UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Swift: a storage architecture for large objects

Permalink
https://escholarship.org/uc/item/0t40831n

Authors

Cabrera, L-F
Long, DDE

Publication Date
1991

DOI
10.1109/mass.1991.160223

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,

availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0t40831n
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/3508028

Swift: a storage architecture for large objects

Conference Paper - November 1991

DOI: 10.1109/MASS.1991.160223 - Source: IEEE Xplore

CITATIONS
22

2 authors, including:

£ Darrell D. E. Long
g ! University of California, Santa Cruz
307 PUBLICATIONS 8,755 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

et REINAS View project

poject ECOnomic modeling of long-term preservation View project

All content following this page was uploaded by Darrell D. E. Long on 02 December 2013.

The user has requested enhancement of the downloaded file.

READS
54

ResearchGate

https://www.researchgate.net/publication/3508028_Swift_a_storage_architecture_for_large_objects?enrichId=rgreq-1cf915fcf2bd5e9d066e3fcc99494b94-XXX&enrichSource=Y292ZXJQYWdlOzM1MDgwMjg7QVM6OTc3MjgyMzk1MDU0MTJAMTQwMDMxMTYzNjIzMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/3508028_Swift_a_storage_architecture_for_large_objects?enrichId=rgreq-1cf915fcf2bd5e9d066e3fcc99494b94-XXX&enrichSource=Y292ZXJQYWdlOzM1MDgwMjg7QVM6OTc3MjgyMzk1MDU0MTJAMTQwMDMxMTYzNjIzMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/REINAS?enrichId=rgreq-1cf915fcf2bd5e9d066e3fcc99494b94-XXX&enrichSource=Y292ZXJQYWdlOzM1MDgwMjg7QVM6OTc3MjgyMzk1MDU0MTJAMTQwMDMxMTYzNjIzMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Economic-modeling-of-long-term-preservation?enrichId=rgreq-1cf915fcf2bd5e9d066e3fcc99494b94-XXX&enrichSource=Y292ZXJQYWdlOzM1MDgwMjg7QVM6OTc3MjgyMzk1MDU0MTJAMTQwMDMxMTYzNjIzMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1cf915fcf2bd5e9d066e3fcc99494b94-XXX&enrichSource=Y292ZXJQYWdlOzM1MDgwMjg7QVM6OTc3MjgyMzk1MDU0MTJAMTQwMDMxMTYzNjIzMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-1cf915fcf2bd5e9d066e3fcc99494b94-XXX&enrichSource=Y292ZXJQYWdlOzM1MDgwMjg7QVM6OTc3MjgyMzk1MDU0MTJAMTQwMDMxMTYzNjIzMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-1cf915fcf2bd5e9d066e3fcc99494b94-XXX&enrichSource=Y292ZXJQYWdlOzM1MDgwMjg7QVM6OTc3MjgyMzk1MDU0MTJAMTQwMDMxMTYzNjIzMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Santa_Cruz?enrichId=rgreq-1cf915fcf2bd5e9d066e3fcc99494b94-XXX&enrichSource=Y292ZXJQYWdlOzM1MDgwMjg7QVM6OTc3MjgyMzk1MDU0MTJAMTQwMDMxMTYzNjIzMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-1cf915fcf2bd5e9d066e3fcc99494b94-XXX&enrichSource=Y292ZXJQYWdlOzM1MDgwMjg7QVM6OTc3MjgyMzk1MDU0MTJAMTQwMDMxMTYzNjIzMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-1cf915fcf2bd5e9d066e3fcc99494b94-XXX&enrichSource=Y292ZXJQYWdlOzM1MDgwMjg7QVM6OTc3MjgyMzk1MDU0MTJAMTQwMDMxMTYzNjIzMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

SWIFT: A STORAGE ARCHITECTURE FOR LARGE OBJECTS

Luis-Felipe Cabrera
Computer Science Department
IBM Alamaden Research Center
San Jose, California

Darrell D.E. Long
Computer and Information Sciences
University of California at Santa Cruz
Santa Cruz, California

ABSTRACT

Managing large objects with high data-rate requirements is
difficult for current computing systems. We describe an
Input/Output architecture, called Swift, that addresses the
problem of storing and retrieving very large data objects
from slow secondary storage at very high data rates.
Applications that require this capability are poorly
supported in current systems, even though they are made
possible by high-speed networks. These range from
storage and visualization of scientific computations to
recording and play-back of color video in real-time. Swift
addresses the problem of providing the data rates required
by digital video by exploiting the available interconnection
capacity and by using several slower storage devices in
parallel.

