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Highlights 

• Water stress is expressed based on precipitation (P) minus evapotranspiration (ET). 
• Cumulative P–ET relates to vulnerability reflected by moisture loss and mortality. 
• Dense lower-elevation forests are more vulnerable during multi-year droughts. 
• An LSTM model predicts ET (testing r2=0.72) and water availability (r2=0.99). 
• Historical-minimum annual P–ET portends water stress in multi-year droughts. 

Abstract 
Water availability in mountain forests affects vegetation response to drought, which in turn changes evapotranspiration (ET). 
We investigated water-balance indicators based on precipitation (P) minus ET to assess Mediterranean-climate forest 
vulnerability to multi-year droughts. We used the drought-vulnerable dense mixed-conifer forests of California’s Sierra 
Nevada, which includes 78 groves of giant sequoia as study area. With long-term Landsat-based ET data during 1985-2018, 
water-stress patterns at 30-m resolution during two historical droughts (1987-92 and 2012-15) were analyzed. Canopy moisture 
loss and tree mortality were used as indices of drought vulnerability. Using cumulative multi-year P–ET as an indicator, groves 
that were water stressed in 1987-92 were more vulnerable in California’s unprecedented 2012-15 drought. Historical-minimum 
annual P–ET is an indicator of water stress, explaining 32% and 29% of the variance of canopy moisture loss and tree 
mortality, respectively. As an extreme test to explore potential vegetation response, we trained a deep-learning Long Short-
Term Memory (LSTM) model to project ET during hypothetical extended-drought scenarios. The LSTM model reasonably 
predicted ET with r2 of 0.72 for the testing period. Annual P–ET using LSTM-based ET agreed (r2=0.99) with that using ET 
values from Landsat. Historical water-stress-prone areas were projected to suffer larger ET decreases and to experience more-
severe stress during a 12-yr drought scenario. Water stress is more severe in lower-elevation forests, versus mid-to-high areas 
that have higher precipitation and shorter growing season under current climate. Our study provides water-balance-based 
indicators to project drought vulnerability and assess effects of disturbance in forests in a warming climate. 
Keywords: Water balance; Multi-year drought; Evapotranspiration; Giant sequoia; Vulnerability; Water stress

1 Introduction 
Droughts are projected to be more widespread and extreme in 
terms of frequency, intensity, and duration due to 
anthropogenic climate warming (Mann and Gleick, 2015; 
Moravec et al., 2021; Williams et al., 2020), which may 
severely challenge the current resistances of environmental 
systems (Vicente-Serrano et al., 2020). Drought-induced tree 
mortality has been observed in many forest biomes, and 
profoundly affects ecological and societal systems (Allen et 
al., 2015, 2010; Anderegg et al., 2019, 2016). Droughts can 
potentially alter forest ecosystems and impact the feedbacks 
between the biosphere and other Earth systems (Adams et al., 
2010, 2009; McDowell and Allen, 2015), including on albedo, 
water and near-ground energy budgets, wildfire, insect 
outbreaks, and potential flips between being a carbon sink 
versus carbon source. Hydraulic failure (Arend et al., 2021; 
McDowell and Allen, 2015; Olson et al., 2018), beetle attack 
(Stephenson et al., 2019; Stephenson and Das, 2020), and 
topography (Stovall et al., 2019) interactively contribute to 
tree mortality. As water balance substantially influences tree 
growth (Hember et al., 2017; Williams et al., 2013), water-
stressed forest areas during drought can show tree mortality.  

Vegetation plays a central role in modulating Earth’s water 
cycle. Plant transpiration is a dominant part of the water-

balance component evapotranspiration (ET) (Saksa et al., 
2017; Schlesinger and Jasechko, 2014; Scott et al., 2021; Zhu 
et al., 2015). Tree size also plays an important role in plant 
transpiration, since larger trees in a given forest can use more 
water (Aparecido et al., 2016; Dawson, 1996). Besides having 
overstocked mixed-conifer forests that evapotranspiration 
demand can exceed water availability during multi-year 
droughts (Goulden and Bales, 2019), the southern Sierra 
Nevada is home to an especially large and water demanding 
species, the giant sequoia. The giant sequoia (Sequoiadendron 
giganteum (Lindl.) J.Buchholz) is the largest tree on Earth, 
with a height of up to 90 m and a life span of over 3000 years 
(Stephenson, 1996). Giant sequoias naturally live mixed with 
other tree species in fragmented groves within a narrow mid-
elevation range (1400 to 2200 m) on the west slope of 
California’s Sierra Nevada (Stephenson, 1999), which is 
characterized by a Mediterranean climate with cool wet winter 
and dry summer. The distribution of giant sequoias appears to 
favor available water from precipitation (DeSilva and Dodd, 
2020) and abundant soil moisture (Rundel, 1972), possibly 
augmented by subsurface flow from higher elevations 
(Weatherspoon, 1986). To maintain favorable water status, 
giant sequoias can make adjustments in hydraulic architecture 
at leaf, branch, and whole-tree scales, partially compensating 
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the increasing hydraulic limitations with tree height (Ambrose 
et al., 2016; 2018). Giant sequoias have high resistance to 
insects, disease, and fire damage (Hartesveldt et al., 1975; 
Swetnam, 1993) that may accompany droughts. The 
prolonged, severe California hot drought from 2012 to 2015 
was associated with extensive forest die-off in the Sierra 
Nevada (Brodrick and Asner, 2017; Goulden and Bales, 2019; 
Restaino et al., 2019). Since giant sequoias have relatively 
higher water availability, sequoia groves may act as 
hydrologic refugia for climate extremes (McLaughlin et al., 
2017; Su et al., 2017). However, apparent foliage dieback was 
also observed in giant-sequoia groves during the 
unprecedented 2012-15 drought (Stephenson et al., 2018), 
coincident with lower available water (Nydick et al., 2018; 
Paz-Kagan et al., 2018).  

Vegetation changes during drought affect the water 
balance in mountain forests, e.g. water-stress-induced tree 
mortality causes ET decreases. Tree mortality during droughts 
can be measured at leaf and landscape scales (Ambrose et al., 
2018; Stephenson et al., 2018); however, on-the-ground 
measurements are often time consuming, expensive, and 
limited in space and time. Forest water-stress-relevant data at 
the landscape or regional scales are often needed for drought 
assessment and forest management. Remote sensing can 
provide large-scale data, such as Canopy Water Content 
(CWC). As a variable that integrates leaf-water content and 
leaf-area index, CWC was measured by High Fidelity Imaging 
Spectroscopy (HiFIS) in 2015 and 2016 throughout 
California, showing its landscape-scale variation and 
relationship to foliage dieback (Martin et al., 2018; Nydick et 
al., 2018; Paz-Kagan et al., 2018). Large-scale forest drought 
resistance mapped based on the 30-m-resolution CWC (Asner 
et al., 2016; Brodrick et al., 2019) showed significant 
variability during California’s 2012-15 drought. Another 
indicator of available soil moisture based on landscape surface 
characteristics is Topographic Wetness Index (TWI) (Western 
et al., 1999). For example, sequoia groves have higher TWI 
than other forested areas (Ray, 2016; Su et al., 2017), further 
suggesting they may receive water subsidies from outside to 
support their large water demand.  

Long-term satellite-based Normalized Difference 
Vegetation Index (NDVI) offers valuable information on 
vegetation response across the globe. This greenness index 
has been used as an early warning signal of forest mortality 
(Liu et al., 2019; Rogers et al., 2018), in mapping mortality 
(Furniss et al., 2020; Meddens et al., 2013), and in 
investigating vegetation responses to drought (Warter et al., 
2020). Meanwhile, there exists a robust relation between 
Landsat NDVI and annual ET measured by flux towers 
(Goulden et al., 2012; Goulden and Bales, 2019; Ma et al., 
2020; Maurer, 2021; Roche et al., 2018), providing a way to 
estimate ET at a resolution of 30 m based on vegetation 
condition. A spatially mapped water-balance-based water-
stress indicator, cumulative multi-year precipitation minus 
evapotranspiration (Cum. P–ET), was found to be closely 
linked to forest die-off during California’s 2012-15 drought, 
reflecting moisture overdraft and deep soil drying (Goulden 
and Bales, 2019). One advantage over other water-stress-

relevant variables (e.g. climatic water deficit and vapor 
pressure deficit), the metric based on P–ET integrates 
vegetation response (reflected by ET) and water availability at 
a 30-m scale, making it potentially useful to investigate water 
stress in high-ET-demand forests during prolonged multi-year 
drought. 

Forest actual ET can reflect vegetation response to climate 
variability and other disturbance. For example, forest ET 
decreases during drought due to water-stress-induced tree 
mortality, and also decreases after wildfire (Ma et al., 2020). 
However, there exists a time-lag effect (i.e. memory effect) in 
the complex relationship between vegetation response and 
climate (Ogle et al., 2015; Zhao et al., 2020), required to be 
modeled by non-linear approaches (Kraft et al., 2019; 
Papagiannopoulou et al., 2017). As a type of recurrent neural 
network with the ability to memorize system internal state, the 
deep-learning Long Short-Term Memory (LSTM) network 
has been applied to time-series data in natural systems (Gauch 
et al., 2021; Kratzert et al., 2019; Reichstein et al., 2019). The 
state-of-the-art LSTM model has been applied to estimate 
reference ET (Z. Chen et al., 2020; Yin et al., 2020) and actual 
ET (J. Chen et al., 2020; Granata and Di Nunno, 2021). Yet, 
long-term satellite-based actual ET data has not yet been 
investigated by the LSTM model.  

This study focused on the assessment of water availability 
in mountain forested areas during multi-year droughts. 
Specifically, we used California’s giant-sequoia groves as an 
example of high-ET Mediterranean forests, as the endangered 
world’s largest tree is expected to have high water 
consumption. We investigated water-balance-based indicators 
using gridded P and ET data to assess forest drought 
vulnerability, which has specific significance for emerging 
climate change risks for forests around the world. With long-
term data during 1985-2018, the water availability during two 
historical multi-year droughts was assessed and compared 
between giant-sequoia groves and non-grove control areas. To 
evaluate the applicability of water-balance-based indicators, 
we developed an interpretable deep-learning model to project 
ET during hypothetical extreme-drought scenarios, which 
were also used as a stress test to explore potential vegetation 
response. We hypothesized that i) giant-sequoia groves have 
higher ET and encounter more-severe water stress than 
surrounding non-grove forests; ii) water stress during multi-
year droughts shows difference along elevation gradients 
inside high-ET areas, and iii) historically water-stressed areas 
tend to suffer water stress during subsequent multi-year 
droughts, mimicking their response and vulnerability during 
historical droughts. 

