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Abstract

Memory-Centric Architectures for Big Data Applications

by

Jilan Lin

Big Data refers to the massive and rapidly growing data in our daily life, which can

be very helpful to dig valuable information and make better decisions. However, handling

big data workloads poses new challenges in traditional memory subsystems due to the

memory wall and power wall issues. Moving a large amount of data from memory to the

processor is expensive, which can cause severe performance bottleneck and high energy

consumption. Moreover, while the computation capability of modern processors grows

fast with Moore’s Law, the bandwidth and latency of memory improve much slower due

to the I/O’s physical constraints.

To address the memory wall challenge for big data applications, this dissertation aims

to answer the following two questions: How can we improve the existing memory tech-

nology, and what should future memory look like? For the first question, we investigate

the approach of near-data processing (NDP). NDP technique adopts custom compute

logic near the data storage, which leverages the much higher internal bandwidth and

reduces the energy consumption by data movements. Second, we envision the in-memory

processing (IMP) technique for next-generation memory. In particular, we study the

Resistive Random Access Memory (RRAM), an analog device with tunable resistance.

We use RRAM as both storage and computation hardware to process data in-situ and

analyze its mapping and reliability issues.
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Chapter 1

Introduction

In 2014, the total digital data ever generated by our devices around the world is 4.4

zettabytes (ZB, 1021 bytes). However, with the explosive technology evolution and our

increasing reliance on digital services, we now produce 16 ZB data every year [1]. The

explosive growth of data brings big opportunities to harvest valuable information and

knowledge, and we can leverage the transformative knowledge for various sectors in our

society like enterprises, the healthcare industry, and educational services [2]. Among dif-

ferent algorithms in big data applications, deep learning emerges as the most remarkable

one. Generally, deep learning models learn hierarchical representations from the dataset

and use the abstracted representations to perform tasks including classification [3], lan-

guage modeling [4], recommendations [5], graph analytics, and so on.

While big data and deep learning are opening up an era of technology revolution,

handling data on such a scale poses severe challenges in traditional processor architecture,

especially for the memory subsystem. Traditional von-Neumann architectures separate

the computation and memory, causing two key issues: memory wall and power wall. First,

the memory scaling is much slower than the computation part, and the memory thus

becomes the system bottleneck. In the past decade, the supercomputer’s performance
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Introduction Chapter 1

has grown by 33× [6], and the GPU’s performance has improved by 35.8× from Kepler

architecture [7] to Ampere architecture [8]. In comparison, DRAM’s latency has only

reduced by 26% [9], and the bandwidth of GPU has only increased by 6.5×. Therefore,

the memory wall means the large performance gap between computation and memory

caused by the unbalanced scaling. Second, moving data along the way from memory is

energy-consuming, resulting in high dynamic energy for the DRAM memory. Studies

have shown that accessing one byte of data consumes more than 100× of the energy

than computing one-byte data. As a consequence, while the current data center industry

consumes 196 to 400 terawatt-hours (TWh) of energy every year [10], it is reported that

25% of them are spent on memory [11].

This dissertation presents a roadmap to future memory systems that overcome chal-

lenges brought by the memory wall and power wall. First, we improve the current

memory systems by leveraging the near-data processing (NDP) techniques. NDP archi-

tectures benefit from higher internal bandwidth and shorter data path by placing the

compute hardware much closer to the data. Thus, we are able to bridge the gap between

computation and memory. Second, we design the next-generation memory with the in-

memory processing (IMP) technique. Specifically, we investigate the Resistive Random

Access Memory (RRAM), which can perform in-situ computation within the memory

array. This unique characteristic brings up the opportunity to eliminate a large number

of memory accesses and greatly improve the system’s performance and energy efficiency.

1.1 Opportunities and Challenges

Near-Data Processing. Given that big data applications are increasingly bandwidth-

hungry, near-data processing (NDP) technique is getting growing attention to accelerate

such workloads [12]. NDP puts customized computation logic beside the data and saves

2
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the system bandwidth and access latency, which can utilize the large bandwidth provided

by internal parallelism inside the memory or storage. Previous work has broadly leveraged

NDP to accelerate memory-intensive tasks, such as recommendation systems [13] and im-

age processing [14]. Such applications usually show low computation density but require

a large number of data accesses. Therefore, we can easily engage the memory/storage

with lightweight computation logic to facilitate these workloads.

However, we identify two challenges in current NDP architectures. First, existing

NDP architectures generally lack software and hardware co-optimization and thus tend

to achieve sub-optimal performance. For example, for the classification tasks that appear

in various deep learning models, moving computation directly to NDP would degrade the

data reuse and result in higher memory traffics, because the limited on-chip resources in

NDP cannot buffer the entire classification weights. Second, most NDP designs focus on

machine learning applications, but many other important workloads are overlooked. For

example, we use graphs in many domains to abstract the data of interests, such as social

networks and financial transactions [15, 16], and graph processing thus demonstrates

its importance in modeling real-world problems. Also, another data-intensive workload,

privacy-preserving storage and computation, becomes more and more critical to cloud

applications, since people are getting aware of their privacy in the services backboned

by big data. The goal of this dissertation is to propose a software-hardware co-design

approach to maximize the potential of NDP architectures. Particularly, we pay attention

to a broad range of big data workloads, including deep learning, graph analytics, and

private databases.

In-Memory Processing. While NDP provides a solution to alleviate the bandwidth

bottleneck in existing memory systems, the DRAM scaling issue is still a big challenge

facing the ever-increasing data size in the future. Therefore, we also investigate the next-
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generation memory that is powered by Resistive Random Access Memory (RRAM),

which offers the in-memory processing (IMP) capability. RRAM is an analog device,

and its resistance is tunable for different states. With the unique resistance-switching

character and crossbar structure, RRAM is able to not only store information, but also

perform matrix-vector multiplications inside the memory array. This reduces half of the

data fetching [17]. As matrix computation is the key operation in many big data work-

loads, RRAM becomes a perfect memory candidate with computational capability. Also,

RRAM provides O(1) computation complexity and ultra-low power consumption [18],

making itself a competitive candidate for the next-generation memory device.

Although RRAM has great potential in performance and energy efficiency, using

RRAM to accelerate big data applications is not a free lunch. First, previous studies

on RRAM characterizations have revealed that current RRAM devices exhibit several

reliability issues and non-ideal faults, and we hardly have the RRAM resistance being

the exact value expected [19]. Different from using RRAM as a storage device, such

faults can accumulate and lead to severe precision loss when using RRAM for compu-

tation. Second, lots of computations in big data are sparse, which can hardly benefit

from the RRAM accelerators, because the RRAM array stores and computes data in the

granularity of matrix. For example, deep learning models are known to exhibit redun-

dancy [20]. However, existing mapping for the sparse model to RRAM is the same as

the dense model, and zeros in the sparse model are not skippable. Therefore, there is no

performance gain from compression. Therefore, to facilitate the deployment of RRAM-

based IMP to real-world applications, this dissertation concentrates on addressing the

mapping and non-ideality issues in RRAM devices.

4
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1.2 Contributions

The goal of this dissertation is to address the performance gap between memory and

computation. We first introduce the NDP solution to improve existing memory and

storage systems for various big data applications. Specifically, we focus on architecting

both the software and hardware to fully utilize NDP’s benefits. Second, we envision

RRAM as the next-generation memory device, which provides the IMP capability to

further speed up the computation and lower the energy consumption. We particularly

make efforts in designing the mapping and fault-tolerate schemes.

We present three NDP designs, including:

• ENMC, an algorithm and architecture co-designed NDP to support regular-patterned

workloads, extreme classifications. ENMC utilizes approximation and hardware

specialization to greatly speedup the classification tasks in deep learning.

• G-MEM, a customized memory hierarchy tailored for irregular-patterned work-

loads, graph analytics. G-MEM re-designs the on-chip memory and leverages NDP

technique to support irregular and fine-grained data accesses in graph processing.

• INSPIRE, an in-storage processing architecture that targets larger-scale problem,

private databases. INSPIRE engages a protocol and architecture co-optimization

approach to facilitate the private query processing.

Moreover, we also propose two IMP designs, including:

• Sparse-oriented RRAM architecture, which designs from both software and hard-

ware perspective to map sparse deep learning model to RRRAM-based accelerator.

• SIGHT, which is a fault-tolerant framework with algorithm and architecture co-

design to address the reliability issue in RRAM-based IMP accelerator.

5
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The remainder of this dissertation is organized as follows. Chapter 2 introduces the

necessary background and preliminaries for the further discussion. Chapter 3, 4, and 5

propose explore the NDP architectures for various big data applications. Chapter 6 and 7

introduce our IMP design that specifically addresses the mapping and reliability issues.

Chapter 8 concludes the dissertation and summarizes our work.

This dissertation comprises our original work published elsewhere in conference and

journal papers:

• Chapter 3: Liu, Liu, Jilan Lin (Equal Contribution), Zheng Qu, Yufei Ding, and

Yuan Xie. ”ENMC: Extreme Near-Memory Classification via Approximate Screen-

ing.” In MICRO-54: 54th Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO), pp. 1309-1322. 2021.

DOI: https://doi.org/10.1145/3466752.3480090

• Chapter 4: Jilan Lin, Shuangchen Li, Yufei Ding, and Yuan Xie. ”Overcoming

the Memory Hierarchy Inefficiencies in Graph Processing Applications.” In 2021

IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp.

1-9. IEEE, 2021.

DOI:10.1109/ICCAD51958.2021.9643434

• Chapter 5: Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin

Tu, Trinabh Gupta, Yufei Ding, and Yuan Xie. ”INSPIRE: In-Storage Private

Information Retrieval via Protocol and Architecture Co-design.” In Proceedings of

the 49th Annual International Symposium on Computer Architecture (ISCA), pp.

102-115. 2022.

DOI: https://doi.org/10.1145/3470496.3527433

• Chapter 6: © 2020 IEEE. Reprinted, with permission, from Jilan Lin, Cheng-

6



Introduction Chapter 1

Da Wen, Xing Hu, Tianqi Tang, Chao Lin, Yu Wang, and Yuan Xie. ”Rescuing

RRAM-based computing from static and dynamic faults.” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD) 40, no. 10

(2020): 2049-2062.

DOI: 10.1109/TCAD.2020.3037316

• Chapter 7: Jilan Lin, Zhenhua Zhu, Yu Wang, and Yuan Xie. ”Learning the

sparsity for ReRAM: Mapping and pruning sparse neural network for ReRAM based

accelerator.” In Proceedings of the 24th Asia and South Pacific Design Automation

Conference (ASPDAC), pp. 639-644. 2019.

DOI: https://doi.org/10.1145/3287624.3287715
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Chapter 2

Technical Background

In this chapter, we introduce the preliminary on memory subsystems, including the basics

of DRAM, RRAM, and SSD storage architecture. The content in this chapter is necessary

to further understand the following chapters in this thesis.

2.1 DRAM Memory

Dynamic Random Access Memory (DRAM) is usually worked as the main memory

in computer systems. The storage unit in DRAM consists of a transistor and a capacitor.

We can store one bit of information by charging or discharging the capacitor. For instance,

when the capacitor is charged, we assume it represents the logic high (’1’), while a

discharged capacitor stores the logic low (’0’). The process of charging/discharging the

DRAM cell is called a write operation. Moreover, a read operation is to retrieve the value

in the capacitor through the connected transistor.

DRAM Memory Organization. Modern DRAM memory is a passive device con-

trolled by the host processor. It receives and executes commands from the memory

controller and then returns back the data. As shown in Fig. 2.1, the host processor is

8



Technical Background Chapter 2

able to connect to multiple DRAM channels to increase the memory bandwidth, and

each channel will receive individual access commands. Within a channel, there are mul-

tiple DRAM ranks. At a given moment, the host can only issue commands to one rank

through the memory bus. For the Dual In-line Memory Module (DIMM) usually seen

in the computer, we can have up to four ranks per module. Further, a rank physically

consists of multiple DRAM chips that connect to the same command bus. For example,

for a DRAM data bus having a width of 64, we need 8 chips with a data width of 8 for

each chip (eight ×8 chips). On the other hand, a rank is logically composed of multiple

banks, and a bank is distributed among the chips. DRAM banking reduces the latency

of memory array access and enables multiple accesses in parallel. Finally, within a bank,

there are multiple subarrays, and a subarray could consist of multiple memory mats. A

mat is then the crossbar array that has M×N DRAM cells.

…
Channel 0

Processor

Memory
Controller

Memory
Controller

…

Channel 1
Front of DIMM

Dual In-line Memory Module (DIMM)

Rank 0: 4 chips

Back of DIMM

Rank 1

Bank 0 Bank 1

Bank 2 Bank 3

Columns

Row

Row Buffer

Figure 2.1: An illustration of the DRAM hierarchy.

To address the data in DRAM memory, the host first activates the particular row by

specifying the channel ID, rank ID, bank ID, and row ID (we can use row ID to index

which mat to access). After receiving this command, the row is read and buffered in the

row buffer. Then, the memory controller sends the column ID to address the particular

data in the row buffer. After sending the row activate command, the host has to wait

9



Technical Background Chapter 2

until the row is actually activated. But it can send commands to other ranks or banks to

fully leverage the memory parallelism. Moreover, the DRAM read is destructive, meaning

activating a row will destroy the information stored in the row. Thus, the host controller

needs to issue a precharge command to write back the data in the row buffer.

2.2 RRAM Memory

Resistive Random Access Memory (RRAM) is one of the emerging non-volatile mem-

ories, which is also known as the memristor [21]. As shown in Fig. 2.2(a), the RRAM

cell is a passive bipolar device and usually applies the metal-insulator-metal structure.

The middle insulator showing resistive switching characteristics can be made of various

materials such as HfO2 [22], TiOx [23], NiO [24], and so on.

SA SA SA SA

𝑣⃑#$

𝑣⃑%&'

Top Electrode

Bottom Electrode : Sensing Amplifier

Filament

(a) (b)

SA

: Word Line

: Bit Line

Figure 2.2: (a) An RRAM cell with the metal-insulator-metal structure. The top
and bottom electrodes are made of metal and the middle insulator shows resistance
switching character. (b) The structure of an RRAM crossbar. The input voltage
opens one word line and data are read from bit lines.

The attractive resistive switching property usually comes from the conductive filament

between two electrodes [24]. When applying a certain programming voltage to the cell,

the filament grows up and connects two electrodes together, which then reduces the

cell resistance and makes it conductive. This process is called a SET operation where

it tunes the RRAM cell from the high resistance state (HRS, representing ”0”) to the

10
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low resistance state (LRS, representing ”1”). The reversed operation which destroys

the filament between two electrodes is thus called a RESET operation. Both SET and

RESET are considered as write operations to the RRAM.

RRAM cells can be organized in a crossbar structure for higher area efficiency, as

shown in Fig. 2.2(b). When used as a memory device, the row decoder opens one word

line according to the address and sends a read voltage, and data are read from selected bit

lines through sensing amplifiers. To further improve the density and save the hardware

cost, a multi-level cell (MLC) is broadly considered, where one RRAM cell can store

several bits of information by tuning it to multiple resistance states [25]. In that case,

higher resolution for analog-to-digital interfaces is then required to decode the data.

RRAM-based Computing System With the crossbar structure and resistive switch-

ing character, researchers have explored RRAM’s potential of in-memory computing [26,

27]. First, we can store an n×n matrix in an n×n crossbar. Then, all the word lines are

opened simultaneously and we set input voltages with respect to a vector. Therefore, we

have the output currents from bit lines being the result of matrix-vector multiplication.

The scalar multiplication is done by voltage-conductance multiplication, and the result is

accumulated by all the currents within a bit line. Assume that the input voltage vector

is (V i) and the output is (V o), the computation can then be expressed as in Eq. 2.1:


V o
1

...

V o
M

 =


c1,1 · · · c1,N

...
. . .

...

cM,1 · · · cM,N




V i
1

...

V i
N

 (2.1)

ci,j = −gi,j/gs (2.2)

where ci,j is the matrix parameter, which depends on the RRAM conductance in the

corresponding position (i, j) and the reference conductance gs in sensing amplifiers as
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shown in Eq. 2.2. Since RRAM conductance can only be positive, two crossbars are

needed to represent an application matrix with both positive and negative parameters

[28].

As this computing mechanism significantly reduces the complexity of matrix-vector

multiplication from O(n2) to O(1), previous work has intensively studied how to leverage

it for NN acceleration [26, 29].

2.3 SSD Storage

The general architecture of modern SSD is shown in Fig. 2.3. The SSD storage usually

contains a host interface, an embedded processor, DRAM, and flash memory DIMs. The

host interface implements the interface protocol, such as SATA or PCI express. When

access requests come from the host interface, the embedded processor executes the Flash

Translation Layer (FTL) to derive the physical address of the request. The embedded

processor can be a RISC processor (such as ARM) that has limited computation capa-

bility. The processor further schedules these requests to flash controllers, which control

multiple flash channels. The flash controller issues specific commands to the correspond-

ing flash DIM to access the data. The DRAM can be used as a buffer to transfer the

data from flash channels to the host.

Flash
Controller

…

DRAM
Controller

Embedded
Processor DRAM

Flash DIMs

H
os

t I
nt

er
fa

ce

…Flash SSD

Figure 2.3: The architecture of flash SSD.
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SSD storage has been widely used for applications that require large memory capacity,

such as industry-level neural network training [30] and large-scale graph processing [31].

However, accessing SSD storage is much slower than memory, and the bandwidth of

I/O is very limited. The latency of accessing flash SSD is about 50 µs, while the I/O

bandwidth is up to 1.0 GiB/s per PCIe 3.0 lane. Therefore, in-storage processing emerges

as a promising solution to overcome this performance gap, which leverages higher (4-8×)

bandwidth and low latency internal to the SSD storage [32].
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Chapter 3

ENMC: A Near-Memory-Processing

Architecture for Extreme

Classification

This chapter presents ENMC, the first end-to-end Near-Memory-Processing(NMP) Ar-

chitecture to address the extreme classification problem through software and hardware

co-design. We first introduce the background and motivation for accelerating extreme

classification. Then we introduce our proposed algorithm and architecture. Finally, the

experimental methodology and results are presented before we conclude the chapter.

3.1 Background and Motivation

Recent advances in many machine intelligence areas, such as natural language pro-

cessing (NLP) [33, 34, 35], image recognition [36, 37, 38], and recommendation[39, 40, 41],

involve tackling the extreme classification problem, where classification category size is

extreme large. For example, in the NLP domain, making predictions is basically clas-
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sifying the words with high probabilities. Similarly, for image recognition tasks and

recommendation tasks, the features generated from hidden neural network layers need to

go through the classification layer to output predictions. As shown in Fig. 3.1, extreme

classification is the essential component to deal with large-scale problems.
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A

h3

x3

…

…

…
…

Dense
Features

Sparse
Features

Face
Recognition

Language
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Recommendation
System

10k-1M
Categories Predictions

Extreme Classification

30%~60% Runtime Overhead

W

Figure 3.1: Extreme Classification serves as the common component of large-scale
Deep Learning applications. The classifier processes hidden representations from ap-
plication-specific hidden layers and generates predictions as used in recognition, lan-
guage, and recommendation.

3.1.1 Extreme Classification

The Extreme Classification problem refers to multi-class or multi-label classification

with extremely large category volume. Many large-scale NLP and recommendation ap-

plications can be modeled as a feature extraction part with an extreme classifier. For

example, in NLP applications, the typical sequence-to-sequence modeling consists of a

stack of encoders, a stack of decoders, and a final classification layer [34, 42, 43]. Each

encoder and decoder is a type of DNN layer, such as Transformer layers [44] and recurrent

neural networks [42]. The encoders process input embeddings into hidden representations

repeatedly. The decoders that attend over all hidden states from the encoder stack pro-

cess queries from the previous decoder layer and output decoded hidden vectors. The

final classification layer turns the hidden vector from the last decoder layer into a trans-
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lated word as in translation tasks or probabilities as in language modeling tasks. The

classification layer consists of a large linear layer followed by a softmax layer. The linear

layer can be interpreted by performing the inner products of the hidden vector from the

decoder stack and a number of weight vectors, which correspond to the target vocabulary

size. The softmax function then normalizes the inner products into probabilities.

Also, in large-scale recommendation systems such as commodity product recommen-

dation and webpage recommendation, extreme classification refers to the problem of

multi-class prediction [36, 41, 37, 45]. First, the hidden layers, e.g., DNNs, take dense

features and sparse features from users as input. Then, the classification layer maps the

output of the last hidden layer, usually through softmax normalization, to a probability

distribution. For real-world scenarios and next-generation applications, the final classi-

fication layer is becoming even more challenging as the computational complexity and

memory usage grows linearly with the category size.

3.1.2 Motivation

As classification categories keep scaling in real-world applications, the classifier’s pa-

rameters could reach hundreds of gigabytes, far beyond the on-chip memory capacity. For

large-scale NLP models, the vocabulary sizes are in the range of hundreds of thousands,

contributing hundreds of megabytes of data [34, 44]. For recommendation systems, using

commodity datasets to solve industry-level problems would require classification on the

scale of 100M categories [37, 36], consuming around 190GB of memory.

Due to the large memory footprint of extreme classification, accessing system mem-

ory for the classifier’s weight data becomes the bottleneck of system performance. We

characterize the state-of-the-art Transformer-based language model [46] and show that

the final classification layer consumes 50% of overall model inference time. While GPUs
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and specialized accelerators can boost the performance of DNN layers [47, 48], they suf-

fer from inter-device data movements when executing the memory-intensive classification

layer, as the memory usage exceeds device memory capacity.

3.1.3 Opportunity

The root cause for extreme classification being the bottleneck is the large memory

footprint and the low operational intensity. We show in Fig. 3.2(a) that classifiers con-

sume memory in the order of hundreds of megabytes or even gigabytes, far beyond the

on-chip memory capacity of modern GPUs or NPUs. The execution time of classification

increases linearly with category size and hidden dimensions. From the perspective of

DL practitioners and algorithm developers, using a larger vocabulary or category and

hidden dimensions is almost always a way to improve model quality. However, increasing

memory usage will worsen the memory-bounded execution problem. For recommenda-

tion systems, the increasing need for an enormous number of items results in even more

challenging requirements to accommodate the classifier.
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Figure 3.2: (a) The memory footprint and the execution time on CPU of classification
layers scale linearly with the number of categories. (b) Roofline analysis of the major
components. Darker color indicates larger batch size.

Opportunity of approximation: In extreme classification, outputs from classifier

are probabilities. While we should compute all the outputs of the linear transformation

using all classifier parameters, many applications require only the probabilities of the
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top words. For example, in neural machine translation, we only use the top-K values

of softmax-normalized probabilities to select the translated words, where K is the beam

search size when applied. Therefore, we could have only the top-K probabilities to be

accurate, then have the rest to be approximate, aiming at significantly reduced com-

putations and data accesses. In the next section, we explore the opportunity of using

approximation to achieve efficient extreme classification.

Opportunity of NMP: Although approximation can greatly reduce the compu-

tation amount in extreme classification, approximate screening is still bounded by the

memory bandwidth. As shown in Fig. 3.2(b), we plot the data points for our approxi-

mate screening, candidate-only classification, and front-end neural networks in a CPU’s

roofline model. Both screening and classification exhibit low operation intensity after we

eliminate redundant computations and reduce hidden dimensions. Therefore, different

from the front-end models that are often bounded by computation capability, approxi-

mate screening and candidate-only classification can benefit from the large bandwidth of

NMP architectures.

However, existing NMPs often employ a homogeneous architecture equipped with uni-

fied floating-point and integer compute units [49, 50, 13]. Our proposed screening method

explores a heterogeneous computation pattern that includes a low-precision approximate

screening phase and a full-precision candidate-only classification phase. Therefore, our

NMP architecture features a dedicated resource management of both phases and a cus-

tomized pipeline design.

3.2 Design Overview

We propose the first end-to-end solution to address the memory-bound problem of

extreme classification with NMP architecture. Fig. 3.3 gives an overview of the proposed
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Figure 3.3: The overview of our Approximate Screening algorithm and NMP archi-
tecture co-design. Instead of full classification, our co-design essentially performs can-
didates-only classification, where the candidates are based on the screening method.
Our NMP architecture design features a Screener and an Executor to collaboratively
process candidates-only classification.

software and hardware co-design. To reduce the overhead of classification, we propose

an approximate screening algorithm that directly reduces the required computations and

data access involved in linear transformations. As demonstrated in Fig. 3.3, given the

extracted feature vectors from the application front-end, a learned lightweight classi-

fier first performs approximate classification to efficiently identify the set of important

candidates in the category space. Afterward, the classifier will trigger candidates-only

computation to generate accurate classification results, while the rest can directly utilize

the approximate results computed from the screening phase. Therefore, a large number

of computations and data loading are saved. Our experiments show that the proposed

screening method achieves better trade-off for classification accuracy and computation

saving, compared with conventional low-rank approximation-based method [35].

To fully leverage the approximate screening method, we further propose the Ex-

treme Near-Memory Classification architecture, namely ENMC. Here we highlight the

key features of our ENMC design as follows: Firstly, as shown in Fig. 3.3, we deploy a

dual-module architecture that contains a Screener module and an Executor module that

run in parallel. The Screener performs approximate screening efficiently and predicts
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classification candidates in advance. For each candidate selected in a batch, the ENMC

controller will generate instructions for accurate computations handled by the Executor.

