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Automated detection of critical 
findings in multi‑parametric brain 
MRI using a system of 3D neural 
networks
Kambiz Nael1,2*, Eli Gibson3, Chen Yang2, Pascal Ceccaldi3, Youngjin Yoo3, 
Jyotipriya Das3, Amish Doshi2, Bogdan Georgescu3, Nirmal Janardhanan3, 
Benjamin Odry4, Mariappan Nadar3, Michael Bush5, Thomas J. Re3, Stefan Huwer6, 
Sonal Josan7, Heinrich von Busch7, Heiko Meyer6, David Mendelson2, Burton P. Drayer2, 
Dorin Comaniciu3 & Zahi A. Fayad2 

With the rapid growth and increasing use of brain MRI, there is an interest in automated image 
classification to aid human interpretation and improve workflow. We aimed to train a deep 
convolutional neural network and assess its performance in identifying abnormal brain MRIs and 
critical intracranial findings including acute infarction, acute hemorrhage and mass effect. A total of 
13,215 clinical brain MRI studies were categorized to training (74%), validation (9%), internal testing 
(8%) and external testing (8%) datasets. Up to eight contrasts were included from each brain MRI 
and each image volume was reformatted to common resolution to accommodate for differences 
between scanners. Following reviewing the radiology reports, three neuroradiologists assigned 
each study to abnormal vs normal, and identified three critical findings including acute infarction, 
acute hemorrhage, and mass effect. A deep convolutional neural network was constructed by a 
combination of localization feature extraction (LFE) modules and global classifiers to identify the 
presence of 4 variables in brain MRIs including abnormal, acute infarction, acute hemorrhage and 
mass effect. Training, validation and testing sets were randomly defined on a patient basis. Training 
was performed on 9845 studies using balanced sampling to address class imbalance. Receiver 
operating characteristic (ROC) analysis was performed. The ROC analysis of our models for 1050 
studies within our internal test data showed AUC/sensitivity/specificity of 0.91/83%/86% for normal 
versus abnormal brain MRI, 0.95/92%/88% for acute infarction, 0.90/89%/81% for acute hemorrhage, 
and 0.93/93%/85% for mass effect. For 1072 studies within our external test data, it showed AUC/
sensitivity/specificity of 0.88/80%/80% for normal versus abnormal brain MRI, 0.97/90%/97% for acute 
infarction, 0.83/72%/88% for acute hemorrhage, and 0.87/79%/81% for mass effect. Our proposed 
deep convolutional network can accurately identify abnormal and critical intracranial findings on 
individual brain MRIs, while addressing the fact that some MR contrasts might not be available in 
individual studies.

Brain MRI has been established as a powerful and safe diagnostic modality for the majority of neurological 
disorders by providing detailed evaluation of brain tissue owing to its high soft-tissue contrast. In fact, the 
Appropriateness Criteria of the American College of Radiology list MR imaging as the desired imaging modal-
ity for most neurologic symptoms, including headache, focal neurologic deficits, altered mental status, ataxia, 
seizure, and vision  loss1.
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A conventional brain MRI study consists of several weightings and is often constructed with at least 5 contrasts 
including T1-weighted (T1W), T2-weighted (T2W), fluid-attenuated inversion recovery (FLAIR), T2*-weighted 
(T2*) by using a gradient-recall-echo based sequence, and diffusion-weighted imaging (DWI)2. Advances in 
technology have increased our ability to scan faster, obtaining thousands of high resolution MR images in the 
order of minutes. Therefore, healthcare providers who own even a few MRI scanners are required to provide 
interpretation of hundreds of brain MRIs and tens or hundreds of thousands of images on a daily basis. Some of 
the challenges associated with this increased workload are timely interpretation and triage of scans with acute 
findings, radiologists’ burnout, and the subjectivity and variability related to the complex nature of modern day 
large-volume high resolution MR  imaging3.