2 Data and methods 
Our study domain is located in the Sierra Nevada of 
California, including all 78 giant-sequoia groves (Figure 1). 
We used a water-balance-based indicator, water availability 
(P–ET), to investigate water stress and tree die-off in the 
groves during multi-year droughts (Figure 2). For historical 
droughts, we determined cumulative water availability (Cum. 
P–ET) and linked it with tree mortality and vegetation 
moisture loss. To assess grove vulnerability during 
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hypothetical more-extreme droughts, we used an interpretable 
deep-learning LSTM model to simulate ET and to project the 
water-stress metric Cum. P–ET and moisture loss. The data-
driven LSTM model was developed using 34 years of 
historical data to learn vegetation response to climate 
variability. Two extended scenarios, i.e. 8-year and 12-year 
droughts, were designed as stress testing to investigate 
possible changes of ET and water stress in more-extreme 
droughts. 
2.1 Study area 
The study domain ranges from the American River basin in 
the north to the Kern River basin in the southern Sierra 
Nevada (Figures 1 and S1), including 78 giant-sequoia groves 
(Willard, 1994). We obtained 70 grove boundaries from the 
Sequoia and Kings Canyon National Parks (also used in Su et 
al. (2017) for investigation of vegetation indices), and added 
the other 8 grove boundaries based on giant-sequoia trails map 
(http://www.redwoodhikes.com/Sequoias.html) and DeSilva 
and Dodd (2020). In the groves, giant sequoia grows in a 
mixed conifer forest with various tree species. Dominant 
overstory tree species in groves are white fir (Abies concolor 
(Gordon) Lindl. ex Hildebr.) with high stem density, and giant 
sequoia with relatively high canopy cover and basal area 
(Christiansen, 1975; Meyer and Safford, 2011; Rundel, 1971). 
Other common species include sugar pine (Pinus lambertiana 
Douglas), ponderosa pine (Pinus ponderosa Douglas ex C. 
Lawson), incense-cedar (Calocedrus decurrens (Torr.) 
Florin), and California black oak (Quercus kelloggii Newb.). 
According to the Sequoia Tree Inventory (STI) conducted in 
one-third of all groves in the 1960s and 1970s (USDA, 2013), 
giant sequoia averages 3% of trees in groves, but 26% of basal 
area. The density of large sequoia (trunk diameters >1.07 m) 
is estimated as 2.61 large sequoias/acre (Stephenson and 
Brigham, 2021). The total area of all groves is 155 km2 (Table 
1). We classified groves based on their size ranking and 
cumulative areas (Guo et al., 2013). Over half (53%) of the 
all-grove area was in the largest seven groves, which were 
classified as large-size grove; 13 groves accounting for 32% 
were classified as medium-size, and the remaining 58 were 
small-size, together covering 15% of the all-grove area. 
Average elevations of groves range from 1120 to 2350 m 
using 30-m digital elevation data from the Shuttle Radar 
Topography Mission (SRTM, Farr et al., 2007). Based on the 
33rd (1830 m) and 66th (1950 m) percentiles of elevation, 
groves were also classified as low (25 groves), medium (26), 
and high (27) elevation.  

For comparison to the groves containing giant sequoia, we 
specifically chose forested areas (>95% of area classified as 
conifer, hardwood, or mixed forest) surrounding groves within 
500-1000 m distance as non-grove controls (199 km2, Figure 
1). We used vegetation data from the USDA Forest Service 
Region 5 
(https://www.fs.usda.gov/detail/r5/landmanagement/resource
management/?cid=stelprdb5365219) and CALFIRE Fire and 
Resource Assessment Program (FRAP) 
(https://map.dfg.ca.gov/metadata/ds1327.html). The vector 
layer data of vegetation cover type and dominant vegetation 

alliances from the Region 5 dataset were rasterized to a 30-m 
resolution, the same as that of raster data of tree size and tree 
canopy cover from the FRAP dataset. Although grove and 
control areas had a similar composition of vegetation cover 
type (82% area is conifer, 13% mixed forest, and 2% 
hardwood, Figure S2a), control areas showed a different forest 
composition, excluding vegetation alliances of giant sequoia 
or mixed conifer-giant sequoia (Figure S2b). In terms of forest 
structure, the portions of medium/large tree size and dense 
canopy cover were higher in giant-sequoia groves than in the 
control (Figures S2c,d). As a critical structural characteristic 
of forests (Chen et al., 1997; Parker, 2020), Leaf Area Index 
(LAI) represents site occupancy integrating tree size, stand 
density, and site resource supply (Peduzzi et al., 2012; Vose 
and Allen, 1988). Thus, annual LAI data from 500-m MODIS 
MOD15A2H product (Myneni et al., 2002) were bilinearly 
interpolated to 30-m resolution. Using the median values of 
2001-2018 annual LAI, giant-sequoia groves showed a larger 
mean than did the controls (2.10 versus 1.88, Figure S3a), 
consistent with their relatively larger tree size and denser 
canopy.  
2.2 Water-balance indicators and linkage to tree die-

off 
We evaluated cumulative water availability (Cum. P–ET) 
during multi-year drought and historical-minimum annual P–
ET as water-stress indicators for drought vulnerability 
assessment, reflecting sustained moisture overdraft and 
change of subsurface storage (Bales et al., 2018; Roche et al., 
2020). Goulden and Bales (2019) found that Cum. P–ET can 
be negative during multi-year droughts, which has a strong 
statistical relationship to tree die-off in Sierra Nevada. 

Annual water-year (October-September) water availability 
(P–ET) at 30-m resolution from 1985 to 2018 was calculated 
using gridded P from the Parameter-elevation Relationships 
on Independent Slopes Model data (PRISM, 
http://www.prism.oregostate.edu) and NDVI-based ET. The 
widely used PRISM data were developed based on ground 
measurements at 13,000 sites (Daly et al., 2008, 1994). To 
match the 30-m resolution in our study, the 800-m PRISM 
data were downscaled by bilinear interpolation (Goulden and 
Bales, 2019; Jin et al., 2018; Lany et al., 2020) and summed 
by water year. Compared to annual precipitation measured by 
rain gauge at Calaveras Big Trees (CVT) around North 
Calaveras Grove, the 30-m PRISM data showed good 
agreement with root-mean-square error (RMSE) of 74 mm 
and mean absolute percentage error (MAPE) of 3.88%. To 
spatially and temporally estimate gridded annual ET, previous 
studies (Goulden and Bales, 2019, 2014; Ma et al., 2020; 
Roche et al., 2020) have developed a non-linear-regression 
between ET measurements and annual NDVI. With 77 site-
years of annual ET data (unit of mm) from 10 eddy-covariance 
flux towers from Goulden and Bales (2019) and our processed 
NDVI (described below), a non-linear exponential regression 
(Equations 1 and Figures S4-S5) was fitted by minimizing 
least squares. 

 
𝐸𝑇 = 123.385 × exp(2.8539 × 𝑁𝐷𝑉𝐼)         (1)      
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Using Google Earth Engine cloud-computing environment 
(Gorelick et al., 2017) to process NDVI time series (Huang et 
al., 2017; Ma et al., 2020; Roche et al., 2020; Sankey et al., 
2021), we collected NDVI at a 30-m resolution from US 
Geological Survey (USGS) Landsat Collection Tier 1 surface 
reflectance data (https://www.usgs.gov/core-science-
systems/nli/landsat/landsat-collection-1-surface-reflectance; 
Masek et al., 2006; Vermote et al., 2016). Annual NDVI was 
the water-year mean of all Landsat scenes, filtered for 
shadows, water, and snow (Zhu and Woodcock, 2012). Due to 
the differences in surface reflectance across Landsat missions 
(Landsat 5, Landsat 7, and Landsat 8), their derived NDVI 
data (Figure S3c) can show noticeable differences (Claverie et 
al., 2015; Su et al., 2017). Thus, to obtain consistent NDVI 
data over a long period 1985-2018, we homogenized NDVI 
data from Landsat 5 and Landsat 8 to Landsat 7 (Goulden and 
Bales, 2019; Su et al., 2017; Sulla-Menashe et al., 2016), 
using regression equations developed based on common data 
during overlapping periods across Landsat missions (Figure 
S5c). 

Tree mortality data were obtained from annual U.S. Forest 
Service (USFS) Aerial Detection Surveys (ADS, 
https://www.fs.usda.gov/detail/r5/forest-
grasslandhealth/?cid=fsbdev3_046696), typically performed 
in summer when forest damage or mortality are most visible. 
Trained surveyors visually estimate and record dead Trees Per 
Acre (TPA) as a polygon attribute of delineated regions with 
visible mortality (Byer and Jin, 2017). ADS vector layers 
were rasterized to TPA data across flown areas. We then 
generated annual TPA at 30-m resolution by averaging TPA 
data and inserting zero for mortality-free areas inside flown 
areas (Goulden and Bales, 2019). 

Vegetation moisture loss, indicated by NDMI change (i.e. 
ΔNDMI), was correlated with tree mortality and widely used 
for spatial mapping (Goodwin et al., 2008; Goulden and 
Bales, 2019; Roberts et al., 2019; Van Gunst et al., 2016). 
Tree mortality inferred from ΔNDMI complements originally 
coarse-scale TPA data from USFS ADS, which depends on 
surveyors’ visual interpretation and can be limited by poor 
flight conditions (Byer and Jin, 2017). Thus, we used summer 
Landsat NDMI images, coincident with when USFS ADS 
were generally conducted. Similar to the NDVI 
homogenization procedure, we homogenized mean NDMI 
data in late summer (July-September, Figure S5d). 
2.3 Interpretable deep-learning model for water-stress 

prediction 
To predict ET and represent vegetation response to climate 
variability and drought inside densely forested groves, we 
used a deep-learning LSTM model trained by a 34-year time 
series (1985-2018). The LSTM model overcomes exploding 
and vanishing gradient problems in traditional recurrent neural 
networks (Hochreiter and Schmidhuber, 1997; Shen et al., 
2018). An LSTM layer has recurrently connected memory 
cells to store and process sequential information, allowing the 
neural network to learn long-term or short-term dependencies 
in natural systems (Figure S6). The LSTM model has been 
used to predict watershed runoff (Gauch et al., 2021; Kratzert 

et al., 2019), water-table depth (Zhang et al., 2018), vegetation 
state (Kraft et al., 2019), and river water quality (Zhi et al., 
2021). Each LSTM memory cell is updated at each time step 
by a set of activations (e.g. three information gates: input, 
forget, and output gates) and two states (i.e. cell state and 
hidden state). The fully connected dense layer and dropout 
layer were added after the LSTM layer to improve fitting 
ability and avoid overfitting, respectively (Kraft et al., 2019; 
Zhang et al., 2018). The forward pass of the LSTM model can 
be described mathematically by Equations S1-S6. Model 
settings, including hidden neurons, activation function, and 
dropout rate, are shown in Table S1. The LSTM model was 
implemented in the open-source machine-learning 
frameworks Tensorflow and Keras. 