The computing modules are deployed at the rank level such that there is no need to

invade the DRAM chips. Secondly, we design the ENMC instruction set to facilitate

the workloads accommodation between the host processor and ENMC. It also supports

the communications between the Screener and the Executor. We define the instruc-

tion format by leveraging the reserved command space so that it is compatible with the

commodity DDR interface. Thus, our ENMC DIMM can also support regular memory

requests. Finally, we provide the system-level design, including application workflow and

program compiler support, to make the ENMC architecture cooperate with the software

framework. Our design could be easily extended no matter whether the host processors

are CPUs, GPUs, or domain-specific accelerators.

3.3 Approximate Screening

The limited computing capability of NMP logic cannot afford the computations of

extreme classification. In other words, the execution of full classification on NMP core

becomes the bottleneck. We find that not all computations in classification are useful.

In fact, only a small portion of classification results contribute to model predictions.

For example, in language modeling tasks, only output probabilities of the most impor-

tant words need to be accurate. Thus, we propose an efficient approximation method

that can estimate the subset of output probabilities that need accurate computations

and then populate the rest probabilities with approximate results. Similarly, for other

classification-involved tasks, we only need accurate computations for a small number of

key candidates and use approximate results for the remaining outputs.
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3.3.1 Screening Method Overview

Given a d-dimensional vector (h ∈ Rd) from hidden DNN layers, where d is the hidden

dimension, the softmax classification transforms the hidden vector h to an l-dimensional

probability space. We denote the output probability vector as z ∈ Rl, where l is the

vocabulary size. The transformation is essentially matrix-vector multiplication as

z = Wh + b (3.1)

where W ∈ Rl×d is the classifier weight matrix and b ∈ Rl is the bias vector. Then, the

softmax function normalizes the output vector z into probability distribution as

pi = softmax(zi) =
exp(zi)∑
j exp(zj)

(3.2)

where pi is the i-th element of output probability vector p. The probability vector is then

used to perform the next word prediction as in language modeling or translation. While

softmax is the most common normalization function used in classification, our method is

compatible with other non-linear functions used in classification such as Sigmoid [41].

The memory-intensive transformation is a good candidate for NMP acceleration.

However, the computational complexity is not affordable for NMP. Our proposal seeks

redundancy in extreme classification and uses low-cost approximated computations to

mitigate the computational burden. We introduce a low-dimensional and low-precision

screening module that can approximate the original classifier. We first discuss how to

reduce computations at inference time given the screening module. After that, we explain

the learning process to obtain such a screening module.
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Figure 3.4: Illustration of approximate screening: (1) the screener learns from full
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candidates among approximate results; (3) the threshold filtering step selects key
candidates; (4) only the corresponding vectors in the full classification weights are
used to compute candidates-only accurate results; (5) the final results before softmax
normalization combine both approximate and accurate results.

3.3.2 Inference Process

As shown in Figure 3.4(a), the standard classification is essentially matrix-vector

multiplication followed by softmax normalization. The execution is bounded by accessing

W from DRAM modules.

We construct the approximate screening module with a projection matrix P and a

reduced-hidden-dimension weight matrix W̃ . The initialization of the projection matrix

is according to standard sparse random projection [51], and the overhead is negligible (less

than 0.1%) compared with classifier weights as the projection matrix P can be represented
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in 2-bit format. The process of computing approximate results can be expressed as

z̃ = W̃Ph + b̃ (3.3)

where W̃ ∈ Rl×k and P ∈
√

3
k
· {−1, 0, 1}k×d.

Figure 3.4(b) illustrates the process: the d-dimensional hidden vector h is first pro-

jected to a lower k-dimensional space, and the low-dimensional vector multiplies W̃ to

get approximated output z̃. Compared with full classification, the accessed approximate

weight volume is significantly reduced since k << d. Furthermore, we can reduce the

precision of running the screening module to further reduce accessed data.

After obtaining the approximate results, i.e., z̃, we estimate the importance of all l

values and select the most important m values, referred as candidates, that require ac-

curate computations. The estimation can be done with top-m searching or thresholding,

where the threshold value can be tuned on validation sets.

Only for the candidates that need accurate computations, our method then need to

access full classifier weights W , i.e., a small portion of totally l weight vectors. These

weight vectors then multiply with the original hidden vector to produce accurate results

for the candidates, as shown in Figure 3.4(c). The final output before softmax function

is a mixed vector with approximate values from screening and accurate values from full

W .

3.3.3 Learning Algorithm

Here, we discuss the learning procedure to obtain the screening module. The goal for

screening is to approximate the classifier well. Therefore, we regard the outputs z from

the full classifier as the learning target and train the screening module weights W̃ to fit.

23



ENMC: A Near-Memory-Processing Architecture for Extreme Classification Chapter 3

Algorithm 1: Training algorithm for the parameters of the Screener

Data: Batched context vectors {hi}Si=1, where hi ∈ Rd from hidden layers;
trained classifier weights W ∈ Rl×d and bias b ∈ Rl; projection matrix P .

Result: Screener weights W̃ ∈ Rl×k and bias b̃ ∈ Rl.

1 Initialize projection matrix P ∈
√

3
k
· {−1, 0, 1}k×d;

2 for it ∈ all iterations do
3 Compute loss according to Eq. (3.4);

4 Update W̃ , b̃ with SGD(min Loss);

5 end

The optimization objective function is

L =
1

s

∑
s

||(Wh + b) − (W̃Ph + b̃)||22 (3.4)

where s is the mini-batch size of training samples. During training, the classifier param-

eters, i.e., W and b, as well as the parameters of hidden layers are fixed and will not

be changed. We only update the screening module’s parameters W̃ and b̃. The projec-

tion matrix P is constructed and initialized before distillation and stays constant during

distillation and inference.

Our learning algorithm uses the default training and validation datasets and does

not need extra training data. The convergence happens in several training epochs, much

faster than the original model training. Algorithm 1 gives the overall training of screening

parameters.

3.4 ENMC Architecture

In this section, we introduce the architecture design of the ENMC. We first give

a glimpse of the design overview, followed by the microarchitecture details. Then, we

present the ENMC instruction set and system-level design.
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3.4.1 Architecture Overview

We have exploited the opportunity of eliminating the redundancy in the extremely-

large weight and forecasting the classification results with a much smaller overhead using

our lightweight screening algorithm. Although the computation bottleneck is allevi-

ated with our proposed approximate screening framework, the tremendous classification

dimension is still bandwidth-hungry, and conventional processor-memory systems are

hardly able to overcome the memory throughput wall. Therefore, in this section, we

further co-architect the near-data processing subsystem, Extreme Near-Memory Classi-

fier (ENMC), to facilitate the processor for computing the extreme classification. The

design goal of such near-data architecture is to leverage the large bandwidth provided

by rank-level parallelism in a DRAM channel, and we process the classification in data

stream through dedicated on-DIMM hardware.

Specifically, we highlight the features of our ENMC design as follows:

First, we deploy a dual-module architecture that contains a Screener module and an
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Executor module that runs in parallel. The Screener performs fixed-point screening as

described in Section 3.3, and predicts classification candidates in advance. Since the

classification weight is low-dimensional and quantized, the Screener is able to process the

data in a streaming manner, such that the large rank-level bandwidth can be leveraged.

For each candidate found in a batch, the ENMC Controller will generate instructions for

further full-precision computations which are completed by the Executor. We put these

computation logics at the rank level such that there is no need to invade the DRAM

chips.

Second, we design the ENMC instruction set to facilitate workload accommodation

from host processors and support the communications between the Screener and Executor

modules. We define the instruction format by leveraging the unused address line and data

line in the PRECHARGE command to ensure compatibility with the commodity DDR

interface. Thus, regular memory requests can also be served with our ENMC DIMM.

Third, we provide the system-level design, including the program compiler support

and application workflow, to make the ENMC architecture cooperate with the software

framework. Our design could be easily extended to support different scenarios where the

host processors could be CPU, GPU, or domain-specific accelerators.

3.4.2 ENMC Microarchitecture

We now introduce the microarchitecture of ENMC. We first present the design overview,

followed by the implementation details of each component.

Overview. We put ENMC on the DIMM board between the DRAM devices and the

DDR PHY, such that the host processor could interface with ENMC through standard

memory channels. Fig. 3.5 illustrates the details of the proposed ENMC architecture.

The host processor contains several memory channels, which are deployed as ENMC
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DIMMs. The ENMC logic locates at each rank of an ENMC DIMM, and thus enjoys

scaling bandwidth offered by a larger number of ranks. The on-DIMM ENMC archi-

tecture consists of an ENMC controller, a DRAM controller, and two processing units:

the Executor and the Screener. The ENMC controller buffers the instruction from the

host processor for approximate screening. It also generates instructions for full-precision

computation according to the candidate indices provided by the Screener. Then, it de-

codes the formatted instructions to generate control signals for data access, computation,

and output transmission. The DRAM controller works as a simplified memory controller

that processes data access requests in ENMC instructions and generates the standard

DDR C/A signals to the DRAM chips. The Screener and Executor take charge of the

approximate screening and the full-precision computation as described in Section 3.3.2,

respectively. The Screener performs dimension-reduced INT4 computations to efficiently

approximate the classifier’s output. A preloaded threshold is used to filter out the impor-

tant candidates based on the approximate results. Apart from floating-point arithmetic,

the Executor is also equipped with a special-function unit to process the non-linear acti-

vation in the final layer. The two computation modules work in parallel and write results

to the output buffer that returns them to the host processor asynchronously.

ENMC Controller. The ENMC controller has two main functionalities: processing

the instructions from the host processor (i.e., screening computation) and generating

instructions for the Executor (i.e., candidate-only computation). It is made of status

register files, an instruction buffer, an instruction decoder, and an instruction generator.

The status register files are used for ENMC initialization and store information such as

addresses and sizes of input features, vocabulary, and screening weight. It also includes

the instruction counter. The instruction buffer is a FIFO, and both the host processor and

instruction generator could push instructions into it. The instruction decoder sequentially

reads from the FIFO and generates control signals to corresponding ENMC components.
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For example, an instruction of accessing a piece of tiled screening weight would result

in a read request to the DRAM controller and a select signal to the top DEMUX that

chooses the integer weight buffer. Meanwhile, a full-precision computation instruction

would lead to a triggering signal to the floating-point MAC array, which reads data from

two input buffers and writes results to the partial sum (PSUM) buffer. The instruction

generator receives the indices of classification candidates from the Screener (batch id,

candidate id), and then reads the constant reg to generate corresponding instruction for

candidate-only computation in full-precision.

DRAM Controller. The DRAM controller employs a similar architecture as the

host-side memory controller and consists of a request queue, a command generator, and an

address generator. The request buffer takes memory requests from the ENMC controller.

The command and address generators initiate standard DDR4 C/A signals that are sent

to all the DRAM chips. For hardware simplicity, we do not deploy unnecessary features

like queue prioritizing, request coalescing, etc.

Screener. The Screener processes the approximate screening phase in the approx-

imate screening algorithm with fixed-point precision. We put two input buffers (fea-

ture buffer and screening weight buffer), a fixed-point multiply-accumulate (MAC) ar-

ray, a partial sum (PSUM) buffer, a threshold filter, and an instruction translator in

the Screener. The MAC array performs the screening computation over the two input

buffers and accumulates with the intermediate results in the PSUM buffer. After a tiled

screening is finished, the data in the PSUM buffer are filtered with a comparator array.

The indices of values larger than the threshold are buffered and later sent to the ENMC

controller.

Executor. The Executor computes candidate-only classification under full precision.

Compared with the Screener, it applies a floating-point MAC array and has an extra

special-function unit that performs non-linear activation such as Softmax and Sigmoid.
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We also put an output buffer below the special-function unit, which caches both the

results from the Screener and the Executor. The output buffer keeps the state of the

data with status reg files and notifies the ENMC controller (by pushing a RETURN

instruction) when finishing batched/tiled data.

Table 3.1: The ENMP instruction set

ENMC Instruction Set
Type Instruction Description

Initial INIT reg, data
initialize the ENMC module by writing
a particular register

Data
Transfer

LDR buffer, addr
STR buffer, addr
MOVE buffer1, buffer2

load/store the quantized feature data
into/from the INT4 feature buffer
(weight buffer, with specified address addr

Compute

ADD INT4 buffer1, buffer2
MUL INT4 buffer1, buffer2
ADD FP32 buffer1, buffer2
MUL FP32 buffer1, buffer2

add/multiply the data in two specified
buffer buffer1, buffer2

MUL ADD INT4
MUL ADD FP32

multiply the data in feature buffer and
weight buffer, and accumulate
they with the partial sum buffer

FILTER buffer
filter the data in the specific buffer and
write the results to the index buffer

SIGMOID, SOFTMAX
special functions such as Sigmoid and
Softmax that run on specialized hardware
for the data in the FP32 partial sum buffer

Control BARRIER, NOP
synchronization and bubble instruction
to let the controller wait for memory accesses,
compute operation, data movement, etc.

QUERY reg query the value in the specific reg
RETURN return the data in the output buffer
CLR clear and reset all buffers and registers

3.4.3 ENMC Instruction Set

The design goal of the ENMC instruction set is to make the host processor able

to communicate with ENMC DIMM through standard DDR4 memory channels. In-

spired by FIRDRAM [52], we issue ENMC instructions from the memory controller with

PRECHARGE command combining special addresses and data. For example, accord-
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ing to the DDR4 JEDEC specification, for a 4Gb DIMM with 8 ×8 DRAM chips, the

row address space consumes 14 bits, i.e., A0-A13 in the C/A bus, and the data bus is

64-bit. Normal PRECHARGE command sets all the row address bits to be low, since

no row information is needed. Therefore, an ENMC instruction could be accommodated

with sending a PRECHARGE command but turning on the row address signals. Given

this insight, we design the ENMC instruction formatted in 13-bit command and 64-bit

data that transmits through signal A0-A12 and D/Q bus. With that, we first present

the instruction specification and explains the instruction in details. Then, we define the

instruction format.

Opcode=2 BufferID=0 BufferID=1

Opcode=9 RegID=7RD

MUL_ADD_FP32 buffer_0, buffer_1

QUERY reg_7

Opcode=9 RegID=7WT

INIT reg_7, v

5-bit 4-bit

5-bit

4-bit

5-bit1-bit

5-bit 5-bit1-bit

DATA

Figure 3.6: Instruction Format

Instruction Specification. As shown in Table 3.1, the ENMP instruction set con-

sists of four types of instructions: Initialization, Data Transfer, Compute, and Control.

(a) Initialization. The initialization instruction is used to write the status reg files in the

ENMC controller, in order to initiate the parameters of a classification task. It specifies

which reg to write and the corresponding value. (b) Data Transfer. The data transfer

instructions are used to access the on-DIMM buffers, such as loading data to the in-

put feature buffer or writing back the results to the PSUM buffer with specific addresses.
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Also, we use the instruction MOVE to transfer data in two buffers, such as storing results

in the PSUM buffer to the output buffer. (c) Compute. The compute instructions corre-

sponds to the computation operations in the two computing units, including ADD, MUL,

MUL ADD, and denotes the operation precision. FILTER instruction is used to filter out

the candidates. There are also instruction for special functions such as SOFTMAX and

SIGMOID that operate on the PSUM buffer in the Executor. (d) Control. The control

instructions include BARRIER for synchronization, NOP for stalling, RETURN to send

back the output buffer data, and CLR to reset the ENMC. We also design a QUEUE

instruction for the host processor to pull the status counters in each component.

Instruction Format. As shown in the Fig. 3.6, a typical ENMC command without

data or address takes 13 bits, where the opcode is 5 bits and the rest 8 bits are used to

specify which buffer to operate on. For example, Fig. 3.6(a) shows the instruction format

for performing multiply-accumulate in the Screener. For the status register accessing

instruction, QUERY and INIT shares the same opcode, and we use one bit after opcode

to specify the read or write operation, and 5 bits to specify the register index, as shown

in Fig. 3.6(b). Moreover, for instructions that involves values (i.e., data or address) that

exceeds the length of row addresses, the DQ bus is further utilized. For example, when

the host processor tries to write the status reg in the ENMC controller, the command

address bus specifies the write operand and the ID of target regwith INIT instruction, and

the DQ bus transmits the desired data in burst manner following the ENMC command.

3.4.4 System Design

In this subsection, we further architect the system-level design to facilitate existing

software solutions running on the ENMC memory. We first present the programming

support that wraps up ENMC instructions into high-level APIs such that a program
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could call the ENMC kernels directly. Second, we show the execution flow to demonstrate

how the host processor interacts with the ENMC DIMM.

Illustrative Application Program

import ENMC

//Host Preprocess
model = app_model() 
model = load(path)
...

//Initialize ENMC Params
ENMC.initial_classifier(\

model.classifier.w, model.classifier.b)
ENMC.initial_screener(\

model.proj_M, model.screen_w, model.screen_b)

for (batch_id, x) in batched_dataset:
//Host Inference
x = model.lstm(x)

//ENMC Classification
x = model.classifier(batch_id, x)

NEC Instructions
LOAD_FEA_INT4 0x4fe3
LOAD_W_INT4 0x4a62
MUL_ADD_INT4 fea_int4, w_int4
…
FILTER psum_int4
TRANSLATE
LOAD_FEA_FP32 0x4cea
LOAD_W_FP32 0x41eb
MUL_ADD_FP32 fea_FP32, w_FP32
…
RETURN spec_func, index

ENMC Instructions

//Initialization
INIT rx0, addr_w
INIT rx1, addr_b
INIT rx2, dim0_w
INIT rx3, dim1_w
...

//Run Classification
INIT r0, batch_id
INIT r1, batch_size
LOAD buffer0, 0x4cea4fe2
LOAD buffer1, 0xa1ebea62
MUL_ADD_INT4 buffer0, buffer1
LOAD buffer0, 0x4cea50e2
...
FILTER psum0
BARRIER
LOAD buffer2, 0xb2eef3a2
LOAD buffer3, 0xa97fac44
MUL_ADD_FP32 buffer2, buffer3
...

Figure 3.7: An illustrative example of programming support of ENMC. The ENMC
APIs are wrapped as high-level function libraries, which are further compiled into
ENMC instructions.

Programming Support. Following previous NMP solutions [53, 13], we divide the

application code into kernels running on the host processor and ENMC in a heteroge-

neous manner. Therefore, the host processor calls the provided APIs to offload specific

classification tasks. Fig. 3.7(a) shows an illustrative application code in Python style.

We wrap up the functions that runs on ENMC DIMM into a Python package, such

as initializing the Screener and screening-based classification. Therefore, a programmer

could build a machine-learning model transparently using the ENMC package. Inside

an ENMC object of classifier, we implement the approximate screening algorithm in the

forward function with pretrained projection matrix and screening weight. Furthermore,

when translating the applications into ENMC instructions, the compiler tiles the opera-

tion with initialized parameters and hardware configurations and executes the instruction

in a loop. The ENMC instructions are further packed into a memory request packet and
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routed to the memory controller, which transmits them to the ENMC DIMM, as shown

in Fig. 3.7(b).

Execution Timeline

Prep. DNN/Non-DNN
Inference

ENMC
Inst.

DNN/Non-DNN
Inference

ENMC
Inst.

Prep. DNN/Non-DNN
Inference

Extreme
Classification

DNN/Non-DNN
Inference

Extreme
Classification

Host-only System

Scr.
Can.

Scr.
Can.

ENMC System

Batch 0 Batch 1

Host

Memory Access Memory Access

Processor

ENMC DIMM

Memory Controller
ENMC Inst. Encoder

ENMC DIMM

ENMC DIMM

ENMC DIMM

Host

ENMC

Mem
ReqMe
m
Req

Figure 3.8: The ENMC workflow compared with a host-only system. ENMC offloads
the classification tasks to the ENMC DIMMs by sending the instructions as memory
requests through the memory controller.

Execution Flow. Fig. 3.8 presents the ENMC workflow compared with a host

only system. The execution of front-end feature extraction (DNN-based or non-DNN-

based) and the classification can be treated in a decoupled way. To be more specific,

the host in the ENMC system is dedicated to run the feature extraction and offloads the

classification tasks to the ENMC memory. The ENMC memory works as a regular main

memory for data accessing in the first phase, and performs screening approximation and

candidate-only classification in the second phase.

3.5 Evaluation Methodology

In this section, we discuss the methodology of evaluating the ENMC co-design, in-

cluding the implementation details and performance metrics.
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3.5.1 Software Evaluation

We implement the approximate screening algorithm on top of existing pre-trained

models in the PyTorch machine learning framework [54]. The screening parameters are

trained under mean-square-error (MSE) loss using the original training and validation

datasets till convergence. Both the input features and the screening parameters are fur-

ther quantized at inference time. We set the number of candidates, screening parameters

size, and quantization precision adjustable for sensitivity studies.

Table 3.2: Evaluated models and datasets.

Dataset #Categories Inference Model Hidden Size Abbr.
Wikitext-2 33,278 LSTM 1500 LSTM-W33K

Wikitext-103 267,744 Transformer 512 Transformer-W268K
WMT16, en-de 32,317 GNMT 1024 GNMT-E32K
Amazon-670k 670,091 XMLCNN 512 XMLCNN-670K

Workloads. We evaluate our method on different tasks including Language Mod-

eling (LM) [55], Neural Machine Translation (NMT) [34], and product-to-product rec-

ommendation [56]. For LM, we use the Wikitext-2 and Wikitext-103 datasets [43] and

evaluate on both long short-term memory networks (LSTM) and Transformer networks.

For NMT, we use the WMT16 English-to-German dataset and evaluate on Google’s Neu-

ral Machine Translation System (GNMT) [42]. For product recommendation, we use the

Amazon670K dataset [45] and evaluate on a Convolutional Neural Network based model

[41]. Table 3.2 lists the applications, the models, and the datasets used in our evalua-

tion, as well as the number of categories and the hidden dimensions. We also synthesize

three larger datasets with 1 million, 10 million, and 100 million categories to study the

scalability of ENMC (namely S1M, S10M, and S100M). For detailed and reproducible im-

plementation, we will submit our implementation for artifact evaluation and open-source

our repository after the anonymous review process.
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Baselines. For comparison, we include two other approximation methods for classi-

fication: SVD-softmax [35] and FGD [57]. The SVD-softmax method leverages singular

value decomposition (SVD) to approximate the classification weight with principle sin-

gular values; the FGD method uses graph-based nearest neighbor search to approximate

top-k classifications. We implement both baselines in our PyTorch-based framework.

Table 3.3: ENMC Configurations

DRAM Configuration
Spec DDR4-2400MHz DRAM Chip 8Gb×8
Channels 8 Ranks/CH 8
Queue 64-entry Capacity/CH 64GB

Timing
CL-tRCD-tRP: 16-16-16
tRC=55, tCCD=4, tRRD=4, tFAW=6

ENMC Configuration
Tech Node 28nm Frequency 400MHz
Executor Buffer 256B+256B Screener Buffer 256B+256B
FP32 MAC 16 INT4 MAC 128

3.5.2 Hardware Evaluation

We implement the ENMC logic in RTL and synthesize it with Design Compiler for

hardware parameters including timing, power, and area. We build a cycle-accurate sim-

ulator for the ENMC DIMM that interfaces with Ramulator [58] to derive the DRAM

timing information. Since the host processor and the ENMC DIMM execute the fea-

ture extraction phase and the classification phase separately without complicated fea-

ture interactions in between, we simulate a simple host model that only issues ENMC

instructions regularly according to the status registers.

Configurations. As shown in Table 3.3, the ENMC DIMM is based on DDR4-2400

specifications. Each rank consists of 8×8 DRAM chips that add to a total capacity of

8Gb. We put 8 memory channels for the host processor, and there are 8 ranks per chan-
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nel, contributing to 64GB capacity and 21.3 GB/s bandwidth per channel. In addition,

we synthesize our ENMC logic with TSMC 28nm technology, running on the frequency of

400MHz. The two input buffers and accumulation buffer in both Screener and Executor

are 256B. We put 64 INT4 MACs and 16 FP32 MACs on each DIMM. For non-linear ac-

tivations in the executor, we approximate the exponential function with Taylor expansion

to the 4th order.

Table 3.4: Comparing ENMC with three NMP baselines, all configured with similar
area and power budget.

NMP Designs Configuration
Est. Area

(mm2)
Est. Power

(mW )
NDA [49] 4*4 Functional Units + 1KB Memory 0.445 293.6

Chameleon [50] 4*4 Systolic Array + 1KB Memory 0.398 249.0
TensorDIMM [13] 16-lane VPU + 512B Queue * 3 0.457 303.5
ENMC (Ours) FP32 * 16 + INT4 * 128 + 256B Buffer * 4 0.442 285.4

Baselines. We compare ENMC with CPU and other NMP architectures, and all

of them are equipped with the approximate screening algorithm. The CPU baseline

is Intel Xeon Platinum 8280 @ 2.7GHz. It has 28 physical cores and 6 DDR4-2666

memory channels, contributing to a total memory capacity of 512 GB and 128GB/s ideal

bandwidth. Three state-of-the-art DRAM-based NMP architectures are also selected for

evaluation:

• NDA [49] provides a near-data acceleration solution by stacking coarse-grain recon-

figurable accelerators (CGRA) with DRAM devices. The CGRA mainly consists

of functional units, switches, and memory.

• Chameleon [50] is similar to NDA by employing a 2D architecture and focusing on

how to integrate the accelerator with commercial DRAM. As Chameleon could work

with any programmable compute unit, we put a systolic array as the accelerator

core to distinguish it from NDA.
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• TensorDIMM [13] is a NMP architecure for deep learning applications, especially

for recommendation workloads. It leverages the VPU to accelerate the embedding

operations in recommendation systems.