One solution to address these challenges is the use of artificial intelligence for automated image classifica-
tion. It is plausible that an automated and accurate algorithm can provide rapid triage of brain MRIs for critical 
intracranial findings such as stroke, hemorrhage and mass effect. For large organizations, such triage offers 
improved radiologist workflow with the potential to reduce the time between acquisition and interpretation for 
critical cases with presumably positive effects on patient outcome. If the potential of such algorithms is real-
ized, these systems can prioritize radiologic review of cases with critical findings, even if they were not initially 
ordered for urgent interpretation.

While image interpretation and classification has been a target of computer-aided diagnosis and machine 
learning techniques for quite some  time4–9, algorithms have been limited by data set size constraints and reli-
ance on experts’ feature selection, resulting in limited ability to handle image diversity and complexity. In recent 
years, increased access to large data and computational capabilities have enabled deep-learning (DL)-based 
algorithms in the field of medical imaging that are capable of learning complex patterns from large image data 
sets at multiple levels of abstraction, representation and information, without the need for predefined feature 
extraction, and with promising performance and  speed10–14. Although progress has been made in automated 
triage of non-contrast head  CT15,16, applications for triaging multiple critical findings on brain MRI are sparse.

The contributions of this paper lie in applying DL concepts to automate the classification of patients’ brain 
MRI studies. Specifically, we developed and measured the performance of the first DL-based prototype to both 
differentiate between normal brain and abnormal brain MRI studies and identify critical intracranial findings 
including acute infarction, acute hemorrhage and mass effect using brain MRI. The proposed methodology 
uses a custom DCNN architecture that accommodates variable sets of image contrasts and combines localiza-
tion feature extraction (LFE) modules with a global classifier that handles images from multiple orientations.

Methods
Data. This study was compliant with the health insurance portability and accountability act (HIPAA). Mount 
Sinai institutional review board approved this study for human research with waiver of informed consent. All 
methods were performed in accordance with the relevant guidelines and regulations.

A total of 15,811 brain MRI studies were used in this study: an internal data set of 14,080 studies used for 
training and internal testing, and an external data set of 1731 studies used for external testing. The internal data 
set was accumulated from a combination of inpatient and outpatient scanners from our institution’s HIPAA 
compliant imaging research warehouse, including data from 19 scanners produced by two manufacturers (GE 
and Siemens Healthcare). The external data was accumulated from two external centers, including data from 
scanners produced by three manufacturers (GE, Philips, and Siemens Healthcare). Studies were filtered based on 
MR contrasts available, spatial characteristics and label ambiguity (inclusion/exclusion flowchart in Fig. 1; filter 
details in Supplementary materials), yielding 12,143 internal studies that were randomly assigned to training 
(74%), validation (9%) and internal testing (8%) sets using a single patient-wise split of data from all scanners 
and 1072 external studies for further testing (8%).

Each of the studies was labeled based on a re-analysis of each radiology report by one of two board-certified 
neuroradiologists (AD and KN with at least 10 years of experience each) for internal studies and by a third 
radiologist (TR) for the external studies to denote the following:

a) presence of any intracranial abnormality (any intracranial findings even minor or of doubtful clinical sig-
nificance were considered as abnormal, i.e. any white matter signal change, developmental venous anomaly, 
pineal cyst, …). Therefore, a normal brain MRI was considered as one with absolutely no parenchymal signal 
change and no incidental findings.

b) acute infarction: any areas of infarction reported as having reduced diffusion were included. Chronic infarc-
tion description was excluded from this label class.

c) acute hemorrhage: subarachnoid, intraparenchymal or extra-axial hemorrhages were included. Any descrip-
tion of chronic hemorrhage was excluded from this label class.

d) mass effect: mass effect worthy of notification with any description of mid-line shift, effacement of basal or 
suprasellar cisterns, or uncal herniation was included. Localized mass effect surrounding a mass without 
causing midline shift or effacement of sulci was not included in this category.

