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and A. Prlić. Systematic Detection of Internal Symmetry in Proteins Using CE-Symm. J
Mol Biol, 426(11):2255–2268, May 2014

K. Baskaran, J. M. Duarte, N. Biyani, S. E. Bliven, and G. Capitani. A PDB-wide,
evolution-based assessment of protein–protein interfaces. BMC Struct Biol, 14(1):22,
Oct. 2014
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ABSTRACT OF THE DISSERTATION

Structure-Preserving Rearrangements: Algorithms for Structural Comparison
and Protein Analysis

by

Spencer Edward Bliven

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California, San Diego, 2015

Professor Philip E. Bourne, Chair
Professor Milton H. Saier, Co-Chair

Protein structure is fundamental to a deep understanding of how proteins function.

Since structure is highly conserved, structural comparison can provide deep information

about the evolution and function of protein families. The Protein Data Bank (PDB)

continues to grow rapidly, providing copious opportunities for advancing our understand-

ing of proteins through large-scale searches and structural comparisons. In this work I

present several novel structural comparison methods for specific applications, as well as

apply structure comparison tools systematically to better understand global properties of

xviii



protein fold space.

Circular permutation describes a relationship between two proteins where the N-

terminal portion of one protein is related to the C-terminal portion of the other. Proteins

that are related by a circular permutation generally share the same structure despite

the rearrangement of their primary sequence. This non-sequential relationship makes

them difficult for many structure alignment tools to detect. Combinatorial Extension for

Circular Permutations (CE-CP) was developed to align proteins that may be related by a

circular permutation. It is widely available due to its incorporation into the RCSB PDB

website.

Symmetry and structural repeats are common in protein structures at many levels.

The CE-Symm tool was developed in order to detect internal pseudosymmetry within

individual polypeptide chains. Such internal symmetry can arise from duplication events,

so aligning the individual symmetry units provides insights about conservation and

evolution. In many cases, internal symmetry can be shown to be important for a number

of functions, including ligand binding, allostery, folding, stability, and evolution.

Structural comparison tools were applied comprehensively across all PDB struc-

tures for systematic analysis. Pairwise structural comparisons of all proteins in the PDB

have been computed using the Open Science Grid computing infrastructure, and are kept

continually up-to-date with the release of new structures. These provide a network-based

view of protein fold space. CE-Symm was also applied to systematically survey the PDB

for internally symmetric proteins. It is able to detect symmetry in ∼20% of all protein

families. Such PDB-wide analyses give insights into the complex evolution of protein

folds.

xix



Chapter 1

Introduction

One of the key problems in bioinformatics has always been detecting homologous

genes and proteins (Waterman, 1995; Jones and Pevzner, 2004). With the rapid rise of

available data and computational resources, increasingly sophisticated methods have been

developed to detect homology across large evolutionary distances. For sequences, this

has been accomplished by shifting from pairwise sequence alignment methods (Smith

and Waterman, 1981; Needleman and Wunsch, 1970; Altschul et al., 1990) to more

sensitive multiple sequence alignment methods (Altschul et al., 1997; Soding, 2005).

Even more distant relationships can be determined by comparing protein structure, which

tends to be more conserved than sequence (Illergård et al., 2009).

Pairwise structural comparisons are useful for highlighting similarities and dif-

ferences in related structures, as well as visualizing the alignments for further structural

analysis. The Combinatorial Extension (CE) (Shindyalov and Bourne, 1998; Jia et al.,

2004) and FATCAT algorithms are available as part of the BioJava software library, as

described in Chapter 2. FATCAT was used for systematic pairwise comparison across

the Protein Data Bank (PDB), which involved significant computational effort (Chapter

3). These comparisons are updated automatically as new structures are released, and are

1
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available to users on the RCSB PDB website (Berman et al., 2000; Rose et al., 2011).

The availability of a comprehensive database of structural similarities and visualization

tools enables users to easily analyze related structures and more distant homologues.

The comprehensive structural similarity information also provides a view of

protein fold space. Understanding the set of all protein folds and the evolutionary

pressures that shape which folds are observed in nature is an important problem in

structural biology. The very concept of a protein fold implies a discrete classification of

fold space, yet similarities between distant folds are abundant enough that many have

argued that protein structures form a continuum, of which the known protein structures

are but a sample (Sadreyev et al., 2009). Chapter 4 gives our analysis of protein fold

space based on a graph representation. This incorporates some characteristics of both

continuous and discrete interpretations of fold space.