For a fair comparison, we configure the ENMC and three baselines with approximately

the same area and power budget, as shown in Table 3.4; the control logic and DRAM

device controller are excluded.

3.6 Evaluation

In this section, we evaluate the screening method for extreme classification and the

micro-architecture of near-memory processing cores. For the method, we show the trade-

offs between inference quality and speedup to CPU execution time of full classification.

Then, we present the speedup of classification enabled by NMP co-design and the system

performance improvements.

3.6.1 Algorithm-level Evaluation
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Figure 3.9: Quality vs. Speedup trade-off of Approximate Screening (AS) and two
baselines: SVD and FGD.

Overall model quality. We post the hypothesis that extreme classification can

afford approximation. Here we provide experimental results to support the hypothesis.

Overall, our method can achieve significant computation saving with negligible model

quality degradation. We can trade off model inference quality to an acceptable extend

for more computation reduction.
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As shown in Fig. 3.9(a), compared with using full classification as in NMT tasks, our

method can achieve a speedup of 11.8× without any loss in translation quality measured

by BLEU score. As for LM tasks, the speedups can reach 5.7× to 6.3× while preserving

perplexity results, as shown in Fig. 3.9(b) and (c). Similarly, for product recommen-

dations, our method can achieve a 17.4× speedup with only 0.5% drop in accuracy, as

shown in Fig. 3.9(d).

Because of the good approximation that our method achieves, the screening phase can

effectively select the key candidates for classification. Using the NMT task as an example,

at every decoding step, we want the most likely word or a few words if using beam

search. With Approximate Screening, we can identify the key candidates and compute

the accurate probabilities of these words for translation, saving redundant computations

for the remaining words in the vocabulary. We set the overhead of Approximate Screening

to be 3.1% of full classification.

Compared with two other approximation methods, our method achieves a better

quality-speedup trade-off, as shown in Figure 3.9. Besides, the computation overhead

of SVD-based approximation is 4× more than ours. We infer that the improvement of

our method is due to the learning-based approximation and no strong requirement for

classifier weights to be low-rank.
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Figure 3.10: Comparing different (a) parameter reduction scales and (b) quantization
levels of AS.

Sensitivity on Approximate Screening. Intuitively, better approximation costs
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larger computation and data overhead, while achieving better model quality with screen-

ing. We show different parameter sizes of the screening module and the corresponding

quality. Fig. 3.10(a) shows different parameter reduction scales of the screening module

vs. full classifier; we choose the scale to be 0.25 as the good quality preserving. As

shown in Fig. 3.10(b), we use 4-bit fixed-point quantization on the screening module as

this quantization level maintains approximation as using single floating-point precision.

3.6.2 Architecture-level Evaluation
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Figure 3.11: The performance results of ENMC, CPU, NDA, Chameleon, and Ten-
sorDIMM, normalized to vanilla CPU; all schemes are equipped with approximate
screening.

Performance. As described in Section 3.5, we compare ENMC with four base-

lines. As shown in Fig. 3.11, we take the batch size of 1, 2, 4 and normalize the per-

formance results to the full-classification CPU baseline for each workload, and arrange

the results according to the size of classification across the x-axis. Our approximate

screening demonstrates a 7.3× performance speedup on average in CPU baseline, and

the ENMC offers a total 56.5× speedup over the CPU. Also, 3.5×, 5.6×, and 2.7× aver-

aged speedups are observed when compared with NDA, Chameleon, and TensorDIMM

respectively. First, we find ENMC provides significant speedups of 55.5×-600.7× when

we do low-latency inference with a batch size of 1, because ENMC processes the inference

in a streaming manner over the lightweight classification. The huge performance gain in

XMLCNN-670K workload is because we considerably reduce the number of candidates
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by 50×. Second, the three NMP baselines benefit from large internal bandwidth and of-

fer 10.2-20.7× speedup over the CPU baseline. However, our ENMC could further boost

their performance by 2.7-5.6× with heterogeneous resource management and dataflow

customization. This result aligns our assumption that the performance of naive NMP so-

lutions is bounded by the limited on-DIMM buffers and computation resources. Because

they employ homogeneous FP32 computation units and hardly meet the throughput

requirement in the screening phase. ENMC eliminates the redundant computation and

needs only a small portion of FP32 computations. The entire screening phase is processed

with lightweight INT4 units in stream.
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tion & control logic, normalized to TensorDIMM.

Energy Consumption. We evaluate the energy results of ENMC against Ten-

sorDIMM and TensorDIMM-Large for a fair comparison. As shown in Fig. 3.12, we

reduce the average energy cost by 5.0× and 8.4× compared with TensorDIMM and

TensorDIMM-Large, respectively. Particularly, we breakdown the energy consumed by

the DRAM static cost, DRAM access, and on-DIMM computation and control logic. We

observe that the significant energy reduction of ENMC comes from two facts: First, the

co-designed approximation algorithm greatly reduces the DRAM accesses in ENMC. In

ENMC, we perform INT4 and low-dimensional screening during the classification phase,

while TensorDIMM and TensorDIMM-Large need to operate over the full classification
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weight. Moreover, due to the limited logic-side buffer size, TensorDIMM cannot store

the intermediate results in a matrix multiplication operation. Thus, the buffer over-

flow results in frequent DRAM memory accesses. Second, the reduced execution time

leads to the background energy reduction of the DRAM modules. As the DRAM takes

a noticeable portion of power for refreshing, ENMC reduces the DRAM static energy

consumption by 9.3× and 4.8× compared with TensorDIMM and TensorDIMM-Large.
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Figure 3.13: The end-to-end performance scalability compared with TensorDIMM and
TensorDIMM large.

End-to-End Scalability. We evaluate the scalability of performance considering the

end-to-end performance over large synthetic datasets. As shown in Fig. 3.13, we restrict

the application to the same front-end model of XMLCNN, and the performance of Tensor-

DIMM, TensorDIMM-Large, and ENMC is normalized to the CPU baseline. For compar-

ison, ENMC achieves 4.7× and 2.9× speedup over TensorDIMM and TensorDIMM-Large.

Particularly, for the two smaller datasets, ENMC achieves 2.2× and 1.6× speedups, while

for the two tremendous datasets, ENMC achieves 7.1× and 4.2× speedups, compared

with TensorDIMM and TensorDIMM-Large, respectively. The excellent scalability of

ENMC comes from the fact that the ENMC processes the lightweight classification in

stream and does not need to buffer large intermediate results back to DRAM.

Area and Power. Table 3.5 shows the breakdown area and power estimation of

ENMC. The total area of ENMC logic is 0.388mm2, and the total power is 264.6mW,

which are comparable to prior NMP architectures such as RecNMP [53]. Specifically,
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Table 3.5: Area and Power Estimation.
Area (mm2) Power (mW ) Area (mm2) Power (mW )

INT4 MAC 0.013 10.4 FP32 MAC 0.145 58.0

Compute Buffer 0.061 56.8 Control Buffer 0.053 49.3

ENMC Ctrl 0.035 32.9 DRAM Ctrl 0.135 78.0

Total Area 0.442mm2; Total Power 285.4mW

the compute unit (INT4 and FP32 MAC arrays) takes 40.8% of the total area and 25%

of the total power. The buffers made of register files in the Screener and the Executor

compose of 23.5% of the total area and 32.2% of the total power. Finally, the ENMC

controller and DRAM controller takes 9.0% and 34.8% of the area, and 12.4% and 29.5%

of the power, respectively.

3.7 Conclusion

In this chapter, we address the extreme classification problem with NMP-based

software-hardware co-design. We propose an approximate screening algorithm to reduce

the computational complexity and memory consumption in classification. We further

design a near-memory architecture to utilize efficient candidates-only classification en-

abled by our screening method. Finally, our approximate screening method achieves 7.3×

speedups, and the ENMC architecture further improves the performance by 7.4× and

demonstrates 2.7× speedup compared with the state-of-the-art NMP baseline.
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Chapter 4

G-MEM: Custom Memory

Hierarchy Design for Graph

Processing

We have explored the near-memory architecture to accelerate extreme classification.

However, the computation and data access in classification workloads are regular-patterned.

In this chapter, we take a look into the memory design for an irregular-patterned work-

load, graph processing. Graph processing participates a vital role in mining relational

data. But the intensive but inefficient memory accesses make graph processing applica-

tions severely bottlenecked by the conventional memory hierarchy. This chapter focuses

on inefficiencies that exist in both on-chip cache and off-chip memory. First, graph

processing is known dominated by expensive random accesses, which are difficult to be

captured by conventional cache and prefetcher architectures, leading to low cache hits

and exhausting main memory visits. Second, the off-chip bandwidth is further under-

utilized by the small data granularity. Because each vertex/edge data in the graph only

needs 4-8B, which is much smaller than the memory access granularity of 64B. Thus, lots
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of bandwidth is wasted fetching unnecessary data.

To address the inefficiencies, we present G-MEM, a customized memory hierarchy

design for graph processing applications. First, we propose a coherence-free scratchpad

as the on-chip memory, which leverages the power-law characteristic of graphs and only

stores those hot data that are frequent-accessed. We equip the scratchpad memory with

a degree-aware mapping strategy to better manage it for various applications. On the

other hand, we design an elastic-granularity DRAM (EG-DRAM) based on the NMP

technique. EG-DRAM processes and coalesces multiple fine-grained memory accesses

together to maximize bandwidth efficiency.

4.1 Background and Overview

Graph Representations
• Two common used structures: CSR & Adjacency list

0 2 5 7 11 12

1 3 0 2 3 1 3 0 1 2 4 3

1 0

2 3
4

0 1 2 3 4Vertex ID

Offset

Neighbor ID

Property

CSR

0.3 0.6 0.2 0.8 0.1

1

Figure 4.1: A CSR graph formatted with 3 arrays: Property array denotes the value
in each vertex; Offset array denotes the index of the vertex’s neighbors, which locate
at the Neighbor ID array.

In many application domains, we use graphs to abstract the data of interests and

excavate information from them, such as social networks, financial transactions, and

knowledge databases [59, 15, 16, 60]. Graphs are usually stored vertex by vertex in a

dense format, with neighbors attached to each vertex, since the edge connectivity between

vertices is very sparse. For example, compressed Sparse Row (CSR) is a common-used

data structure to represent a graph [61]. As shown in Fig. 4.1, typically three arrays are

used in a CSR-formatted graph. The property array stores the value of each vertex, for
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example, the PageRank score in the PageRank algorithm or the depth to the source vertex

in the Breadth-First-Search (BFS) algorithm. there is an array storing the properties of

all the nodes. The structural information is stored in 2 arrays: Offset array and Neighbor

ID array. The offset array records the begin and end indices of the neighbors for each

node, which can be found from the neighbor ID array.

CSR is the most compact data layout to represent a graph, but it cannot han-

dle dynamic graphs, in which case graphs are evolving over time. Adjacency list and

STINGER [62] that have variable neighbor arrays are used to capture such dynamics.

Note that, the fundamental challenges of random and fine-grained access still remain

among these data layout variants, requiring a general hardware solution to solve them.
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Figure 4.2: The relationship between the vertex degree (shown in x-axis) and the
number of memory accesses to it (shown in y-axis). Four graph applications are
evaluated on two datasets: LiveJournal and Wiki.
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4.1.1 Memory Hierarchy Inefficiencies

In this section, we introduce the characterizations of graph workloads to identify the

performance bottleneck in the memory hierarchy.

First, random access nature severely degrades the performance of on-chip caches. Lots

of work has reported the low cache hits in graph applications [63, 64], since the traditional

cache hierarchy is difficult to predict and capture the random access pattern. Typically,

cache hit ratio of 10%-20% is observed in the L2 cache, while 30%-60% hit is observed in

the LLC [63, 64]. Nature graphs are well-known to be power-law distributed, meaning few

high-degree vertices are frequently accessed. As shown in Fig. 4.2, we find the number

of accesses to each vertex is literally linearly related to its degree. This gives us hint that

the on-chip memory should leverage the native feature from graph datasets.

1

16.6%
14.7%

7.3%
15.2%12.1%

13.2% 16.6% 14.6%12.1% 13.6%
19.2%
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100%

PageRank
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Connect Component
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Breadth-First-Search
(BFS)

Max Computation
(MC)

Wiki LiveJournal Orkut

Figure 4.3: The bandwidth efficiency on the 8 graph processing workloads, which is
measured as average touched data in a cacheline.

Second, a cacheline is underutilized due to the fine-grained memory accesses pattern.

Modern DDR4 DRAM is designed to comply with a 64B cacheline in caches. However,

previous studies revealed that the granularity of memory accesses in graph applications

can be as small as 4B or 8B [65, 66]. To quantitatively evaluate the exact granularity

that graph applications demand, we investigate how many portions of the 64B cacheline

are actually torched. As demonstrated in Fig 4.3, we extracted the memory traces from

various graph applications and derived the percentage of used cacheline by averaging the
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touched data size within a time window. Besides, the vertex property data is set to be

4B. We find that even with a large memory window of 128, only less than 20% of 64B

data are used. As we mentioned that high bandwidth is essential to the performance

of graph processing, this means more than 80% of the memory bandwidth is wasted in

fetching unnecessary data.

4.1.2 Related Work

Cache and Prefetcher Architectures: Prior work has broadly discussed the op-

portunity of graph-specialized caches and prefetchers to improve the data locality for

on-chip memory. OMEGA [67] is a distributed scratchpad memory that locates indi-

vidually beside each core to store high-degree vertices, requiring a fixed data flow and

programming model to process the vertex mapping and communication; GRASP [64] ex-

tended the existing cache to enable the ability to identify and manage these hot vertices,

but the time-consuming graph reordering brings significant overhead and highly limits

the end-to-end performance. On the other hand, indirect memory prefetcher (IMP) [68]

is designed for applications that exhibit pointer-chasing behavior, which prefetches data

indexed by current data in the cache. But IMP could prefetch lots of unnecessary data.

DROPLET [63] further improved IMP with dedicated units to identify the property,

offset, and neighbor ID data explicitly, and thus fetches those vertices associated with

currently cached vertices more precisely. HATS [69] also speculates the vertex data pro-

cessed in the core and issues prefetches over the entire community of these vertices. Both

DROPLET and HATS require a fixed data structure in the application, such that the

hardware could directly recognize and operate on the graph data and generate prefetching

commands.

G-MEM differs from the prior work by achieving both high flexibility and perfor-
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Table 4.1: Comparison of G-MEM’s on-chip memory with prior work.
OMEGA

[1]
GRASP

[2]
IMP
[3]

DROPLET
[4]

HATS
[5]

G-MEM
(ours)

Flexiblity × ✓ ✓ × × ✓
Performance ✓ × × ✓ ✓ ✓

mance, as shown in Table 4.1. We put a general-purpose scratchpad as the on-chip

memory, which does not require one particular data layout and data flow and could fit

into various application scenarios. Instead, we design a data allocation strategy based

on a lightweight reordering algorithm to manage the scratchpad from the software level.

Memory Subsystem Design: There are relatively fewer studies on specialized

off-chip memory to accelerate graph processing. Dynamic-Granularity Memory Subsys-

tem (DGMS) [70] and Adaptive-Granularity Memory Subsystem (AGMS) [71] leveraged

narrowed memory bus to achieve fine-grained memory accesses. As a memory channel

contains both the command/address (C/A) bus and data bus, such designs only narrow

the width of the data bus but still need the same C/A bus. Therefore, the C/A bus

then becomes a huge overhead considering the limited pin fan-out from the chip. We

will explain this in detail in Section 3.2. On the other hand, Gather-Scatter DRAM [72]

designs a DRAM memory that is able to perform strided gather/scatter memory access.

However, as the conventional strided prefetcher does not work for the random memory

accesses, this fix-pattern gather-scatter DRAM is not preferable for graph processing

workloads.

G-MEM leverages the recent near-data processing (NDP) technology (specifically

DRAM-based NDP technology), which puts a special-function unit on the DRAM DIMM

to operate data near the memory and meet different application demands [53, 13, 73].

The key idea is to pack the sophisticated and fine-grained memory requests together on

the DRAM DIMM and send them back to the processor. Therefore, G-MEM boosts

bandwidth efficiency without introducing overhead to the system bandwidth.
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4.1.3 Proposal

To overcome the inefficiencies in graph processing and achieve both high flexibility

and performance, we present G-MEM, a customized memory hierarchy design for graph

processing. We design the G-MEM based on two insights: First, as specialized cache

architectures could limit the application flexibility or bring significant hardware cost, a

software-managed on-chip memory is leveraged to facilitate access to the hot vertices in a

graph. Second, the coarse-grained data in the memory bus comes from multiple DRAM

devices in a DRAM DIMM, we could expect finer-grained accesses with fewer DRAM

devices. Specifically, we design a coherence-free scratchpad on-chip memory, since the

power-law characteristic of graphs is hardly captured by the traditional cache hierarchy.

To facilitate the use of the scratchpad memory, we further propose a graph-aware mapping

strategy to manage the scratchpad from the software level. In addition, we design an

elastic-granularity memory subsystem based on near-data processing (NDP) architecture

that has been widely studied in prior work. We make up our elastic DRAM DIMM with

off-the-shelf DRAM devices, and each DRAM device provides 8B data access. We equip

the DIMM with a gather-scatter unit, which processes and coalesces multiple fine-grained

memory accesses together to maximize bandwidth efficiency.

Specifically, the contribution of this chapter includes:

• We design a coherence-free scratchpad as the on-chip memory to facilitate efficient

access to the frequent data, coming with a proposed degree-aware vertex remapping

strategy to exploit the graph’s power law nature.

• We propose an off-chip memory composed of elastic-granularity DRAMs (EG-

DRAMs) to coalesce fine-grained accesses and boost bandwidth efficiency. We

design the instruction format of EG-DRAM such that the processor could commu-

nicate through the standard DDR channel.
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Figure 4.4: The overview of G-MEM design. (a) A multicore process equipped with
G-MEM, including a coherence-free scratchpad and extended memory controller. (b)
The elastic-granularity (EG) memory channels connected to the processor. (c) The
microarchitecture of the elastic-granularity DRAM, which achieves fine-grained access
by separating DRAM devices. (d) The instruction format of EG-DRAM, with packing
multiple memory requests together.

• We further optimize the extension in the memory controller and the DDR4 protocol,

to save the bandwidth demand and area overhead of the EG-DRAM.

• The Sniper-based [74] simulation demonstrates a 2.63× overall speedup over a

vanilla CPU, with 1.44× and 1.79× speedup against the state-of-the-art cache

architecture and memory subsystem, respectively.

4.2 G-MEM Architecture

In this section, we present the architecture design of G-MEM. We first give an

overview of G-MEM, followed by the coherence-free scratchpad design and the degree-

aware vertex remapping scheme. We then present the NDP-based elastic DRAM memory.

4.2.1 Overview

Fig. 4.4 presents an overview of the G-MEM architecture, which includes the on-

chip coherence-free scratchpad (CF-scratchpad) and off-chip elastic-granularity DRAM
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(EG-DRAM). First, we make the scratchpad memory coherence-free by having it share

the memory space with DRAM. Therefore, each core can access it with a designated

address space without maintaining the coherence between the scratchpad and the DRAM.

We further propose a degree-aware vertex remapping scheme to manage the scratchpad

from the software level. Second, we design the elastic-granularity DRAM as the off-

chip memory. We leverage the near-data processing (NDP) technology to access the

on-DIMM DRAM devices individually and achieve fine-grained data access. We also

design the instruction format by leveraging the unused address line and data line in the

PRECHARGE command to ensure compatibility with the commodity DDR4 interface.
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Figure 4.5: The data flow in the G-MEM hierarchy. Four read requests are issued
from cores, where one is served by the on-chip scratchpad and the other three go
through the off-chip EG-memory.

We give an illustrative data flow in G-MEM hierarchy in Fig. 4.5. Four read re-

quests to different fine-grained data are issued from cores, which transit through the

interconnection between cores and scratchpad. The scratchpad identifies that the ad-

dress of request #1 locates within itself and sends the desired data back. Then, the

other three requests are forwarded to the memory controller. With the EG-DRAM ex-
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tension unit, the memory controller packs those requests together and sends them to the

off-chip EG-DRAM. Thus, three reads could be served with only one memory walk to

boost bandwidth efficiency.

4.2.2 Coherence-Free Scratchpad

In this section, we introduce our coherence-free scratchpad that locates in the same

memory address space as DRAM, We then present how is the scratchpad memory man-

aged at the software level.

Opportunity of using scratchpad memory. Concerning that some higher-degree

vertices are accessed much more frequently than other vertices and hardware prefetchers

are unlikely to predict such memory access pattern, a scratchpad memory that is managed

at the software level is more appealing to store these high-degree vertices. Also, compared

with a large shared cache, the scratchpad memory brings the benefits of easier hardware

implementations and no tag access/hierarchy traverse time, meaning a smaller area over-

head and lower access latency. A similar idea has been exploited in OMEGA [67], which

equips each core with a scratchpad memory to store high-degree vertices by reducing the

cache size. However, we here focus on a more general and flexible design and minimizing

the traffic between the scratchpad and main memory.
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Figure 4.6: Coherence-Free Scratchpad

Avoiding coherency by memory space partitioning. To eliminate the coher-
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ence between scratchpad and DRAM and reduce the bandwidth demand, we propose a

heterogeneous memory subsystem consisting of both scratchpad and DRAM, meaning

the scratchpad shares the same address space with DRAM and works as a fast main

memory.

As shown in Fig. 4.6, first, when allocating the memory addresses, the memory man-

agement unit records a reserved memory space that is as large as the scratchpad mem-

ory. For instance, a 32MB scratchpad memory takes the address from 0x80000000 to

0x82000000, and any data allocated within this address belongs to the scratchpad. Then,

when a memory request comes down to the memory controller, a switch determines to

either route the request to the scratchpad or bypass it to the DRAM controller only

according to the address of this request. Therefore, we make the scratchpad transparent

to the program at run-time, and no special control of different data flows is required.

Graph-Aware Scratchpad Management. The system-level management of the

scratchpad memory such as memory allocating mentioned above can be achieved by

the memory management unit(MMU) [75, 76] where the scratchpad can be treated as

another piece of memory in a similar way as the non-uniform memory access (NUMA) in

multi-socket CPU [77]. We would like to explain more in detail about the software-level

management for the scratchpad memory. For large-scale graphs, we can only expect a

small portion of vertices can fit into the on-chip scratchpad memory. As discussed in

Section 4.1.1, this small portion is preferable to be the high-degree vertices that are quite

frequently accessed. However, the problem is these vertices are not stored continuously

and also randomly exist in the node array.

Key idea: We propose a degree-aware vertex remapping scheme to tackle the

issue of randomly distributed high-degree vertices. The scheme manages to exchange

high-degree vertices to the front tail of the vertex array, such that they would locate in

sequential address space in the scratchpad. For example, for a graph with 100 vertices,
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the vertex 0-9 are almost high-degree vertex and locate in the scratchpad while vertex

10-99 with relatively lower degrees remain in the DRAM. In addition, since we do not

essentially need to sort the vertices but just separate them instead, the algorithm only

needs to scan over the vertex array and identify a high-degree vertex by a threshold, so

heavy reordering is not required.

As illustrated in Algorithm 2, we maintain 2 vertex pointers, plow and phigh, for record-

ing the current low-degree vertex and searching the next high-degree vertex, respectively.

Here we rely on some input degree threshold that may be derived from experiences and

dataset characteristics to determine whether a vertex is high-degree or low-degree. As we

find the expected plow within the scratchpad region and one phigh outside the scratchpad,

we switch the properties of these 2 vertices and pair them into a map. The algorithm

terminates when we go to the end of the scratchpad or the total number of vertices,

indicating that we already have enough hot vertices in the scratchpad or we cannot find

any more hot vertices. In terms of the algorithm complexity, in the worst case, it takes

at most O(N) + O(E · S) time under the condition that we switch out all the vertices

in the scratchpad. However, since we are unlikely to face such many high-degree ver-

tices due to the power-law distribution and the size of the scratchpad is relatively small,

the computation complexity in normal cases is around C · O(E), which is compatible

to the complexity of one graph processing iteration. Note that, existing pre-processing

frameworks usually provide techniques like vertex sorting [78]. Our proposed vertex ID

remapping strategy can be easily embedded into the pre-processing step at the software

level.
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Algorithm 2: Degree-Aware Vertex Remapping

Data: Graph G{V,E}, degree threshold θlow and θhigh , number of vertices in
the scratchpad S (S < |V |).

1 begin
2 Initialize: N = |V |; Vertex pointers plow = v0, phigh = vS; Vertex map Vmap;
3 while plow < vS do
4 if plow.degree() > θlow then
5 plow++;
6 continue;

7 end

8 while phigh < VN do
9 if phigh.degree() < θhigh then

10 phigh++;
11 continue;

12 end
13 &ptemp = &phigh;
14 &phigh = &plow;
15 &plow = &phigh; // Switch plow and phigh

16 Vmap.insert(plow, phigh);
17 break ;

18 end

19 end

20 # pragma omp parallel for
21 for e in E do
22 if e.source in Vmap then
23 e.source = Vmap[e.source]
24 end
25 if e.dest in Vmap then
26 e.dest = Vmap[e.dest]
27 end

28 end

29 end
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4.2.3 Elastic-Granularity DRAM

In this section, we introduce our design for the elastic-granularity DRAM (EG-

DRAM). Additionally, we design the instruction format for accessing multiple fine-

grained data in a packed request.