To assess the interobserver variability in labeling the critical findings from radiology reports, a set of reports 
from 200 patients were reviewed independently by both neuroradiologists.

The 3D boundaries of critical findings were delineated by a radiologist (TR). For acute infarction, reduced 
diffusion was delineated on TraceW images, defined by its hyperintense signal. For acute hemorrhage, hemor-
rhage excluding surrounding edema was delineated on FLAIR images, using both hyperintensity on FLAIR and 
hypointensity on T2* images to assess hemorrhage extent. For mass effect, the regions of tissue that were visibly 
displaced were delineated on FLAIR images, excluding any mass causing the displacement.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6876  | https://doi.org/10.1038/s41598-021-86022-7

www.nature.com/scientificreports/

Image analysis. Images were preprocessed by resampling them to the coordinate grid of a reference con-
trast (axial ADC and sagittal T1w for abnormality, axial FLAIR for hemorrhage and mass effect models, and axial 
ADC for the infarct model) based on scanner coordinates, and resizing them to a fixed dimension [256 × 256 
in-plane and 32 out-of-plane]. Image intensities of each contrast were normalized using a linear transformation 
of minimum and maximum values to 0–1).

Network architecture. The classification of each study is performed by 4 networks: one to detect the presence 
of any abnormality and three to detect the three acute abnormalities. Each network was trained on a network-
specific set of images (detailed in Table 1). The overall architectures for the abnormality and critical finding 
networks are shown in Figs. 2 and 3, respectively and summarized below. Architecture implementation details 
and training hardware are detailed in the Supplementary materials.

The network comprises three components: (1) localization feature extraction (LFE) modules that create a 
pixel-wise map of the findings on the axially oriented volumes; (2) orientation-specific feature-combination 
layers and (3) a global classifier that generates a study-wise score for the presence of the finding.

The localization feature extraction modules are deep image-to-image  networks17 comprised of a series of 
convolution and pooling layers generating successively lower resolution feature maps, followed by a series of 
convolution and up-sampling layers successively restoring the original resolution, with skip connections con-
necting the two sections to transmit higher resolution information.

The orientation-specific feature combination layer is designed to make our algorithm compatible with differ-
ent clinical protocols that may vary between sites. For the detection of any abnormality, for example, only FLAIR, 
ADC and TraceW are required contrasts, while the others are considered as optional. The orientation-specific 
feature combination layer uses a separate in-plane convolution for each contrast present, and then averages 
the resulting features within each orientation, excluding those from missing contrasts. This averaging makes 
the network robust to distributional shifts caused by missing contrasts, and induces the features from different 
contrasts to encode information in a common space.

Figure 1.  Study flowchart. Non-definitive labels denote reports where the neuroradiologists deemed that 
classifying the study as positive or negative for one or more of the labels would be acceptable.

Table 1.  Contrasts used for each classification.

Contrast Any abnormality Hemorrhage Infarct Mass effect

Axial T2 FLAIR Required Required Required

Axial ADC Required Required Required

Axial Trace-weighted Required Required Required

Axial T2*-weighted Optional Optional

Axial T1-weighted Optional Optional Optional Optional

Sagittal T1-weighted Optional

Sagittal T1-weighted post-contrast Optional

Axial T2-weighted Optional Optional Optional Optional



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6876  | https://doi.org/10.1038/s41598-021-86022-7

www.nature.com/scientificreports/

Then, the classifier uses a series of in-plane strided convolutions for each orientation to yield isotropic outputs. 
In the abnormality network, which uses both sagittal and axial images (see Table 1), the orientation-specific 
outputs are averaged when sagittal images are present. The resulting outputs are inputted into a final series of 
convolution and pooling layers. This is followed by a global pooling layer with softmax to score a finding from 
0 to 1 as present or absent. The operating point of this classifier can be tuned to prioritize fewer false positives 
or fewer false negatives; for the analysis reported in this paper, the operating point was tuned on the validation 
set to minimize the sum of sensitivity and specificity.