We have done two studies to validate the Swift architec-
ture: a simulation study and an Ethernet-based, proof-of-
concept implementation. Both studies indicate that the
aggregation principle proposed in Swift can yield very
high data-rates. We present a brief summary of these
studies.

INTRODUCTION

The disparity between processing speed, network transfer
rates, and the performance of disk storage systems will
increase in the future. The processing speed of computing
systems continues to increase at an exponential rate.
Advances in communications technology are providing
increased transfer rates even more rapidly than the
increases in processing speed.

In contrast to these advances, disk storage technology
remains much the same. Although the density of the
media has greatly increased, there has been little improve-
ment in either access times or data transfer rates. In the
case of optical storage, the access times have increased
and the data transfer rates have decreased relative to
magnetic media. Due to physical considerations, substan-
tial increases in disk storage data transfer rates seem
unlikely.

CH3039-5/91/0000/0123/$01.00 © 1991 IEEE

Because of increased processing power and the potential
for high network transfer rates, new applications are
emerging. These applications range from bulk data
transfer for supercomputers to managing digital color
video in real-time. Today, managing digitized color video
in real-time is impossible. Storing just a few minutes of
digitized color video requires gigabytes of storage.
Storing or retrieving it in real-time requires sustained
transfer rates on the order of 20 megabytes per second.

Our architecture, called Swift, addresses the problem of
storing and retrieving large data objects from slow
secondary storage at very high data rates. Swift is based
on the premises that: (1) the network interconnection will
be capable of supporting much higher data rates than
individual storage agents; (2) resources can be preallocated
for storing and transmitting data; (3) multiple storage
agents can be driven concurrently using data striping; and
(4) failures of storage agents can be masked using data
redundancy.

Swift is based on a client-server model and addresses the
issues of authentication, access control, and encryption.
Since it is a distributed architecture made up of indepen-
dently replaceable components, it can provide very high
reliability. It is adaptable to different network intercon-
nection topologies and technologies. Swift operates by
having a storage mediator reserve resources from storage
agents in a session-oriented manner, and then presenting a
distribution agent with a transfer plan. The distribution
agent stores or retrieves the data at the storage agents
following that plan.

Even though Swift was designed with very large objects in
mind, it can handle small objects such as those encoun-
tered in normal file systems with two penalties: one
roundtrip time for a short network message to consult the
storage mediator, and computing the required data
redundancy. Swift is also well suited as a swapping device
for high-performance work stations if data redundancy is
not used.

123

We also present the summary of an Ethernet-based, proof-
of-concept local-area prototype of Swift. This implemen-
tation demonstrated the validity of disk striping over a set
of servers placed on the network. Our prototype achieved
data rates higher than writing to the local disk and also
higher than those obtained by the NFS file service.

THE SWIFT ARCHITECTURE

The only way to address the disparity between the transfer
rate of disk devices and the higher data rates mandated by
new applications is to use several disks in parallel. Much
like memory interleaving, faster secondary storage systems
can be built from a collection of slower storage devices.
Several concurrent I/O architectures, such as Imprimis
ArrayMaster {1], DataVault [2], CFS [3], and RAID [4,5],
are based on this observation. Swift uses this approach to
achieve any required data-rate to secondary storage up to
saturation of the interconnection medium. Figure 1 has a
diagram of the architectural structure of Swift.

Client _O
[Interconnection Medium [
. Agm:s
Distribution Storage :
Agent Mediator _O

Figure 1. Components of the Swift architecture.

The Swift architecture distinguishes four logical compo-
nents: distribution agent, data producer, storage mediator,
and storage agents:

A distribution agent operates in close cooperation with
the data producer. 1t is responsible for assembling the
data streams coming in from the multiple data repositories
(in the case of reading), and distributing the data to be
striped over the several data repositories (in the case of
writing). Encryption and decryption are also the responsi-
bility of the distribution agent.

The storage mediator is central to Swift. It operates in
close cooperation with the storage agents and is respon-
sible for providing directory services, authentication,
enforcing access control, producing transfer plans,
administering storage allocation, cache coherency, and
ensuring serializability of concurrent activities.

The storage agents drive the storage devices at the data
repositories and are responsible for storing and retrieving
data at negotiated rates. They are also responsible for
keeping enough information to allow the reconstruction of
objects from its constituent parts should the storage
mediator fail.