Challenge and opportunity in conventional DRAM. Given that on average

14.0% of one 64B cache line (around 9B) is actually accessed in graph applications as

characterized in Section 4.1.1, a memory access granularity of 8B appears more reasonable

and efficient. However, the current DDR4 DRAM is burst-oriented and designed to fit

with the 64B cache line size [79]. This is then the smallest granularity we can expect

per transaction. Even though the DDR4 offers configurable burst length (for example,

setting burst length from 8 to 2 to access 16B data each time), this, however, only affects

memory controller settings on the processor side but not the DRAM. As a result, the

DRAM still sends 16B data and another 48B invalid data back to the controller, meaning

that we cannot actually have bandwidth gain from changing the burst. Moreover, 16B

granularity seems still larger than what we want of 8B.

The opportunity inspiring our EG-DRAM comes from the DRAM’s internal hierarchy.

Generally, a DRAM DIMM is organized as rank, chip, bank, row, and column. When

accessing DRAM, we have to specify the addresses and choose which rank, bank, row,

and column the data is located in, but all the chips within the same rank share these

addresses. Each DRAM chip (or DRAM device) outputs 4- or 8-bit data (what is called

x4 chip or x8 chip) every clock edge. With 8 dual-edge clocks of bursting, 4B or 8B

fine-grained data could be expected from a single chip.

Elastic-Granularity (EG)DRAM design. The key idea of EG-DRAM is cutting

down the number of DRAM chips/devices for each individual memory access. As shown in

Fig. 4.4(c), the EG-DRAM mainly consists of the instruction FIFO, instruction decoder,
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command (CMD)/address (Addr) generator, and input/response buffer. Multiplexers

are also used to bypass the EG-DIMM logic and serve regular memory requests.

Instruction FIFO & instruction decoder: The instruction FIFO receives packed mem-

ory requests from both the C/A bus and DQ bus (which is first cached at the input

buffer). The multiplexer determines if the coming request is an EG-instruction, such

that it pushes the request to the instruction FIFO or directly forwards it to the DRAM

devices. The instruction decoder reads from the FIFO and dispatches the request to

different DRAM devices separately, such that finer-grained data could be achieved.

Command & address generators: Each DRAM device is equipped with an individual

command/address generator. They are finite-state machines that follow the standard

DDR4 protocol and work as signal generators to activate the DRAM device. To minimize

their area overhead, we simplify and optimize the states within them, which will be

discussed in Section 4.2.4.

Input & response buffer: Since the regular DDR4 channel is synchronized but our

EG-instruction is processed asynchronously, the two buffers are used to cache the data

from/to the DQ bus. The input buffer stores the instruction from the DQ bus, while the

response buffer cache the data for a packed request.

EG-instruction format. The goal of designing EG-instruction is compatibility

with DDR4 protocol, such that the memory controller can communicate with EG-DRAM

through standard DDR4 memory channels. Inspired by FIRDRAM [52], we issue ENMC

instructions from the memory controller with PRECHARGE command combining special

addresses and data. For example, according to the DDR4 JEDEC specification [79], for

a 4Gb DIMM with 8 ×8 DRAM chips, the row address space consumes 14 bits, i.e.,

A0-A13 in the C/A bus, and the data bus is 64-bit. Normal PRECHARGE command

sets all the row address bits to be low, since no row information is needed. Therefore, an

ENMC instruction could be accommodated by sending a PRECHARGE command but
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turning on the row address signals.

Given this insight, we design the ENMC instruction formatted in 13-bit command

(line A0-A12) and 64B data (DQ bus). As shown in Fig. 4.4 (d), in the command line,

we use 1 bit to denote request type (read or write), while the data size, data count, and

request ID are specified with 4 bits respectively. On the other hand, the 64B (under

bursting) in the DQ bus are used for the addresses for these requests. It is mandatory

that the multiple requests packed in one instruction are the same type and the same data

size, such that the returned data could be formatted in a strided pattern. Note that for

a write instruction, the DQ bus needs 2 bursts to send both the addresses and data.

4.2.4 Memory Controller Extension and Optimization

In this section, we introduce the extension to the existing memory controller for

EG-DRAM. We then optimize the DDR4 commands for better C/A bus efficiency.

Memory controller extension. To encode and issue the EG-instruction, we need

to extend the memory controller. The main task of the extension unit is to scan the

memory request queue through a fixed window and coalesce the proper requests together

as a packed instruction. It leverages the address mapping unit to identify those requests

within the same DRAM rank, such that they could be packed simultaneously. Note that,

the data type of vertex properties in a graph are fixed for one workload, i.e., they are

either float, int, or long. Therefore, finding data of the same size is not difficult.

DDR4 protocol optimization. Two design considerations motivate the optimiza-

tion for the existing protocol: First, since we currently need the C/A bus to send both

regular DDR4 commands (PRECHARGE, ACTIVATE, READ, etc) and EG-instruction,

the memory controller may encounter C/A bandwidth bottleneck during the execution.

Second, the limited on-DIMM area requires us to minimize the size of command/address

58



G-MEM: Custom Memory Hierarchy Design for Graph Processing Chapter 4

generator, since they are copied individually for each DRAM device and could be a large

overhead. Therefore, the goal of the optimization is to reduce the number of commands

in the DDR4 protocol, which could save both bandwidth and area.

Opportunity: We find that there are generally 3 steps to access the DRAM: precharge

(write back the current opened row), row activate (open another row), and column access

(read/write the data), all of which have the corresponding command in the DDR4 pro-

tocol. Since the command bus is not double-rate, meaning 3 cycles are needed compared

with the 4 data cycles. However, as the graph applications are filled with random mem-

ory accesses, we may hardly gain many row buffer hits and the current opened row

appears to write back again and again. This means letting the data wait at the row

buffer does not bring much benefit and we could save one cycle by precharging the row

buffer automatically after the column read/write operations.

Therefore, we re-design the finite-state machine in both the memory controller, by

replacing all READ/WRITE commands to READ AP/ WRITE AP. Thus, the C/A bus

or signal generators only need to send 2 commands for one access. This eliminates the

precharge command, and only 2 cycles in the command bus are occupied in accessing

4-cycle data, leaving half of the command bandwidth being idle.

4.3 Evaluation

In this section, we present the evaluation results of our G-MEM. We first clarify our

experiment methodologies and simulation setup. Second, we present the comparison of

G-MEM to prior work, along with the sensitivity studies. Finally, we discuss the area

and power overhead in the EG-DRAM architecture.
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4.3.1 Methodology

Evaluation Tools: We evaluate the G-MEM based on trace-based and cycle-accurate

simulations through the Sniper multi-core simulator [74], with modifications on the mem-

ory hierarchy and DRAM subsystem. With the interface provided in Sniper, we model

the power consumption and area breakdown with McPAT [80].

Configurations: We configure a 32-thread system with four memory channels, while

each thread has 32KB L1-D and 32KB L1-I caches. The scratchpad size is set as 32MB,

considering we do not enable L2 cache. Each memory channel consists of 4 DDR4-2666

ranks, and each rank has 8×8 DRAM chips that add to a total capacity of 8Gb. In addi-

tion, we synthesize our EG-logic with TSMC 28nm technology, running on the frequency

of 400MHz. The input buffer and response buffer have the size of 512B respectively,

aligned with the size of maximal requests.

Baselines: Since we targeting general-purpose graph processing, we take the perfor-

mance of a vanilla 32-thread CPU as the main evaluation baseline. We also compare the

coherence-free scratchpad (CF-scratchpad) with the GRASP, a recent domain-specific

cache design for graph analytics [64]. Finally, we choose the Gather-Scatter DRAM

(GS-DRAM) [72] as the baseline of our EG-DRAM. We clarify that GS-DRAM is not

designed specifically for graph processing, and the strided gather/scatter may not be

preferable for random accesses. However, GS-DRAM is still closely related to our EG-

DRAM, as we both customize the DRAM to collect multiple memory requests in one

transaction.

Table 4.2: Three graph datasets that are evaluated among four algorithms.

Datasets Type Nodes Edges
wiki-topcast (Wiki) Hyperlink 1,791,489 28,511,807

soc-LiveJournal1 (LJ) Social Network 4,847,571 68,993,773
Orkut Social Network 3,072,441 117,185,083
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Graph Workloads: We use 2 algorithms: PageRank (PR), connected component

(CC) from GAP benchmarks [78] (for static graphs), and 2 algorithms: bread-first search-

ing (BFS) and max computation (MC) from SAGA benchmarks [81] (for streaming

graphs). These two benchmarks have no fixed programming model and well-optimized

codes for multithreading. Thus, they are considered state-of-the-art benchmarks. Three

datasets are used from the SNAP dataset collection [82], as shown in Table 4.2. More-

over, GAP processes datasets into the CSR format, while SAGA stores them as adjacency

lists.

4.3.2 Performance

In this section, we demonstrate the performance results of G-MEM, including the

performance speedups compared with the CPU baseline and prior work.
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Figure 4.7: The overall performance of G-MEM compared with the CPU baseline.
We configure the G-MEM without/with the coherence-free scratchpad.

Overall Performance. Fig. 4.7 shows G-MEM’s overall performance results com-

pared with the CPU baseline, where two configurations (without/with the scratchpad) are

used to present the performance breakdown of on-chip scratchpad and off-chip DRAM.

First, G-MEM without/with the scratchpad achieves 1.71/2.62 speedup on average over

the CPU baseline respectively. This indicates both the coherence-free scratchpad and
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elastic-granularity DRAM offers considerable speedups to the system. Moreover, we

observe that for PR running on Wiki, the EG-DRAM actually degrades the baseline

performance. We explain this as a result of the PageRank implementation style and

Wiki dataset characteristics. The GAP benchmark implemented PageRank by traversal

over all the vertices, whereas other algorithms are active vertices only. This introduces

relatively more sequential accesses with parallel threads. On the other hand, the Wiki

dataset is reported as a high-skew graph [83], where some vertices have extremely large

degrees (>230,000). This could also lead to a sequential access pattern when accessing

the neighbors of such vertices.
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Figure 4.8: The end-to-end performance of CF-scratchpad compared against the
GRASP, where both the graph reordering in GRASP and our vertex remapping are
included in the performance.

Compared with prior work. As shown in Fig. 4.8, we compare the end-to-end

performance of CF-scratchpad with the GRASP, the state-of-the-art cache design for

graph analytics [64]. We achieve 1.44× average speedup against the GRASP. Specifically,

we find GRASP only achieves 1.06× speedup over the CPU baseline (indeed, GRASP

reported 1.04× speedup originally in the paper). This is caused by the large preprocessing

overhead included in the end-to-end performance. As GRASP relies on heavy graph

reordering algorithms to fit the high-degree vertices into caches, the exhausting reordering

time migrates the performance gain from the hardware. Different from GRASP, our

degree-aware vertex remapping is threshold-based and lightweight, such that incurring
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low overhead to the performance.
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Figure 4.9: The performance of EG-DRAM compared against the GS-DRAM. The
near-baseline performance of GS-DRAM is because the strided gather/scatter is not
preferred in graph processing.

Fig. 4.9 shows the comparison between GS-DRAM and EG-DRAM, and we achieved

1.79× speedup over the GS-DRAM. As we mentioned before, GS-DRAM may not be

suitable for graph workloads. It explores the strided gather and scatter only, hardly coa-

lescing many requests among the randomly distributed data. Therefore, the performance

of GS-DRAM is expected to be similar to regular DRAM in the random-access scenario.

Our EG-DRAM overcomes this issue by exploiting more complicated on-DIMM logic to

serve individual requests from each DRAM device, such that the bandwidth is easily

saturated.

4.3.3 Sensitivity Study

In this section, we analyze the sensitivity of G-MEM with different hardware config-

urations, including the scratchpad size and the DRAM device width.

Sensitivity to different scratchpad size. We use the scratchpad hit ratio to

demonstrate the efficiency of the scratchpad, as higher hit ratio leads to reduced off-chip

memory traffic. As shown in Fig. 4.10, we vary the size of the scratchpad from 8MB to

64MB and compare their hit ratio. We find that larger scratchpad always outperforms
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Figure 4.10: The scratchpad hit ratio under different scratchpad size settings, varying
from 8MB to 64MB.

smaller ones. With increasing the capacity by 2×, we observe a higher hit ratio increased

by 10.3%, 11.5%, and 7.4% for 16MB, 32MB, and 64MB respectively. This indicates

that we cannot expect a linear increase in the hit ratio from enlarging the capacity.

Considering the trade-off between area and efficiency, we take the size of 32MB as our

system configuration.
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Figure 4.11: The performance results under two DRAM device configurations.

Sensitivity to different DRAM configurations. We configure the DRAM device

on the EG-DIMM to ×8 chip and ×16 chip, which results in 8B and 16B accessing

granularity for each transaction. As shown in Fig. 4.11, we find that except for the PR

on Wiki, the ×8 DRAM demonstrates a better performance than the ×16 DRAM by

11%. For the PR on Wiki, the ×8 DRAM appears less efficient than the ×16 DRAM,

which aligns with our explanation in Section 4.3.2: this workload explores more sequential

accesses, resulting in a better performance for a coarser-grained DRAM.
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4.3.4 Power and Area Breakdown

Table 4.3: Area and power estimation of EG-DRAM’s logic.

Area (mm2) Power (mW ) Area (mm2) Power (mW )

Inst. FIFO 0.017 14.2 Inst. Decoder 0.002 2.3

Input Buffer 0.034 28.4 Response Buffer 0.034 28.4

CMD/Addr Gen. 0.159 149.6 Others 0.001 1.2

Total Area 0.247mm2; Total Power 224.1mW

Table 4.3 shows the breakdown area and power estimation of EG-DRAM overhead.

The total area of EG logic is 0.247mm2, and the total power is 224.1mW, which are

quite insignificant considering the area and power of DRAM DIMM are in the order of

hundred mm2 and W [84]. Specifically, the command and address generators take 64.3%

of the total area and 66.8% of the total power. The buffers compose 27.5% of the total

area and 25.3% of the total power. Finally, the control logic, including instruction FIFO

and instruction decoder take 7.7% of the total area and 7.4% of the total power.

4.4 Conclusion

In this chapter, we present G-MEM, a customized memory hierarchy design for graph

processing applications. First, we propose a coherence-free scratchpad as the on-chip

memory, which leverages the power-law characteristic of graphs and only stores those

hot data that are frequent-accessed. We equip the scratchpad memory with a graph-

aware mapping strategy to better manage it for various applications. On the other hand,

we design an elastic-granularity memory subsystem based on near-memory processing

(NMP) architecture, which processes and coalesces multiple fine-grained memory ac-

cesses together to maximize bandwidth efficiency. Putting them together, the G-MEM

demonstrates a 2.63× overall speedup over a vanilla CPU, with 1.44× and 1.79× speedup
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against the state-of-the-art cache architecture and memory subsystem, respectively.
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Chapter 5

INPSIRE: In-Storage Private

Information REtrieval via Protocol

and Architecture Co-design

The previous chapters demonstrated how to apply Near-Data Processing (NDP) tech-

nique for existing DRAM memory, and the targeted workloads usually have a small

memory footprint. To further explore the scalability of NDP, this chapter investigates

the workload that has a much larger footprint and cannot fit into the DRAM memory -

private database systems. In this chapter, we first give the background and motivation

for accelerating Private Information Retrieval (PIR), which is an important primitive for

database privacy. We then introduce our INSPIRE design, the first in-storage process-

ing (ISP) architecture to facilitate private query processing. INSPIRE follows a protocol

and architecture co-design approach to reduce the query size and speed up the execution.

Finally, we present the evaluation results and conclude this chapter.
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5.1 Background and Motivation

Before we dive deep into our design, we introduce the technical background for private

information retrieval (PIR), fully homomorphic encryption (FHE), the state-of-the-art

FastPIR protocol [85], and performance bottlenecks in FastPIR. Then, the high-level

ideas of our proposal are discussed.

5.1.1 Private Information Retrieval (PIR)

With more data being moved to the cloud, database systems have grown quickly to

become the backbone of many daily applications [86, 86, 87]. As a result, the demand

for user privacy has turned into an increasingly concerning issue: when accessing the

database, can we prevent the server from knowing where parts of the database the user

is accessing? In 1995, Chor et al. introduced Private Information Retrieval (PIR) to

address this problem [88]. Subsequent research has extensively studied the broad appli-

cations of PIR protocols, including anonymous communication [89, 90, 85, 91], content

sharing [92, 93, 94], and business services [95, 96].

There are two lines of PIR protocols: information theoretic PIR (IT-PIR) [97, 98, 99,

88] and computational PIR (CPIR) [100, 101, 102, 85, 103]. IT-PIR protocols replicate

the database across multiple non-colluding servers. The client sends different queries

to these servers and derives the answer (the desired database record) by combining the

responses. IT-PIR protocols achieve information-theoretic security against adversarial

attacks [88]. On the other hand, CPIR protocols put the database onto a single server,

while guaranteeing security against computationally-bounded adversaries. In this work,

we focus on the single-server CPIR because it is more practical than deploying non-

colluding servers.

The key insight behind single-server PIR is the all-for-one concept. This means that
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to retrieve one record from a database obliviously, the server should necessarily compute

over all the records in the database. This is necessary because otherwise the server

would learn which record the user is not interested in [104]. The recent breakthrough

in fully homomorphic encryption (FHE) [105] has greatly expedited the development of

single-server PIR. We discuss the FHE-based PIR protocol with more details in Section

5.1.2 and 5.1.3.

5.1.2 Fully Homomorphic Encryption (FHE)

Fully Homomorphic Encryption (FHE) Modern PIR protocols rely on Fully Homo-

morphic Encryption (FHE) to conceal the query information. FHE is a type of encryption

scheme that allows generic operations on encrypted data (ciphertext). In the most popu-

lar FHE schemes, such as BFV [106, 107], BGV [108], and CKKS [109], the raw data that

is encrypted is a vector, and the ciphertext is a polynomial (represented as a vector of

polynomial coefficients). Therefore, FHE programs follow a vector programming model,

as most FHE operations involve element-wise computation between vectors.

Algorithm 3: FHE Primitives − Client

1 Function VecEncrypt(V , pk):
/* Encrypt a vector V = [v1, v2, v3] into ciphertext C with public key

pk. */

2 return C

3 Function VecDecrypt(C, sk):
/* Decrypt a ciphertext C into a plain vector V = [v1, v2, v3] using the

secret key sk. */

4 return V

Algorithm 3 and Algorithm 4 present the FHE primitives needed for PIR, for a small

example vector containing three elements. At the client side, the function VecEncrypt

encrypts a raw vector V = [v1, v2, v3] into a ciphertext C, where C is a polynomial of
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Algorithm 4: FHE Primitives − Server

/* C1=VecEncrypt([v1, v2, v3]), C2=VecEncrypt([w1, w2, w3]) */

1 Function Hom Add(C1, C2):
/* Cout=VecEncrypt([v1 + w1, v2 + w2, v3 + w3]) */

2 return Cout

3 Function Hom Mul(C1, C2):
/* Cout=VecEncrypt([v1 × w1, v2 × w2, v3 × w3]) */

4 return Cout

/* C1=VecEncrypt([v1, v2, v3]), W2=[w1, w2, w3] */

5 Function Hom Add(C1, W2):
/* Cout=VecEncrypt([v1 + w1, v2 + w2, v3 + w3]) */

6 return Cout

7 Function Hom Mul(C1, W2):
/* Cout=VecEncrypt([v1 × w1, v2 × w2, v3 × w3]) */

8 return Cout

9 Function Hom Rot(C1, rk, step = −1):
/* Rotate C1 one step to the left: cout=VecEncrypt([v2, v3, v1]) */

/* Distinct rotation key rk is needed for different steps (the third

input parameter). */

10 return Cout

degree 3 (the same length as V ). During encryption, the vector V is usually termed a

message. It is first encoded into a polynomial, called a plaintext, and then encrypted

to form the ciphertext. Conversely, the function VecDecrypt decrypts a ciphertext to a

plain message. The decryption requires a secret key sk that is only known to the client.

The server-side uses three types of FHE operations: Hom Mul, Hom Add, and Hom Rot.

The Hom Add and Hom Mul take two ciphertexts as input and return the encryption of

element-wise addition/multiplication. Note that these two functions can also take plain-

text W as input. Hom Rot is a special operation that rotates the elements in the plain

vector according to step. The sign of step denotes the direction of rotation. For example,

with V = [v1, v2, v3], rotating V one step to the left (step = −1) will result in an encryp-

tion of [v2, v3, v1]. For different values of steps, FHE requires different rotation keys rk;
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these keys are generated by the client.

FHE Computation Complexity: Adding two polynomials (ciphertexts) is sim-

ple, which causes O(M) time complexity with the polynomial degree of M . Hom Mul

needs more complicated computation, as multiplying two polynomials requires convolu-

tion. Number Theory Transfer (NTT) is widely used to accelerate this computation [110].

NTT is a variant of Discrete Fourier Transfer (DFT), which can transfer the convolution

(in the time domain) to the element-wise multiplication (in the frequency domain). The

computation complexity of Hom Mul is then O(NlogN) for NTT and inverse NTT. When

multiplying two ciphertexts, the resulting ciphertext usually needs to be relinearlized

with a sophisticated key switching process [110], during which NTT is also the dominant

operation. Finally, Hom Rot requires key switching and data reordering/shuffling. We

will discuss this in more detail in Section 5.3.4.

As a remark, in PIR the database content is public and encoded into plaintexts after

the NTT computation. Therefore, PIR performs more plaintext-ciphertext multiplica-

tions (the ciphertext is the PIR query).

5.1.3 The State-of-the-art: FastPIR

Fig. 5.1 presents the dataflow overview of the FastPIR protocol [85], which contains

the following steps for an example database with 4 records [a, b, c, d], where the client

wants to fetch the 3rd record c. ➀ The client generates a query q which is an FHE

ciphertext that encrypts a one-hot vector of length 4, where only the 3rd slot in the

vector is 1 and others are 0. ➁ The client then sends the query ciphertext to the server.

➂ The server partitions the database into multiple vectors (columns) to facilitate the

vector program in FHE. As a result, each record in the database is partitioned into 3

slices. ➃ The server performs 3 Hom Mul operations between the query ciphertext and
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Figure 5.1: Workflow illustration of the state-of-the-art PIR protocol (called Fast-
PIR [85]). To fetch the record c from a 4-entry database (containing records A, B, C,
and D), the client encodes a one-hot vector into a ciphertext. The server performs a
reduction computation over the entire database using homomorphic operations. Thus,
record c is retrieved obliviously, and the server does not know which record is retrieved.

database vectors, resulting in three ciphertexts. ➄ Through the Hom Rot operation, the

server shifts the record slices into different slots in the ciphertexts, which are then added

together to achieve a single compact answer. ➅ The server returns the answer to the

client. ➆ The client derives the desired record with VecDecrypt. Note that the record

vector could be shuffled in any order, but the client knows the beginning of the record

based on the index (three in this discussion).

A key aspect of FastPIR is a tree-based rotation scheme to perform the rotation op-

erations efficiently. Fig. 5.2 shows a more detailed example of this scheme for records

with 4 slices each. During the homomorphic multiplication step, a ciphertext is gener-

ated for each database column ([0, 0, c1, 0], [0, 0, c2, 0], [0, 0, c3, 0], and [0, 0, c4, 0]). These

ciphertexts are the leaves of a tree. Then the scheme aggregates the first two leaves

(ciphertexts) having the same parent using a rotation with 1 step followed by an add

operation. That is, the scheme rotates the ciphertext of [0, 0, c2, 0] into [0, 0, 0, c2], and
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Figure 5.2: The tree-based answer reduction in FastPIR protocol to reduce the answer
size using homomorphic rotations and additions.

then aggregates it with the first ciphertext to produce a ciphertext of [0, 0, c1, c2]. Fast-

PIR follows this rotation-and-addition recursively to generate the root of the tree, which

is a ciphertext of [c3, c4, c1, c2] and contains all the slices of the desired record.

5.1.4 Inefficiencies in FastPIR

Even though FastPIR achieves the best performance among existing PIR protocols,

the scalability of FastPIR is still poor due to three inefficiencies:

(a) Large Query: As shown in Fig. 5.1, the query length in FastPIR grows linearly with

the number of records. This results in an unacceptably long query for a large database.

Considering the message box used in anonymous communication systems [91], the query

can be as large as 27GiB for 1B users, which results in a significant query load time.

(b) Large Recursion Stack: The tree-based recursion in FastPIR is not hardware-

friendly for a large tree due to the large buffer needed for the recursion stack. Fig. 5.3
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illustrates the growth of stack size with the batch size (the number of PIR queries being

processed simultaneously) and the number of database records. The database records

are partitioned into slices of the width of 18, 32, and 48 bits for each column. We find

that the stack size is significantly enlarged, e.g., over a GiB, for higher values of slice and

record size.
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Figure 5.4: The execution time of FastPIR running on three workloads: Vcall (Voice
Calling), Comm (Communication), and FSys (File System). The execution time is
normalized by the batch size. The breakdown of CPU time and SSD stall is shown.

(c) Long SSD Stall: The PIR processing has to access and manipulate the entire

database stored in SSD storage, which causes a severe performance bottleneck. Fig. 5.4

shows the breakdown of FastPIR’s execution time by the CPU and SSD. We find that

for batch size 8, 16, and 32, an average of 55.4%, 57.3%, and 28.6% of the execution is
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stalled on SSD. This indicates that SSD accessing is a major bottleneck in large-scale

PIR processing.

5.1.5 Motivation and High-level Ideas

To meet the intensive storage access demands, in-storage processing (ISP) appears to

be a promising solution. The ISP technique directly puts the computation logic near or

inside the storage device, such that the application benefits from shorter access latency

and higher internal bandwidth. Prior work has broadly engaged ISP architecture with

various applications, including deep learning [30], recommendations [111], and graph

analytics [31]. However, applying in-storage processing to PIR is non-trivial, as naively

attaching an FHE accelerator to a storage device results in sub-optimal performance.