Training. The networks were trained in two stages. First, the LFE networks were trained in isolation; then, 
the full network was trained end-to-end to generate a study-wise prediction. The LFE networks were trained 
minimizing the pixel-wise cross-entropy loss compared to manual annotations of the critical findings. The clas-
sifier networks were trained minimizing the cross-entropy loss compared to the study-wise manual label. Both 
types of networks were trained with an Adam-type  optimizer18 for up to 500 epochs with early stopping based 
on the loss on the validation set, actually stopping after 7–42 epochs. The training algorithm used balanced posi-
tive/negative data sampling to mitigate class imbalance, and the data was augmented using randomized spatial 

Figure 2.  Abnormality network architecture.

Figure 3.  Critical network architecture. The same architecture is used for acute hemorrhage, mass effect and 
acute infarct, but is trained using different inputs. The network for infarct is shown above; the corresponding 
network for mass effect used axial FLAIR, T1W and T2W contrasts, and the network for hemorrhage used 
all axial contrasts. Note that for all three critical findings, the input contrast selection (see ‘training’ section) 
resulted in sagittal images not being used, simplifying the architecture compared to Fig. 2.
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transformations (translation and left–right flipping) and intensity transformations (additive uniform  noise19) to 
mitigate overfitting. Dropout was used in each convolution layer to mitigate overfitting.

The network architecture, hyperparameters and input contrasts were iteratively optimized based on the ROC-
AUC on the validation set using the single original split. The validation set was also used to set the operating 
point for the classifiers as the threshold that maximizes the sum of sensitivity and specificity.

Network interpretability. To give insight into the network’s predictions, heat maps are generated for each con-
trast to indicate the importance of the input pixel. For the critical finding models, the localization feature extrac-
tion module generates this directly. For the abnormality model, the importance is computed in latent feature 
space by taking a gradient of the network’s output signal, and then this is scaled to each input contrast dimension 
to provide the pixel-wise importance in input  space20. Examples of network output are shown in Fig. 4.

Statistical analysis. Identification on brain MRI of any abnormality, acute hemorrhage, acute infarction 
and mass effect on a per-study basis were considered as primary end points of this study. A given MRI study was 
considered positive for a finding if the classification score exceeded the corresponding operating point. Receiver 
operative characteristic analysis was performed to calculate the network performance including the area under 
the curve, sensitivity, specificity, negative and positive predictive value and diagnostic accuracy in both inter-
nal and external test groups. Interobserver agreement for labeling the critical findings was measured by using 
Cohen’s kappa score.

Result
From a total of 14,080 brain MRI studies, 12,143 met our inclusion criteria (Fig. 1). Among these studies, 10,140 
(84%) were abnormal, 1219 (10%) had acute infarction, 533 (4.4%) had acute hemorrhage and 550 (4.5%) had 
intracranial mass effect. There were 404 studies with multiple findings (59 with mass effect and infarct, 195 with 
hemorrhage and infarct, 88 with hemorrhage and mass effect, and 62 with all three); as the findings were classi-
fied independently, these cases were treated as positive for each of the respective findings.

Interobserver agreement for labeling critical findings was excellent for acute infarct (k = 0.93); excellent for 
acute hemorrhage (k = 0.84); and very good for mass effect (k = 0.77).

Among the internal testing group (1050 brain MRIs), 879 (84%) were abnormal, 118 (11%) had acute infarc-
tion, 65 (6.2%) had acute hemorrhage, and 56 (5.3%) had intracranial mass effect. Among the external testing 
group (1072 brain MRIs), 867 (81%) were abnormal, 287 (27%) had acute infarction, 78 (7.3%) had acute hemor-
rhage and 31 (2.9%) had intracranial mass effect.

The diagnostic performance of our deep neural network for the internal and external test sets are summarized 
in Tables 2 and 3, respectively.