Swift assumes that an interconnection medium with
sufficient capacity will be available for the applications.
This assumption is reasonable since high-speed communi-
cations networks that operate in excess of 1 gigabit per
second are being developed.

When creating a directory that will store Swift objects, its
name and protection status, as well as the degree of
redundancy of all objects stored in it, are specified. The
degree of resiliency of the directory itself is also specified
to the storage mediator.

In order to store an object in Swift, the data producer
contacts the distribution agent with the name, estimated
size, estimated maximum data-rate, and resiliency require-
ments of the object to store. The distribution agent in turn
contacts the storage mediator with these requirements.

The storage mediator determines the degree of redundancy
required for the object. It then determines which of the
storage agents will service this request and how the object
will be striped across them. The storage mediator requests
internal object repository handles to each of the storage
agents. Upon completion of this request, each storage
agent has reserved the necessary resources in terms of
storage and transfer capacity for it to store its assigned part
of the object. The storage mediator collects all the handles
from the storage agents, returning the collection of internal
object repository handles to the distribution agent as part
of the transfer plan for the object.

Once the storage plan is created, the distribution agent
does not use the storage mediator as an intermediary; it
sends data directly to the storage agents. The distribution
agent returns a handle for the object to the data producer.
This handle, which is internally generated by the distribu-
tion agent, is used with each request to transfer data. The
distribution agent routes the (possibly modified) data to
the appropriate storage agents. This scenario assumes that
the data producer knows how to contact a distribution
agent.

The scenario for retrieving data is analogous, with the only
difference being that the transfer plan tells the distribution
agent from which storage agents the data must be fetched.
The final collation and presentation to the client is done by
the distribution agent.

In the following subsections the distribution agent, storage
mediator, and storage agent are presented in more detail.

Distribution agent

The distribution agent acts on behalf of its clients, the data
producer and the data consumer, in the storage and
retrieval of all data. Although not required, we expect that
in practice both the data producer and the data consumer
be co-resident in the same host as the distribution agent.

124

The distribution agent interacts with the storage mediator
to obtain directory service, access rights to objects,
encryption keys, and transfer plans. In addition, all
computed transformations of the data, such as encryption
and erasure correcting codes, are done by the distribution
agents. Authentication is accomplished through a secure
exchange of keys with the storage mediator to obtain a
trusted channel.

The primary task of the distribution agent is to implement
distributed striping of the data over several storage agents.
When reading, it assembles the object from the incoming
data streams according to the transfer plan. When writing,
it distributes the data object among the several storage
agents. In both cases, it performs any parity computations
necessary to provide fault tolerance.

Storage mediator

The storage mediator is central to establishing and
administering resources. It negotiates with the storage
agents to reserve sufficient space and transfer capacity. It
also determines how to best meet the resiliency require-
ments and returns this as part of the transfer plan.

The transfer plan contains the list of segments making up
the object, the transfer unit for each segment, the transfer
unit for each storage agent, a list of storage agents to hold
the data, and a list of storage agents to act as checks on the
data.

Encryption is the mechanism used to provide authentica-
tion, access control, and security of the data. The storage
mediator is the sole repository for encryption keys. It will
use a secure key exchange protocol to authenticate the
distribution agents.

Since the Swift architecture is based on preallocation, it
easily provides sequential write sharing, namely the ability
for two clients to have alternate access to the same data.
The storage mediator will use a call-back mechanism to
provide cache coherency. When a distribution agent
requests access to an object that still may exist in the cache
of some other client, the storage mediator will cause that
cache to be flushed as part of the resource allocation
protocol.

In order to achieve high performance, a pessimistic storage
allocation strategy is used. Since all resources are
preallocated, requests that would exceed current storage
capacity will be denied. Similarly, requests that would
exceed the current transfer capacity will be denied. These
requests can be reissued at a later time when more re-
sources are available.

The storage mediator must be highly available and the
metadata it maintains be highly fault tolerant. For ex-
ample, each directory entry contains the name of the
object, its protection status, a list of data segments and
storage agents that hold the object. A hot stand-by
approach can be used to ensure that the storage mediator
will be able to provide services. Load sharing among the
copies of the storage mediator can improve performance of
the system. The integrity of the storage mediator’s data
can be insured in several ways. One method is to let Swift
administer the metadata specifying a high degree of
resiliency. Another would be to use standard data base
techniques [6].