One difficulty with identifying homology is dealing with the variety of scales

at which nature reuses proteins. At a local scale, evolution can be well approximated

by the familiar processes of insertion, deletion, and point mutation. However, at a

larger scale many types of rearrangements can occur. Genes are duplicated, domains

are rearranged and recombined, interfaces form and dissolve, creating new complexes.

While standard structural comparison tools can accurately account for the local kind of

mutation, identifying larger rearrangements is more difficult.

While gene mutations provide the mechanism for evolution, natural selection

pressures are influenced by the expressed proteins and gene products. For proteins, this

entails the full protein complex present under physiological conditions, as well as any

binding sites for ligands or regulatory partners. The remaining chapters address several

types of modifications that rearrange the underlying sequence, but that preserve the

global structure. Chapter 5 describes the process of circular permutation in proteins,

where the first portion of one protein is related to the second portion of another protein,
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and vice versa. This type of rearrangement typically preserves the overall structure

of the protein. Circular permutations can occur naturally (Ponting and Russell, 1995)

and are also created artificially to study protein folding (Capraro et al., 2008; Viguera

et al., 1996; Zhang and Schachman, 1996), increase thermostability (Topell et al., 1999),

decrease proteolytic susceptibility (Whitehead et al., 2009), and otherwise manipulate

protein function. Chapter 6 describes the CE-CP algorithm for aligning protein structures

that are related by a circular permutation. Since several mechanisms by which circular

permutations can arise are understood, detecting circularly permuted structures can shed

light on the evolutionary history of protein families.

(a) (b) (c)

Figure 1.1: Members of the glyoxalase family with various repeat organizations, colored
by chain. All proteins bind a metal cofactor and contain four structural repeats, but
with different chain connectivity. (a) Glyoxalase I from Clostridium acetobutylicum
[PDB:3HDP] (Nickel; Dimer). (b) Glyoxalase I from E. coli [PDB:1F9Z] (Nickel;
Dimer). (c) 1,2-dihydroxy-naphthalene dioxygenase from Pseudomonas sp. strain C18
[PDB:2EHZ] (Iron; Octamer). No ion is observed at the lower beta sheet, but the overall
RMSD is still 3.6 Å over nearly the whole protein.

Another structural feature that is discussed is that of structural repeats within

individual polypeptide chains. These can come about naturally through duplication and

fusion events, or can occur through convergent evolution resulting in similar substructures

(Andrade et al., 2001; Abraham et al., 2009; Blaber et al., 2012). The most frequent type

of repeat is internal pseudosymmetry. Internal symmetry is quite common, appearing in

∼24 % of protein families. A close relationship exists between internal symmetry within
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individual chains and the quaternary symmetry common in biological assemblies. Many

examples are known where internally symmetric proteins are thought to evolve from

oligomeric complexes while preserving the overall structure of the biological assembly

(Lee and Blaber, 2011; Blaber et al., 2012; Kelman and O’Donnell, 1995). Figure 1.1

shows one such example. The CE-Symm algorithm was developed to automatically

detect internal symmetry in proteins (Chapter 7 and 8). Using CE-Symm, a systematic

search for internally symmetric proteins was performed. The tool was also useful in

characterizing the functional implications of symmetry in a number of cases, including

quantifying symmetry around ligand-binding sites and the enrichment of symmetry in

membrane proteins.

1 

1 

1 

1 
2 3 

(a)

1 2 3 

1 2 3 1 2 3 

2 3 1 

(b)

1 2 3 

1 2 3 2 3 1 

(c)

Figure 1.2: Evolution of symmetry and circular permutation. (a) Duplication and
fusion mechanism for internal symmetry. (b) Permutation by duplication mechanism
for circular permutation, involving a duplicated intermediate. (c) Fission and Fusion
mechanism for circular permutation, where independent proteins fuse in two different
orders.

Both circular permutations and internal symmetry can evolve via duplication and

fusion events that significantly change the structure of the gene (Figure 1.2). However,

these rearrangements do not entail correspondingly large changes in the structure of the

overall biological assembly. Thus such events incur relatively little fitness cost, while

opening up potentially useful new avenues for evolution. For instance, the fusion of

a dimeric transcription factor, which would bind palindromic sequences, allows the
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recognition of asymmetric binding sites, such as in TATA-binding protein (Juo et al.,

1996). The novel algorithms developed here allow the detection and alignment of proteins

with complex relationships that would typically be missed by algorithms which assume a

sequential correspondence of structures. This gives a richer and more nuanced view of

structural similarities, with the hope that this translates into a more accurate assessment

of protein homology.