The LSTM model inputs consist of 4 dynamic forcing data 
at each annual time step, including precipitation and 
temperature data, previous ET, and fire perturbation (Table 2). 
Additionally, we used 21 static features as inputs, including 
vegetation condition, meteorological normal, historical-
minimum P–ET, snowpack storage, topography, soil and 
subsurface properties (Table 2). In total, there were 25 LSTM 
input features at each 30-m pixel inside giant-sequoia groves. 
We preprocessed all 25 input features and target ET data with 
a standard transformation by subtracting their mean across all 
pixels over our study period, and then dividing the difference 
by their standard deviation. We used a rolling window 
approach to prepare standardized input data of shape (batch 
size=1000, sequence length=5, feature number=25) and 
standardized target ET of shape (batch size, 1). In this study, 
we chose a sequence length of 5 (i.e. a look-back of 5 years), 
which may sufficiently reflect recent vegetation change, 
considering that: a) 5-years-before-fire ET was often used to 
investigate wildfire effects in the Sierra Nevada (Ma et al., 
2020; Roche et al., 2020), and b) the short-term (mean value 
of 5 years) of vegetation-type conversion in forests caused by 
drought-related mortality (Batllori et al., 2020). Though a 
larger value of sequence length can be used, the number of 
available data for training the model would be reduced, and 
more historical data would be required for ET prediction. The 
LSTM model was trained using the Adam optimization with a 
loss function of mean squared error. For a total of 21,4126 
pixels inside groves, the target ET data were split into training 
period (1990-2000 and 2009-2018), validation period (2001-
2004), and testing period (2005-2008), corresponding to 72%, 
14%, and 14% of all data, respectively. With an initial 
learning rate of 0.001, the model learning rate was adjusted by 
the reduce-learning-rate-on-plateau and early stopping 
schedulers in Keras. 

Although the LSTM model can predict vegetation 
response reflected by ET, the model does not explain how the 
25 input features have contributed to ET prediction. Here we 
use a game-theoretic approach, called SHapley Additive 
exPlanations (SHAP; Lundberg and Lee, 2017), to interpret 
the LSTM model’s output and to analyze relationships hidden 
in the black-box model (Batunacun et al., 2021; Vega García 
and Aznarte, 2020). Simply put, an input feature with a larger 
SHAP value relatively contributes to higher output, allowing 
us to identify possible drivers for ET reduction or tree die-off 
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during droughts. More descriptions about SHAP can be found 
in Text S2 and Lundberg and Lee (2017). The SHAP-based 
attribution analysis was implemented using the python SHAP 
package (https://shap.readthedocs.io/). 

As a stress test to explore potential vegetation response to 
extended and acute drought conditions, we used the LSTM 
model to predict ET during hypothetical, extreme-drought 
scenarios. Since the 2012-2015 drought is the unprecedented, 
worst multi-year drought in the instrumental record in 
California, we simply designed two scenarios by extending 
the 2012-15 drought, similar to the approach used in Flint et 
al. (2018) for evaluating hydrologic results and water supply 
in extreme drought scenarios. We chose to directly investigate 
vegetation response reflected by actual ET during extreme 
scenarios, rather than assessing vegetation evolution using 
long-term projections of climate change. Therefore, we 
repeated the 2012-15 drought (same precipitation and 
temperature) after 2015 to generate 8-year and 12-year 
drought scenarios, respectively. We then applied the LSTM 
model to predict and analyze the actual ET and water-stress 
patterns. 

3 Results 

3.1 Water-stress patterns during historical multi-year 

droughts 
During the unprecedented 2012-15 drought, vegetation 
moisture (NDMI) and greenness (NDVI) inside our study 
domain decreased significantly (Figure S5). At our domain 
scale, Cum. P–ET during the drought was correlated to 
drought vulnerability reflected by vegetation moisture loss 
and ADS dead trees (Figure 3), as was previously reported for 
the entire Sierra Nevada (Goulden and Bales, 2019). By 
developing fitted equations in Figures 3c and 3d, the moisture 
loss and TPA (dead tree per acre) were linked to water-
balance-based Cum. P–ET. The variance of TPA (moisture 
loss) explained by Cum. P–ET is 34% (48%) in our domain, 
smaller than that of 51% (60%) using the significantly larger 
dataset for the entire Sierra Nevada (Figure 1), which is five 
times the area of our study domain (Goulden and Bales, 
2019). Temperature positively correlated to TPA (Pearson 
correlation coefficients r of 0.31) and precipitation showed a 
negative correlation (r=-0.36). Their correlations were weaker 
than that (r=-0.66) between Cum. P–ET and dead tree TPA. 
Using a significantly lesser amount of data inside 78 giant-
sequoia groves (1.4% of domain area) for regression (Figure 
S7a), Cum. P–ET can still explain 35% of the variance of 
ΔNDMI (Figure S7b), but cannot describe ADS dead tree 
(Figure S7c), apparently due to the coarse resolution of ADS 
data relative to grove size. Both ET and LAI decreased during 
the 2012-15 drought due to tree mortality (Figures S8a,b). The 
median LAI for 2001-2018 in our study domain shows a 
strong postive correlation to NDVI (r=0.75), consistent with 
previous studies (Carlson and Ripley, 1997) and reflecting the 
fact that high annual LAI can drive high annual ET (Goulden 
and Bales, 2019). The change of LAI correlated to water-
stress Cum. P–ET (r=0.57, Figure S8c) and ADS dead trees 
(r=-0.55, Figure S8d). As the water-balance-based Cum. P–ET 

correlates to moisture loss, ADS dead trees, and LAI change, 
we used Cum. P–ET as one indicator of forest vulnerability 
during multi-year drought. 

Using 34-year data (1985-2018, Figure 4), we found that 
giant-sequoia groves had an average of 64 mm yr–1 higher ET 
(statistically significant with p-value <0.001 from a two-tailed 
Student’s t-test) than surrounding non-grove control areas, 
which is consistent with larger LAI and larger portions of 
medium/large tree size and dense canopy cover in the groves 
(Figures S2c,d and S3a). There is no statistically significant 
difference (p-value=0.83) in precipitation between groves and 
the control, though the value averaged 18 mm yr–1 lower in 
groves. Put together, water availability (P–ET) was 82-mm yr–

1 lower (insignificant with p-value=0.36) in groves than in the 
control (Figures 4a,b). The annual vegetation greenness NDVI 
and summer canopy moisture NDMI in groves were 0.036 and 
0.055 higher (statistically significant with p-values <0.001) 
than those in control areas, respectively. During the 1987-92 
and 2012-15 droughts, NVDI in both groves and control areas 
decreased by 0.047, accounting for 7.5% of the mean 1985-
2018 NDVI across the two areas (Figure 4c). Meanwhile, 
canopy moisture noticeably declined during the two droughts, 
as shown by a mean NDMI decrement of 0.050, accounting 
for 14.3% of mean NDMI (Figure 4d). For the groves, the 
2012-15 drought had a more-pronounced moisture loss 
(NDMI decrement of 0.082) than did the 1987-92 drought 
(0.025), consistent with lower water availability (P–ET, –290 
mm) averaged during the 2012-15 drought than during the 
1987-92 drought (–36 mm). 

Cumulative P–ET in giant-sequoia groves was more 
negative than in non-grove control areas and the study domain 
during the two historical droughts (Figure 5). For the 2012-15 
drought, the 50th percentile Cum. P–ET values in groves were 
337 and 1044 mm smaller than the control and domain, 
respectively. Ninety-five percent of grove areas had some 
water-stress vulnerability (negative Cum. P–ET) during the 
2012-15 drought, compared to 65% during the 1987-92 
drought. In terms of water-stress severity in groves, Cum. P–
ET during the 2012-15 drought averaged –1250 mm, which 
was 4 times that (–295 mm) during the 1987-92 drought. As 
Cum. P-ET is well correlated with moisture loss (Figure 3b), 
NDMI decrement during the 2012-15 drought was expected to 
be larger than the 1987-92 drought, which was consistent with 
Landsat NDMI observation (Figure 4d). 

For the high-ET grove areas, ET showed variability inside 
and across groves during the two droughts (Figures S9a,b). 
The grove-mean ET during the 2012-15 drought averaged 67 
mm higher than that during the 1987-92 drought due to higher 
average NDVI (Figure 4c). We observed a decreasing trend of 
ET along elevation across groves during the two droughts 
(Figure S9c), as indicated by negative linear-regression slopes 
with p-value<0.002 from a two-sided Wald test. In terms of 
forest composition and structure across groves grouped by 
elevation (Figure S10), low-elevation groves were associated 
with slightly smaller portions of conifer vegetation and 
medium/large trees, but showed a larger portion of dense 
canopy cover than did the medium- and high-elevation groves, 
consistent with relatively higher LAI in low-elevation groves 
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(Figure S3b). Meanwhile, grove-averaged elevation 
negatively correlated to LAI (r=-0.57, Table 1), indicating that 
groves in lower elevations tend to have higher LAI, coincident 
with their greater ET and a longer growing season. 

Across-grove assessment (Figures 6a,b) shows that 77 out 
of the 78 giant-sequoia groves suffered water stress (negative 
grove-averaged Cum. P–ET) during the 2012-15 drought, 
versus 54 stressed groves during the 1987-92 drought. The 
lowest grove-level Cum. P–ET during the 2012-15 drought 
reached –2049 mm, which was 311 mm lower than that (–
1738 mm) during the 1987-92 drought. For the more-severe 
2012-15 drought, the only grove associated with water surplus 
was Placer Big Trees, which is located in the furthest north of 
our study domain and receives the largest precipitation (Table 
1). Some groves (e.g. Giant Forest) were partly water-stressed, 
showing within-grove variability of available water. The 
distributions of Cum. P–ET during 2012-15 were narrower 
and shifted to more-negative values than during 1987-92 
(Figures 6a,b). The groves with a larger standard deviation of 
Cum. P–ET during 1987-92 tended to show a larger shift to 
more-negative values during 2012-15 (Spearman rank 
correlation coefficients ρ=0.35). Cumulative P–ET showed a 
statistically significant increasing trend (a positive linear-
regression slope with p-value= 4×10–5 from a two-sided Wald 
test) along groves sorted from the lowest to highest elevation 
in the 1987-92 drought (Figure 6c), and an increasing trend (a 
positive regression slope with insignificant p-value=0.16) 
during the 2012-15 drought. Meanwhile, the Spearman 
correlations between grove elevation and Cum. P–ET were 
0.36 and 0.23 for the 1987-92 drought and 2012-15 drought, 
respectively, indicating that higher-elevation groves suffered 
relatively less water stress, due to their higher P, shorter 
growing season, and lower ET. 

Groves experiencing water stress during the 1987-92 
drought tended to show more negative Cum. P–ET in the later 
2012-15 drought (Figure S11a), revealing that historically 
stressed groves have less drought resistance, i.e. vulnerable 
groves could encounter much greater water stress under hotter 
and drier climate conditions. However, in terms of Cum. P–ET 
difference between the two droughts (Figure S11b), groves 
with larger Cum. P–ET during the 1987-92 drought were 
associated with larger decreases of Cum. P–ET, indicating that 
less-water-stressed and water-surplus groves experienced a 
more considerable loss of water availability during more-
severe drought, due to their relatively larger decrease of Cum. 
P and smaller decrease of Cum. ET (Figures S11c,d). 
3.2 Predictability and drivers of ET from LSTM model 
The deep-learning LSTM showed a good performance for 
predicting ET, with training data covering two historical 
multi-year droughts (Figure 7). The coefficients of 
determination (r2) were 0.91, 0.69, and 0.72, respectively, for 
model training, validation, and testing. The RMSEs were 43, 
71, and 70 mm yr–1, respectively. Although the LSTM model 
had a slightly larger discrepancy at higher ET for testing 
(Figure 7b) compared to training (Figure 7a), most ET 
predictions (filled by warm colors) were consistent with 
Landsat NDVI-based ET. Annual water availability (P–ET) 

estimated using deep-learning-based ET showed good 
agreement (r2>0.99) with that using Landsat-based ET (Figure 
S12). 