First, the ISP technique cannot address the query size issue. In particular, when

processing a batch of queries, the query data can be even larger than the database size.

Even though the ISP architecture can provide 4 − 8× higher bandwidth than external

I/O, it hardly meets the growing throughput demand of large query data.

Second, the heterogeneous computation pattern in PIR requires dedicated hardware

and dataflow design. Directly attaching a monolithic FHE accelerator to the SSD device

cannot fully leverage the internal parallelism from multiple flash devices, because the

accelerator can only gain limited bandwidth from the attached DRAM buffer, which is

not enough to satisfy the memory-bound problem.

This chapter describes INSPIRE which leverages protocol and architecture co-design

to accelerate IN-Storage Private Information REtrieval. At the protocol level, INSPIRE’s

key insight is to use the classical idea of recursion [112], but while making a better trade-

off between query size and computation overhead. The key trick is to partition the

database hierarchically and process smaller queries in each hierarchy. Further, INSPIRE
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amortizes the computation overhead with a multi-stage query process. At the lower

stage, it uses a block query to process the data from the entire database, which avoids

the heavy computation needed for rotations. At the higher stage, it performs FastPIR-

like column reductions, but while optimizing the rotation flow to reduce the large memory

consumption in FastPIR. As a result, the INSPIRE protocol reduces the 27GiB query

size in FastPIR to 3.6MiB for the 288GiB database.

On the hardware side, the key insight of INSPIRE’s architecture is to integrate the

hierarchical query processing with the micro-architecture hierarchy inside the SSD device,

which can fully utilize the internal bandwidth parallelism from multiple storage channels.

Specifically, we design INSPIRE as a heterogeneous architecture. As a first step, we

design a block collector to perform block-level reduction and equip each flash channel

with a block collector. Therefore, the block collectors leverage channel-level parallelism

for higher internal bandwidth. Next, we extend the original embedded controller in

SSD to support homomorphic computation, such that the results from different channels

are sent to this module to perform the more complicated answer aggregation. Through

a customized dataflow that processes all data in a streaming manner, the INSPIRE

architecture achieves a 22.9× speedup compared with the vanilla CPU baseline.

5.2 INSPIRE Protocol

In this section, we introduce the INSPIRE protocol. We first introduce our design

approach, followed by the protocol overview and optimizations.

5.2.1 Design Approach

Although the query in PIR can be extremely large, it contains many encryptions

of the same data. As shown in Fig. 5.1, FastPIR encodes every unwanted record as a
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zero in the plaintext. However, naively reusing encryptions of these zeros will leak the

query information to the server. Our INSPIRE protocol leverages the classical design of

recursion [112]. The key idea is to hierarchically partition the database and reduce the

query size by sharing the query in each hierarchy. Meanwhile, we keep the ciphertexts

within the query independent from each other. Thus, the server cannot tell the difference

between them, and the INSPIRE protocol can ensure the security guarantee of PIR.

Specifically, as shown in Fig. 5.5(a) and (b), we partition the database into columns,

groups, and blocks. We design two types of queries: block query and group query. The

query consists of different ciphertexts, encrypting the location of the desired record in

the block/group. The ciphertexts within the query are not sharable, and thus the index

information remains private to the server. By sharing the query at different data hierar-

chies, the server follows a multi-stage reduction process. At the lowest level, the protocol

performs block reduction over the entire database, while using multiple ciphertexts to

avoid heavy rotation operations. At the middle level, the group reduction aggregates

block answers with an identical group query for each column. At the top level, the

protocol performs a standard FastPIR-like column reduction to derive the final answer.

Second, we further optimize the rotation-heavy computation pattern during the group

reduction and column reduction. Instead of utilizing the tree-based rotation, INSPIRE

uses a streaming approach to facilitate the architecture design.

5.2.2 Protocol Overview

The INSPIRE protocol is composed of four functions at the client and server side:

DB Partition, Query Generate, Ans Generate, and Ans Decrypt. These functions are

described in detail in Alg. 5 and Alg. 6. First, DB Partition is the initialization stage

that partitions the database. The partitioning parameters, including block size and group
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Algorithm 5: INSPIRE Protocol − Client

/* Generate partitioning parameters */

1 Function Param Generate():
// lB − block length, wB − block width

// nB − number of blocks in a group

// lG − group length, nG − number of groups in a column

2 return lB, wB, nB, lG, nG

/* Generate query to fetch k-th record */

3 Function Query Generate(k):
4 qB = Vector < Vector (lB) > (nB) ; // Block Query

5 qG = Vector(lB) ; // Group Query

// Find which block has the k-th record

6 qB k = k % lG;
7 for i = 0 : nB do
8 for j = 0 : lB do
9 qB[i][j] = (qB k == i ∗ lB + j) ? 1 : 0;

10 end
11 qB[i] = VecEncrypt(qB[i])

12 end
// Find which group has the k-th record

13 block idx = k % lB ; // Index in block answer

14 rot offset = nG − k/lG; ; // Number of rotations

15 qG k = (block idx+ rot offset) % lB;
16 for i = 0 : lB do
17 qG[i] = (qG k == i) ? 1 : 0;
18 end
19 qG = VecEncrypt(qG)

20 return qB, qG

/* Decrypt the answer returned from server */

21 Function Answer Decrypt(ans):
22 msg = VecDecrypt(ans); ; // Decrypt answer

/* Reorder the data in the msg vector */

23 return msg
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Figure 5.5: An illustration of the INSPIRE protocol. (a) On the client side, instead of
generating a long query, the client generates one group query and one block query that
consist of multiple ciphertexts for the desired record. (b) The database is hierarchically
partitioned into columns, groups, and blocks. The server performs a multi-stage
reduction process to derive the answer. (c) A detailed illustration of block reduction,
group reduction, and column reduction. The block reduction traverses all the blocks
in the database. The group reduction and column reduction shrink the answer with
homomorphic rotation and addition.

size, are decided at the client side using the Param Generate function. Second, the client

uses Query Generate with the assigned index to generate the query ciphertexts and send

them to the server. Third, when the server receives a query, it performs the data retrieval

using Answer Generate and sends back the result to the client. Finally, the client uses

Ans Decrypt to decrypt and re-arrange the record in the received answer.

DB Partition: INSPIRE adopts a hierarchical database partitioning scheme by ar-

ranging the database into blocks, groups, and columns. Specifically, on the server side,

the database can be viewed as a 2D matrix with the shape of N × nC . Each row in the

database stands for a record, and each record can be further divided into nC pieces along

the column direction. Suppose we have the ciphertext with length lB. Then, for each

column in the database, every continuous lB elements are considered as a block. There

are N/lB blocks for each column. Further, several blocks are considered as a group along

the row direction. We denote the number of blocks in a group as nB and the number of
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Algorithm 6: INSPIRE Protocol − Server

/* Partition a database with certain params */

1 Function DB Partition(db, lB, wB, nB):
2 L,W = db.length, db.width;
3 nC = W/wB;
4 nG = L/(lB × nB);

/* Three indices are needed to locate a block: column id, group id,

block id */

5 return nG, nC

/* Generate answer at the server side */

6 Function Answer Generate(qB, qG):
7 Initialize ans, ansblock, ansgroup;
8 for c = 0 : nC do
9 for g = 0 : nG do

10 for b = 0 : nB do
// ❶ Block Reduction

11 dbblock = db[(g ∗ nB + b)lB : (g ∗ nB + b+ 1)lB, c];
12 dbblock =Hom Mul(dbblock, qB[b]);
13 ansblock = Hom Add(ansblock, dbblock);

14 end

// ❷ Group Reduction

15 ansgroup = Hom Add(ansgroup, ansblock);
16 ansgroup = Hom Rot(ansgroup, 1);

17 end

// ❸ Column Reduction

18 ansgroup = Hom Mul(ansgroup, qG), ans = Hom Rot(Hom Add(ans, ansgroup),1);

19 end

20 return ans

groups in a column as nG, where lB×nB×nG = N . As the example shown in Fig. 5.5(c),

the database is reshaped as a 24× 4 matrix. We use the blue label to indicate the record

the client is interested in. Here, 4 elements are encrypted together as a plaintext, and

this plaintext is considered as a block. Each column in the database contains 6 blocks.

Based on our leveled database partition, each column in the database is divided into 3

groups and each group contains 2 blocks.

Query Generate: The query in INSPIRE also follows the hierarchical scheme and is
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composed of a block query and a group query. The block query includes nB ciphertexts,

where one of them encrypts a one-hot vector and others independently encrypt all-zero

vectors. The group query includes a single ciphertext that indicates which group holds

the desired record. The block query traverses the entire database with relatively simple

operations, and INSPIRE streams all the blocks in the database with minimal hardware.

The query size of INSPIRE is much smaller than FastPIR because both the block query

and group query are shared, unlike FastPIR which has a separate ciphertext for every

block in a column.

Ans Generate: During the data retrieval, the server takes the encrypted query from

the client and generates an encrypted answer. INSPIRE adopts a three-stage processing

method to compute the answer on the server: block reduction, group reduction, and

column reduction. We explain the process flow of these stages in detail next.

5.2.3 Multi-Stage Answer Generation

Block Reduction: Each group performs the block reduction with the shared block

query. During the reduction, each block in the database performs Hom Mul with the

corresponding ciphertext in the block query. Then the resulting ciphertexts within a

group are aggregated through Hom Add to get the block answer. As shown in Fig. 5.5(c),

each group has two blocks, and these two blocks are multiplied by the two ciphertexts in

the block query. Therefore, the shared block query has to traverse the entire database, but

the resulting homomorphic operations are relatively simple with only one multiplication

and addition for each block.

Group Reduction: Through block reduction, we already derive the desired record

in Group 1. But we still have unnecessary data in Group 0 and Group 2. Thus, group

reduction aggregates and eliminates this data. As shown in Fig. 5.5(c), the protocol has
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three block results shifted by different steps via Hom Rot operations. Then, it adds them

together using Hom Add. The group query then multiplies with this aggregated answer,

which produces the group answer. The group answer keeps only a piece ci of the desired

record in the i-th column.

Column Reduction: The reduction process in the column reduction phase is very

similar to the group reduction. We shift the ciphertexts with different steps, and the

final answer is the aggregation of the group answers. In this example, we have the same

number of columns as ciphertext length (lB = nC), and the record C exactly fills the

result ciphertext. In case we have more columns than ciphertext length, we can simply

use longer ciphertext or multiple ciphertexts.

Optimized Rotation Flow : As shown in Fig. 5.5(c), our rotation flow is different

than the tree-based reduction in FastPIR. Instead, we use an answer ciphertext and

perform in-place computation. When we need to aggregate the answer ciphertext with

the next block/group result, we rotate the answer ciphertext by 1 and directly add the

new ciphertext to it. We call this the RNA (rotation and add) scheme. It has two

benefits: first, it eliminates the large recursion stack used for the tree traversal, and we

only need a small buffer to store the answer ciphertext on-chip. Second, all the rotation

operations are performed with step = 1. Therefore, we use only one rotation key and

avoid a large buffer for storing different keys.

5.2.4 Complexity Analysis

Query Complexity: Our INSPIRE query consists of a block query and a group query.

The block query has the size of nB× lB×M , where nB is the number of blocks per group,

lB is the block length, and M is the size of the polynomial coefficient. The group query

has the size of lB ×M . Thus, the total query size is (nB + 1) × lB ×M . Compared with
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FastPIR whose query size is N ×M , we reduce the query size by a factor approximately

equal to the number of groups nG.

Table 5.1: Computation Complexity of different reduction stages in INSPIRE, with
comparison to FastPIR

Hom Add Hom Mul Hom Rot

Block Reduction nCnG(nB − 1) nCnGnB 0
Group Reduction nC(nG − 1) nC nC(nG − 1)

Column Reduction nC − 1 0 nC − 1
INSPIRE nCnGnB − 1 nCnGnB + nC nCnG − 1
FastPIR nCnGnB − 1 nCnGnB nC − 1

Computation Complexity: In Tab. 5.1, we show the number of Hom Mul, Hom Rot,

and Hom Add operations in different reduction phases. The total operations in FastPIR

are also shown as a comparison. We find that our INSPIRE has the same number

of homomorphic additions and slightly increases nC homomorphic multiplications. On

the other hand, we increase homomorphic rotations by nG times. However, although the

total rotations are increased, the rotation operation in INSPIRE is cheaper than FastPIR.

Importantly, all rotations in INSPIRE are processed in a streaming fashion, and thus we

avoid the expensive recursion stack of FastPIR (Fig. 5.3).

5.3 INSPIRE Architecture

Although our INSPIRE protocol significantly reduces the size of the query, we still

expect a large amount of accesses to database blocks. In order to overcome the bandwidth

bottleneck at the storage I/O, we further design the INSPIRE architecture, an in-storage

processing accelerator. In this section, we first present the design overview of INSPIRE

architecture. Then, we present the implementation details and dataflow design in the

different hardware units.
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encrypted answer is finally exported to the host through the host interface.

5.3.1 Architecture Overview

The overall architecture of INSPIRE is shown in Fig. 5.6, which is based on the orig-

inal flash SSD. During the data retrieving, both the block query and blocks of database

records are loaded sequentially from the Flash DIMs. The block reduction is performed

at the block collector, leveraging the channel-level parallelism to generate block answers.

Further at the answer accelerator, block answers are aggregated together to generate

the group answer with the group query. And finally, we use column reduction to de-

rive the final answer and send it back through the host interface. Therefore, INSPIRE

adopts a heterogeneous architecture. This subsection details how INSPIRE architecture

handles the memory-bounded block reduction and computation-bounded group/column

reduction.

The Block Collector is located beside each flash controller. Because block reduc-

tion needs to traverse the entire database, we locate it near memory to leverage the

internal memory bandwidth. All the groups are interleaved in different flash channels,

such that each block collector processes blocks in a group without inter-channel com-

munication. In the Block Collector, the block query and block answer are stored in the
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global buffer (GLB), and database blocks are streamed in from the flash DIM. The re-

quired homomorphic operations for block reduction can be realized through a number

theory transform (NTT) unit and a MAC array. We will detail the NTT units in the

following subsections. After aggregating block answers in a group, the Block Collector

sends the group answer to the DRAM.

The Answer Accelerator is located beside the SSD controller to execute the

computation-bounded group/column reduction stages, which contain complex homomor-

phic rotation. During the group reduction stage, the block answers from different flash

channels are loaded from DRAM to the GLB in Answer Accelerator. Then, the RNA

(Hom Rot and Hom Add) based combination is achieved through the permutation unit,

NTT unit, and MAC array. After the group answer is acquired from group reduction,

all the group answers in the same column are combined into the final answer with RNA,

which follows the same computation scheme as the RNA in group reduction.

5.3.2 MAC Array

The MAC array in both the Block Collectors and the Answer Accelerator is a SIMD

unit consisting of a group of MACs, and the MAC performs modular addition and mul-

tiplication. Different from other applications, the data (such as polynomial coefficients)

are bounded by a modulus p, i.e., an integer modulo p. p can be a large prime number or

a product of multiple prime numbers [113, 110]. Therefore, modular adder and multiplier

are needed when we perform computations such as (a · b) mod p and (a + b) mod p.

We follow the design in F1 [110] for modular arithmetic. In particular, F1 adopted

the Montgomery multiplier [114] for fast modular multiplications. It also reduced the

total number of stages in the multiplier by choosing an appropriate modulus p.
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Figure 5.7: (a) The architecture of block collector that implements butterfly compu-
tation. (b) The dataflow of breaking down long-sequence NTT to 2D NTT. (c) We
further conduct the 2D NTT recursively.

NTT operations are the dominant operations in Hom Mul and Hom Rot [110]. The NTT

computation is the same as Discrete Fourier Transform (DFT) but over a polynomial ring.

As shown in Fig. 5.7(a), we design the recursive NTT unit to compute the NTT transform

of an input vector X with arbitrary length. The recursive NTT unit is composed of a

fixed input NTT unit, a twiddle unit, and a transpose unit. Specifically, the fixed NTT

unit is implemented as a customized butterfly hardware which takes a length-N input

and computes the length-N NTT result. The twiddle unit scales the results from the
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NTT unit using MACs. The transpose unit transposes the results through a crossbar.

We put register buffers at each level of the butterfly hierarchy such that the NTT unit

is pipelined for streaming the input. As shown in Figure 5.6, both the Block Collector

and the Answer Accelerator contain an NTT unit, but with different sizes to facilitate

unique throughput requirements.

Break down Long-Sequence NTT: Since the ciphertext polynomial is usually

quite large, with length from 4K to 16K, it is infeasible to directly implement an NTT

unit at this scale. Thus, we need to efficiently map a long polynomial onto smaller NTT

units.

INSPIRE recursively adopts a 2D NTT algorithm to achieve such mapping [115].

The key idea of 2D NTT is that we can break down a length-L = m×n NTT into smaller

length NTTs, by performing length-m NTT n times and performing length-n NTT m

times. More specifically, the 2D NTT has the following steps: ❶ Reshape the length-L

vector into an m × n matrix. ❷ Perform m-input NTT for every column, and multiply

the result with a known parameter (called twiddle factor). ❸ Perform n-input NTT unit

for every row. ❹ Finally, reshape the matrix back to length-L vector.

Fig. 5.7(b) shows an example of this algorithm. Suppose we need to do a 32-input

NTT on a vector X. First, X is reshaped into a 4×8 matrix. Then, we feed each

column into a 4-input NTT unit and have them go through the twiddle unit. Finally, we

transpose the matrix and perform 8-input NTT for each column (with length 8).

Recursive Processing: The naive 2D NTT still suffers from inflexibility, as the

length of the input ciphertext may vary in different applications. To address this prob-

lem, INSPIRE further supports a recursive NTT scheme to perform NTT computation

with arbitrary vector length. The key idea is to apply the 2D reshaping recursively for

each dimension until the NTT size can fit into our hardware NTT unit. We reshape the

length-L NTT as a Nd tensor (instead of a matrix), where N is the length of our hard-
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ware butterfly. Thus, we apply the 2D algorithm recursively for a long sequence NTT

computation. We show an example of our recursive NTT in Fig. 5.7(c). For the 8-input

NTT desired in Fig. 5.7(b), we keep reshaping this vector into a 4×2 matrix. Then we

can apply another 2D NTT to compute the result with the same 4-input NTT unit. Note

that we can still use the 4-input NTT unit to compute a 2-input NTT, since the data

in the butterfly is decouplable. Our NTT hardware can be programmed to compute two

2-input NTTs simultaneously.

5.3.4 Permutation Unit

Permutation Operation: The permutation unit is essentially a switch to reorder

the data in the Hom Rot operation. The permutation step in Hom Rot is to map all

the polynomial coefficients to different positions. For example, we can permute the

polynomial 2x3 + 5x2 + 7x+ 1 into 5x3 + 7x2 +x+ 2. A more formal way to describe the

permutation is as follows: Suppose the length of the ciphertext vector is N , and we use i

and i′ to indicate the old and new index of a coefficient before and after permutation. To

rotate the plain vector by r steps, the permutation is performed as i′ = (i× kr) mod N ,

where k is co-prime with 2N .
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Figure 5.8: Data mapping of the permutation in Hom Rot. Here, N = 4096, B = 8, k = 3.

It is guaranteed that each coefficient will go to a unique position. Thus, a crossbar

switch is enough to route all the data in one cycle (because there is no destination

88



INPSIRE: In-Storage Private Information REtrieval via Protocol and Architecture Co-design
Chapter 5

conflicts). However, since the ciphertext can be as large as 4K-16K (Sec. 5.3.3), it is

infeasible to have such a large crossbar.

Key Insight: Our key finding is that such destination conflicts do not exist for every

continuous power of 2 coefficients. Fig. 5.8 shows an example of this interesting property.

Assume that we have 8 coefficients stored in 4 (=22) banks. After permutation, the data

in position (0,1,2,3,4,5,6,7) now goes to position (0,3,6,1,4,7,2,3). For the 4 coefficients

located in bank (0,1,2,3), the new bank ID is (0,3,2,1). There is no bank conflict to

relocate these 4 data elements. Therefore, we use a small crossbar with a size of 4

to process a long permutation. To permute a 4096-length polynomial, we can directly

permute (relocate) the data 0-3, 4-7, ..., 4092-4095 in a sequential order, where each

permutation is done in one cycle.

5.4 Evaluation

In this section, we evaluate the performance of the INSPIRE protocol and architec-

ture. We first introduce our evaluation methodology. Then, we show the performance

gain from INSPIRE. Then, we evaluate the scalability and sensitivity of our design.

Finally, we present the area and power overhead of INSPIRE.

5.4.1 Methodology

Software Implementation: We implemented the INSPIRE protocol using the

Microsoft SEAL library [113]. We choose the BFV encryption scheme [106, 107] and

selected the BFV parameters to provide the highest security level according to the Ho-

momorphic Encryption Standard [116]. We stress that our protocol also works with other

FHE schemes such as BGV [108] and CKKS [109]. Our implementation uses multiple
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Table 5.2: INSPIRE Architecture Configurations

SSD Device
Read/Program/Erase Latency 75/750/3800 ns

Channel-Chip-Die-Plane 16-4-2-2
Blocks/Plane 2048 Pages/Block 512
Channel Width 1B Channel Rate 1033MT/s
Page Size 8KiB Capacity 2TiB
Host Interface PCIe 3.0 ×4 Flash Protocol NVDDR3

Answer Accelerator (AA) and Block Collector (BC)
Tech Node 28nm Frequency 400MHz
Xbar Switch (AA) 4×4 Operand 32b
NTT input size (AA) 32 NTT input size (BC) 8
Total mMuls (AA) 160 Total mMuls (BC) 24
Total mAdds (AA) 224 Total mAdds (BC) 32
Transpose unit (AA) 32×32 Transpose unit (BC) 8×8
GLB (AA) 2MiB GLB (BC) 1.25MiB

threads for answer generation using OpenMP, to fully leverage the data-level parallelism.

Hardware Implementation: We implemented the INSPIRE architecture logic in

RTL and synthesized it with Design Compiler and 28 nm technology node to derive the

hardware parameters, including timing, power, and area. We built a cycle-accurate simu-

lator on top of MQSim [117], an NVMe/SATA SSD simulator, to model the performance

of software-hardware co-optimized INSPIRE.

Configurations: We configured the SSD device similar to our CPU baseline, as

shown in Table 5.2. The hierarchy in the SSD is organized as channel-chip-die-plane-

block-page. With a page size of 8KiB, the total capacity of SSD is 2TiB. The page read

and program latency for LSB/CSB/MSB are 75 and 750 ns, respectively. The block erase

latency is 3800 ns. Each flash channel is equipped with the NVDDR3 protocol, providing

a channel width of 1B and a transfer rate of 1033MT/s. The host communicates with

the SSD using PCIe 3.0 ×4, with an ideal bandwidth of 4GiB/s.

For the INSPIRE architecture configurations, we set the input size of NTT units to 32
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Table 5.3: Database Workloads

Record Length Num. Records Database Size
Voice Calling (VCall) 96B 232 384GB
Communication (Comm) 288B 230 288GB
File System (FSys) 10MB 217 1.25TB
Synthetic DB 1 (Syn-1) 1KB 229 512GB
Synthetic DB 2 (Syn-2) 18KB 226 1.13TB

and 8 for the answer accelerator (AA) and each block collector (BC), respectively. An X

input NTT unit is realized through X(log2X−1)/2 modular multiplications and Xlog2X

modular additions (mAdds). The answer accelerator has 160 mMuls and 224 mAdds in

total (in the twiddle unit and MAC array). Each block collector involves 24 mMuls and

32 mAdds. The transpose unit sizes for the answer accelerator and block collector are

32 × 32 and 8 × 8, respectively. The answer accelerator needs an additional 4 × 4 Xbar

switch to realize the homomorphic rotation. The global buffers for the answer accelerator

and block collector are 512KiB and 64KiB, respectively. For homomorphic parameters,

we set the element in plain vector to 18bits and the coefficient in the ciphertext to 109bits.

After the RNS decomposition [118], each coefficient in ciphertext is composed of 4 32-

bit numbers. Moreover, the mMul is realized through optimized Montgomery multiplier

[119, 110] which simplifies the complex modular multiplication.

FHE Parameters: We set the polynomial degree as 4096 (lB = 4096 in Algo-

rithm 6). We use the security level of λ = 128 bits and 109-bit ciphertext coefficient,

which follows the same setting as in FastPIR. The plain message to be encrypted is set

to 18-bits. The INSPIRE protocol has a multiplication depth of 2 in total.

Workloads: Table 5.3 summarizes the characteristics of the database workloads

we evaluate. We run the PIR protocol for three applications: voice calling [85], anony-

mous communication [91, 102], and file system [101]. The main difference between these

workloads is the record type, which determines the record length. We scale the number
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of records to evaluate the storage-based database. In addition, we have two synthetic

databases, Syn-1 and Syn-2, to enhance the workload diversity.

Baselines: We use FastPIR [85] as our software baseline, since it demonstrates the

best performance among existing PIR schemes including XPIR [101] and SealPIR [102].

For a fair comparison, both FastPIR and INSPIRE use the BFV encryption scheme with

the same security level. We also optimize and parallelize the source code of FastPIR with

OpenMP.