As a matter of principle, I am committed to open and accessible research. All

research described here was published in open access journals. The tools and source code

are made available under open source licenses as specified in subsequent chapters.
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K. Illergård, D. H. Ardell, and A. Elofsson. Structure is three to ten times more conserved
than sequence-A study of structural response in protein cores. Proteins, 77(3):499–508,
Nov. 2009.

Y. Jia, T. G. Dewey, I. N. Shindyalov, and P. E. Bourne. A new scoring function and
associated statistical significance for structure alignment by CE. J Comput Biol, 11(5):
787–799, 2004.

N. C. Jones and P. Pevzner. An introduction to bioinformatics algorithms. 2004.

Z. S. Juo, T. K. Chiu, P. M. Leiberman, I. Baikalov, A. J. Berk, and R. E. Dickerson. How
proteins recognize the TATA box. J Mol Biol, 261(2):239–254, Aug. 1996.

Z. Kelman and M. O’Donnell. Structural and functional similarities of prokaryotic and
eukaryotic DNA polymerase sliding clamps. Nucleic Acids Res, 23(18):3613–3620,
Sept. 1995.

J. Lee and M. Blaber. Experimental support for the evolution of symmetric protein
architecture from a simple peptide motif. 108(1):126–130, Jan. 2011.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J Mol Biol, 48(3):443–453,
Mar. 1970.

C. P. Ponting and R. B. Russell. Swaposins: circular permutations within genes encoding
saposin homologues. Trends Biochem Sci, 20(5):179–180, May 1995.

P. W. Rose, B. Beran, C. Bi, W. F. Bluhm, D. Dimitropoulos, D. S. Goodsell, A. Prlić,
M. Quesada, G. B. Quinn, J. D. Westbrook, J. Young, B. Yukich, C. Zardecki, H. M.
Berman, and P. E. Bourne. The RCSB Protein Data Bank: redesigned web site and
web services. Nucleic Acids Res, 39(Database issue):D392–401, Jan. 2011.

R. I. Sadreyev, B.-H. Kim, and N. V. Grishin. Discrete-continuous duality of protein
structure space. Curr Opin Struct Biol, 19(3):321–328, June 2009.

I. N. Shindyalov and P. E. Bourne. Protein structure alignment by incremental com-
binatorial extension (CE) of the optimal path. Protein Eng, 11(9):739–747, Sept.
1998.

T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. J
Mol Biol, 147(1):195–197, Mar. 1981.

J. Soding. Protein homology detection by HMM-HMM comparison. Bioinformatics, 21
(7):951–960, Mar. 2005.

S. Topell, J. Hennecke, and R. Glockshuber. Circularly permuted variants of the green
fluorescent protein. FEBS Lett, 457(2):283–289, Aug. 1999.



7

A. R. Viguera, L. Serrano, and M. Wilmanns. Different folding transition states may
result in the same native structure. Nat Struct Biol, 3(10):874–880, Oct. 1996.

M. S. Waterman. Introduction to Computational Biology. Maps, Sequences and Genomes.
CRC Press, June 1995.

T. A. Whitehead, L. M. Bergeron, and D. S. Clark. Tying up the loose ends: circular
permutation decreases the proteolytic susceptibility of recombinant proteins. Protein
Eng Des Sel, 22(10):607–613, Oct. 2009.

P. Zhang and H. K. Schachman. In vivo formation of allosteric aspartate transcarbamoy-
lase containing circularly permuted catalytic polypeptide chains: implications for
protein folding and assembly. Protein Sci, 5(7):1290–1300, July 1996.



Chapter 2

BioJava: an open-source framework

for bioinformatics in 2012

2.1 Forward

BioJava is an open source library for computational biology (http://www.biojava.

org) (Holland et al., 2008b; Prlić et al., 2012). It includes functionality for many common

bioinformatics problems, including genomics, sequence alignment, structural biology,

and phylogenetics. BioJava is supported by the Open Bioinformatics Foundation and

has an active user community. Source code is available under the GNU Lesser General

Public License (LGPL) and is available from https://github.com/biojava/biojava.

Over the course of my thesis I have contributed significantly to BioJava, partic-

ularly in the core algorithm and structural biology algorithms. Most of the algorithms

developed for this thesis are included in the latest version of BioJava. Since BioJava

3 I have been an active maintainer for the project, and I am currently the second most

frequent committer to the project out of a list of ∼ 50 contributors (after project leader

Andreas Prlić).

The remaining text of chapter 2 is a reprint of the material from:

A. Prlić, A. Yates, S. E. Bliven, P. W. Rose, J. Jacobsen, P. V. Troshin,
M. Chapman, J. Gao, C. H. Koh, S. Foisy, R. Holland, G. Rimša, M. L.

