos e + s in e - lOsin ecos » | 

6 1 4 4 2 2 1 
+ 6B |2cos e + sin e - 7sin ecos e | 

+ 3B 8 J3s in 4 e + 4co^ 4e - 18s in 2 ecos 2 el 

(120J 

W(U°) „ 4 B 2 ( 1 - 36 2 + 38 4 + 3B 6) 
W(90") (1 - 3 B 4 + 6 B 6 + 9 B 8 ) 

It is recommended that these last equations be used instead of 
eqs. (110, 112, 114 and 116) in actual calculations. 

These results are graphically summarized in Fig. 25 where the 
anisotropy is plotted as a function of the fraction of El radiation 

2 "2 for various values of a II . The two extreme possibilities of 
stretched and non-stretched El decay are considered. If one has a 
fairly good experimental idea of the amount of El radiation to be 
expected from a given fragment and of its degree of stretching, the 

2 2 measurement of the anisotropy yields directly the value of o /I , 
which is of course the most direct information about the misalignment. 

5.4 Gamma Ray Anisotropy Experiments. 
a) The 1060 MeV Xe + Au Experiment26 

The predictions of the model just described can be compared with 
the y-ray anistropy measured for the above system. A window in mass 
was set in the neighborhood of symmetric splitting, in order to 
consider fragments in the heavy rare-earth region which are good 
rotors and for which the amount of dipole radiation has been measured 
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to be ~20 percent. The temperature of the system at symmetry is 
estimated to be T = 2 MeV, and 

,2 ='4 = 140 
ti 

In the absence of angular momentum fractionation, the mis fragment 
spin should be Ir - 46 ft. However, the measured y-ray multiplicity 
yields I = 32 h indicating that fractionation occurs along the mass 
asymmetry coordinate and that the lower 1-waves have a better chance 

2 2 to reach symmetry. Thus the misalignment parameter is o /! = 0.14. 
With 20 percent El transitions, Fig. 25 predicts anisotropies close V 

U.70. The experimental results, shown in Fig. 26 indicate that such 
an anisotropy is indeed observed in the region of gamma ray energies 
where the quadrupole bump is observed. 

b) The 1400 MeV l b 5 H o * 1 6 5 H o experiment.27 

This system was chosen because large amounts of angular momentum 
can be transferred into the intrinsic spin (I) of these nuclei, which 

?8 29 are known to have good rotational properties.- ' Furthermore, the 
steep mass-asymmetry potential causes the reaction products to lie 
within a narrow range of Z-values centered around symmetry (as veri-
fied with a &E-E telescope) and minimizes 1-fractionation effects. 
As a consequence, both of the essentially identical Dl-fragments emit 
similar continuum y-ray spectra which are strongly enriched in E2 
transitions (-80 percent) as discussed below. 
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A schematic diagram of the experimental setup is shown as an 
insert in Fig. 7. 

Figure 27(a) illustrates the general features of both the in-plane 
and out-of-plane y-ray spectra emitted from the reaction fragments. 
The spectral shapes are similar to those observed in compound-nucleus 
reactions ' and display the characteristic "E2 bump" at 0.6-1.2 MeV 
and the higher energy "statistical tail" (2-5 MeV). A comparison of 
these two spectra indicates that the tail region is nearly isotropic, as 
seen in compound-nucleus reactions, whereas the "bump" regiun is more 
pronounced in-plane where the angular distribution for stretched E2 
transitions peaks. 

In-plane y-ray energy spectra, normalized so that the integral of 
each curve is equal to <M >, are shown in Fig. 27(b) for several 
Q-value regions. The upper edge of the "bump" moves to higher y-ray 

energies as Q increases in the quasi-elastic (QE) region and stabilizes 
in the Dl-region. This is an indication of the Q-value dependence or 
the angular momentum transfer, since for rotational nuclei E » I. 

Y 
The angle-integrated v-ray multiplicity was calculated from 

<M > = N /[w(90°)N . , ] y Y singles-1 

where N is the efficiency-corrected number of coincident v-rays. 
Y 

The angular-distribution function, W(o), is normalized sucn that 
e) d»; = 4», and N

s, n g^ e s
 i s t n e number of particle singles. The 

fragment spin after particle emission was calculated from 
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<I> = j (ll + I 2) = <M ) + ?H - 26 

where H is the number of E? transitions below the 0.3 MeV threshold 
(set to exclude backscatter region) and B is the number of statistical 
transitions per fragment. We assumed that the statistical transitions 
carry away no angular moirenturn on the average, and selected the value 
H = 3 after inspecting the y-decay schemes of even- and odd-mass 
products between A = 165 and A = 150. 