We use both CPU and FHE accelerator as our hardware baseline. The CPU platform

is a 64-thread Ryzen Threadripper 3970X @ 2.2GHz (3.7GHz with turbo boost). The

storage is a 2TiB Intel 660p NVMe SSD interfaced with PCIe 3.0 ×4. The measured

bandwidth of the SSD is 1.8GiB/s. We also include F1 [110], the state-of-the-art FHE

accelerator as an additional baseline. We implemented F1 with the ISP architecture,

where we attach F1 to the DRAM buffer inside the SSD. The DDR4 DRAM has an ideal

bandwidth of 12.8GiB/s.

5.4.2 Performance

In this section, we present key results of INSPIRE, including the overall performance,

network bandwidth reduction, noise growth, and query size.
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Figure 5.9: The overall performance of INSPIRE compared against FastPIR and F1.
We evaluate our protocol and FastPIR on both CPU and F1-ISP platforms. The
results are normalized to the FastPIR on CPU baseline. Five workloads and three
batch sizes are used.

Overall Performance: Fig. 5.9 shows the overall performance of INSPIRE, along-
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side a comparison with FastPIR and F1. The results are shown across three batch sizes:

8, 16, and 32. As an intuitive example, FastPIR spends 28.4min on average to process a

Comm query (Fig. 5.4). Our INSPIRE protocol only takes 13.3min for the same query,

and our INSPIRE architecture further reduces the time to 36s.

At the software level, the INSPIRE protocol achieves 2.22× performance speedups

against FastPIR on CPU, with 3.28× speedup on in-storage F1 (F1-ISP). The perfor-

mance gain of INSPIRE protocol mainly comes from the reduced memory access for

queries. Also, INSPIRE simplifies the dataflow in rotations, which avoids the memory

overhead caused by the large recursion stack. Moreover, the INSPIRE protocol demon-

strates better performance in the ISP architecture of F1-ISP. The key reason is that the

small query and rotation buffer required by INSPIRE are more friendly to accelerator

architectures, which usually have limited on-chip resources. For FastPIR, it is much more

time-consuming to wait for tiled queries from the host.

At the hardware level, the INSPIRE architecture shows 22.9× speedup against the

CPU baseline, with 1.93× speedup compared with F1-ISP. The performance gain of

INSPIRE mainly lies in two aspects: first, we leverage much higher aggregated bandwidth

to process the memory-bound workloads. While F1-ISP utilizes the bandwidth from the

DRAM buffer, the heterogeneous architecture of INSPIRE better leverages the channel-

level parallelism via the block collectors in the flash channels. Second, the INSPIRE

architecture is tightly coupled with and specialized for the protocol. Different reduction

stages are pipelined across block collectors and the query accelerator. Thus, we avoid

the sophisticated data mapping and communication in an F1-like architecture.

Network Bandwidth: The network bandwidth directly shows the communication

efficiency with compact queries. Fig. 5.10 shows the upload traffic of the INSPIRE

protocol, with a comparison to FastPIR. The x-axis shows the number of users scaling

from 210 to 220. We find that INSPIRE reduces the upload bandwidth by 41943×,
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Figure 5.10: The upload traffis of INSPIRE and FastPIR, which depends on the query
size and query frequency.

13706×, and 3.56× for VCall, Comm, and FSys, respectively. The significant bandwidth

reduction for VCall and Comm is because these two workloads have a very large number

of records, and our hierarchical query substantially decreases the total query size. Also,

we find that VCall requires much higher (52−333×) upload bandwidth than the other

two applications. The reason is that users in VCall have to frequently query the database

to fetch the newest message, leading to more simultaneous uploads. Finally, since PIR

protocol does not share query data across users, the upload traffic increases linearly as

the number of users grow for both FastPIR and INSPIRE.

5.4.3 Sensitivity Study

In this section, we study the scalability of INSPIRE, along with the performance

sensitivity to different security levels.

Scalability: We analyze the scalability of FastPIR and INSPIRE with the variants of

VCall and Comm workloads. As shown in Fig. 5.11, the number of records in the database

scales from 512M to 8B for VCall, and 256M to 4B for Comm. A large batch size of

32 is used, and the absolute execution latency is presented. Compared to FastPIR, we

find that the INSPIRE protocol demonstrates 2.08× better performance. The INSPIRE

architecture offers an additional performance gain of 49.8×. Further, the scaling of
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Figure 5.11: The scalability of FastPIR and INSPIRE when the number of records
(i.e., the size of database) increases. Two workloads, VCall and Comm, are used for
evaluation. The batch size is set to 32.

INSPIRE is approximately linear. This is because PIR applications are memory-bound.

When the size of the database grows, the accessed data and the number of compute

operations increase accordingly. Also, we observe that FastPIR spends tens of minutes

processing a query. In comparison, our INSPIRE architecture considerably reduces the

processing time to the second-level. This makes it possible to deploy PIR in real database

systems.
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Figure 5.12: The performance of INSPIRE as a function of different security levels,
where λ = 256 denotes the highest security level and λ = 128 denotes the lowest
security level.

Sensitivity to Security Level: We study how different security parameters impact

the performance of INSPIRE. As shown in Fig. 5.12, we choose three security levels that

are provided by SEAL: λ = 128− bit, λ = 192− bit, and λ = 256− bit. The λ = 256− bit

gives the strongest security guarantee [116]. We find that by applying a higher security

level of λ = 192−bit and λ = 256−bit, the performance will be downgraded by 1.40× and

1.89×, respectively. This is because with larger λ, the coefficient size in the plaintext is
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reduced, and thus the message that can be encrypted is smaller. Therefore, the database

has to be partitioned at a finer granularity and thus takes more time to process.

5.4.4 Area and Power Overhead

Table 5.4 presents the area and power overhead of the INSPIRE architecture, broken

down into each hardware component. We find that computation logics, including the

NTT engine and MAC array, take 14.44% of the area and 19.08% of the power. The

buffer and routing units, including the transpose unit, GLB, and the crossbar switch

occupy 85.56% and 80.92% of the total area and power, respectively. Most of the area

and power consumption is taken by the GLB which is used to store the block query

in block collector and the temporal answers in the answer accelerator. Note that in the

INSPIRE architecture there are 8 block collectors, and the results in Tab. 5.4 accumulate

the resource consumption for all block collectors.

Table 5.4: Area and Power Estimation.

Area (mm2) Power (mW ) Area (mm2) Power (mW )

NTT Engine 2.745 1183.59 Transpose Unit 0.122 115.87

mMAC Array 2.954 1393.74 Global Buffer 31.592 12385.56

Xbar Switch 0.001 0.40 Control&Others 0.055 52.25

Block Collector 33.722 13509.07 Answer Accelerator 5.838 2438.29

Total Area 39.56mm2; Total Power 15.947W

5.5 Conclusion

This chapter follows a software-hardware co-design approach to address the perfor-

mance bottleneck in existing PIR schemes. We first present the INSPIRE protocol that

leverages hierarchical database partitioning and multi-stage answer reduction to reduce
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the communication overhead in PIR. Based on the protocol, we present the INSPIRE ar-

chitecture, an in-storage processing architecture that utilizes the large internal bandwidth

and a specialized accelerator to boost the performance of query processing. The INSPIRE

protocol achieves 2.22× performance speedup compared to the state-of-the-art FastPIR

scheme. Meanwhile, the INSPIRE architecture further brings 22.9× performance speedup

over CPU and 1.93× speedup over F1, the state-of-the-art FHE accelerator.
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Chapter 6

SIGHT: Enhance the Reliability of

In-Memory-Processing Architecture

So far, we have introduced designing NDP-based architecture for various big data ap-

plications, from the regular-patterned classification workload to the irregular-patterned

graph workload. We also study how to scale the near-memory processing to in-storage

processing when the workload size increases. As NDP architecture greatly boosts the

performance of existing memory subsystems, this chapter starts to investigate the next-

generation memory, Resistive Random Access Memory (RRAM), which is able to funda-

mentally address the memory wall and power wall issue.

As introduced in Section 2.2, RRAM offers the in-memory-processing (IMP) ability

to perform computation within the memory array. However, existing RRAM technology

shows severe reliability issues. This can greatly degrade the accuracy of computation.

In this chapter, we specifically look into the accuracy impact of deep neural networks

with RRAM-based IMP accelerator. We first introduce the overview and background of

RRAM’s reliability issue and our proposal. Then, we characterize and formulate RRAM’s

reliability issue into 3 categories. Thus, we present a SynergIstic alGorithm-arcHitecture
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fault-Tolerant framework, namely SIGHT, to holistically address the problem. Finally,

we evaluate the effectiveness of our design and conclude this chapter.

6.1 Background and Design Overview

Neural network (NN) is now at the core of big data applications, given its excellent

performance on various machine learning topics, including image recognition [3], object

detection [120], natural language processing [121] and many more NN origins from mim-

icking the neuron system in humans [122]. The architecture of an NN often consists of

artificial neurons and synapses between them. The neurons are organized layer by layer.

The neurons in one layer receive the outputs from the previous layer and then propagate

their outputs to the next layer.

V =

N Input
Feature Maps

Kernel 1
Kernel 2

N

N

Output Feature Map 1
Output Feature Map 2

Figure 6.1: An illustration of a CNN layer, which is composed of N (N = 4 in the
figure) input feature maps convoluted by 2 kernels.

Convolutional Neural Network (CNN) is an important branch of the NN family that

mainly targets computer vision tasks. As shown in Fig. 6.1, the inputs for a convolutional

layer are a bunch of 2-D images, which are called feature maps. A group of 3-D con-

volutional kernels (shown as blue and red) then filter the feature maps with a fixed-size

sliding window. Since each kernel generates one output feature map, we finally get 3-D

output for the next layer. The computation in the convolutional layer can be expressed

in Eq. 6.1:

99



SIGHT: Enhance the Reliability of In-Memory-Processing Architecture Chapter 6

dl+1
x,y,nl+1 = f(

N l−1∑
nl=0

R−1∑
r=0

S−1∑
s=0

dl
x+r,y+s,nl ×wl

r,s,nl,nl+1) (6.1)

where d is a 3-D tensor representing the feature map and w is a 4-D tensor representing

the convolutional kernels. The superscript l denotes the l-th layer. Therefore, dl has the

shape of X × Y × N l (4 × 4 × 4 as shown in Fig. 6.1) and represents the input feature

map, while dl+1 represents the out feature map. wl has the shape of R× S ×N l ×N l+1

(3 × 3 × 4 × 2 as shown in Fig. 6.1) and represents the convolutional kernels. f is an

activation function that aims to add non-linearity into the neural network.

However, the inference of neural networks is typically considered memory-intensive,

as a high volume of memory bandwidth is usually required. Thus, RRAM-based PIM

accelerators attract considerable research interest in accelerating NN workloads [26, 27].

RRAM is able to perform matrix multiplications in O(1) complexity inside the memory

array, which is the key operation in NN models. This reduces half of the data fetching [17,

123] and make RRAM a competitive candidate for next-generation memory.

6.1.1 RRAM Reliability Issues

Previous studies on RRAM characterizations have revealed that current RRAM de-

vices exhibit several reliability issues and non-ideal faults, and we hardly have the RRAM

resistance being the exact value expected [19, 124, 125, 126]. Different from using RRAM

as a memory device, such faults can lead to severe accuracy loss when using RRAM for

computation [127, 128].

In this chapter, we pay special attention to three types of faults that are commonly

seen in RRAM devices. (1) Non-linear Resistance Distribution : Multi-level cell

(MLC) has been broadly leveraged in RRAM-based accelerators as it significantly in-

creases the data density and saves the design budget. It has been indicated that the
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resistance in MLC is not continuously tunable and there may be resistance gaps between

different resistance levels [25, 22]. However, prior work simply applied linear quantization

to the NN models assuming that an n-bit fix-pointing value can be mapped to an n-bit

cell, which actually does not seem to hold for all the RRAM cells. For example, we found

that different resistance states in some RRAM models are exponentially increased [126].

The non-linear resistance distribution exposes a challenge that mapping traditional NN

to such RRAM may not work and novel quantization algorithms specialized for RRAM-

based computing are demanded. (2) Static Variation : It has been widely known that

RRAM exhibits serious variations, meaning that the actual value we write into one cell

can deviate a lot from the expected one [129, 130, 21]. There are mainly two types of

static variations in the current RRAM technology: device-to-device variation and write-

to-write variation. The device-to-device variation makes it difficult to generate a unified

solution for a single RRAM crossbar array since different cells deviate differently from

each other. The write-to-write variation results in the huge overhead in the conventional

re-write scheme to address the variation issue, as we may need to re-write multiple times

until getting the correct value. (3) Dynamic Variation : As the static variation refers

to the variation caused by programming the RRAM cell, the dynamic variation means

that the cell resistance keeps changing over time [131, 132, 133]. This issue is particularly

concerning because it could get worse in the NN acceleration scenario where those read

operations need to charge the RRAM crossbar much more frequently and thus degrade

the performance in NN workloads.

6.1.2 Related Work and Our Contributions

Prior work has made efforts on addressing such reliability issues on both hardware

and software sides. From the hardware side, Li proposed a verify-after-write approach to
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Figure 6.2: An overview of SIGHT, a SW/HW synergistic fault-tolerant framework.
We leverage algorithm-architecture co-design to address three reliability issues in
RRAM-based computing.

tune the RRAM cell more accurately against the variation [17] while Cheng further im-

proved the energy efficiency of this solution with a RESET-free approach [134]. From the

software side, Chen proposed a mapping scheme for NN parameters to avoid important

weights being in the variation-affected RRAM cells[127]. NN training techniques have

also been explored to enhance the model robustness against variations and non-linear re-

sistance distribution [128, 135]. Lammie1 proposed a variation-aware CNN architecture

that is specific for RRAM to solve the variation problem [136]. However, as these studies

only touched only one or two reliability issues at a time, there lacks a systematic and

unified solution to tackle all three faults.

Therefore, we present SIGHT, a SynergIstic alGorithm-arcHitecture fault-Tolerant

framework, to holistically address those problems. As shown in Fig. 6.2, SIGHT lever-

ages algorithm-architecture co-optimizing, which trains and maps NN models with the

awareness of RRAM faults and facilitates the processing with dedicated architectural

support. We summarize our key contributions as follows:

• We propose a resistance-aware NN quantization algorithm, which forces the weights
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in the NN model to follow the resistance distribution as RRAM and tackle the

non-linearity issue. Compared with prior work [135], we extend and evaluate our

technique to various resistance distributions and demonstrate no accuracy loss.

• We introduce an input regulation method to avoid the accuracy degradation in-

curred by the static variation. We compensate for the error caused by variation

through an integrated input map to regulate input vectors. Compared with prior

work [128], the input regulation could resume the accuracy under much larger static

variation.

• We propose an RRAM refreshing scheme to resolve the dynamic variation issue.

We define the significance of each cell by its weight, and selectively refresh the

important RRAM cells at run-time.

• We architect general and low-cost hardware based on existing RRAM-based ac-

celerator [27] for supporting our fault-tolerant techniques above. The hardware

simulation reveals that SIGHT introduces 7.14% performance overhead on average

for various NN workloads.

6.2 RRAM faults modeling

In this section, we introduce the fault models are going to address in RRAM-based

computing. We analyze the faults under three categories: non-linear resistance distribu-

tion, static variation, and dynamic variation.

6.2.1 Non-linear Resistance Distribution

As mentioned, MLC helps us gain more data density and provides considerable savings

under the limited hardware budget. Since the parameter ci,j in a matrix should be
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linearly mapped into the corresponding RRAM’s conductance gi,j according to Eq. (2.2),

the conductance/resistance distribution must be exactly the same as the distribution of

matrix parameters. However, we find that as the RRAM processing technology has not

converged and various types of RRAM based on different materials exist, the distributions

of multiple resistance states in MLC are quite diverse.
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Figure 6.3: The multi-state resistance distribution in MLC for (a) WOx-based
RRAM [125] and (b) HfO2-based RRAM [25].

Here we show in Fig. 6.3 two cases of resistance distribution. Both of them are 2-

bit cells from existing work, with WOx [125] and HfO2 [25] based RRAM respectively.

To distinguish the non-linear distribution (among all resistance states) and the static

variation (for one particular resistance state), we here only consider the mean value for

each state. As seen, we hardly expect the resistance distribution to be perfectly linear.

For the distribution illustrated in Fig. 6.3(a) (where it shows the number of cells measured

in different resistances), four different resistance levels appear to be linear. However,

some deviations are making the resistance gaps between them not strictly the same. For

the distribution illustrated in Fig. 6.3 (b), we find four resistance levels exponentially
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increased under the logarithmic axis, where the highest resistance state is about 1000×

larger than the lowest one.

To mathematically analyze the non-linear resistance distribution for further discus-

sion, we propose three fitting functions to model the various resistance distribution:

• Deviated Linear Model: For the case shown in Fig. 6.3(a), we apply a devi-

ated linear model where the conductance states are approximately linear and we

add random noise δk to them, as expressed in Eq. 6.2(a) where k means the k-th

conductance state.

• Exponential Model: For the case shown in Fig. 6.3(b), we fit the conductance

states with an exponentially increased function. As expressed in Eq. 6.2(b), the

base β in the exponential function will reflect how the conductance grows.

• Power Model: For other cases that can be seen in other work [22, 137, 25] where

either the linear or exponential function may not be proper to represent them, we

propose a power model that has a moderate growth speed between the linear and

exponential model, as shown in Eq. 6.2(c) where the α is the exponent/index.


gk = Ck + δk (a)

gk = Cβk (b)

gk = Ckα (c)

(6.2)

To decide the parameters δ, β and α, one can simply apply a minimal square root

error (MSE) based fitting algorithm.
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6.2.2 Static Variation

Unlike the binary cell that only stores 0 or 1, RRAM as an analog device exhibits

serious uncertainty regarding the resistance value, as we observed in Fig. 6.3. Here we call

such uncertainty static variation since the variation is fixed after setting or unsetting it.

This variation is usually caused by the non-uniformity when forming the filament between

two electrodes as it is very difficult to control two filaments to be exactly the same, either

for two RRAM cells or for two SET operations. Therefore, there are conventionally

two types of static variations: device-to-device variation and write-to-write variation,

referring to the resistance difference between two RRAM cells and two SET operations

respectively.

When used as a memory device, the static variation seems not troubling because we

do not necessarily require the RRAM cell to be precise, as long as two different resistance

states are distinguishable. However, it surely becomes a huge threat to the performance

when using RRAM for computing, since any change to the operators may lead to incorrect

results. Therefore, this RRAM characteristic must be taken into consideration. Here we

assume that the higher resistance level suffers from more serious variation, which is

indicated in Fig. 6.3 and other previous work [21, 25, 138]. As expressed in Eq. 6.3, we

add a stochastic noise to the ideal resistance to model the static variation, which obeys

the standard normal distribution. The variance of the distribution is linearly related to

the resistance itself with a coefficient λ.

ractual = rideal + ∆,∆ ∼ N (0, λrideal) (6.3)
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6.2.3 Dynamic Variation

Both the non-linear resistance distribution and static variation are statically fixed

after mapping a NN model. On the other hand, researchers also observed the RRAM

resistance may drift over time, as the formation of filament is not stable and can be easily

affected by the temperature, read current or other environmental factors [139, 140, 141,

142]. This issue is also known as the retention problem describing how long an RRAM

device would keep its data. When using RRAM for accelerators, the resistance may drift

even worse as the number of reads increases and multiple rows are opened simultaneously.
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Figure 6.4: The resistance drifting for both HRS and LRS in an HfO2-based
RRAM [133] baking at 200◦C. The y-axis represents the read current, and the median
value is shown. The x-axis represents the time in logarithmic unit.

Fig. 6.4 presents how two resistance states drift over time for an HfO2-based RRAM [133].

We find that different from the static variation, the dynamic variation tends to increase

the cell resistance as the formed filament tends to be narrowed instead of keeping growing.

Therefore, here we use a simplified model and make the assumption that the dynamic

variation is single-directional, meaning the resistance keeps increasing over time. Since

the dynamic variation also shows stochasticity and Fig. 6.4 presents only median values,

we still use noises with standard normal distribution to model the dynamic variation. As

expressed in Eq. 6.4, we apply a similar model as static variations but take the absolute

value of the noise instead.
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rdrifted = roriginal + |∆|,∆ ∼ N (0, λrideal) (6.4)

6.3 Fault-tolerant Scheme

In this section, we discuss how to address the three types of RRAM faults mentioned

above at the algorithm level.
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Figure 6.5: The workflow for the proposed fault-tolerant scheme, where three tech-
niques are proposed to address three types of faults respectively.

6.3.1 Overview

Fig. 6.5 shows an overview of our scheme workflow, where we propose three dedicated

techniques to tackle the three types of RRAM faults respectively. First, given an RRAM-

based NN accelerator, we derive the resistance/conductance distribution according to the

specific RRAM technology, which indicates the values we can map to the RRAM crossbar.

With this distribution information, we quantize the NN models with our proposed ❶

resistance-aware quantization algorithm. The technique is performed offline and forces
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the NN parameters to follow the exact distribution as RRAM. Second, after mapping the

NN model to RRAM successfully, we read the static variation of each cell from RRAM

crossbars and train an input map offline with our ❷ input regulation technique. The

input map regulates the input during inference to compensate for the known variations

in RRAM crossbars. Finally, before online execution, we extract significant weights in

the NN model under an RRAM-friendly pattern. We determine the significance of weight

with respect to a whole RRAM row. After the accelerator starts to execute the inference,

we ❸ periodically refresh the resistance of such significant cells in selected rows to resist

dynamic variations.

6.3.2 Resistance-Aware Quantization

The non-linear distribution in RRAM devices makes it difficult to map the NN models,

because existing quantization algorithms are mostly linear quantization [143, 20, 144].

Some research proposed non-linear quantizing the NN model using {1, 2, 4, 8, ...},

facilitating the NN inference in CMOS-based platforms by switching multiplication to

bit operation, since multiplying the input by 4 means shifting left by 2 bits [145, 146].

However, there is very little work offering an RRAM-aware quantization and tackling the

non-linear problem in RRAM-based NN accelerators [135].

Therefore, we propose a resistance-aware quantization algorithm to make NN param-

eters aligned with the RRAM resistance/conductance distribution, which is presented in

Algorithm 7 and 8. First, the algorithm receives a positive weight tensor as input since

an RRAM crossbar can only represent positive values. So, we need to extract the pos-

itive and negative parts of a weight tensor and quantize them separately. Other inputs

include the quantization width, and conductance distribution information as discussed

in Section 6.2. Second, we initialize a quantized weight tensor and derive a scale factor
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Algorithm 7: Resistance-Aware Quantization

1 Require: Positive weight tensor W; Quantization width n; Conductance list
G = [g1, g2, ..., g2n ]; Distribution Model M ; Base β (for exponential) or Index α (for
power)

2 Initialize:
3 Quantization level L = 2n;
4 Decision boundaries B = [b0, b1, b2, ..., bL], b0 = 0, bL = ∞;
5 Quantized weight Wquan = zero tensor (W.shape);
6 Weight scale γ = W.max / gL

7 if M = Deviated Linear then B = boundary decision linear(G);
8 else if M = Exponential then B = boundary decision exp(G);
9 else if M = Power then B = boundary decision power(G);

10 for k = 1 : L do
11 Wk = ((Wk > bk−1) & (Wk ≤ bk))× gk × γ;
12 Wquan += Wk;

13 end

14 Return Wquan;

γ between the max value of W and the highest conductance state. Then, we calculate

the decision boundaries that decide what a particular weight value should be quantized

to. For the deviated linear model, we follow the traditional quantization approach and

take the midpoint (mean value) of two quantization intervals as the decision boundary,

as shown in Algorithm 8. But for the exponential model and power model, such a choice

does not make too much sense because the distribution of quantization intervals is not

uniform. Therefore, we here apply the midpoint of exponents (for the exponential model)

and bases (for the power model) as the decision boundary. That is, βk+0.5 and (k + 0.5)α

respectively. Finally, with these decision boundaries, we can decide which quantization

interval a weight locates at and combine them together to form the quantized weight

tensor, which can be mapped to the RRAM crossbar array favorably.

Note that the quantization algorithm does not work alone, as the model accuracy may

degrade after pure quantization. Therefore, we take a finetune process for the quantized
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Algorithm 8: Boundary Decision Function

1 Function boundary decision linear(G):
2 for k = 1 : L− 1 do
3 bk = γ × (gk + gk+1)/2
4 end

5 return B

6 Function boundary decision exp(β):
7 for k = 1 : L− 1 do
8 bk = γ × βk+0.5 × (gk/β

k);
9 end

10 return B

11 Function boundary decision power(α):
12 for k = 1 : L− 1 do
13 bk = γ × (k + 0.5)α × (gk/k

α)
14 end

15 return B

NN model as described in [20]. Therefore, we keep quantizing and re-training the model

iteratively until the accuracy converges. The quantization algorithm is applied before

both the inference and the forward stage in the training.

6.3.3 Input Regulation

After mapping the quantized model to RRAM crossbar arrays, we may still encounter

the static variation in RRAM that severely hurts the performance. Previous work on

tackling the RRAM variation mostly relies on RRAM cell re-writing [134, 17] or NN pa-

rameter re-mapping [127]. However, these methods may cause large hardware overheads

due to the write-to-write variation. On the other hand, some work leverages NN training

to make the model more robust against variation [128, 147] by injecting stochastic vari-

ation into the training process. We will show in the experiment regarding comparison to

such technique.