8

http://www.biojava.org
http://www.biojava.org
https://github.com/biojava/biojava
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Heuer, H. Brandstätter-Müller, P. E. Bourne, and S. Willis. BioJava: an
open-source framework for bioinformatics in 2012. Bioinformatics, 28(20):
2693–2695, Oct. 2012
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2.2 Abstract

Motivation: BioJava is an open-source project for processing of biological data in the

Java programming language. We have recently released a new major version (V.3.0.3),

which is a major update of the code base and that greatly extends its functionality.

Results: BioJava now consists of several independent modules that provide state of the

art tools for protein structure comparison, pairwise and multiple sequence alignments,

working with DNA and protein sequences, analysis of amino acid properties, detection of

protein modifications, and prediction of disordered regions in proteins, as well as parsers

for common file formats using a biologically meaningful data model.

Availability: BioJava is an open-source project distributed under the Lesser GPL

(LGPL). BioJava can be downloaded from the BioJava website (http://www.biojava.org).

BioJava requires Java 1.6 or higher.

Contact: andreas.prlic@gmail.com All inquiries should be directed to the BioJava

mailing lists. Details are available at http://biojava.org/wiki/BioJava:MailingLists

2.3 Introduction

BioJava is an established open source project which is driven by an active de-

veloper community (Holland et al., 2008a). It provides a framework for processing of

commonly used biological data and has seen contributions from more than 60 developers

in the 12 years since its creation. The supported data ranges in scope from DNA and

protein sequence information up to the level of 3D protein structures. BioJava provides

various file parsers, data models and algorithms to facilitate working with the standard

data formats and enable rapid application development and analysis.

The project is hosted by the Open Bioinformatics Foundation (OBF,

http://www.open-bio.org), which provides the source code repository, bug tracking

http://www.biojava.org
mailto:andreas.prlic@gmail.com
http://biojava.org/wiki/BioJava:MailingLists
http://www.open-bio.org
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database, and email mailing lists. It also supports the related BioPerl (Stajich et al.,

2002), BioPython (Cock et al., 2009), BioRuby (Goto et al., 2010), and a number of other

projects.

2.4 Methods

Over the last 2 years, large parts of the original code base have been rewritten.

BioJava 3 is a clear departure from the version 1 series. It now consists of several

independent modules built using Maven (http://maven.apache.org). The original code has

been moved into a separate biojava-legacy project, which is still available for backwards

compatibility. In the following, we describe several of the new modules and highlight

some of the new features that are included in the latest version of BioJava.

2.4.1 Core Module

The core module provides classes to model nucleotide and amino acid sequences

and their inherent relationships. Emphasis was placed on using Java classes and method

names to describe sequences that would be familiar to the biologist and provide a concrete

representation of the steps in going from a gene sequence to a protein sequence to the

computer scientist.

BioJava 3 leverages recent innovations in Java. A sequence is defined as a

generic interface, allowing the framework to build a collection of utilities, which can be

applied to any sequence such as multiple ways of storing data. In order to improve the

framework’s usability to biologists, we also define specific classes for common types of

sequences, such as DNA and proteins. One area that highlights this work is the translation

engine, which allows the interconversion of DNA, RNA and amino acid sequences. The

engine can handle details such as choosing the codon table, converting start codons to a

methionine, trimming stop codons, specifying the reading frame and handling ambiguous

sequences (‘R’ for purines, for example). Alternatively, the user can manually override

http:// maven.apache.org
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defaults for any of these.

The storage of sequences is designed to minimize memory usage for large col-

lections using a ‘proxy’ storage concept. Various proxy implementations are provided

that can store sequences in memory, fetch sequences on demand from a web service such

as UniProt or read sequences from a FASTA file as needed. The latter two approaches

save memory by not loading sequence data until it is referenced in the application. This

concept can be extended to handle very large genomic datasets, such as NCBI GenBank

or a proprietary database.

2.4.2 Protein Structure Modules

The protein structure modules provide tools for representing and manipulating

3D biomolecular structures, with the particular focus on protein structure comparison.

It contains Java ports of the FATCAT algorithm (Ye and Godzik, 2003) for flexible and

rigid body alignment, a version of the standard Combinatorial Extension (CE) algorithm

(Shindyalov and Bourne, 1998) as well as a new version of CE that can detect circular

permutations in proteins (Bliven and Prlić, 2012). These algorithms are used to provide

the RCSB Protein Data Bank (PDB) (Rose et al., 2011) Protein Comparison Tool as

well as systematic comparisons of all proteins in the PDB on a weekly basis (Prlić et al.,

2010).