Figure 28(a) shows the fragments' energy spectrum obtained at an 
angle slightly greater than the grazing angle. Figure 23(b) shows the 
intrinsic spin of one of the two reaction fragments after neutron 
emission (circles) as calculated from the aLiove equation. The primary 

25 fragment spin obtained from <M > with correction for neutron emission" 
(so)id line) is also shown. As seen in the data, the transferred spin 
rapidly increases with Q-value in the QE-region and saturates at about 
35h in the 01-region. 

The ratio of in-plane to out-of-plane Y-ray yield ("anisotropy") for 
energies between 0.6 a^d 1.2 MeV (squares) is also shown in Fig. 28(b). 
This anisotropy rises with increasing spin transfer; it peaks at a value 
of ~2.2, slightly before the spin saturates, and then drops to near 
unity for large Q-values. Figure 28(c) shows the dependence of the 
anisotropy on both E and Q in two-dimensional contour diagram. One 
notes that the highest anisotropy occurs in the 0.6 to 1.2 J-ieV E 

Y 

region, where the "E2 bump" is most prominent, and at intermediate 
Q-values. At higher Q-values, anisotropy ;s at hiqher E . 
These trends are consistent with t. tat\ ture of these r-ray 
spectra. 
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The initial rise of anisotropy with increasing Q-value indicates 
that during the early stages of energy damping there is a rapid build­
up of aligned spin. The subsequent fall observed at larger Q-values 
suggests that the aligned component of spin has saturated or is 
decreasing, whereas randomly-oriented components continue to increase, 
causing a significant decrease in the alignment of the fragments' 
spin. These qualitative features are similar to those observed with 

lfi dfl ^1 discrete lines from the 0 + Ti system. However, in this 
much heavier system, the rise and fall of the alignment is observed 
over a substantially larger Q-value range with continuum y-rays. 
This buildup of alignment has also been seen in sequential-fission 

32 studies, but a decrease was not observed in the more limited 
Q-value range studied. 

Interpretation of these data may be approached in several ways, 
e.g., dynamical models, non-equilibrium statistical mechanics, etc. 
We choose to utilize the statistical equilibrium model described 

25 above. Corrections have been made for contributions from the 
secondary depolarization process of neutron evaporation which precedes 
the Y-ray cascade. 

Figure 29(a) shows experimental values of the anisotropy for E 
greater than 0.3 HeV compared to several stages of the model calcu­
lation. The number of statistical transitions pe- fragment, B, was 
estimated from the shape of the >—ray spectra fo- each Q-value bin 
assuming that the intensity of the statistical transitions is described 
by: 2 9 P(E ) = E2exp(-E /T), where T = 0.6 MeV. With this value for 
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B, the measured <M >, and H = 3, the spin <I> was determined from 
Eq. (2), and the anisotropy was then calculated (Fig. 28(a)), solid 
line). This calculation reproduces both the shape and the magnitude of 
the data. To give a feeling for the importance of various contributions, 
the same calculation is shown with no correction for neutron evaporation 
(curve 2), assuming no statistical trarisitions (curve 3), and with no 
thermal effects (curve 4). This comparison clearly shows that the most 
important effect is the thermally induced misalignment, indicating that 
the decrease of alignment as deduced from the anisotropy is inherent to 

the deep-inelastic process itself. The misalignment due to statistical 
2 2 Y-ray emission is negligible (o - 3h ). 

By gating on the 0.6-1.2 MeV region of the E spectra, one both 
increases the fraction of E2-transitions and biases the spin distribution 
to larger values (E = I), which should yield larger anisotropics. In 
Fig. 29(b), measured (symbols) and calculated (solid line) anisotropics 
are shown for the 0.6-1.2 MeV Y-ray region. These data show the expected 
larger anisotropics, which the model calculation;: reproduce. The model 
prediction (corresponding to the solid line) of the alignment parameter 
PZ2 = ( 3 < I 2 > / 2 < l Z > - i' 2) before neutron emission is 0.74 for the 
Q-value associated with the largest anisotropy and decreases to 0.58 for 
the lc- jest Q-value. 

The above Y-ray multiplicity and anisotropy data in conjunction with 
the model calculations give rise to the following picture of the reaction 
process. In the QE-region, the transferred spin increases rapidly with 
Q-value whereas the thermally misaligned components increase more slowly 
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(T a |Q| )• Thus, the aligned component dominates and the transferred 
angular momentum is nearly perpendicular to the reaction plane, giving a 
large anisotropy. However, across the Dl-region the transferred angular 
momentum saturates while the thermal components increase to become an 
ever larger fraction of the total angular momentum. Thus, the alignment 
decreases and the anisotropy plummets. 
6. CONCLUSION 

It is a gooa custom of a polite speaker, especially if he has spoken 
long and tedious hours, to sum up at the end by making strong references 
to th*3 title and the introduction. Such a technique tries to achieve 
two goals. On the one hand it may make those who slept away the tedium 
feel that they have got the gist of the talk and have not lost much. On 
the other, it gives the speaker the opportunity of conveying a semblance 
of unity and coherence to the preceding disorganization and chaos. 
Also, the organizers usually gain the feeling that this was indeed what 
they wanted the speaker to speak about. 