The full spectrum and amplitude of acute findings were not available through the radiology reports for 
consistent labeling and testing via our classifiers. However, for the size of infarction, we were able to perform a 
sub-analysis between the impact of infarct volume (obtained from manual contours in the testing group) and 
the performance of our model. This analysis did show a downward trend in diagnostic performance with the 
smaller size of infarction with calculated sensitivity of 84% for infarction volume < 1 mL, 79% for infarction 
volume < 0.5 mL, and 72% for infarction volume < 0.25 mL.

Figure 5 shows examples of true positive, false negative and false positive in acute hemorrhage detection by 
our network.

To assess the contributions of the optional contrasts, we additionally measured the performance of the mod-
els when given only the mandatory sequences. The change in performance of these models are summarized in 
Table 4. Overall, with only the mandatory contrasts (chosen for their clinical value) the models achieved per-
formance close to that with all available contrast, with the difference much less pronounced for the external data 
set. Most notably, the inclusion of T1w, T2w and T2* made the hemorrhage model substantially more specific, 
though less sensitive.

Discussion
Our results showed that the proposed automated DCNN-based tool can identify normal versus abnormal brain 
MRIs and flag critical findings including acute infarction, hemorrhage and mass effect with acceptable diagnostic 
accuracy on routine brain MRI scans from multivendor imaging systems.

In this work, we designed a DCNN architecture that integrates global classification of pathology with auto-
matic localization feature extraction in the form of pixel-level maps denoting the locations of critical findings. 
This architecture enables the training process to inject additional complex clinical understanding of the MR 
images through deep supervision with clinical contours. Through a later combination of these maps with the 
original images, they also act as an attention mechanism on the relevant image information that determines the 
final decision that is not only used by the classification, but also can be visualized to understand the workings 
of the network.

Although DL methods have been used to identify multiple critical intracranial findings on  CT21,22, avail-
able solutions to triage multiple acute intracranial findings on brain MRIs have been relatively limited to a few 
 applications23,24. Below we discuss our specific results as they relate to acute infarction, acute hemorrhage, and 
mass effect.

Timely diagnosis of acute stroke is crucial, since reducing the time to treatment by 15 min has resulted in 
significant improvement in final outcome in patients with acute  stroke25. It is therefore critical for institutions to 
rapidly and accurately interpret neuroimaging data in the presence of acute ischemic stroke. While MRI (DWI) 
is the most accurate imaging modality for detection of acute  infarction26, CT has been the major workhorse for 
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acute stroke imaging due to its broad availability. Therefore, there has been a paucity of data on prior work for 
automated detection of acute stroke on MRI using DL techniques. Though not intended for detection of acute 
infarction, Chen et al.27 used a framework with two CNNs to segment stroke lesions in known stroke patients 
using DWI with a reported mean Dice coefficient of 0.67.

Figure 4.  Network interpretability. For the abnormality classification, a heat map can be generated 
retrospectively denoting regions that strongly influenced the decision: (A). For critical findings, the network 
directly generates heat maps of denoting the region identified by the AI: acute infarction on a trace-weighted 
contrast (B), subdural hemorrhage on a FLAIR contrast (C) and mass effect on a FLAIR contrast (D).



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6876  | https://doi.org/10.1038/s41598-021-86022-7

www.nature.com/scientificreports/

Table 2.  Performances of the classifiers on the internal test set. *Note that positive predictive value (PPV) and 
negative predictive value (NPV) are highly dependent on the prevalence of the finding in a given population.

Detection type AUC Sensitivity (%) Specificity (%) ACC (%) PPV (%)* NPV (%)*

Abnormality 0.91 83 86 84 97 50

Acute hemorrhage 0.90 89 81 81 24 99

Acute infarct 0.95 92 88 88 49 99

Mass effect 0.93 93 85 85 26 100

Table 3.  Performances of the classifiers on the external test set. *Note that positive predictive value (PPV) and 
negative predictive value (NPV) are highly dependent on the prevalence of the finding in a given population.