For the 4 dynamic forcing inputs, higher precipitation (P) 
and temperature (T) values in current year, and ET in previous 
year (ETp) contributed to a higher ET prediction, which is 
illustrated by red dots having higher feature values being 
mainly distributed in the positive SHAP zone (Figure 8), with 
the feature value positively correlated to SHAP values (Figure 
S15). Higher fire occurrence (Fire) results in lower predicted 
ET due to burned vegetation. The static-feature historical-
minimum P–ET is the dominant input (Figure 8) for ET 
prediction. There exists a negative relation between Min. P–
ET and SHAP values (Figure S15a). Lower negative Min. P–
ET (blue in Figure 8) increases ET prediction during the 2012-
2015 drought, since most grove areas reached their minimum 
values of 1985-2018 annual P–ET during the severe hotter 
drought, reflecting higher ET demand not being supported by 
available water. The static-feature historical-normal 
temperature in 1985-2010 (Tm) ranks in the top five 
dominating features (Figure S14), with higher values reducing 
ET prediction, partly due to higher Tm often associated with 
lower precipitation. As higher-latitude areas receive more 
precipitation in the Sierra Nevada, latitude (Lat) positively 
contributes to ET prediction. A higher level of vegetation 
cover increases ET, as indicated by normal vegetation 
condition (NDVIm) and tree canopy cover percentage 
(CanPct). Lower-elevation areas (Ele) are generally warmer 
with less snow storage (SWE), thus increasing ET prediction. 
Soil-available water-holding capacity (AWC) is characterized 
by soil texture (i.e. clay, silt, and sand), which did not show 
apparent driving effects on ET prediction. However, a higher 
subsurface permeability contributes to higher ET, indicating 
that subsurface water may be more easily transported above 
for supporting ET use. Other features show ambagious driver 
effects and are not dominant factors for ET prediction in the 
LSTM model (Figure S14). 
3.3 Water-stress investigation for extreme drought 

scenarios 
ET values in giant-sequoia groves during both 1990-2015 and 
two extended drought scenarios (Figure 9) were predicted by 
the LSTM model. ET predictions for 1990-2015 agreed with 
Landsat-NDVI-based data (Figure 9c, r2=0.93, RMSE=14 
mm). During the drought scenarios, actual ET was projected 
to decrease, reflecting possible tree die-off. Note that we did 
not explicitly separate soil evaporation from actual ET, and 
plant transpiration is the dominant part of actual ET (Saksa et 
al., 2017; Scott et al., 2021; Zhu et al., 2015). As soil 
evaporation may increase after widespread tree mortality 
(Biederman et al., 2014), the trade-off between soil 
evaporation and mortality was not investigated in this study. 
The ET decreased 230 mm in 2019 relative to 2015, larger 
than the 40-mm drop in 2023 relative to 2019, suggesting a 
dramatic reduction of vegetation or available water in the 
middle four years of the 12-yr scenario. A non-linear relation 
between ET and NDMI at 30-m resolution inside groves was 
observed. The fitted equation NDMI=0.426×ln(ET)–2.459 
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explained 56% of the variance in 1985-2015 (Figure S16). ET-
based NDMI was consistent with that observed 1987-1991 and 
1996-2013, with noticeable differences immediately after dry 
1992 (Figure 9d). The underperformance of ET-based NDMI 
after drought may not significantly affect the interpretation of 
relative drought vulnerability exhibited by moisture loss (i.e. 
ΔNDMI) during droughts. For drought scenarios, NDMI was 
projected to decrease, following the ET pattern.  

Four of the 78 groves were projected with water surplus 
(Figure 10), which was greater during the 12-yr versus 8-yr 
drought (Figure 10c), due to their relatively large P and 
projected ET decrease in 2020-2023 (Figure 9c). Compared to 
the 8-yr drought, Cum. P–ET averaged lower in 42 groves 
during the 12-yr drought, reaching a minimum of -3520 mm 
(Figure 10b). Cumulative P–ET tended to increase with 
elevation (Figure 10c, positive linear-regression slopes with 
insignificant p-values of ~0.26) during two scenarios, and 
their Spearman rank correlations were ~0.27. Comparison 
between the historical 2012-15 drought and 8-yr scenarios 
shows that Cum. P–ET decreased in 70 groves (Figures 
S17a,b). Cumulative P–ET exhibited a strong positive 
correlation across the historical drought and two scenarios 
(Figures S17a,c), showing that previous seriously water-
stressed groves may continuously suffer water stress. 
Meanwhile, these water-stressed groves tended to have larger 
drops of Cum. P–ET in prolonged droughts (Figures S17b,d). 
This tendency of Cum. P–ET drops during prolonged-drought 
scenarios is different from the observed larger drops of Cum. 
P–ET in less-water-stressed groves in the two historical 
droughts (Figures S11b,d). Because the decrease in P was 
more pronounced in less-water-stressed groves between the 
two historical droughts, however, this spatial variability of P 
decrease was not accounted for in the prolonged-drought 
scenarios, which were constructed by repeating 2012-15 P at 
each pixel. 

Cumulative P–ET during the 2012-15 drought showed a 
positive correlation to projected mean annual ET difference 
(12-yr drought scenario minus 2012-15 drought) and percent 
of ET difference with correlations (r) of 0.68 and 0.58, 
respectively (Figures 11a,b). This indicates that previous 
seriously water-stressed groves tend to suffer larger ET drops 
during prolonged-drought scenarios, which is in line with that 
observed tendency during the two historical droughts (Figure 
S11d). On average, mean annual ET in the 12-yr scenario 
decreased by 160 mm (19%) compared to 2012-15, while the 
largest annual ET drop was 310 mm (34%). Moisture loss in 
groves (Figure 11c), i.e. projected ET-based NDMI in 2023 
minus mean Landsat NDMI of 2009-2011, was estimated by 
ET (Figure S16), not using the fitted equation with Cum. P–
ET (Figure 3b). The rationale is that Cum. P–ET may increase 
due to ET reduction in some groves. Projected cumulative P–
ET does not represent the additional ET feedback during 
prolonged droughts, resulting in a complicated relationship 
between Cum. P–ET and ΔNDMI (Figure S18). Similarly, we 
suspected that the strong correction between Cum. P–ET and 
dead tree TPA during historical droughts (Figure 3d) may 
have limited prediction ability for the extreme scenarios. 
Thus, the dead TPA for scenarios was not estimated, while we 

expected larger tree mortality indicated by larger canopy 
moisture loss and ET drop. The ΔNDMI in groves enables the 
assessment of relative vulnerability to extreme droughts. 
Cumulative P–ET during the 2012-15 drought showed a 
positive correlation (r=0.57) to projected ΔNDMI, suggesting 
that historically water-stressed groves tend to lose more 
canopy moisture in extreme drought scenarios.  
3.4 Indicators for drought vulnerability 
Pixel-level correlations between Cum. P–ET, ΔNDMI, and 21 
static features inside groves during historical and simulated 
droughts were calculated (Figure 12). Cum. P–ET values 
during the three droughts are positively correlated (r>0.5), 
again indicating that vegetations in historically water-stressed 
areas might continue to suffer more-severe water stress. 
ΔNDMI during the 12-yr drought scenario correlated (r=0.3) 
to that during the 2012-15 drought, but was not closely related 
to that during the 1987-92 drought. Vegetation condition 
(NDVIm) and tree canopy cover percentage (CanPct) showed 
negative correlations to Cum. P–ET and ΔNDMI. As indicated 
by the strong positive correlation between NDVI and ET 
(Figure S4; Goulden et al., 2012; Goulden & Bales, 2014, 
2019; Ma et al., 2020; Roche et al., 2020), denser-vegetation 
areas (indicated by higher NDVI or larger canopy cover 
percentage) are expected to have larger water consumption by 
plants (larger ET). During multi-year droughts, higher ET can 
lead to more negative Cum. P–ET (more-severe water deficit) 
and thus more moisture loss (more negative ΔNDMI) in 
denser-vegetation areas, since Cum. P–ET is closely 
correlated to ΔNDMI (Figure 3c; Goulden and Bales, 2019). 
Elevation, P, and SWE were positively correlated to Cum. P–
ET, since higher-elevation areas have larger precipitation and 
snowpack storage. ET demand increases with temperature and 
thus is negatively correlated with Cum. P–ET. Positive 
(negative) correlations between latitude (longitude) and Cum. 
P–ET suggest that areas located North and East would have 
less water stress due to higher P. Negative correlations 
between slope and Cum. P–ET and ΔNDMI indicate that 
large-slope areas have less available water. The positive 
correlation between topographic feature TWI and ΔNDMI 
indicates that forests in higher-TWI areas tend to have smaller 
moisture loss. Larger soil-water-holding capacity also 
contributes to smaller moisture loss. For subsurface features, 
areas with larger subsurface porosity and permeability tended 
to show less water stress.  

Across all 21 static features, the historical Min. P–ET is 
the one feature that showed consistent strong correlations 
(r>0.7) with Cum. P–ET and positive correlations with 
ΔNDMI inside groves during the three droughts (Figure 12). 
Historical Min. P–ET was related (|r|>0.3) to elevation-
dependent features (e.g. Pm, Tm, and SWE), and negatively 
correlated (r<0.7) to vegetation features (NDVIm and CanPct). 
Historical Min. P–ET correlated best (r=0.91) with the Cum. 
P–ET during the 2012-15 drought, followed by the 12-yr 
scenario (r=0.81) and 1987-92 drought (r=0.65) (Figure S19). 
The projected ΔNDMI during the 2012-15 drought also 
showed a good correlation (r=0.53) with the historical Min. P–
ET. Meanwhile, as noted above, the historical Min. P–ET 
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dominates ET prediction in the LSTM model (Figures 8 and 
S14). Further, at a larger scale e.g. entire study domain 
(Figure S20), static-feature Min. P–ET explained 32% (29%) 
of the variance of ΔNDMI (ADS dead trees) during the 2012-
15 drought, suggesting prominent tree-die-off and moisture-
loss patterns when Min. P–ET ≤–149 mm. Collectively, the 
historical Min. P–ET can serve as a simple but important 
water-balance-based indicator for water stress that may occur 
during multi-year droughts, representing drought vulnerability 
in dense forests with high ET like giant-sequoia groves. 