Storage agents

The storage agents administer all aspects of secondary
storage media, including data layout optimization and off-
line data alignment. Each storage agent may administer
many storage devices that can be disks, or other high-
speed devices including disk arrays.

Since the Swift architecture is intended for objects much
larger than any cache, we believe that caches will be used
most often for staging data into transfer units than for
storing complete objects. For small objects, we expect
caches to be as beneficial as in other systems [7].

Object descriptors store redundant information. This
allows the reconstruction of all objects by scavenging the
data in the storage agents, should a catastrophic failure or a
software error render the storage mediator inoperative.

For any long-term storage system, reliability is an impor-
tant concern. In an architecture that uses disk striping {8],
the increased number of devices increases the probability
that some will be inoperative [9]. Through the appropriate
use of redundancy, the reliability of the system can be
enhanced to any desired level.

The solution we have chosen for Swift is to use redundant
storage for erasure correcting codes [4]. By using the
error-detecting capabilities of the disks, a single parity disk
is sufficient to tolerate a single failure [4,9]. In this way, if
a disk fails then the information on the other disks can be
used to reconstruct it.

The Swift architecture provides the distinct advantage that
the application can choose its reliability level. Since data
transfer is segment based, each transfer plan can specify a
required reliability. For a given reliability level and
performance constraint, an appropriate group size can be
selected based on available resources.

125

TWO VALIDATION STUDIES

We have done two studies to validate the Swift architec-
ture. The first was a simulation study of a possible local-
area network implementation of Swift. The second was a
proof-of-concept, Ethernet-based prototype of a simplified
version of the architecture. The complete set of results can
be found elsewhere [10,11].

LAN simulation of Swift

The simulator was used to locate the components that were
the limiting factors for a given level of performance. The
simulator did not model caching, computing data parity
blocks, any preallocation of resources, nor did it attempt to
provide performance guarantees. Traces of file system
activity would have been required to model these effec-
tively and such traces were unavailable to us. In addition,
the simulator did not model the storage mediator as it is
not in the path of the data transmitted to and from clients,
but is consulted only at the start of an I/O session.

In our simulation of Swift, to read, a small request packet
is multicast to the storage agents. The client then waits for
the data to be transmitted by the storage agents. A write
request transmits the data to each of the storage agents.
Once the blocks have been transmitted, the client awaits an
acknowledgement from the storage agents that the data
have been written to disk.

Our model of the disk access time is conservative in that
the seck time and rotational latency are assumed to be
independent uniform random variables, and no attempt
was made to order requests to schedule the disk
arm—pessimistic assumptions when advanced layout
policies are used [12].

The data transfer processing costs were taken into account
by assuming that protocol processing required 1500
instructions [13] plus 1 instruction per byte in the packet.

The load that could be carried depended both on the
number of disks used and the block size. The delay was
dominated by the disk, with an average seek time of 16
milliseconds, an average rotational delay of 8.3 millisec-
onds, and a transfer rate of 2.5 megabytes per second. The
result was that transferring 32 kilobytes required about 37
milliseconds on the average. As the block size was
increased, seek time and rotational delay were mitigated
and the transfer time became more dependent on the
amount of data transferred.

As small transfer sizes require many seeks in order to
transfer the data, large transfer sizes have a significantly
positive effect on the data rates achieved. For small
numbers of disks, seek time dominated to the extent that

its effect on performance was almost as significant as the
number of disks.

When 4 disks were used, the system saturated quickly.
For larger numbers of disks, the response time was almost
constant until the knee in the performance curve was
reached. For 32 disks, the maximum sustainable load was
reached at about 22 requests per second. At this point the
disks were 50% utilized on the average. The rate of
requests that are serviceable increased almost linearly in
the number of disks. Increased rotational delay and a
slight loading of the communication medium prevents it
from being strictly linear.

The maximum sustainable data-rate is that which is
observed by the client when the average time to complete
a request is equal to the average time between requests.
For transfer units of 4 kilobytes, the maximum sustainable
data-rate for 32 disks is approximately 2 megabytes per
second. When transfer units of 32 kilobytes are used, the
maximum sustainable data-rate increases to nearly 12
megabytes per second for the same 32 disks. The increase
in effective data-rate is almost linear in the size of the
transfer unit.