Detection type AUC Sensitivity (%) Specificity (%) ACC (%) PPV (%)* NPV (%)*

Abnormality 0.88 80 80 80 94 48

Acute hemorrhage 0.83 72 88 87 32 98

Acute infarct 0.97 90 97 95 92 96

Mass effect 0.87 79 81 81 12 99

Figure 5.  Examples of heat maps provided by the network for detection of acute intracranial hemorrhage. (A) 
Heatmap on axial FLAIR shows correct identification of intraparenchymal hemorrhage (true positive). (B) 
Subarachnoid hemorrhage seen as sulcal hyperintense signal on axial FLAIR image (arrows) was not detected by 
the network (false negative). (C) Heatmap on axial FLAIR points to periventricular leukomalacia (arrow) (false 
positive).

Table 4.  Contribution of optional contrasts to classifier performance. Positive values denote that the model 
performance was higher with all available contrasts than with only mandatory contrasts.

Data set Detection type Δ AUC Δ Sensitivity (%) Δ Specificity (%)

Internal

Abnormality 0.01 2 1

Acute hemorrhage 0.01  − 2 6

Acute infarct 0.00 0 0

Mass effect 0.01 3 1

External

Abnormality 0.00 0 0

Acute hemorrhage 0.01  − 2 3

Acute infarct 0.00 0 0

Mass effect 0.01 2  − 2
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Intracranial hemorrhage (ICH) is another critical medical event with reported mortality of up to 40%28 which 
can occur both within the brain parenchyma (intra-axial) or external to the brain parenchyma (extra-axial 
including epidural, subdural and subarachnoid). Although automated detection of ICH has been investigated 
with deep learning algorithms on CT with promising  results15,16, automated detection of ICH on MRI has been 
limited to small series for detection of parenchymal  microbleeds29. To our knowledge, no prior studies looked 
at automated detection of all categories of acute ICH on MRI via deep learning. Our DL algorithm was able to 
detect acute ICH successfully with an AUC of 0.90 comparable to reported results of DL algorithms applied on 
CT with AUCs of 0.9121 and 0.9422.

Intracranial mass effect is also a serious condition that can cause brain shift, followed by herniation, brainstem 
compression, and death. In the NIH Traumatic Coma Data Bank, midline shift and compression or obliteration 
of the perimesencephalic cisterns were among the most important imaging characteristics associated with poor 
outcome and  death30. Early recognition can prompt therapeutic interventions and improve outcome. Recently, 
DL methods have been applied for detection of intracranial mass effects on head CT with reported AUCs in the 
range of 0.86–0.9121,22. Our DL approach was able to identify intracranial mass effect with an AUC of 0.93 and 
is the first of its kind for detection of mass effect using MRI.

In testing our single-center model on external data from multiple centers, we observed a shift in perfor-
mance but no consistent trend across the models. For mass effect, the sensitivity and specificity each decreased 
by ~ 10%, while for acute infarct, the specificity increased by the same margin with little change in sensitivity. 
For acute hemorrhage, there was a shift in operating point to lower sensitivity and higher specificity. This sug-
gests two strategies might be applied for developing such systems: training multi-center models for more stable 
multi-center generalization, or training single-center models optimized for the characteristics of a given center.

Accurate and timely diagnosis of critical intracranial findings such as stroke, ICH and mass effect is crucial 
for proper management. Increased use of neuroimaging in large clinical practices and interruptions from nonin-
terpretive tasks common in academia can result in delayed diagnosis of these critical findings. The turn-around 
time for simple non-contrast head CT has been reported in the range of 1.5–4 h in the emergency  departments31. 
The turn-around time for outpatient non-urgent studies have been set and accepted within 24 h across many 
institutions such as ours due to shortage of human resources. These delays however can impact patients’ care 
and negatively impact the patient’s outcome.