The median of historical Min. P–ET decreased 
monotonically along with elevation groups for high to low, 
with a 100-mm difference between high and low groves 
(Figure 13a), again indicating that areas in lower groves tend 
to show more water stress during droughts. Fifty percent of 
entire grove areas, indicated by the relative width of boxes in 
Figure 13a, are in medium-elevation groves, showing a 
median of Min. P–ET in between those of high and low 
elevation. Median values of Min. P–ET showed no apparent 
difference across grove groups classified by size (Figure 13b), 
consistent with the fact that there were no apparent differences 
in LAI (Figure S3c) and compositions of tree size and dense 
tree cover (Figures S21c,d), though small groves consisted of 
a relatively smaller portion of conifer mixed with giant 
sequoia (Figures S21a,b). In terms of nine elevation-size 
groups (Figure 13c), the median of Min. P–ET in high-
elevation groves decreased monotonically from large (HL) to 
small (HS) groves. There was no monotonical trend of Min. 
P–ET median along with grove size for medium-elevation 
groups (ML, MM, and MS) and low-elevation groups (LL, 
LM, and LS). In general, Min. P–ET showed noticeable 
differences across groves grouped by elevation, but not for 
groves grouped by area. Also, from an assessment across 78 
groves (Figure S22), Min. P–ET is positively correlated to 
elevation (Spearman correlation ρ=0.22), and reveals an 
increasing trend (a positive regression slope with insignificant 
p-value=0.058) from lowest to highest groves. 

4 Discussion 

4.1 Drought indicators 
Our findings show that influences of multi-year droughts on 
Mediterranean-climate high-ET forests, including giant-
sequoia groves and other forested areas in the Sierra Nevada, 
can be represented using water-balance-based indicators, e.g. 
the static-feature historical Min. P–ET and drought-dependent 
Cum. P–ET. Both indicators are important for predicting and 
assessing vegetation response to drought. As Cum. P–ET 
approaches or becomes more negative than Min. P–ET, forest 
dryness increases (decline in NDMI), and NDVI is more likely 
to decrease due to factors that include drought-induced die-
off, fire, and beetle attack, The resulting feedback, reflected 
by a reduction in actual annual ET (e.g. indicated by Landsat-
observed NDVI), should limit further declines in Cum. P–ET 
and enable values of the index to more quickly return to 
positive values when drought conditions give way to wetter 
conditions.  

The indicator Cum. P–ET reflects the relative depletion of 
subsurface root-accessible storage available to support 
evapotranspiration when annual P–ET is negative, which was 
investigated using direct observations of subsurface moisture 
in previous studies (Bales et al., 2018; Goulden and Bales, 
2019; O’Geen et al., 2018). The indicator Min. P–ET is an 
indicator of the lowest value that can support the expected ET 
of the forest, estimated from previous droughts. Thus Cum. P–
ET explicitly accounts for vegetation response, which is not 
represented by other water-stress-relevant metrics calculated 
with temperature or other climate inputs, e.g. climatic water 
deficit and vapor pressure deficit (Koontz et al., 2021; 
Restaino et al., 2016; Young et al., 2017). Both historical Min. 
P–ET and Cum. P–ET correlate well with canopy moisture 
loss (ΔNDMI) in growing seasons, providing an additional 
view to plant water status during multi-year droughts. Since 
water-stress-prone areas in historical droughts tend to 
encounter severe reductions of ET and water deficit in more-
extreme drought scenarios, the static-feature historical Min. 
P–ET at a 30-m resolution is a valuable indicator to map 
drought vulnerability. 

Cumulative P–ET thus provides a realistic expression of 
the relation between water supply and demand during the 
early stage of a multi-year drought, representing moisture 
overdraft from subsurface water (Fellows and Goulden, 2017; 
Goulden and Bales, 2019; Klos et al., 2018), which may be 
exhaustively depleted, causing tree die-off. However, during 
the later stages of a prolonged drought (e.g. 8- and 12-year 
scenarios), tree die-off reduces ET and Cum. P–ET will 
recover if annual P–ET becomes positive. That is, the 
additional feedback from vegetation ET response is less 
clearly indicated by Cum. P–ET during the later stage of a 
prolonged drought scenario, after severe die-off in response to 
depleted subsurface water.  
4.2 Potential for water subsidies in high-ET forest 
As our analysis does not consider the transfer of water 
between pixels, or subsurface flow from locally higher and 
steeper to lower and flatter areas, we discuss the possible role 
of water subsidies in supporting higher water consumption of 
bigger and denser trees inside giant-sequoia groves during dry 
periods, because vegetations shifts their water uptake to 
deeper soil and groundwater during drought (Brinkmann et al., 
2019; Goulden and Bales, 2019; Miguez-Macho and Fan, 
2021). 

Water-holding-capacity-related topographic and 
subsurface attributes are important considerations when 
assessing drought vulnerability within groves, where 
subsurface water subsidies from outside areas are important 
for maintaining favorable soil moisture (Rundel, 1972; 
Weatherspoon, 1986). While subsurface mapping of grove 
areas would be ideal, lacking those data we consider the 
relation of topographic features (e.g. TWI and curvature) to 
potential subsidies of water draining from shallow soil and 
groundwater (Hoylman et al., 2019; Ray, 2016). Curvature is 
closely related to surface flow on hillslopes (Bogaart and 
Troch, 2006; Talebi et al., 2008), soil moisture (Famiglietti et 
al., 1998), and groundwater level (Rinderer et al., 2014); and 
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we included the upslope curvature (mean curvature of upslope 
contribution area; Freeman, 1991; Kadirhodjaev et al., 2018), 
with a positive value for upwardly convex surface and a 
negative value for concave surface. Note that TWI closely 
correlates to upslope curvature (Figure S23c; Rinderer et al., 
2014). The groves showed relatively higher TWI and lower 
upslope curvature values than surrounding control areas 
(Figures S23a,b), both indicating that groves are located in 
areas with more available water from soil and saprock. Inside 
the groves, areas with lower upslope curvature tended to have 
higher canopy coverage, thus higher ET and lower Cum. P–ET 
during drought (Figure S23c). However, these areas tended to 
lose less canopy moisture during drought, reflecting possible 
water subsidies from higher elevations supporting their water 
demand. Though the correlations between the two topographic 
features and Cum. P–ET and moisture loss are not strong (|r| 
of 0.1-0.2) at the 30-m pixel resolution, these findings do not 
rule out TWI and curvature being important predictors of 
additional water sources other than precipitation (Famiglietti 
et al., 1998; Huang et al., 2016; Rinderer et al., 2014).  

Our results also suggested that steeper-slope areas tended 
to have more water stress, reflecting reduced water 
availability, as shown by soil-moisture survey data in the 
Teakettle Experimental Forest within our study domain 
(Figure S24; Kirchner et al., 2008; North et al., 2005). This is 
consistent with the high giant-sequoia foliage dieback 
observed on steep slopes during the 2012-15 drought 
(Stephenson et al., 2018). However, we also observed that 
other soil and subsurface properties (e.g. available soil-water 
holding capacity, subsurface porosity, and permeability) are 
linked to water stress or moisture loss during multi-year 
droughts, suggesting that the amount and ease of subsurface 
flow affect local water availability. 

Trees show greater vulnerability when having limited 
water supply from deep roots (Hember et al., 2017; Hubbert et 
al., 2001). During the WY2012-15 dry period, measurements 
over WY2015 showed that root-accessible water was depleted 
down to a depth of at least 10 m at Providence, a 2100-m 
elevation mixed-conifer research site (37°3.120’ N, 
119°12.196’ W) within the study domain of the giant-sequoia 
groves (O’Geen et al., 2018). The limited winter precipitation 
only recharged the upper meter, which was depleted by 
shallow roots through the growing season (Bales et al., 2018). 
An important question is whether downslope flow to high-
TWI areas could provide subsidies to deeper roots, versus 
shallower roots. Given the relatively fast recession of the top 
layer of soil moisture in the southern Sierra Nevada (Oroza et 
al., 2018), subsidies would need to be in areas where there 
was either deep recharge or areas with higher Cum. P–ET that 
had deeper surplus water during droughts. Thus, while we 
cannot rule out upslope subsidies to giant-sequoia trees, 
current soil and hydrologic data do not support that. 
Expanding the spatial and vertical coverages of soil-moisture 
monitoring network across different grove landscapes, such as 
using the wireless-sensor technology (Oroza et al., 2018; 
Zhang et al., 2017), could provide more details about the 
subsurface water flow, and thus help improve the 
understanding of water availability and distribution across 

groves. Seismic surveys could also provide insights into 
wetter versus drier positions on a hillslope (Callahan et al., 
2020; Klos et al., 2018).  

The proposed water-stress indicator, historical Min. P–ET, 
can also be considered as the dependence on available water 
from deep soil (Fellows and Goulden, 2017; O’Geen et al., 
2018) and subsurface subsidies (Love et al., 2019; Rundel, 
1972). It indicates the limit of additional subsurface water that 
can be extracted to support plant ET demand during multi-
year dry conditions. Lower historical Min. P–ET means that 
plants rely on a larger water supply from subsurface storage, 
whereas during the prolonged-year droughts, depleted 
subsurface water cannot support these plants, leading to more-
severe moisture loss and similar water-stress response shown 
during historical droughts. 
4.3 Implication for forest drought management 
For drought management in dense Mediterranean forests, it is 
important to know the location and severity of water stress. 
With water-balance-based indicators, we specifically 
investigated water-stress patterns across giant-sequoia groves 
during multi-year droughts, since the endangered world’s 
largest trees prefer a moist environment with abundant soil 
moisture (DeSilva and Dodd, 2020), and their growth is 
highly sensitive to water availability (York et al., 2003). 
Lower-elevation groves tend to show larger water stress 
during multi-year droughts than higher-elevation groves, 
consistent with field observations of giant-sequoia dieback 
(Stephenson et al., 2018) and widespread mortality observed 
in lower elevations of the Sierra Nevada (Brodrick et al., 
2019). This is explained by the higher tree density (with larger 
LAI) in low elevations consuming more water (higher ET) 
along with relatively smaller precipitation than in higher 
elevations. However, we did not find an apparent difference in 
water-stress patterns across groves with contrasting sizes, 
consistent with the fact that there are no apparent differences 
in LAI and compositions of tree size and tree canopy cover 
across the groves grouped by size. This implies that vegetation 
grows well, benefiting from abundant soil moisture inside 
different-size groves with stable boundaries (Rundel, 1972; 
Weatherspoon, 1986). Our findings suggest that lower-
elevation groves with more-severe water stress response 
shown in historical droughts should have a high conservation 
priority, in preparation for more-extreme megadroughts in a 
warming climate (Williams et al., 2020). 