To tackle the static variation, we leverage the opportunity that such variations are
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Figure 6.6: An illustration of the input regulation technique. We show on the top that
variation-affected weights lead to incorrect output, where all the outputs are rounded
to integers. The bottom figure shows how the input regulation map works to resume
the output.

fixed and can be known immediately after mapping. Therefore, we propose to regulate

the input and compensate for the known variations instead of pursuing a perfectly correct

RRAM cell. As the output relies on both weight and input, we slightly adjust the input

voltage to keep the final results correct under the variation-affected weight. As shown in

Fig. 6.6, we take a matrix-vector multiplication as an example. The original computation

is Wx = y. After we map the W onto the RRAM crossbar, we get a variation-affected

weight matrix Wnoised, which would lead to an incorrect output shown as purple. Then,

we add an input map M to the input x accordingly, where element-wise multiplication

will be performed over M and x. This process will scale the input a little to compensate

for the certain variation pattern. Finally, we resume the output more accurately to the

original one.

So, our goal is to search for an optimal input map M that best resists against the

static variation. This problem can be formulated mathematically to an optimization

problem, where we wish to minimize the computation error under the matrix-vector

multiplication constraint, as expressed in Eq. 6.5:
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min
M

Error(y, ynoised) =
√

||y − ynoised||2

s.t. y = Wx

ynoised = Wnoised × (M · x)

(6.5)

However, the input x in the equation above remains unknown. Our opportunity is

that since the neural network itself is trained over a specific dataset, for a particular

piece of weight, the input may thus follow some specific patterns. For example, the input

in the corner of an image may have more white pixels. Therefore, we propose to obtain

the M through the same training procedure as to train the neural network. First, we

initialize the M to an all-1 tensor, meaning that the x remains unchanged after getting

multiplied by 1. Second, we can approximate the optimal M using common training

techniques such as stochastic gradient decent. In this step, we fix the weight matrix and

update the input map only. Through going over all training images, we finetune the

input map iteratively until convergence.

6.3.4 Selective Weight Restoration

The resistance-aware quantization and input regulation help tolerate the static faults

which can be detected at the mapping stage. However, the reliability issue also occurs at

the inference state when we keep running the RRAM-based accelerator. As we discussed

in Section 6.2.3, the resistance of RRAM may drift over time. Previous work mainly

focused on the endurance problem [148] to protect RRAM cells from frequent writing,

but the retention problem in the NN acceleration scenario has been rarely touched.

To address this problem, we propose a selective weight restoration method which

determines the significant weights in an NN model and restores them from dynamic

variation. The idea origins from the observation that only a small fraction of weights
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show the importance to NN models and slight changes to the insignificant weight will

not hurt the accuracy due to the intrinsic robustness of NN [20]. Therefore, we can

back up these significant weights and restore them when they suffer from the resistance

drifting/dynamic variation.

However, the challenge is that the significant weights are in fact randomly distributed

among RRAM crossbars, and thus it would take a long time to re-write all these weights.

To overcome the writing overhead, we then introduce an RRAM-friendly weight restora-

tion method, which leverages the RRAM crossbar’s nature that it is possible to write

one row in the RRAM crossbar simultaneously to reduce the latency [148]. So, after we

map the NN model to RRAM, we detect the weight significance in a row-wise manner for

each crossbar. First, we sum up the weight within a whole row as expressed in Eq. 6.6,

which indicates the significance of this row. Since we already separate the positive and

negative weights, we do not need to take the absolute value. Second, we select a num-

ber of rows with the largest significance and back up them in the main memory. Every

crossbar selects the same number of rows to avoid the restoration imbalance. Finally, we

periodically refresh these rows in RRAM crossbars to ensure the accuracy performance.

Sj =
H∑
i=0

wi,j (6.6)

Note that to avoid the contradiction to input regulation that has fixed input maps

for the static variation, we need to write the cell precisely during refreshing RRAM

crossbars. We consider this overhead very small because we only re-write a small portion

in an RRAM crossbar and the refreshing is conducted after a period of time. We will

quantitively evaluate the overhead in Section 6.5.

114



SIGHT: Enhance the Reliability of In-Memory-Processing Architecture Chapter 6

6.4 Architecture Design

In this section, we discuss how we architect the RRAM-based accelerator and equip

it with fault-tolerant capability according to the techniques proposed in Section 6.3.

6.4.1 Overview

As RRAM reliability issues broadly exist in various accelerators, our design principle is

to make our design (1) unified, where we address all the reliability issues in one framework;

(2) general, meaning it applies to various RRAM-based accelerators; (3) low-cost, as

negligible performance and hardware overhead would be introduced. For these purposes,

we architect add-on hardware in the existing RRAM-based accelerator to support our

fault-tolerant scheme.
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Figure 6.7: The SIGHT architecture overview. We mainly design (a) the input reg-
ulation unit for each PE to execute the NN inference and (b) the weight refreshing
scheduler to restore the significant weights in RRAM crossbars.

Fig. 6.7 gives an overview of the SIGHT, which is based on the ISAAC-like [27]

processing flow. The SIGHT consists of two parts, the NN inference accelerator and fault-

tolerant units. To process the NN inference, SIGHT distributes the workload to a number

of RRAM-based processing elements (PEs). Each PE tile is mainly composed of the
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input/output buffer, RRAM crossbar arrays for matrix multiplication, registers for result

aggregating and non-linear units for activation functions. The PEs are organized in a

mesh manner, for better reconfiguring with various NN workloads. Beyond the functional

modules for NN executions, we design fault-tolerant units to resist the RRAM faults.

First, we add a multiplier array beside the RRAM crossbar, which regulates the input

voltage to resist the static variation. Second, we design a weight refreshing scheduler.

The scheduler issues interrupt signals periodically or on-demand to NN executions, and

then refreshes the significant weights to recover the accuracy loss caused by the dynamic

variation.

6.4.2 Hardware Design

RRAM-based PE is similar to the tile design in ISAAC. Multiple RRAM cross-

bar arrays are used to compute the matrix multiplication. The crossbars are interfaced

by the digital-to-analog converter (DAC) and analog-to-digital converter (ADC). As the

area overhead of ADC is usually considerably larger than DAC [27], we make each cross-

bar have its own DAC arrays but share the ADC arrays with other crossbars within the

PE. We use SRAM to buffer the input and output activations. A PE’s input/output

buffers are interconnected with adjacent PEs for the convenience of layer propagation.

We also use aggregation registers to aggregate the partial sums of (1) split matrix and

(2) split precision from different RRAM crossbars. The latter one is for the reconfig-

urable precision purpose. Since the RRAM, DAC and ADC are fixed-precision and some

NN workloads demand higher precision, splitting most significant bits (MSBs) and least

significant bits (LSBs) thus becomes a common technique used in RRAM-based comput-

ing [26, 27]. Finally, we put a non-linear unit to support activation functions and pooling

operations in an NN model.
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Input Regulation Unit is to adjust the input voltage according to the fault-tolerant

scheme presented in Section 6.3.3. This unit is composed of a multiplier array, which

locates right beside RRAM crossbar arrays. We also put an extra buffer within the PE

to store the input map M. Then, the multiplier array receives operators from the input

buffer and map buffer and sends the regulated data to DACs. This only incurs very

little performance overhead of one multiplier cycle, which we will discuss in detail in

Section 6.5.

Refreshing Scheduler is a separate piece of control logic that aims to refresh the

RRAM crossbars affected by the dynamic variation. The scheduler decides to refresh

according to an internal counter, which records the time interval from the last refreshing.

Whenever the counter exceeds the pre-set threshold, the scheduler issues an interrupt

signal and starts to refresh the RRAM crossbars. As all the backup weights are stored

offline, the significant weights will be read from off-chip memory and written to crossbars

row-wisely. For each crossbar, we use a bitmap to decide which rows are going to refresh

and put a dedicated decoder to decode the bitmap (searching for non-zero positions) and

process the rows sequentially.

Interconnection & Controller: The PEs are organized as a 2-D mesh, where one

PE can receive the input activations from others or route its output to adjacent PEs.

The RRAM crossbars within a PE are connected with a shared bus. Once an NN model

is mapped, all the data paths for execution are fixed offline. The execution controller

then runs a finite state machine and takes charge of all the pipelines according to the

control registers, which determines how the results are routed.
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6.4.3 Execution Flow

Mapping: Similar to the ISAAC and other RRAM-based accelerators, SIGHT puts

all NN parameters on-chip, which are distributed over all the RC tiles. This assumption

holds because the RRAM itself is a memory device and writing RRAM repeatedly will

significantly reduce its endurance [148]. Therefore, we first map the model to the accel-

erator offline, and one layer could be mapped to one or several PEs. After mapping, we

read actual weight values from RRAM crossbars that are affected by static variations.

Then, we train the input map M offline and write the map to each regulation buffer.

Finally, we program the control registers in the execution controller with respect to the

data flow fixed by the mapping.

Execution: After we start the execution controller, the global buffer loads the image

from the off-chip memory and sends it to PEs that process layer 0. The input will first be

regulated by multiplying with the input map and then sent to the corresponding RRAM

crossbars. The computation results are temporarily stored at the aggregation registers,

where the partial sums are accumulated. Finally, after going through the non-linear

function unit, the output of this layer is then stored in the output buffer and waiting for

routing to the next PE.

Refreshing: The RRAM crossbars refresh themselves with a pre-set time interval.

When it is time for refreshing, the refreshing scheduler first sends an interrupt to the

execution controller and suspends the inference processing. As backup weights are stored

offline, the scheduler then issues memory requests to the I/O interface and reads the row-

wise significant weight and the bit map. To reduce the overhead, we wish all crossbars to

refresh simultaneously. Therefore, we make the weight reading and crossbar refreshing

in the pipeline. First, one significant row is read for each crossbar at a time. Second,

the crossbar refreshes this row with the address decoded from the bit map. Meanwhile,
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the scheduler starts to read the next row to hide the I/O latency. Since we restore a

certain percentage of rows for every crossbar, no refreshing imbalance would be introduced

consequently.

6.5 Evaluation

In this section, we provide the experiment results of our proposals and analyze the

insight from them.

6.5.1 Methodology

We evaluate our proposal from both software and hardware aspects. For the software

aspect, we demonstrate the efficacy of the fault-tolerant scheme by the accuracy results

from different neural network benchmarks. For the hardware aspect, we evaluate our

architecture design by simulations, showing the performance, energy breakdown, and

area overhead.

Evaluation Tools: We implement our fault-tolerant schemes with PyTorch, a

commonly-used python-based NN framework. We also build up an in-house simulator to

evaluate the hardware performance. The RRAM parameters including area, energy, and

latency, are derived from NVSim [149], while the SRAM are simulated by CACTI [150].

We also implement other digital components, such as activation units and multipliers,

in Verilog and synthesize them with Synopsys Design Compiler to estimate their perfor-

mance.

Accelerator Configuration: As shown in Table 6.1, the system is configured to

1.2GHz and simulated under 32nm technology. For each PE, we use 32 RRAM crossbar

arrays with a size of 128×128. We assume 2-bit precision for each RRAM cell. We

use 1-bit DAC and 8-bit ADC as described in [27], where each RRAM crossbar has 128
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Table 6.1: The SIGHT Configuration

SIGHT Configuration @ 1.2 GHz, 32 nm Technology
Component Parameters Spec

RRAM Crossbar
Precision

Size
Number/PE

2-bit
128*128

32

Input/Output Buffer
Size

# Banks
Data Rate

8KB
4

64B/cycle

Input Map Buffer
Size

# Banks
Data Rate

4KB
4

32B/cycle

ADC
Precision

Number/PE
8
32

DAC
Precision

Number/PE
1

32*128
Regulation Array # Multipliers 32

PE Number 256

Global Buffer
Size

# Banks
Data Rate

32KB
8

128B/cycle

I/O
Config.

Bandwidth
PCIe 4.0*4

16GB/s

DACs and shares one ADC. The regulation array is set to 8-bit precision where it has 32

multipliers. We apply 8KB SRAM for input and output buffer within one PE, and each

buffer has 4 banks contributing to a data rate of 64B/cycle. The input map buffer is a

4KB SRAM separately whose data rate is 32B/cycle. We equipped SIGHT with 256 PEs

in total, and there is a 32KB global buffer with 128B/cycle data rate. We use four PCIe

4.0 lanes to connect the accelerator and the host, providing 16GB/s off-chip bandwidth

in total.

Benchmarks: For better understanding how the model structure and complexity

are sensitive to our fault-tolerant scheme, we consider two typical types of CNN, VGG

and ResNet, for evaluation, where VGG stands for a plain and straightforward network

and ResNet has a residual structure [151, 3]. We also choose models with different
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depths, including VGG-11/16 and ResNet-18/34. We apply the public implementations

from GitHub as baselines [152, 153]. The dataset we use is CIFAR-10, which consists of

60000 32×32 color images in 10 classes. Among them, 50000 images are used for training

and 10000 images are used for testing [154].

6.5.2 Accuracy Results

(1) Resistance-Aware Quantization. We quantize and finetune the four pre-

trained models with the three mentioned resistance distributions. For a better sensitivity

study, we quantize them into 2, 3, and 4 bits as current RRAM devices are unlikely to

have very high precision. We also select different parameters for different distributions

and choose the base of power distribution and the index of exponential distribution to

be
√

2,2,3.

Table 6.2: The accuracy results of the resistance-aware quantization. Models are
quantized into different precision for different types of resistance distribution. For
power and exponential distribution, different parameters are chosen.

ResNet-18 ResNet-34 VGG-11 VGG-16
Baseline 94.78 94.74 92.23 93.58

Quantization 2-bit 3-bit 4-bit 2-bit 3-bit 4-bit 2-bit 3-bit 4-bit 2-bit 3-bit 4-bit
Linear(δ) 0.10 93.47 94.68 94.82 93.39 94.37 94.65 85.94 91.21 91.86 89.23 93.03 93.38

Power(β)

√
2 94.36 94.60 94.73 94.40 94.48 94.59 90.63 91.89 92.15 92.80 93.27 93.48

2 94.38 94.67 94.79 94.14 94.57 94.66 90.64 91.98 92.14 92.72 93.29 93.46
3 94.31 94.51 94.68 94.19 94.56 94.54 90.35 91.34 91.97 92.43 93.11 93.52

Exp(α)

√
2 93.40 94.71 94.69 93.36 94.59 94.61 85.18 91.91 91.92 88.09 93.30 93.38

2 94.66 94.67 94.72 94.27 94.45 94.52 90.86 91.52 91.55 93.04 93.14 93.24
3 94.45 94.38 94.39 94.14 94.14 94.09 90.15 90.11 90.06 92.81 92.83 92.81

As shown in TABLE 6.2, the accuracy result under full precision can be found in the

top line while the accuracy after quantization is below them. We find that: (a) For most

cases, we achieve no accuracy loss or insignificant accuracy loss (∼1%), demonstrating the

efficacy of our resistance-aware quantization; (b) The overall results for ResNet models

are better than VGG ones. We resume the accuracy of ResNet models back to 94%

as original for almost all the cases, except for exponential quantization to 2 bits where
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the accuracy is 93%. Meanwhile, VGG models suffer more accuracy loss as usually 1-2%

degradation is introduced, especially for VGG-11. This tells the ResNet structure is more

robust than a VGG-like plain network when applying the non-linear quantization; (c) The

exponential distribution with a small index plus low quantization width will degrade the

performance noticeably. As shown, when using parameter α=
√

2 and quantizing the

model with 2-bit precision, the accuracy of ResNet models drops 1% while the accuracy

of VGG-11/VGG-16 decreases to 85.18% and 88.09%. This is because in such cases,

the quantized values have a smaller range and thus are not enough to represent the

NN models. Also, higher quantization precision generally makes quantized values more

representative, which explains that it basically occurs at the low-bit quantization.

(2) Input Regulation. To evaluate the efficacy of input regulation, we inject varia-

tions with increasing variances to see how models get affected by static variations, where

a larger variance indicates a worse variation. We take the deviated-linear and exponential

quantization methods for all the four models and recover the accuracy by regulating the

input.
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Figure 6.8: The efficacy of input regulation against the static variations, compared
with device-variation-aware (DVA) training [128]. Deviated-linear and exponential
quantization are shown. The x-axis represents the variance of variations, and the
bigger the worse. The y-axis represents the accuracy.

The results are shown in Fig. 6.8, where we compare the accuracy between the device-
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variation-aware (DVA) training [128] (shown as dotted lines) and our proposed input

regulation (shown as solid lines). We observe that: (a) With the input regulation, we

keep the accuracy against dropping from variations. Even when injecting the variation

as large as 100%, the model delivers less than 10% accuracy loss most of the time; (b)

The input regulation outperforms the DVA with an average accuracy gain of 25.2%. The

DVA appears effective in a smaller variation range when λ < 50%, but the accuracy

degrades significantly after that. Specifically, our input regulation achieves an accuracy

gain of 13.0% when 0 < λ ≤ 50% and an accuracy gain of 43.7% when 50 < λ ≤ 100%,

compared with the DVA. (c) The DVA shows stochastic characteristics, as in some cases

such as the VGG-16, smaller variation may cause larger accuracy loss. This is because

the real variation scenario is unpredictable. Although the model is trained to be more

robust, the later injected variation could cause huge accuracy loss. On the opposite, our

input regulation is obtained for a specific variation distribution and thus achieves better

performance.

(3) Run-Time Weight Restoration. Similar to the static variation, we inject

dynamic variations with increasing variances to the model and evaluate the deviated-

linearly and exponentially quantized models. We also restore different percentages of

weights to see the trade-off between the restoration overhead and model accuracy.

As shown in Fig. 6.9, the dotted line presents how the accuracy drops as we injected

larger dynamic variations, and three solid lines with different markers present the recov-

ery of accuracy after the weight restoration. From the results we find that: (a) As a larger

dynamic variation leads to lower model accuracy, the ResNet models suffer more from

the dynamic variation. For the deviated linear model with an 8% dynamic variation, the

accuracy of ResNet-18/34 drops rapidly to 17.47%/10.43%, while the VGG-11/16 only

drops to 54.05%/46.86%. This may be caused by the single-directional drifting for dy-

namic variations, meaning the weight drifting will accumulate layer by layer. Therefore,
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Figure 6.9: The efficacy of selective weight restoration against the dynamic variations.
Deviated-linear and exponential quantization are shown. The x-axis represents the
variance of variations, and the bigger the worse. The y-axis represents the accuracy.

deeper networks with more complex structures may have worse accuracy. This hypoth-

esis also stands for the same model with different depths, as VGG-11 and ResNet-18

appear to perform better than VGG-16 and ResNet-34; (b) The weight restoration no-

tably improves the accuracy under dynamic variations. For VGG models, we notice that

restoring 30% weight recover 30-50% accuracy when injecting 8% dynamic variations,

while further restoring 50% weight would almost resume the whole accuracy. Meanwhile,

restoring 10% weight seems not that helpful as it only recovers 10% accuracy. Besides,

for ResNet models, it seems that we need to restore about half of the weights to fully

recover the accuracy. This can also be explained by the variation accumulating in the NN

model since ResNet is much deeper than others. (c) As we take a look into the results for

deviated-linear and exponential quantization, there is no much difference between them,

implying that quantization methods are not affecting the model accuracy as much as the

model itself.
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6.5.3 Hardware Results

As our fault-tolerant framework is built on top of existing RRAM-based accelera-

tors, we mainly discuss the overhead introduced by SIGHT in the hardware evaluation.

We first provide baseline results and present the performance overhead, including infer-

ence latency and energy consumption. Then we show the area and power breakdown of

SIGHT. Finally, we do a sensitivity study on how the performance of SIGHT is affected

by various hardware configurations.

Table 6.3: The baseline results including the latency, energy consumption, and run–
time performance for four NN models. The results of one image is shown.

Model # Active Xbar
Latency

(ms)
Energy

(nJ)
Performance
(TOP/W)

VGG-11 1164 0.18 3,883 27.03
VGG-16 1840 0.35 8,243 24.18

ResNet-18 1392 0.86 15,766 35.23
ResNet-34 2636 1.34 29,531 19.63

(1) Performance. TABLE 6.3 shows the baseline results for the four models where

our fault-tolerant framework is not enabled. We present the number of active crossbars,

latency, energy consumption and run-time performance. Besides, we set 2-bit weight

and 8-bit activation for inference and directly map the model with a batch size equal

to 1. We first find that ResNet-34 consumes most crossbar resources and other models

are using a comparative number of crossbars. Also, the two ResNet models take a much

longer time for execution and consume more energy than VGG models. This is because

ResNet models have more convolutional layers that require long repeated computation

over them. Finally, the run-time performance of the four models is about 20-30 TOP/W.

We show the results of SIGHT in Fig. 6.10, which are represented by the percentage of

overhead compared with the baseline. We set the weight refreshing frequency to 4 images

as the weight would be re-loaded every 4 images. First, SIGHT causes a small amount of
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Figure 6.10: The performance of SIGHT. The blue bar shows the execution latency
while the yellow bar shows the energy consumption, and the dotted line represents
the performance.

overhead which is typically less than 10%. The average latency overhead is 5.23%, which

is mainly introduced by the regulation array and weight refreshing. The geometric mean

of energy overhead is 7.75%, which is slightly larger than latency overhead due to a large

amount of RRAM writing, and the overall performance overhead is 7.14%. Second, from

the NN model perspective, we find that VGG models have larger energy overhead but

smaller latency overhead than ResNet models. This is because VGG models have three

large FC layers, and they require more RRAM crossbars but essentially perform less

computation, compared with convolutional layers. Therefore, the energy overhead comes

from refreshing FC layers in VGG, which is relatively larger than ResNet. On the other

hand, as convolutional layers require more computation, its latency suffers more from

the regulation array as the array increases data loading latency, so the ResNet appears

to have a larger latency overhead.

(2) Area/Power Analysis. We present the area and power breakdown in Fig. 6.11.

As shown, the total area of SIGHT is 53.26 mm2 and the peak power is 48.96 W . The

largest components include the SRAM buffer and ADC, where the input/output buffer

takes 24.74 mm2, the input map buffer takes 11.13 mm2, and ADC takes 9.83 mm2.

Our add-on components of regulation arrays introduce 3.52 mm2 area overhead, which

is 6.6% of the whole area. The input/output registers for DAC/ADC take 2.94 mm2
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Figure 6.11: The area and power breakdown of SIGHT.

area while other components including RRAM itself, logic unit, DAC and so on occupy

a negligible area in the whole architecture.

From the peak power perspective, the SRAM buffer and ADC still consume the most

power, where the input/output buffer takes 15.26 W , the input map buffer takes 5.64

W , and ADC takes 16.38 W . The regulation array consumes 3.14 W peak power, which

is 6.4% of the whole system. The DAC and RRAM crossbar take another noticeable

fraction with 4.10 W and 2.46 W peak power, respectively.
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Figure 6.12: The performance sensitivity to input and weight precision. The left part
fixes weight to 2-bit while the right part fixes input to 8-bit.

(3) Sensitivity Study. To better understand the trade-off in hardware configu-

ration, we also change the design parameters in SIGHT to see how its performance is

sensitive to different architecture settings.
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Sensitive to Input/Weight Resolution: As shown in Fig. 6.12, we fix the model to 2-bit

weight/8-bit activation, and tune the activation/weight precision respectively to see how

the performance overhead changes. First, from the left part where the weight is fixed to

2-bit, we find that with higher activation precision, the performance overhead is actually

reducing. This is because when increasing the activation precision, we do not necessarily

need more RRAM crossbars but perform computation over the same RRAM crossbar

repeatedly. Then, the proportion of energy consumption in weight refreshing is then

decreased relatively, so we have less overall performance loss. On the other hand, when

fixing the input precision to 8-bit, higher weight precision would increase the performance

loss, as observed in the right part of Fig. 6.12. Because more RRAM crossbars are needed

in such a case and thus more energy overhead is introduced when refreshing the weight.
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Figure 6.13: The performance sensitivity of selective weight restoration (SWR) to
different refreshing intervals from refreshing per 1 image to per 64 images, compared
with variation-free tuning scheme (VFTS) [134].

Sensitive to Refreshing Interval: Since various RRAM devices emerge based on dif-

ferent materials, they may exhibit unique retention character and thus require different

refreshing frequency. As shown in Fig. 6.13, we present the performance loss of selective

weight restoration (SWR, solid lines) when ranging the refreshing interval from every 1

image to every 64 images, with the comparison to variation-free tuning scheme (VFTS,
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dotted lines) [134]. Our SWR causes much less performance degradation that is less than

10%, compared with VFTS that could lead to near 30% performance loss when refresh-

ing the weight frequently. Also, the performance loss can be reduced significantly by

increasing the refreshing interval, especially when the interval is less than 8. The benefit

mainly comes from the reduction of relative energy consumption of weight refreshing.

These observations demonstrate that the proposed SWR enjoys more benefits when the

RRAM device is more vulnerable to dynamic variations.

6.6 Conclusion

In this chapter, we present SIGHT, a SynergIstic alGorithm-arcHitecture fault-Tolerant

framework, to holistically address the reliability issues in RRAM devices. Specifically,

we consider three major types of faults for RRAM computing: non-linear resistance dis-

tribution, static variation, and dynamic variation. From the algorithm level, we propose

a resistance-aware quantization to compel the neural network parameters to follow the

exact non-linear resistance distribution as RRAM and introduce an input regulation tech-

nique to compensate for RRAM variations. We also propose a selective weight refreshing

scheme to address the dynamic variation issue that occurs at run-time. Finally, we pro-

pose a general and low-cost architecture accordingly for supporting our fault-tolerant

scheme. Our evaluation demonstrates almost no accuracy loss for our fault-tolerant al-

gorithms, and the SIGHT architecture incurs performance overhead as little as 7.14%.
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Chapter 7

Learning the Sparsity for RRAM:

Mapping and Pruning Sparse Neural

Network for RRAM based

Accelerator

Chapter 6 has presented our approach to tolerant the reliability issue, which makes

RRAM-based PIM possible for neural network acceleration. In this chapter, we further

describe how to map the network model to the RRAM-based PIM accelerator. The chal-

lenge of mapping is due to the intrinsic sparsity in the model. This chapter first discusses

the background and motivation of mapping sparse neural networks to RRAM. Then, we

introduce our reordering-based mapping scheme and RRAM-aware pruning algorithm.