An automated screening tool such as our DL algorithm may therefore have the potential for efficient and 
accurate diagnosis of acute intracranial findings to facilitate a prompt therapeutic response. The most salient 
use case of our algorithm is a screening system that can alert physicians about MRI examinations with positive 
critical findings for expedited interpretation and reduced turn-around time, which has been rated as one of the 
highest priorities in a recent survey of > 80 imaging  institutions32.

Several variables can determine the urgency of any given study in radiology workflow. Some of these are (1) 
location of ordering physician (Emergency department, inpatient, outpatient clinic); (2) priority level assigned by 
ordering physicians (high priority, routine); and (3) information obtained based on patients symptoms (stroke, 
trauma, intracranial hemorrhage). Although this style of prioritization serves as a guide to determine the urgency 
and order by which the studies can be interpreted, AI algorithm such as ours can provide a different insight and 
reprioritize the list based on actual findings contained in the images for more realistic and less assuming model. 
For example, a patient with headache and confusion may be assigned a routine brain MRI with potential waiting 
time-to-interpretation of several hours. However, if this patient has a stroke, using our classifier this study will 
be prioritized despite having a routine order and will be read at the top of the worklist by next available radiolo-
gist. Although this process was not tested systematically in our work (due to retrospective design), our results 
support the potential of such an algorithm/model.

Another potential use case for our classifiers is for institutions with multiple imaging centers such as ours 
that function across a large urban area and well beyond routine working hours. We envision that in such practice 
setting, the classifiers described in our work can be in place to screen and flag MRI scans with critical intracranial 
findings as they are being obtained so a notification can be sent to a central reading rooms that function 24/7 
for timely interpretation of these studies rather than waiting until the next morning for day-time radiologist.

Depending on the prevalence of acute findings and clinical preference in a given practice, the operating point 
of the system can be tuned, without retraining, to optimize for different clinical priorities, such as prioritizing 
sensitivity to catch all serious findings. The potential benefits of this system are to improve work-flow during 
working hours to tailor available human expertise in interpreting abnormal cases in a timely manner, and identify 
patients with critical intracranial findings during off hours to notify emergency and on-call personnel, so no 
urgent MRI studies will go untriaged.

One of the advantages of the model described in this work is that the combination of FLAIR and diffusion 
imaging is an integral part of all of our modules. This supports the broadly accepted concept of having diffusion 
MRI as the most accurate diagnostic modality for acute  infarction26 and FLAIR as the most versatile contrast 
for detection of the majority of all intracranial  pathologies33. Having a system that can classify MR images with 
only these contrasts or with additional ones provides much needed flexibility for extending our model to data 
sets generated at most neuroimaging institutions, as these contrasts are almost universally included in all brain 
MRI studies.

Our study has several limitations. First, its retrospective nature introduces unknown bias. Second, despite 
our promising results that was tested both internally and on an external test group, a larger validation study is 
required. Finally, the study was limited to analyzing the performance of the system in isolation. While fully-
automatic image-based classification has the potential to improve patient outcomes and radiology workflow 
through improving the triage of acute findings and treatment, it is the authors’ collective opinion that such an 
algorithm can ultimately be developed to provide decision support combining imaging data, clinical data and 
interactive input from physicians and radiologists.
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Conclusion
Our proposed deep learning 3D neural network can accurately identify critical findings on individual brain MRIs 
from a flexible selection of MR contrasts. If its potential is realized it can be used to flag abnormal brain MRIs, 
improving triage and timely interpretation of abnormal scans in a busy clinical practice.

Data availability
The datasets used in this study are not publicly available because the IRB of the study limits access to the data. 
Derived and supporting data are available from the corresponding author upon reasonable request. We are 
willing to validate other people’s models as part of collaborations. The code used for training the models has a 
large number of dependencies on internal tooling, infrastructure and hardware, and its release is therefore not 
feasible. However, an independent library to construct the network architectures and to load data as used in this 
study have been made available to support replication with non-proprietary libraries.
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