The clear conclusion is that when sufficient interconnec-
tion capacity is available, the data rate is almost linearly
related to both the number of storage agents and to the size
of the transfer unit. The reason the transfer unit impacts so
much the data-rates achieved by the system is that seek
time and latency at the disks are enormous when compared
to the speed of the processors and the network transfer
rate. This also shows the value of careful data placement
and indicates that resource preallocation may be very
beneficial to performance.

LAN implementation of Swift

In a simplified Ethernet-based prototype of Swift we found
that its performance was limited by the speed of the
Ethernet. The prototype provided network data rates that
were between two and three times better than access to the
local SCSI disk. When compared with NFS, it provided
almost twice the data-rates for reads and exceeded the NFS
data rate for writes by more than eight times. Though
Swift differs from NFS significantly, this establishes the
ability of Swift to aggregate data-rates of slower /O
devices.

To measure the data-rate performance of the prototype,
three, six, and nine megabytes were read from and written
to a Swift object. To calculate confidence intervals, eight
samples of each measurement were taken. Analogous tests
were performed using the local SCSI disk and the NFS file
service. Maintaining cold caches was achieved by using
/etc/umount. The three storage agents were Sun 4/20s
with 16 megabytes of memory and a local 104-megabyte

126

local SCSI disk also under SunOS 4.1.1. These hosts were
placed on a 10-megabit/second dedicated Ethernet. Aside
from the standard system processes, each of the servers
was dedicated to the Swift storage agent software.

For Swift, the Ethernet was a limiting performance factor.
Using three storage agents, the utilization of the network
ranged from 77% to 80% of its measured capacity of 1.12
megabytes/second. A fourth storage agent would only
saturate the network while not significantly increasing
performance. The NFS measurements were run over a
lightly-loaded, shared departmental Ethernet, not over the
dedicated laboratory network. The traffic present in this
shared network when the measurements were made was
less than 5% of its capacity, which should not significantly
affect the measured data rates.

When compared with the local SCSI disk performance, the
Swift prototype only performs between 29% and 36%
better. This contrasts sharply with previous measurements
taken under SunOS 4.1 where the Swift prototype per-
formed about 250% better than local SCSI read access.
This change is due to a significant improvement in the
SunOS file system under SunOS 4.1.1 [14]. In contrast to
its read performance, when writes are considered, the
Swift prototype shows between a 274% and a 280%
increase over that of the local SCSI disk. The ideal
performance improvement would have been 300% if the
interconnection media were not limiting performance.
Since its performance is less than 300% of the local SCSI
performance, this supports the assertion that the factor
most limiting its performance is the Ethernet.

When the Swift prototype is compared with the high-
performance NFS file server; its performance is between
180% and 197% better in the case of reads. This shows
that Swift can successfully provide increased I/O perfor-
mance by aggregating several low-speed storage agents
and driving them in parallel.

In the case of writes, the Swift prototype performs
between 767% and 809% better than the high-performance
NFS file server. When interpreting these measurements
one should also keep in mind that the write data-rate
measurements in NFS reflect the write-through policy of
the server. We have not yet implemented a write-through
policy for the Swift prototype. This makes data-rates for
write somewhat difficult to compare with those of Swift.

To determine the effect of doubling the data-rate capacity
of the interconnection, we added a second Ethernet
segment between the client and additional storage agents.
This second network segment is shared by several groups
in the department. During the measurement period, its
load was seldom more than 5% of its capacity.

We did not expect to obtain data-rates twice as great as
those using only the dedicated laboratory network since
we expected the network subsystem of the client to be
highly stressed. To our surprise, our measurements show
that for write operations, the Swift prototype almost
doubled its data rate.

In the case of reads, the increase in performance of the
Swift prototype is less pronounced. This can be auributed
to several factors including the increased load on the
client, a lack of buffer space, and the increased complexity
of the read protocol that requires many more packets to be
sent than does the write protocol.

These measurements demonstrate that the Swift architec-
ture can make immediate use of a faster interconnection
medium and that its data-rates scale accordingly.

The prototype demonstrates that the Swift architecture can
achieve high data rates on a local-area network by aggre-
gating data rates from slower data servers. The prototype
also validates the concept of distributed disk striping in a
local-area network by providing data rates higher than
both the local SCSI disk and the NFS file server.

FUTURE WORK

One area of the Swift architecture that requires further
work is eliminating the requirement that resources be
preallocated. We are investigating ways to apply real-time
scheduling techniques to the problem of providing
performance guarantees.

A second area of future work is that of co-scheduling
resources. The support of continuous multimedia applica-
tions requires that peripheral processors and the communi-
cation subsystem be scheduled together.