With these hopes, we may try to sum up by observing that heavy ion 
reactions do produce nuclei of rather unusual shapes and sizes and give 
rise to a variety of phenomena that make the delight of experimenters 
and theorists alike. And if old Plato thumbs his nose in aisgust, we 
may answer that all those symmetries of his may be beautiful but boring. 
This is why most people praise heaven but act as if they do not want to 
go there (by the way, heaven is another Platonic archetype smuggled into 
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Christianity by well meaning Hellenists). And yet, we have ended up 
paying respect to Plato, in a way, when, in trying to make some theo­
retical sense out of experimental nonsense, we have modelled nuclei with 
rather symmetric shapes, like cylinders, two-touching spheres and the 
••ike. On the other hand, to avoid the wrath of the organizers, we have 
carefully avoided sphere and Platonic solids. As a last message, one 
might point out how tremendously useful statistical mechanics has proven 
itself to be in dealing with all these heavy ion processes. A Nobel 
laureate friend of mine who shares with me the Italian accent and 
mycological interests, rightly says that "Holy thermodynamics never 
fails." Now this is another archetypal hang-up of Greek origin. It 
started up with Epicurus and was picked-up by Lucretius who developed 
the subject very poetically in "De rerum natura." But this is a 
conclusion and the name Epicurus is best associated with what goes on 
after the lectures. 

This work was supported by the Nuclear Science Division of the U.S. 
Department of Energy under Contract W-7405-ENG-48. 
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FIGURE CAPTIONS 
1 Variances of the Z distributions at fixed mass asymmetry vs. 

excitation energy in the reaction Xe + Au. The dashed 
and solid curves indicate the expected variance from quantal 
and classical statistical fluctuations. ' 

2 Widths of the Z distributions for several masses vs. total 
kinetic energy for the reaction Kr + Mo. ' 

3 The stiffness constant for the oscillation of the charge 
excess is plotted against asymmetry (Q = A,/At . ,) for 
A = 100. The dashed curve corresponds to the liquid drop 
potentials for two touching spheres. The solid curve 
corresponds to the cylinder model for the lowest mode. The 

(A) 

Coulomb term is included in both calculations. ' 
4 The square of the normalized partial width is plotted a) 

against asymmetry at fixed n; b) against n at fixed (4) asymmetry. ' 

5 The sum of the squares of the normalized partial widths up to 
"„,>, is plotted against asymmetry. ' max 

6 Gamnia ray multipliciy vs. total kinetic energy for three Kr 
induced reactions. The solid and dashed curves are fit to the 
data. ( 6 ) 

7 Gamma ray multiplicities vs. Z for the quasi elastic 
ICC 107 

components of the reactions Ho, Au + 618 MeV 
86 K r >(7) 
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20 
8 Gamma ray multiplicities for the reaction 175 MeV Ne + Ag 

at 90° Lab,' 8^ and for the reaction 237 MeV 4 0 A r + 8 9 Y . ' 

9 Gamma ray multiplicities vs. Z for the deep inealstic 
components in 618 MeV 8 6 K r + n a t A g , 1 6 5 H o , 1 9 7 A u . ( 7 ) 

10 Gamma ray multiplicity vs. Z for three reactions. The open 
circles represent the quasi elastic components and the solid 
circles the deep inelastic components. Solid curves are fit 
to the data.' 6' 

11 (a) Mass distributions for the indicated reaction obtained by 
integrating over all 1-waves leading to fission (squares) and 
for selected individual 1-waves (solid curves). The 1-values 
are 1 = 0, 1 / 2 and 1 . All curves have been normalized 

IMA IHA 

to unity at symmetry. 
(b) Mean (crosses) and mean squares (squares) angular 
momentum divided by the corresponding quantities obtained by 
averaging over the 1-distribution which leads to fission vs 
asymmetry. The angular momentum dependence of the temperature 
and total reaction width have been incorporated into the 
calculations (see text). 

12 (a) Same as Fig. 11 but in the absence of neutron 
competition. Note that only the total mass distribution 
(squares) is different from Fig. 11(a). 
(b) Same as Fig. 11(b) but without neutron competition. 
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13 Mean angular momentum <n>, its -econd moment o, the relative 
function p = o/<n> and the skewness y vs. the asymmetry 
parameter g (see text). The asterisks represent the 
expected dependence of the gamma ray multiplicity upon s. 