5 Conclusions 
Using water-balance indicators this study assessed multi-year-
drought vulnerability in mountain forests by taking giant-
sequoia groves as a high-ET example. Two water-balance 
indicators, i.e. cumulative P–ET during an individual drought 
and historical minimum P–ET, are closely related to canopy 
moisture loss and tree mortality, reflecting drought 
vulnerability. The three hypotheses posed in this study are 
supported with water-balance investigations of long-term 
records in historical droughts and model projections for 
extreme-drought scenarios. First, the Earth’s largest tree giant 
sequoia grows in mixed-conifer groves with relatively higher 
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tree density and size than surrounding forests, contributing to 
higher ET inside groves and thus more-severe water stress 
(more-negative cumulative P–ET). Second, inside high-ET-
grove forests, lower elevation areas tend to show more-severe 
water stress than high elevations, due to lower P and higher 
ET from their denser tree canopy. Third, water stress shows 
historical similarity, that is, water-stress-prone areas in 
historical droughts tend to again suffer water stress in more-
extreme droughts. This is evidenced by comparing water-
balance indicators during the historical 1987-92 and 2012-15 
droughts, and extreme-drought scenarios. This historical 
similarity of water stress is also supported by the fact that 
historical-minimum P–ET can indicate water stress during 
multi-year droughts. Minimum P–ET represents relative 
dependence on additional water sources other than 
precipitation, including stored subsurface water and melted 
snow, which may be insufficient during a prolonged multi-
year drought, especially in overstocked forests, such as found 
in California’s southern Sierra Nevada. Our study provides 
water-balance-based indicators as a convenient tool for 
assessing forest-drought vulnerability in a warming climate. 
These indicators are particularly relevant for forests that rely 
heavily on subsurface-stored water to maintain a large fraction 
of ET demand during seasonally and multi-year dry periods 
found in the Mediterranean climate. 
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Tables and Figures 

Table 1. Attributes of all 78 giant-sequoia groves in the Sierra Nevada. 

ID Grove name Lat, ° Lon, ° Area, km2 Elevation, m P, mm T, °C LAI Class 

1 Mt Home 36.232 -118.685 15.576 1943 962 9.8 2.34 ML 
2 Redwd Mtn 36.696 -118.917 13.262 1855 941 9.5 2.06 ML 
3 Converse 36.805 -118.976 13.168 1936 942 10.3 2.04 ML 
4 Evans 36.780 -118.829 12.865 2032 981 8.7 1.82 HL 
5 Belknap 36.130 -118.580 9.546 1820 891 10.7 2.55 LL 
6 Giant Forest 36.565 -118.757 9.355 2088 1029 8.8 1.64 HL 
7 Black Mtn 36.114 -118.668 8.013 1919 844 10.6 2.29 ML 
8 Dillonwood 36.306 -118.710 6.799 1921 975 9.6 2.25 MM 
9 Garfield 36.335 -118.717 6.236 2023 968 9.3 1.80 HM 
10 Freeman 36.140 -118.510 5.775 1899 927 9.7 2.27 MM 
11 Nelder 37.432 -119.589 5.475 1695 1051 10.8 2.76 LM 
12 Atwell 36.467 -118.683 5.417 2224 969 8.5 2.02 HM 
13 East Fork 36.450 -118.661 3.974 2038 895 9.5 1.84 HM 
14 Alder Creek 36.189 -118.630 2.911 1954 928 9.6 2.16 HM 
15 Eden Creek 36.404 -118.732 2.904 2020 924 9.7 1.73 HM 
16 Midl Tule 36.265 -118.663 2.518 2015 1033 8.5 2.05 HM 
17 Bigstump 36.720 -118.972 1.972 1905 927 9.3 2.11 MM 
18 Redhill 36.078 -118.615 1.882 1867 892 10.2 2.17 MM 
19 Castle Creek 36.517 -118.691 1.695 1838 956 10.3 1.96 MM 
20 South Fork 36.358 -118.708 1.667 1906 937 9.8 1.79 MM 
21 Peyrone 36.049 -118.617 1.614 1812 870 10.5 2.20 LS 
22 Mariposa 37.511 -119.604 1.607 1924 1006 9.5 1.99 MS 
23 Grant 36.749 -118.982 1.584 1861 928 9.8 2.06 MS 
24 Muir 36.632 -118.841 1.541 2018 982 8.4 1.86 HS 
25 Redwood Mdw 36.529 -118.639 1.468 1812 927 10.8 2.24 LS 
26 Long Mdw 35.982 -118.601 1.248 2024 896 9.5 2.23 HS 
27 Packsaddle 35.930 -118.591 1.213 1944 883 10.0 1.99 MS 
28 Burrocreek 36.237 -118.626 1.209 1941 1031 9.0 2.37 MS 
29 North Calaveras 38.279 -120.304 1.057 1477 1313 10.6 2.48 LS 
30 Oriole Lake 36.471 -118.731 0.989 2002 939 9.9 2.06 HS 
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31 Homers Nose 36.374 -118.726 0.938 2049 937 9.1 1.94 HS 
32 Indian 36.805 -118.942 0.828 1831 961 9.9 1.91 MS 
33 South Calaveras 38.243 -120.251 0.784 1484 1230 10.8 2.36 LS 
34 Silver Crk 36.242 -118.646 0.776 1746 965 10.7 2.46 LS 
35 Wishon 36.218 -118.649 0.690 1460 815 13.2 3.04 LS 
36 Deer Mdw 36.778 -118.778 0.678 2093 966 7.9 1.57 HS 
37 Horse Creek 36.413 -118.690 0.440 1936 910 8.8 1.67 MS 
38 Suwanee 36.588 -118.799 0.421 1930 990 8.8 1.58 MS 
39 Redwood Crk 36.458 -118.708 0.418 2012 935 9.4 1.46 HS 
40 Board Camp 36.367 -118.716 0.403 1994 932 9.0 2.02 HS 
41 Skagway 36.617 -118.845 0.353 1977 973 9.2 1.75 HS 
42 Cherry Gap 36.773 -118.969 0.348 1839 977 9.5 2.00 MS 
43 Landslide 36.754 -118.864 0.334 2122 1068 7.9 1.62 HS 
44 Pine Ridge 36.619 -118.861 0.286 1608 896 10.8 2.06 LS 
45 Maggie Mnt 36.260 -118.642 0.267 2198 1085 7.9 1.31 HS 
46 Bearskin 36.746 -118.912 0.265 1960 975 8.6 1.74 HS 
47 Monarch 36.793 -118.779 0.217 1812 913 9.3 1.66 LS 
48 Lost 36.651 -118.828 0.214 2068 1028 7.0 1.77 HS 
49 Little Redwd mdw 36.518 -118.624 0.190 2203 890 8.6 1.87 HS 
50 Agnew 36.785 -118.775 0.175 2204 980 7.5 1.67 HS 
51 Deer Creek 35.872 -118.610 0.166 1719 773 11.5 2.47 LS 
52 New Oriole Lake 36.452 -118.736 0.152 1788 867 10.4 2.02 LS 
53 Big Baldy South 36.661 -118.899 0.152 1843 913 9.6 1.62 MS 
54 Surprise 36.378 -118.761 0.151 1881 885 10.3 1.97 MS 
55 Sequoia Creek 36.731 -118.977 0.141 1822 943 9.7 1.79 LS 
56 South Peyrone 36.027 -118.623 0.135 1881 880 10.2 2.21 MS 
57 Cahoon 36.411 -118.702 0.133 1888 912 9.2 1.66 MS 
58 Cedar Flat 36.362 -118.731 0.132 1650 909 11.0 2.42 LS 
59 Coffeepot Canyon 36.399 -118.749 0.097 1840 933 10.6 1.88 MS 
60 Upper Tule 36.277 -118.673 0.091 2351 1040 8.2 1.58 HS 
61 Dennison 36.312 -118.765 0.085 1958 955 10.4 1.61 HS 
62 Mckinley 37.016 -119.102 0.076 2015 1012 8.6 1.70 HS 
63 Devils Canyon 36.321 -118.768 0.064 1991 955 10.5 1.66 HS 
64 Starvation 35.937 -118.622 0.038 1757 849 10.3 2.49 LS 
65 Lower Horse Crk 36.420 -118.705 0.028 1652 910 11.6 2.24 LS 
66 Cunningham 35.982 -118.569 0.023 1892 771 10.8 1.84 MS 
67 Forgotten 36.332 -118.766 0.022 1944 861 10.4 1.60 MS 
68 Placer Big Trees 39.057 -120.572 0.021 1619 1578 11.4 2.72 LS 
69 Abbott 36.759 -118.979 0.019 1822 939 9.6 2.24 LS 
70 Big Springs 36.651 -118.907 0.015 1482 853 12.0 2.70 LS 
71 Tuolumne 37.769 -119.807 0.013 1778 989 10.5 2.07 LS 
72 Granite Creek 36.538 -118.627 0.013 1940 930 9.2 2.10 MS 
73 Clough Camp 36.351 -118.769 0.010 1121 744 15.1 1.62 LS 
74 Douglass 36.478 -118.721 0.009 2122 961 9.2 1.32 HS 
75 W Redwood Mnt 36.655 -118.913 0.006 1543 865 10.6 2.66 LS 
76 Merced 37.749 -119.840 0.004 1672 979 11.2 2.95 LS 

https://doi.org/10.1016/j.jhydrol.2022.127431
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77 Squirrel Creek 36.465 -118.754 0.003 1570 862 11.3 2.33 LS 
78 Putnam-Francis 36.348 -118.751 0.003 1253 803 14.0 2.15 LS 

Note: Groves are sorted by area from largest to smallest; the latitude and longitude are for grove centroid; mean annual precipitation (P) and 
temperature (T) are from PRISM dataset for 1985-2018; median annual LAI is from MODIS LAI/FPAR product (MOD15A2H) for 2001-
2018; groves are classified based on elevation (High, Medium, Low) and area (Large, Medium, Small), with first letter of the abbreviation 
denoting the elevation class, and second letter for area class, e.g. HL stands for grove classified as high-large. 

Table 2. Inputs for the deep-learning LSTM model. 

Inputsa Description Unit Source  

Dynamic forcing  
P Annual precipitation in current year t mm PRISM; Daly et al. (2008) 
T Mean annual temperature in current year t °C PRISM 
ETp Annual evapotranspiration in previous year t–1 mm Eq 1 using Landsat NDVI 
Fire Fire occurrence in current year t (binary data: 1 for fire 

occurrence; 0 for non-fire) 
- CA Fire and Resource Assessment Program 

(FRAP); https://frap.fire.ca.gov/frap-projects/fire-
perimeters/ 

Static features  
NDVIm Normal vegetation condition (median of 1985-2010 NDVI) - Landsat 
Pm Normal precipitation (mean of 1985-2010) mm PRISM 
Tm Normal temperature (mean of 1985-2010) °C PRISM 
Min. P–ET Historical-minimum water availability (i.e. minimum value of 

1985-2018 annual P–ET) 
mm PRISM and Eq 1 

SWE Mean Snow Water Equivalent (SWE) on April 1st (mean of 
1985-2016) 

mm Margulis et al. (2016) 

Ele Elevation form Digital Elevation Model (DEM) m SRTM; Farr et al. (2007) 
Lat Latitude ° DEM 
Lon Longitude ° DEM 
TWI Topographic Wetness Index derived from DEM - DEM 
Asp Aspect derived from DEM ° DEM 
Slp Slope derived from DEM ° DEM 
SoilDP Soil depth over bedrock m Pelletier et al. (2016) 
SoilKsat Soil conductivity from USDA-NCSS State Soil Geographic 

(STATSGO2) Database 
µm s–1 STATSGO2; 

https://casoilresource.lawr.ucdavis.edu/soil-
properties/ 

AWC Available Water holding Capacity cm STATSGO2 
Sand Percent sand % STATSGO2 
Silt Percent silt % STATSGO2 
Clay Percent clay % STATSGO2 
SubPor Subsurface porosity from Global HYdrogeology MaPS 

(GLHYMPS) 
- GLHYMPS; Gleeson et al. ( 2014) 

SubK Logarithmic subsurface permeability  m2 GLHYMPS 
CanPct Tree canopy cover percentage (mean of 2011 and 2016 data) % National Land Cover Database (NLCD) 
CanHgt Forest canopy height m Simard et al. (2011) 

a input data used for predicting ET data at target year t for each 30-m gridded pixel, i.e. the vector xt consisting of 25 feature at time step t in 
equations S1-S6. Note that an input sequence includes 5 vectors, reflecting that the model was trained with data in recent 5 years (from year 
t–4 to year t). All data were resampled to 30-m resolution by a bilinear method. 
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Figure 1. Study domain (color-filled by elevation) in 
California’s Sierra Nevada (yellow zone in the upper-
right inset map), including the forested areas in 78 
giant-sequoia groves and non-grove control areas. 
Name, location, and other attributes of each grove 
are in Table 1 and Figure S1. 