A more immediate goal is to measure the effect of adding
fault-tolerance on the performance prototype, particularly
when a failure has occurred.

CONCLUSIONS

In this article we have presented a general 1/O architecture
for manipulating very large data objects at high data rates.
The principle behind our architecture is simple: aggregate
arbitrarily many (slow) storage devices into a faster logical
device, making all applications unaware of this aggrega-
tion. In our scheme the maximum data rate of individual
secondary storage devices ceases to limit the maximum
data-rate that can be achieved. Known techniques of
hierarchical clustering can be used to scale the perfor-
mance achieved with our approach to exploit advances in
technology that become available. This architecture
generalizes to distributed systems’ current I/0 channel

127

architectures, disk striping techniques, and the proposed
disk array architecture RAID.

We have modeled the data-rate behavior of this architec-
ture in the case of multiple storage agents connected to a
common local-area network, where the maximum data-rate
of the network is higher than that of each of the individual
storage agents. We observed good scaling properties. A
simplified implementation of the architecture confirmed
that large aggregate data-rates are achieved from slower
1/0 devices.

The transfer size of objects was found to have a significant
effect on the performance of the system. This is because
small transfer sizes increase the number of seeks as well as
the latency observed at the disks. By using sequential
storage preallocation and data staging, seeks can be
minimized and performance significantly improved.

Tolerance to failures in the Swift architecture is very
flexible. Each component can be hardened individually.
Computed data redundancy can be used to protect against
failures of the storage agents. The metadata can be
hardened using standard data base techniques. Multiple
interconnections can be used to guarantee alternative paths
to the data and metadata of the system.

ACKNOWLEDGEMENTS

We are grateful to D. Edelson, A. Emigh, R. Golding, and
M. Long for their assistance, and to L. Haas for careful
reading of earlier versions of this manuscript.

REFERENCES

1. Imprimis Technology, ArrayMaster 9058 Controller,
1989.

Thinking Machines, Incorporated, Connection
Machine Model CM-2 Technical Summary, May
1989.

3. Pierce, P., “A concurrent file system for a highly
parallel mass storage subsystem,” Proceedings of the
fourth Conference on Hypercubes, Monterey, CA,
March 1989.

Patterson, D., G. Gibson, and R. Katz, “A case for
redundant arrays of inexpensive disks (RAID)”,
Proceedings of the ACM SIGMOD Conference,
Chicago, IL, ACM, June 1988, pp. 109-116.

Ng, S., “Pitfalls in designing disk arrays,” Proceed-
ings of the IEEE COMPCON Conference, San
Francisco, CA, February 1989.

128

10.

11.

12.

13.

14.

Cabrera, L.-F., and J. Wyllie, “QuickSilver distributed
file services: An architecture for horizontal growth,”
Proceedings of the second IEEE Conference on
Computer Workstations, Santa Clara, CA, IEEE
Computer Society, March 1988.

Nelson, M., B. Welch, and J. Ousterhout, “Caching in
the Sprite network file system,” ACM Transactions on
Computer Systems, Vol. 6, February 1988, pp. 134-
154.

Salem, K., and H. Garcia-Molina, “Disk striping,”
Proceedings of the second International Conference
on Data Engineering, TEEE Computer Society,
February 1986, pp. 336-342.

Garcia-Molina, H. and K. Salem, “The impact of disk
striping on reliability,” JEEE Database Engineering
Bulletin, Vol. 11, March 1988, pp. 26-39.

Cabrera, L.-F., and D. D. E. Long, “Swift: A storage
architecture for large objects,” Tech. Rep. IBM
Almaden Research Center RJ7128, International
Business Machines, October 1990.

, “Exploiting multiple I/O streams to
provide high data-rates,” Proceedings of 1991
Summer Usenix Conference, Nashville, TN, Usenix
Association, June 1991.

Rosenblum, M., and J. K. Ousterhout, “The LFS
storage manager,” USENIX Summer Conference, June
1990 pp. 315-324.

Cabrera, L.-F., E. Hunter, M. J. Karels, and D. A.
Mosher, “User-process communication performance
in networks of computers,” [EEE Transactions on
Software Engineering, Vol. 14, January 1988, pp. 38-
53.

McVoy, L.W., and S. R. Kleiman, “Extent-like
performance from a UNIX file system,” USENIX
Winter Conference, 1991.

https://www.researchgate.net/publication/3508028