Finally, we evaluate our proposal based on the model accuracy and performance gain.
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7.1 Background and Motivation

With the in-memory processing ability, RRAM-based computing gets more and more

attractive for accelerating neural networks (NNs). RRAM-based NN acceleration lever-

ages the RRAM crossbar array to achieve O(1) computation complexity. The computa-

tion is performed by mapping the weight matrix to the crossbar, and then the vector is

input by activating all rows.

Current NN often contains enormous parameters. Previous work has found that NN

models usually exhibit intrinsic sparsity. This means a large portion of the parameters

are redundant and thus can be pruned [20, 155]. Therefore, sparsity becomes a popular

way to make the model more efficient. After pruning, the weight in sparse NN contains

plenty of zeros (often >70% sparsity), whose computation can be skipped.

However, existing RRAM-based NN accelerators cannot support efficient mapping for

sparse NN, and we still need to map the whole dense matrix onto the RRAM crossbar

array. As shown in Fig. 2.2, to remain the O(1) computation complexity of the matrix-

vector multiplication, we must map the whole matrix into the crossbar according to

Eq. 2.1. Even though there could be lots of zeros in the crossbar, their computations are

non-skippable.

Overcoming the intrinsic contradiction between dense crossbars and the sparse matrix

is very challenging. Researchers have made some exploration to make the mapping of

the sparse matrix more efficient. For graph processing, Song tried to use ultra-small

ReRAM processing element (PE), like 8 × 8 or 4 × 4 crossbar, to traverse the adjacency

matrix [156], which, however, will consume lots of energy for large scale NN, because it

has to read/write the weights repeatedly. Wang focused on mapping structured sparse

NN [155] with block building approach [157], but not looking into common irregular

sparse NN, which can prune more redundant parameters. Besides, some work proposed

131



Learning the Sparsity for RRAM: Mapping and Pruning Sparse Neural Network for RRAM based
Accelerator Chapter 7

to train a sparse NN that fits the hardware structures of ReRAM crossbar [158]. It may

be a good way but still cannot deal with the mapping problem for existing sparse NN.

In this chapter, we propose a novel mapping scheme for sparse NN, along with a

software-level pruning algorithm to efficiently accelerate sparse NN with RRAM-based

accelerators. Simulation results show that our mapping scheme with the proposed prun-

ing algorithm achieves 3∼5× energy efficiency and 2.5∼6× speedup, compared with

PRIME [26], the well-known RRAM-based NN accelerator.

7.2 Sparse NN Mapping Scheme

To reduce the redundancy in RRAM crossbar and make use of the sparsity of NN,

we next introduce our mapping scheme for sparse NN with as fewer crossbar arrays used

as possible. We first introduce the insight that motivates our column-exchanging-based

mapping algorithm. Then, we explain the mapping procedure in detail and discuss the

overhead it causes.

Insight: There are two observations that help us explore the efficient mapping design.

First, to achieve higher accuracy in complicated tasks, the development of NN is going

deeper and larger-scale. In common-used neural networks, the weight matrix can be

very large. For instance, the first full connected (FC) layer of VGG-16, which contains

more than 90% parameters of the whole network, has the weight matrix with the size of

25088×4096. Obviously, such a massive matrix cannot be mapped on one single RRAM

crossbar and needs to be split into smaller blocks. Meanwhile, in the current tape-

out chip of RRAM-based computing systems, the size of fabricated RRAM crossbar is

quite small, like 32×32 or 64×64 [159, 160]. The second observation is that for those

extremely large layers, although there are massive parameters, the pruning results show

that these layers will be really sparse. Again, take the FC layer in VGG-16 for example,
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after pruning, the density of it is 4% [20], which means that only 4% elements remain

and 96% of the matrix is zero. Further, since we need two crossbars to represent the

positive and negative parts of the matrix respectively, the density will be half smaller if

half the parameters are positive and the others are negative, which means about 98% of

parameters of the matrix become zero.

Key Idea: The observations inspire us that those smaller blocks of the split weight

matrix are probably all-zero, or have all-zero columns/rows. If we eliminate such zero

parts, we could save considerable resources. However, although there is only one non-zero

element in the column/row of the RRAM crossbar, we need to keep this column/row to

make the computation of matrix in the correct order. Here we proposed the k-means

clustering based column exchanging scheme for mapping. In fact, some work applied the

spectrum clustering algorithm to gather the neurons for pruning [158]. But here our goal

is to make the non-zero elements more concentrated through column exchanging. Thus

we can gain more all-zero rows and save more crossbars.
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Figure 7.1: An illustration of our column-exchanging-based mapping algorithm. (a)
Column exchanging for sparse matrix. (b) The whole mapping scheme

k-means is a wide-used method for cluster analysis in data mining. Given n samples,

133



Learning the Sparsity for RRAM: Mapping and Pruning Sparse Neural Network for RRAM based
Accelerator Chapter 7

k-means algorithm aims to cluster them into k labels, with the minimal within-cluster

variance. In our application, we have n columns in the original large matrix and crossbar

size is L, so we need to partition the n columns, or say n vectors into n/L labels, with

L vectors in each label. k-means algorithm will not assign specific number of samples

in each label, so our solution is to take the most concentrated L vectors as clustering

results, and then through a recursive procedure we repeat the clustering for remaining

vectors. Also, since k-means is sensitive to the initial value, we choose to repeat our

algorithm to avoid local optimal results.

Algorithm 9: k-means-base Column Exchanging for Mapping Sparse Maxtrix

1 Require: Weight matrix W , splitting function fsplit, RRAM crossbar size L.
2 Initialize:
3 (x, y) = size of W , ext = y mod L; Pad W with ext zero columns;
4 sp = sparsity of W , splitting size (xsplit, ysplit) = fsplit(x, y, sp);
5 Split W into m small blocks Wi;
6 Clustering result Ri = {}, i = 1, 2, ...,m;
7 for i = 0 : m do
8 Unclustered Set U = {v}; // v is each column in Wi

9 while U ! = ∅ do
10 n = |U |;
11 Cluster U into n subset Cj using k-means with hamming distance;
12 for j = 0 : n do
13 if |Cj| ≥ L then
14 Find the nearest L vectors {v} ⊂ Cj;
15 Add {v} into Ri, and remove them from U ;

16 end

17 end

18 end

19 end
20 for {v} in Ri do
21 Compose the block matrix Wi,block with {v};
22 Eliminate all-zero parts and shrink Wi,block, then map it into RRAM crossbar;

23 end

Algorithm 9 shows our mapping algorithm which requires a weights matrix, RRAM

crossbar size, and a pre-splitting function fsplit as input. Clustering an extremely large
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Figure 7.2: The accelerator architecture.

matrix, like 25088×4096, can consume much more time and not achieve the optimal

result for smaller pieces. Therefore, we propose to pre-split the matrix before k-means

clustering as shown in Lines 3-5 with the pre-splitting function fsplit. Lines 7-19 describe

our key operation for k-means-based column exchanging. We cluster the vectors in the

split matrix and pick up L columns into the target set R repeatedly, and through the

recursive calls we will shuffle all the columns into specific sets we need. After we exchange

the columns according to clustering results, the size of the split matrix will shrink as we

eliminate the all-zero parts. Then we can further split the shrunk matrix into crossbar

size and finish the mapping procedure as described in line 20-23.

Note that we use a splitting function fsplit to decide the split size, and here is how it

works: We first produce plenty of random matrices to start different splitting strategies

and choose the best one by iteration. Through those experienced parameters, we infer

the splitting size for a given matrix. So in our experiments, the fsplit is actually an

interpolating function.

Fig. 7.2 shows the architecture with our mapping scheme. The flowchart of our

architecture is similar to PRIME but we add extra indexing units. Because we need to

reorder the columns and rows of a regular matrix. The index registers are only added

for the output vectors because we can schedule the corresponding input voltages after
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NN mapping. Note that the index units are needed for RRAM crossbars but not every

matrix element. Besides, Due to the pre-splitting procedure, we do not need to index

among the huge matrix but inside the split small block.

7.3 Crossbar-Grained Pruning

In the section above, we introduce our proposed sparse mapping scheme based on

column exchanging strategy, which will gather non-zero elements together as concentrated

as possible in order to eliminate the zero crossbars. However, we could still find that

in some crossbars, the utilization of ReRAM cells is much lower, and there may exist

only few, or even just one non-zero element(s) in one row. We implement our mapping

algorithm on 64 × 64 ReRAM crossbar for VGG-16. Fig. 7.3 shows the distribution of

utilization ratio of those crossbars, compared with original mapping in the dense way.

The percentile in x-axis represents the ratio for non-zero cells in the ReRAM crossbar.

We can easily find that in more than 20% crossbars, there are only 15% ReRAM cells

storing valid parameters and 85% of them are zero.
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Figure 7.3: The distribution of utilization ratio for ReRAM crossbar, with mapping
a sparse VGG-16.
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Obviously, if we can further delete those low utilization crossbars, we can achieve

much more hardware resource reduction. Here we will introduce our crossbar-grained

NN pruning to further compress the sparse NN and save ReRAM crossbars. The key

idea is to throw away those ReRAM crossbars with only a few parameters. First, we pre-

prune the neural network and implement column exchanging for NN mapping according

to Section 7.2. Then we start crossbar-grained pruning for NN, which will remove mul-

tiple weights in the crossbar rows. We adopt the pruning criterion in Mao’s work [161]:

Compute the Salience Si =
∑

w∈Gi
|w|, i.e. the sum of L1-norm weights, to decide which

group of weights should be deleted. Here the pruning grain Gi is the ReRAM crossbar

rows. After weights pruning, we finetune the NN to rescue the accuracy, expecting the

least accuracy loss. To achieve better pruning results, we can repeat the procedure of

“Pruning - Finetuning - Pruning”, and get the final NN model step by step.

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎
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Figure 7.4: ReRAM crossbar-grained pruning for sparse NN.

Finally, mention that our pruning algorithm is conducted on sparse NN, where the

model is already compressed. Therefore, further pruning may damage the NN perfor-

mance on accuracy. In our experiments section, we will discuss the above issue in detail.
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7.4 Simulation Results

7.4.1 Simulation Setup

We implement our design, including our sparse NN mapping algorithm along with

the proposed precision composing circuits design on PRIME, which means we modify

the PRIME design and its data scheduling. We mainly look into energy efficiency and

speedup as our evaluation metrics. We assume 2-bit ReRAM cell and simulate the energy

cost through NVSim [162]. To evaluate the performance of ReRAM crossbar-grained

pruning, we will compare the accuracy loss after pruning for different NNs.

To thoroughly exam our design for different NN structures, we choose to conduct

our simulation on CNN (Convolutional Neural Network) and RNN (Recurrent Neural

Network). CNN mainly consists of convolutional layers, like ResNet series[3], which only

have one fully connected layer, while RNN is a typical fully connected neural network, like

LSTM[4]. The benchmarks in our simulation are LeNet-5, AlexNet, VGG-16, ResNet-20,

and LSTM-5. The LSTM-5 model we use is a 5-layer bi-directional LSTM RNN, and the

length of the hidden unit is 800. The sparsity, which represents the degree of pruning, of

each NN can be found in Table 7.4.1.

Table 7.1: The Sparsity of each NN
NN LeNet-5 AlexNet VGG-16 ResNet-18 LSTM-5

Sparsity 92% 89% 92.5% 75% 85%

7.4.2 Energy Results with Sparse Mapping

Before we conduct our experiments on different NNs, we look into how the crossbar

size affects the system’s energy efficiency. We take VGG-16 to implement our experiments

and get our energy results through simulation. As shown in Fig. 7.5, the x-axis represents
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Figure 7.5: The energy results with gradually deeper NN pruning sparsity, and differ-
ent ReRAM crossbar size.

deeper pruned NNs with different crossbar size, and the y-axis plots the normalized energy

efficiency compared with PRIME. We can find that as the ReRAM crossbar gets smaller,

we may first save more energy, but the energy cost becomes larger with 16×16 crossbar,

which may be caused by the huge amount of interfaces when mapping such a large NN

into those really small ReRAM crossbar. Therefore, we will take 32×32 ReRAM crossbar

in our next experiment.
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Figure 7.6: The Energy Results with Different NNs.
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Fig. 7.6 plots the energy performance, and the results have been normalized to

PRIME. As seen, our system for sparse NN achieves 3−5× energy efficiency improvement

for popular NNs after our crossbar-grained pruning, which makes the energy efficiency

further improved. Through the results, we find that the system performs much better

in NN with large layers, like AlexNet, VGG or LSTM, because such layer often occupy

too much energy cost and will be quite sparse after pruning. Meanwhile, for the ResNet

which mainly contains convolutional layers, it is more difficult to cut down the parame-

ters, but the energy efficient will be improved a lot after our crossbar grained pruning.

The system can achieve more energy savings as the NN get sparser, as we learn from

Fig. 7.5. Finally, we have to note that the excellent result of LeNet-5 is that mapping

such a small NN into 256×256 crossbar will cause huge resources wasted, while our small

crossbar show its charm to LeNet-5.
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Figure 7.7: The Speedup Results with Different NNs.

The system’s speedup is mainly brought by the data re-using in those ReRAM cross-

bar we saved, and faster time-cycle for smaller crossbar. Fig. 7.7 plots the time consum-

ing results for different NN, where we can learn that our system achieve more than 5×

speedup for most NNs. However, The results for ResNet is not so impressing, the rea-
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son is the same, for convolutional layers, compressing with pruning and mapping sparse

irregular weights matrix is more difficult.

7.4.3 Accuracy Results with Crossbar-Grained Pruning

We conduct our pruning experiments through LeNet-5 on MNIST dataset, VGG-16

and ResNet-18 on CIFAR-10 dataset, and LSTM-5 on 1000h LibriSpeech.

Fig. 7.8 shows the comparison between the parameters we removed and the crossbars

we saved, both of which have been normalized to the whole NN model. We find that

through pruning a small amount of parameters, we can save plenty of crossbar resources.

Table 7.2 presents the accuracy for those NNs, through which we can find that for three

CNNs and LSTM, our crossbar-grained pruning achieves almost no accuracy loss (<1%).

Besides, note that the performance for accuracy highly depends on the redundancy in

NN, and in our experiments, we adjusted the pruning rate gradually for the trade-off

between accuracy and hardware efficiency.

Table 7.2: Accuracy Results After Crossbar Pruning
Nerual Networks LeNet-5 VGG-16 ResNet-18 LSTM-5

Original 99.23% 93.64% 92.37% 89.24%
Normal Pruning 99.13% 93.62% 92.07% 88.49%

Crossbar Pruning 99.15% 93.72% 91.78% 88.01%

7.5 Conclusions

In this chapter, we propose a novel sparse NN mapping scheme based on weight

columns clustering, to achieve better ReRAM crossbar utilization. Further, we propose

crossbar-grained pruning algorithm to reduce the crossbars with low utilization. The

simulation results show that compared with those accelerators for dense NN, our mapping
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Figure 7.8: The NN parameters we pruned V.S. the crossbar resources we saved, both
of which are normalized to the whole NN model.

scheme for sparse NN with proposed pruning algorithm achieves 3∼5× energy efficiency

and more than 2.5∼6× speedup. Also, our pruning algorithm shows there is almost no

accuracy loss.
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Chapter 8

Summary

Memory is the most important component in various computing systems, especially in

the big data era. However, due to the slowdown in technology scaling, the performance of

memory can become a significant bottleneck to the system. To overcome the limitations

in memory subsystems, this dissertation makes efforts from two perspectives: (1) We

leverage near-data processing (NDP) to improve the performance of existing memory

technology; (2) We design RRAM-based in-memory processing (IMP) architecture as

the next-generation memory.

We first explore how to design a near-memory-processing (NMP) architecture to fa-

cilitate the deep learning workload, which is at the core of big data applications. for

the extreme classification task, which appears in most deep learning workloads. In

particular, we investigate the extreme classification that is the essential component of

large-scale deep learning systems. However, as classification categories keep scaling in

real-world applications, the classifier’s parameters could reach several thousands of Gi-

gabytes, way exceeding the on-chip memory capacity. Moreover, naive NMP designs

with a limited area and power budget cannot afford the computational complexity of full

classification. To tackle the problem, we take the approach of algorithm and architecture
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co-designing. We propose a novel screening method to reduce computation and memory

consumption by efficiently approximating the classification output and identifying a small

portion of key candidates that require accurate results. Then, we design a new extreme-

classification-tailored NMP architecture, namely ENMC, to support both screening and

candidates-only classification. Overall, our approximate screening method achieves 7.3×

speedup over the CPU baseline, and ENMC further improves the performance by 7.4×

and demonstrates 2.7× speedup compared with the state-of-the-art NMP baseline.

While extreme classification usually exhibits regular-patterned computation and data

access, we also explore how irregular-patterned workloads can benefit from NMP archi-

tectures. Thus, we look into the graph processing, which is known to suffer from two

memory inefficiencies: the on-chip cache inefficiency caused by dominated expensive

random accesses, and the off-chip bandwidth inefficiency caused by the small data gran-

ularity. To tackle this problem, we present G-MEM, a customized memory hierarchy

design for graph processing applications. First, we propose a coherence-free scratch-

pad as the on-chip memory, which leverages the power-law characteristic of graphs for

frequent-accessed data. Second, we design an elastic-granularity DRAM (EG-DRAM)

based on NMP technique, which processes and coalesces multiple fine-grained memory

accesses together to maximize the bandwidth efficiency. Putting them together, we see

a 2.63× speedup over the traditional CPU, where the NMP architecture brings 1.79×

speedup.

Further, we focus on the scalability of NDP. The NMP technique targets workloads

with relatively small data footprint that can fit into the main memory. For large-scale

workloads that have to stay in storage, we find that NDP can still bring performance

gain with in-storage-processing (ISP) architecture. Specifically, we look into the Private

Information Retrieval (PIR) protocol that plays a vital role in secure, database-centric

applications. However, existing PIR protocols explore a massive working space containing
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hundreds of GiBs of query and database data. As a consequence, PIR performance is

severely bounded by storage communication, making it far from practical for real-world

deployment. We describe a protocol and architecture co-designed solution, INSPIRE. We

first design the INSPIRE protocol with a multi-stage filtering mechanism, which achieves

a constant PIR query size. For a 1-billion-entry database of size 288GiB, INSPIRE’s

protocol reduces the query size from 27GiB to 3.6MiB. Further, we propose the INSPIRE

hardware, a heterogeneous in-storage architecture, which integrates our protocol across

the SSD hierarchy. Together with the INSPIRE protocol, the INSPIRE hardware reduces

the query time from 28.4min to 36s, relative to the state-of-the-art FastPIR scheme.

On the other hand, we investigate the opportunity of IMP as the next-generation

memory with computation capability. Particularly, emerging Resistive Random Access

Memory (RRAM) has shown the great potential of in-memory processing capability in

the analog domain. RRAM has attracted considerable research interest in accelerating

memory-intensive applications, such as neural networks (NNs). However, the accuracy

of RRAM-based NN computing can degrade significantly, due to the intrinsic statistical

variations of the resistance of RRAM cells. In this dissertation, we propose SIGHT, a

fault-tolerant framework with algorithm and architecture co-design to holistically address

this issue. We consider three major types of faults for RRAM computing: non-linear

resistance distribution, static variation, and dynamic variation. From the algorithm level,

we propose a resistance-aware quantization to compel the NN parameters to follow the

non-linear resistance distribution as RRAM, and introduce an input regulation technique

to compensate for RRAM variations. We also propose a selective weight refreshing scheme

to address the dynamic variation issue that occurs at run-time. From the architecture

level, we propose a general and low-cost architecture accordingly for supporting our

fault-tolerant scheme.

Finally, as our SIGHT framework addresses the reliability issues in existing RRAM
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devices, we still need to map neural networks to the RRAM-based IMP accelerator. How-

ever, most RRAM-based accelerators cannot support efficient mapping for sparse NN,

and we need to map the whole dense matrix onto RRAM crossbar array to achieve O(1)

computation complexity. In this dissertation, we propose a sparse NN mapping scheme

based on elements clustering to achieve better RRAM crossbar utilization. Further, we

propose a crossbar-grained pruning algorithm to remove the crossbars with low utiliza-

tion. In our experiments, we discuss how the system performs with different crossbar sizes

to choose the optimized design. Our results show that our mapping scheme for sparse

NN with the proposed pruning algorithm achieves 3∼5× energy efficiency and more than

2.5∼6× speedup, compared with the state-of-the-art accelerator for dense NNs. Also,

the accuracy experiments show <1% accuracy loss in our pruning method.

We hope this dissertation would help to improve the memory subsystem in modern

computation systems and also inspire NDP/IMP research for a broad domain of appli-

cations in the future.
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pp. 8024–8035. Curran Associates, Inc., 2019.

[55] S. Merity, N. S. Keskar, and R. Socher, Regularizing and optimizing lstm language
models, arXiv preprint arXiv:1708.02182 (2017).

[56] J. McAuley and J. Leskovec, Hidden factors and hidden topics: understanding
rating dimensions with review text, in Proceedings of the 7th ACM conference on
Recommender systems, pp. 165–172, 2013.

[57] M. Zhang, X. Liu, W. Wang, J. Gao, and Y. He, Navigating with graph
representations for fast and scalable decoding of neural language models, in
Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, (Red Hook, NY, USA), p. 6311–6322, Curran
Associates Inc., 2018.

[58] Y. Kim, W. Yang, and O. Mutlu, Ramulator: A fast and extensible dram
simulator, IEEE Computer architecture letters 15 (2015), no. 1 45–49.

[59] E. Agirre, A. Barrena, and A. Soroa, Studying the wikipedia hyperlink graph for
relatedness and disambiguation, arXiv preprint arXiv:1503.01655 (2015).

152



[60] J. Pujara, H. Miao, L. Getoor, and W. Cohen, Knowledge graph identification, in
International Semantic Web Conference, pp. 542–557, Springer, 2013.

[61] J. Kepner and J. Gilbert, Graph algorithms in the language of linear algebra.
SIAM, 2011.

[62] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, Stinger: High performance data
structure for streaming graphs, in 2012 IEEE Conference on High Performance
Extreme Computing, pp. 1–5, IEEE, 2012.

[63] A. Basak, S. Li, X. Hu, S. M. Oh, X. Xie, L. Zhao, X. Jiang, and Y. Xie, Analysis
and optimization of the memory hierarchy for graph processing workloads, in 2019
IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 373–386, IEEE, 2019.

[64] P. Faldu, J. Diamond, and B. Grot, Domain-specialized cache management for
graph analytics, in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 234–248, IEEE, 2020.

[65] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, Graphicionado: A
high-performance and energy-efficient accelerator for graph analytics, in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 1–13, IEEE, 2016.

[66] S. Eyerman, W. Heirman, K. D. Bois, J. B. Fryman, and I. Hur, Many-core graph
workload analysis, in Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, SC ’18,
pp. 22:1–22:11, IEEE Press, 2018.

[67] P. Sakarda, T. Brandt, and H. H. Wu, Memory manager for heterogeneous
memory control, Aug. 4, 2009. US Patent 7,571,295.

[68] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, Imp: Indirect memory prefetcher,
in Proceedings of the 48th International Symposium on Microarchitecture,
pp. 178–190, 2015.

[69] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez, Exploiting
locality in graph analytics through hardware-accelerated traversal scheduling, in
2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 1–14, IEEE, 2018.

[70] D. H. Yoon, M. K. Jeong, M. Sullivan, and M. Erez, The dynamic granularity
memory system, in 2012 39th Annual International Symposium on Computer
Architecture (ISCA), pp. 548–560, IEEE, 2012.

153



[71] D. H. Yoon, M. K. Jeong, and M. Erez, Adaptive granularity memory systems: A
tradeoff between storage efficiency and throughput, in Proceedings of the 38th
annual international symposium on Computer architecture, pp. 295–306, 2011.

[72] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, Gather-scatter dram: In-dram address translation to improve
the spatial locality of non-unit strided accesses, in Proceedings of the 48th
International Symposium on Microarchitecture, pp. 267–280, 2015.

[73] Y. Kwon, Y. Lee, and M. Rhu, Tensor casting: Co-designing
algorithm-architecture for personalized recommendation training, arXiv preprint
arXiv:2010.13100 (2020).

[74] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, An evaluation
of high-level mechanistic core models, ACM Transactions on Architecture and
Code Optimization (TACO) (2014).

[75] J. E. Zolnowsky, C. L. Whittington, and W. M. Keshlear, Memory management
unit, Sept. 25, 1984. US Patent 4,473,878.

[76] B. Egger, J. Lee, and H. Shin, Scratchpad memory management for portable
systems with a memory management unit, in Proceedings of the 6th ACM & IEEE
International conference on Embedded software, pp. 321–330, ACM, 2006.

[77] J. S. Kimmel, R. A. Alfieri, A. Miles, W. K. McGrath, M. J. McLeod, M. A.
O’connell, and G. A. Simpson, Operating system for a non-uniform memory
access multiprocessor system, Aug. 15, 2000. US Patent 6,105,053.
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