 

Figure 2. Flowchart of the study to assess water stress 
in mountain forests during historical droughts and 
extreme drought scenarios. 

 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure 3. Water-stress metric cumulative P–ET as an indicator of tree die-off and moisture loss during the 
multi-year drought 2012-2015, after Goulden & Bales (2019): (a) patterns of Cum. P–ET, moisture loss 
ΔNDMI (2016 minus mean of 2009-2011), and dead tree per area (TPA) for study domain (fire-affected areas 
were excluded), including giant-sequoia groves and non-grove areas. Two-piece linear regression (black 
dashed line) using independent variable Cum. P–ET (denoted as x in fitting equations) to predict moisture 
loss (b) and dead trees (c). Warm colors toward red indicate denser data points in scatter plots (b-c). Data 
points were aggregated using 100-m elevation and 0.02695° latitude bins. 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure 4. Comparison between giant-sequoia groves and non-grove control areas: a) area-averaged 
precipitation (P) and evapotranspiration (ET), b) annual water availability P–ET with negative values indicating 
water stress, c) vegetation greenness denoted by annual NDVI from Landsat, and d) canopy moisture 
represented by summer NDMI from Landsat. Two red dashed boxes indicate multi-year droughts of 1987-1992 
and 2012-2015. 

 

Figure 5. Cumulative distribution function of pixel-level cumulative P–ET during two historical droughts, 
calculated using all 30-m pixels in giant-sequoia groves, non-grove control areas, and study domain, 
respectively. Negative Cum. P–ET indicates water stress. 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure 6. Grove-level cumulative P–ET during two historical droughts: a) 1987-1992 and b) 2012-2015. Groves are 
sorted from high to low elevation. For each grove, the probability-density function of cumulative P–ET at all 30-m 
pixels is plotted and colored by its mean value. c) Trend lines (thick dashed lines from linear regression) of mean 
cumulative P–ET in groves (thin line with circles). P-values of positive linear-regression slopes from the two-
sided Wald test are labeled. 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure 7. Deep-learning LSTM model performance of ET 
prediction for a) training (1990-2000 & 2009-2018, r2=0.91) 
and b) testing (2005-2008, r2=0.72). Data points are 
colored by kernel density, with warm colors toward 
purple indicating more points.  

 

Figure 8. Driver ranking by SHAP values for the LSTM 
model based on 20,000 data points during the 2012-15 
drought. Higher SHAP value of an input feature 
indicates a contribution to higher ET prediction from 
the LSTM model (see Figure S13 as an example of 
decomposed SHAP values). Input features (Table 2) 
from top to bottom are sorted in descending order 
according to their relative importance (Figure S14). 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure 9. Grove-averaged ET and NDMI predictions during base period (1985-2015) and two drought scenarios. a) 
and b) plot precipitation and temperature in groves, respectively. Historical data during the base period are 
labeled as base, and two hypothetical, extended droughts are marked. c) comparison of NDVI-based ET during the 
base-case period, LSTM-model-based historical ET prediction, and projected ET for drought scenarios by LSTM 
model. d) comparison of historical Landsat-observed summer NDMI, ET-based NDMI estimates during base-case 
period, and projected NDMI for drought scenarios using the fitted equation in Figure S16. 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure 10. Same as Figure 6, but for LSTM-model-projected cumulative P–ET during two scenarios: a) 8-year drought 
in 2012-19 and b) 12-year drought in 2012-23. Panel (c) plots linear-regression trend lines of mean cumulative P–ET 
in groves, with a thick blue line for 8-year drought and a thin red for 12-year drought. P-values of positive linear-
regression slopes are labeled. 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure 11. Grove-level changes of ET and NDMI versus 
cumulative P–ET during the 2012-15 drought. a) mean 
annual ET difference between 12-yr drought scenario and 
2012-15 drought. Negative values indicate ET drops in 12-yr 
scenario. b) percent of ET difference relative to mean 
annual ET in 2012-15. c) ΔNDMI calculated as projected 
NDMI in 2023 minus mean of 2009-2011. Each point 
represents one giant-sequoia grove, and linear regressions 
are plotted as red lines. Pearson correlation (r) is labeled in 
each panel. 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure 12. The matrix of Pearson correlations between cumulative P–ET and moisture loss (ΔNDMI) during two 
historical and 12-yr hypothetical droughts, and 21 static features. Correlation (r) is calculated using all 30-m pixel data 
inside groves and labeled for |r| > 0.1.  

 
Figure 13. Historical-minimum P–ET for different grove groups classified by: a) elevation, b) size, and c) elevation and 
size. The box denotes interquartile range with lower and upper boundaries of 25th and 75th percentiles of the 30-m 
pixel-level data inside grove group, respectively; blue line shows median value, which is also labeled; whiskers 
indicate 1.5 times the interquartile range beyond the boundaries; and box width is proportional to the number (n) of 
pixel data in each panel. Elevation-area groups are labeled with first letter of the abbreviation denoting elevation group, 
and second letter for area group, e.g. HL stands for grove classified as High-Large. 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Supporting Information 

 
This supporting information includes the supporting texts, 
tables, and figures referenced in the main text. 
Text S1. Equations for Long Short-Term Memory 

(LSTM) layer 
For LSTM layer fed by an input sequence 𝑥 = [𝑥1, … , 𝑥𝑇  ] 
with total Ts time steps (Ts =5 years for this study), the 
forward pass at time step t (1≤ t ≤ Ts) of the LSTM model is 
described by the following equations: 

 

 

 

 

 

 
where subscript represents time step t, xt is input vector of 
all features (total 25 features for this study) to the LSTM 
layer, it, ft, and ot are input, forget, and output gates, 
respectively, gt is cell update, ct and ht are the memory cell 
state and hidden state, respectively. Cell state and hidden 
state at the previous time step are denoted as ct-1 and ht-1, 
respectively. W, U, and b are learnable model weights and 
bias parameters for different gates/states, which are denoted 
by different superscripts. σ() and tanh() are the sigmoid and 
hyperbolic tangent functions, respectively. ⊗ is the 
element-wise multiplication operator. ht represents the 
LSTM output, which is then fed to dense layer for ET 
prediction. 
Text S2. SHapley Additive exPlanations (SHAP) 
The SHAP framework proposed by Lundberg & Lee (2017) is 
used to interpret predictions from deep-learning models. As a 
member of the class of additive feature attribution methods, 

SHAP is developed upon other explanation methods, such as 
the DeepLIFT algorithm (Shrikumar et al., 2017). Based on 
Shapley values from game theory, the framework explains a 
specific model output by calculating a real value (i.e. SHAP 
value) for each input feature. The framework uses an 
explanation model (G(z)) with a linear function of simplified 
binary variables (z={0,1}N) to approximate orignial model, as in 
𝐹(𝑥) = 𝐺(𝑧) = 𝜑0 + ∑ 𝜑𝑗

𝑁
𝑗=1 𝑧𝑗, where F(x) is the original 

model (i.e. the LSTM model with inputs x in our case), N is the 
number of input features, 𝜑0 = 𝐹(𝐻𝑥(0)) is the model output 
with all binary variables setting to 0, and 𝑥 = 𝐻𝑥(𝑧) maps 
simplified variables to orignial inputs. The SHAP value 𝜑𝑗 for 
each feature is calculated by finding the single unique solution 
that satisfies three properties — local accuracy, missingness, 
and consistency. In this study, we used an enhanced DeepLIFT 
algorithm in the python SHAP package, where SHAP values 
are calculated with an explanation model built on a selection of 
background samples. For more details of the SHAP framework, 
we refer to orignial papers (Lundberg and Lee, 2017; Lundberg 
et al., 2018) and other documentations 
(https://shap.readthedocs.io and 
https://christophm.github.io/interpretable-ml-book/shap.html).  

For our case, decomposed SHAP values in Figure S13 are 
used as an example to explain the relationship between input 
features and ET prediction. Base value represents the predicted 
value without any feature knowledge, i.e. mean value obtained 
over background samples. Features with positive SHAP values 
are colored in red and increase output value (push the base 
value toward the right) and contribute to a higher ET prediction, 
such as a relatively smaller value of historical-minimum P–ET. 
Features with negative SHAP values are colored in blue and 
decrease output value (push the base value toward left) and 
lower ET prediction, e.g. a relatively lower value of 
precipitation. As a combination of all feature SHAP values, the 
output value for this pixel is larger than the base value, 
meaning that ET is predicted higher than the background 
average. 

  
Table S1. Summary of the settings in the LSTM model.  

Name Description Setting 

Layer 1: LSTM Hidden neurons 200 
Layer 2: Dense Hidden neurons 

Activation 
200 
ReLU 

Layer 3: Dropout Dropout rate 0.25 
Final layer 4: Dense Hidden neurons 200 
Optimizer Algorithm 

Loss function 
Adam 
Mean squared error 

Learning rate scheduler Initial learning rate 
Scheduler 
Training epoch 

0.001 
ReduceLRonPlateau; EarlyStopping 
50 

Batch size Samples in one minibatch  1000 
 

𝐼𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒:    𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)                      (S1)      

𝐹𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒:    𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)                 (S2)      

𝐶𝑒𝑙𝑙 𝑢𝑝𝑑𝑎𝑡𝑒:     𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑡 + 𝑈𝑔ℎ𝑡−1 + 𝑏𝑔)          (S3)      

𝑂𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒:    𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)                 (S4)      

𝐶𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒:            𝑐𝑡 =   𝑓𝑡 ⊗ 𝑐𝑡−1 +  𝑖𝑡 ⊗ 𝑔𝑡                      (S5)      

𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒:     ℎ𝑡 =  𝑜𝑡 ⊗ 𝑡𝑎𝑛ℎ(𝑐𝑡)                                 (S6)      

https://doi.org/10.1016/j.jhydrol.2022.127431
https://shap.readthedocs.io/
https://christophm.github.io/interpretable-ml-book/shap.html
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Figure S1. Locations of 78 giant-sequoia groves corresponding to their 
IDs in Table 1 in a) the southern study domain and b) the northern 
domain. 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure S2. Comparison of forest composition and structure between giant-sequoia groves and non-grove 
control areas. a) vegetation cover type from USDA Forest Service Region 5 data, see 
https://www.fs.usda.gov/detail/r5/landmanagement/resourcemanagement/?cid=fsbdev3_048020 for details; b) 
dominant species in forests from vegetation alliances data in Region 5 dataset; 
https://www.fs.usda.gov/detail/r5/landmanagement/resourcemanagement/?cid=fsbdev3_048029; c) tree size 
based on diameter at breast height (DBH) from CALFIRE FRAP dataset. DBH standards for Seedling, Sapling, 
Pole, Small, and Medium/large trees are <1.0, 1.0-5.9, 6.0-10.9, 11.0-23.9, and ≥24.0 inch, respectively. Multi-
layered tree means a distinct layer of Medium/large tree over a distinct layer of Pole or Small tree. N/A means 
not determined or not applicable for areas with canopy closure <10%, 
https://www.fs.usda.gov/detail/r5/landmanagement/resourcemanagement/?cid=fsbdev3_047980; and d) tree 
canopy cover from FRAP dataset. Canopy closure for Sparse, Open, Moderate, Dense Cover are 10.0~24.9%, 
25.0-39.9%, 40.0 - 59.9%, and ≥ 60%, respectively; 
https://www.fs.usda.gov/detail/r5/landmanagement/resourcemanagement/?cid=fsbdev3_048104. 

https://doi.org/10.1016/j.jhydrol.2022.127431
https://www.fs.usda.gov/detail/r5/landmanagement/resourcemanagement/?cid=fsbdev3_048020
https://www.fs.usda.gov/detail/r5/landmanagement/resourcemanagement/?cid=fsbdev3_048029
https://www.fs.usda.gov/detail/r5/landmanagement/resourcemanagement/?cid=fsbdev3_047980
https://www.fs.usda.gov/detail/r5/landmanagement/resourcemanagement/?cid=fsbdev3_048104
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Figure S3. Comparison of the probability density 
function of Leaf Area Index (LAI), a) between giant-
sequoia groves and non-grove control areas; b) 
across the groves grouped by elevation; c) across 
the groves grouped by size. LAI is the median of 
annual values for water year 2001-2018 from MODIS 
LAI/FPAR product (MOD15A2H, 
https://lpdaac.usgs.gov/products/mod15a2hv006/). 

 

Figure S4. Gridded ET (30-m resolution) as a function 
of Landsat-based annual NDVI (homogenized NDVI in 
Figure S5), developed by using flux-tower ET 
measurements and methods from Goulden and Bales 
(2019). Our fitted equation agrees with that (𝑬𝑻 =
𝟏𝟏𝟕. 𝟏𝟔 × 𝐞𝐱𝐩(𝟐. 𝟖𝟎𝟐𝟓 × 𝑵𝑫𝑽𝑰) , 𝑹𝟐 = 𝟎. 𝟖𝟑𝟖𝟔) from 
Goulden and Bales (2019), in which Landsat NDVI data 
were processed in a slightly different way. 

 

https://doi.org/10.1016/j.jhydrol.2022.127431
https://lpdaac.usgs.gov/products/mod15a2hv006/
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Figure S5. Time-series plots for study domain: a) domain-averaged precipitation (P) and evapotranspiration (ET), b) 
annual water availability P–ET, c) annual NDVI homogenized to Landsat 7, using NDVIL7=1.0679× NDVIL5–0.0137 for 
Landsat 5; NDVIL7=0.9087× NDVIL8–0.0220 for Landsat 8; and d) summer NDMI (July-September) from Landsat 
instruments and after homogenization to Landsat 7 using equations NDMIL7=0.9933× NDMIL5+0.0131 for Landsat 5; 
NDMIL7=1.0044× NDMIL8–0.0201 for Landsat 8. These linear homogenization equations were fitted using common data 
in 50 1 × 1 km reference sites during overlapping periods (1999-2013 for Landsat 5 and 7; 2013-2018 for Landsat 7 and 
8), following the approach used in Su et al. (2017). 

 
Figure S6. Schematic architecture of LSTM model. Through a series of information control (i.e. input gate (i), forget 
gate (f), cell update (g), output gate (o), and hyperbolic tangent function tanh) of input x (a vector containing 25 
features shown in Table 2) at time step t, cell state C and hidden state h of last time step t–1, LSTM layer outputs 
hidden state h at time step t to fully-connected dense layer, dropout layer, and the model finally predicts ET at time 
step t by a dense layer. Markers + and × denote pointwise addition and multiplication, respectively.  

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure S7. Relationships between cumulative P–ET to tree die-off and moisture loss during drought 2012-2015 
using aggregated data inside all 78 giant-sequoia groves. (a) patterns of cumulative P–ET, moisture loss ΔNDMI 
(2016 minus mean of 2009-2011), and dead tree per area (TPA) for groves. Linear regression (black dashed line) 
using independent variable cumulative P–ET to predict moisture loss (b) and dead tree (c). Warm colors toward 
red indicate denser data points in scatter plots (b-c). Data points were aggregated using 100-m elevation and 
0.02695° latitude bins. Fitted regression in panel b is ΔNDMI = –0.03183 + 0.00005395x, where x denotes 
cumulative P–ET. 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure S8. Time-series plots of a) annual Landsat-ET and b) annual MODIS LAI for the study domain during 
2001-2018. c) Scatter plot of cumulative P–ET and LAI change (ΔLAI, 2016 minus mean of 2009-2011) for the 
2012-2015 drought. Warm colors toward red indicate denser data points, and Pearson correlation r is labeled. d) 
Scatter plot of LAI change and dead tree (TPA) for the 2012-2015 drought. 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure S9. Grove-level mean ET during two historical droughts: a) 1987-1992 and b) 2012-2015. Groves are sorted 
from highest to lowest elevation. For each grove, the probability-density function of ET at all 30-m pixels is plotted 
and colored by its mean value. c) Trend lines (thick dashed lines from linear regression) of groves-mean ET (thin line 
with circles). P-values of negative linear-regression slopes from the two-sided Wald test are labeled. 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure S10. Same as Figure S2, but for comparison of forest composition and structure across giant-sequoia 
groves grouped by elevation. 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure S11. a) Comparison of grove-level cumulative P–ET during two historical droughts and b) difference of 
cumulative P–ET (i.e. water-stress changes) between the two droughts. Panels (c) and (d) are similar to (b), but show 
the difference of cumulative P and cumulative ET, respectively. Each point represents one giant-sequoia grove, and 
linear regressions are plotted as red lines. Note that scales on y-axes are different. 

 
Figure S12. Comparison of water availability (P–ET) estimated using Landsat-based ET and deep-learning-based ET for 
a) training (1990-2000 & 2009-2018) and b) testing (2005-2008). Data points are contoured and colored by kernel density, 
with warm colors toward purple indicating more points. 

https://doi.org/10.1016/j.jhydrol.2022.127431
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Figure S13. Explanation of an individual ET prediction at a 30-m pixel using SHAP. Red features (with positive SHAP 
values) push the ET output higher than the base value (i.e. toward the right), and blue features (with negative SHAP 
values) push the output lower. Base value represents the predicted ET without any feature knowledge, i.e. mean value 
obtained over 20,000 data points during the 2012-2015 drought. Input feature values are scaled and shown by z-score. 
In this case, historical-minimum P–ET is the primary driver of ET prediction. 

 

 
Figure S14. Relative importance of all input features for the deep-learning LSTM model, determined by the average 
absolute value of the SHAP values. 
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Figure S15. SHAP values for the four most dominant input features: a) historical-minimum P–ET with lower negative 
values indicate historically more-severe water deficit, b) annual evapotranspiration in previous year, c) annual 
precipitation in current year, and d) mean annual temperature in current year. All feature inputs are scaled using z-
score with 0 denoting mean value. 

 

Figure S16. Fitted equation NDMI=0.426×ln(ET)–2.459 for converting NDVI-based ET to Landsat summer NDMI. Dashed 
line is fitted line using all 30-m pixel data inside groves during 1985-2018. Randomly selected 20,000 data points are 
plotted and colored by point density, with red indicating more points. 
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Figure S17. Comparisons of a) grove-level cumulative P–ET and b) difference of cumulative P–ET between historical 
2012-15 and 8-year drought scenarios. Panels (c-d) are similar to (a-b), but for comparisons between 8-year drought 
scenario and 12-year drought scenario. Pearson correlation (r) is labeled in each panel. 

 

Figure S18. Same as Figure S7b, scatter plot of Cum P–ET versus NDMI change during the 12-yr drought scenario. 
NDMI change is calculated as the projected value in 2023 minus the mean of 2009-2011. 
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Figure S19. Correlation (r) between historical-minimum P–ET and a) cumulative P–ET during historical 1987-92 
drought, b) cumulative P–ET during historical 2012-15 drought, c) projected cumulative P–ET during 12-yr 
drought scenario, and d) projected moisture loss (ΔNDMI) during 12-yr drought scenario. Pixel-level data inside 
all 78 groves are contoured and colored by kernel density, with warm colors toward purple indicating more 
points. 
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Figure S20. Same as Figure 3, but showing static feature historical-minimum P–ET as an indicator of tree die-off 
and moisture loss during the multi-year drought 2012-2015. (a) patterns of Min. P–ET, moisture loss ΔNDMI 
(2016 minus mean of 2009-2011), and dead tree per area (TPA) for study domain (fire-affected areas were 
excluded), including giant-sequoia groves and non-grove areas. Two-piece linear regression (black dashed line) 
using independent variable historical-minimum P–ET (denoted as x in fitting equations) to predict moisture loss 
(b) and dead tree (c). Warm colors toward red indicate denser data points in scatter plots (b-c). Data points were 
aggregated using 100-m elevation and 0.02695° latitude bins. 
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Figure S21. Same as Figure S2, but for comparison of forest composition and structure across giant-sequoia groves 
grouped by size. 
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Figure S22. a) Distribution of grove-level historical-minimum P–ET. For each grove, the probability-density function of 
Min. P–ET at all 30-m pixels is plotted and colored by its mean value. On the y-axis, groves are sorted by elevation from 
highest to lowest. b) linear-regression trend line of mean Min. P–ET in groves. The statistically insignificant p-value of 
0.058 is for the positive regression slope from a two-sided Wald test. 
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Figure S23. Comparison of cumulative distribution function (CDF) of a) Topographic Wetness Index (TWI) and b) 
upslope curvature between giant-sequoia groves and non-grove control areas. Upslope curvature at 30-m resolution is 
calculated using the open-source software SAGA-GIS, the approach used in Rinderer et al. (2014). Panel c shows the 
matrix of Pearson correlations between cumulative P–ET and moisture loss (ΔNDMI) during two historical droughts 
and TWI, Tree canopy cover percentage, and upslope curvature. Correlation (r) is calculated using all 30-m pixel data 
inside groves, and is labeled only for |r| > 0.1. 

 
 

Figure S24. Declined volumetric water content at 0–15 cm 
layer with a steeper slope in a) 2002 and b) 2003, using 
survey data across 400 points in the Teakettle 
Experimental Forest of the Kings River basin. Details of 
study site and data are referred to North et al. (2005). 
Survey dates are labeled by the day of year (DOY). 
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