14 Total spin of the fragments arising from wriggling as a 
function of the spin arising from rigid notation alone 
plotted in dimensionless form. The upper solid curve shows 
the result for both of the wriggling modes while the lower 
solid curve corresponds to the excitation of a single 
wriggling mode (see text). The limiting behavior for both 
small and large x are indicated in both cases. 

15 Schematic illustrating the tilting mode and the doubly 
degenerate wriggling modes for the two equal sphere model. 
The long arrows originating at the point of tangency for the 
two spheres is the orbital angular momentum while the 
shorter arrows represent the individual fragment spins. 

16 Schematic illustrating the twisting and bending modes for 
the two equal sphere model. Note the pairwise cancellation 
of the fragment spins. 

17 Total fragment spin as a function of the spin arising from 
rigid relation for the twisting and bending modes. 
Dimensionless forms are utilized. The limiting behavior for 
large and small x are indicated. 
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18 Calculated in-plane and out-of-plane angular distribution 
for sequential fission in the reaction 600 MeV Kr + Au. The 
in-plane anisotropy is generated by explicitly setting 

19 Sequential fission angular distributions for the system 
600 MeV Kr + Au. The curve labeled B = 0.0 corresponds to 
disregarding neutron emission fission competition. The more 
realistic curve labeled 6 = 0.00194 gives a FWHM of 45°. 

20 Full width at half maximum of the out-of-plane fission and 
non-fission components as a function of Z in the reaction 
6 1 8 M e V 8 6 K r +

1 9 7 A u . < 2 ° ) 

21 Calculated out-of-plane angular distribution for sequential 
alpha decay from the Ag-like fragment in the reaction 
665 MeV 8 4 K r + n a t A g (dashed line). The solid line has 
been obtained by setting o = 0. 

22 Alpha particle angular distributions for several Z-bins as a 
function of out-of-plane angle. The Z bins are 3 Z's wide 
and are indicated by the median Z. In section a) there is 
no coincident y-ray requirement while in b) there are 2 or 
more coincident v-rays. The curves in section b) are 
normalized at 90* to those in a) for the same z bin. 
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23 (a) Center of mass energies after evaporation corrections 
as a function of the charge of the light fragment. 
Horizontal bars indicate the uncertainty in the primary 
charge (before evaporation) of the light fragment. Solid 
lines are calculations for two spheroids in contact and are 
labeled by the ratio of axes. The broken line is for 
spheres. 
(b) Spin of the heavy fragment extracted from its 
out-of-plane a-distribution. Calculations for rolling and 
rigid rotation of spheroids are indicated. 

(c) Sum of the spins of the deep inelastic fragments as 
determined by out-of-plane a-distributions (closed) and M 
(open). 

2 ~2 

24 (a) Dependence of the gamma-ray anisotropy upon o /I-, 
for a mixture of sketched El and El transitions (see text), 
(b) Same as in 24(a), but for a mixture of random El and 
stretched E2. 

25 (a) Gamnta-ray anisotropy for a mixture of stretched El and 
E2 transitions of the fraction of El radiation for various 2 -2 values of o /I,. 
(b) Same as in 25(a) but for a mixture of random El and 
stretched El transitions. 

26 (Please observe only left-hand side.) Out-of-plane gamma 
ray anisotropy as a function of gamma ray energy for the 

i ^fi reaction 1064 MeV Xe + Au in the product mass range 
152 < A < 172 at three different Q-value bins. 
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27 (a) In- and out-of-plane x-ray pulse-height spectra 
associated with reaction products having a Q-value of 
- -140 MeV. Data points are shown only for the in-plane 
spectrum. Detectors Nal(l) and Si(l) are in the same plane, 
(b) In-plane y-ray pulse-height spectra for representative 
Q-value bins. 

28 (a) Particle spectrum for the Ho + Ho reaction at 
27° in the laboratory. 
(b) Post- (circles) and pre- (solid line) neutron emission 
values of the spin per fragment I, as a function of the 
reaction Q-value (see text). The anisotropics, W(in/1), 
extracted from the raw Nal spectra are also shown (squares) 
for the E region 0.6-1.2 MeV. (The raw data and the 
unfolded spectra gave the same anisotropies to 5 percent.) 

(c) Anisotropy contours for coordinates E and Q. 
Y 

29 Experimental (symbols) and calculated (curves) values of the 
anisotropy, W(in/i), (a) for x-rays greater than 0.3 MeV and 
(b) for the region 0.6 MeV < E < 1.2 MeV (see text). 
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