Parsers for PDB and mmCIF file formats (Bernstein et al., 1977; Fitzgerald et al.,

2006) allow the loading of structure data into a reusable data model. Notably, this feature

is used by the SIFTS project to map between UniProt sequences and PDB structures

(Velankar et al., 2005). Information from the RCSB PDB can be dynamically fetched

without the need to manually download data. For visualization, an interface to the 3D

viewer Jmol (Hanson, 2010) (http://www.jmol.org) is provided. Work is underway for

better interaction with the RCSB PDB viewers (Moreland et al., 2005).

http://www.jmol.org
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2.4.3 Genome and Sequencing Modules

The genome module is focused on the creation of gene sequence objects from the

core module by supporting the parsing of GTF files generated by GeneMark (Besemer

and Borodovsky, 2005), GFF2 files generated by GeneID (Blanco and Abril, 2009) and

GFF3 files generated by Glimmer (Kelley et al., 2011). The gene sequences can then be

written out as a GFF3 format for importing into GMOD (Stein et al., 2002). A separate

sequencing module provides memory efficient, low level and streaming I/O support for

several common variants of the FASTQ file format from next generation sequencers

(Cock et al., 2010).

2.4.4 Alignment Module

The alignment module supplies standard algorithms for sequence alignment and

establishes a foundation to perform progressive multiple sequence alignments. For

pairwise alignments, an implementation of the Needleman–Wunsch algorithm computes

the optimal global alignment (Needleman and Wunsch, 1970) and the Smith–Waterman

algorithm calculates local alignments (Smith and Waterman, 1981). In addition to these

standard pairwise algorithms, the module includes the Guan–Uberbacher algorithm to

perform global sequence alignment efficiently using only linear memory (Guan and

Uberbacher, 1996). This routine also allows predefined anchors to be manually specified

that will be included in the alignment produced. Any of the pairwise routines can also be

used to perform progressive multiple sequence alignment. Both pairwise and multiple

sequence alignments output to standard alignment formats for further processing or

visualization.

2.4.5 ModFinder Module

The ModFinder module provides new methods to identify and classify protein

modifications in protein 3D structures. More than 400 different types of protein mod-

ifications (phosphorylation, glycosylation, disulfide bonds metal chelation, etc.) were
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Figure 2.1: An example application utilizing the ModFinder module and the Protein
Structure module. Protein modifications are mapped onto the sequence and structure
of ferredoxin I (PDB ID 1GAO, (Chen et al., 2002)). Two possible iron-sulfur clusters
are shown on the protein sequence (3Fe-4S (F3S): orange triangles/lines; 4Fe-4S (SF4):
purple diamonds/lines). The 4Fe-4S cluster is displayed in the Jmol structure window
above the sequence display.

collected and curated based on annotations in PSI-MOD (Montecchi-Palazzi et al., 2008),

RESID (Garavelli, 2004), and PDB (Berman et al., 2000). The module provides an

API for detecting protein modifications within protein structures. Figure 2.1 shows a

web-based interface for displaying modifications, which was created using the ModFinder

module. Future developments are planned to include additional protein modifications by

integrating other resources such as UniProt (Farriol-Mathis et al., 2004).

2.4.6 Amino Acid Properties Module

The goal of the amino acid properties module is to provide a range of accurate

physicochemical properties for proteins. The following peptide properties can currently

be calculated: molecular weight, extinction coefficient, instability index, aliphatic index,

grand average of hydropathy, isoelectric point and amino acid composition.

To aid proteomic studies, the module includes precise molecular weights for

common isotopically labeled or post-translationally modified amino acids. Additional
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types of PTMs can be defined using simple XML configuration files. This flexibility is

especially valuable in situations where the exact mass of the peptide is important, such as

mass spectrometry experiments.

2.4.7 Protein Disorder module

BioJava now includes a port of the Regional Order Neural Network (RONN)

predictor (Yang et al., 2005) for predicting disordered regions of proteins. BioJava’s

implementation supports multiple threads, making it ∼3.2-times faster than the original

C implementation on a modern quad-core machine.

The protein disorder module is distributed both as part of the BioJava library

and as a standalone command line executable. The executable is optimized for use in

automated analysis pipelines to predict disorder in multiple proteins. It can produce

output optimized for either human readers or machine parsing.

2.4.8 Web Service Access Module

More and more bioinformatics tools are becoming accessible through the web.

As such, BioJava now contains a web services module that allows bioinformatics services

to be accessed using REST protocols. Currently, two services are implemented: NCBI

Blast through the Blast URLAPI (previously known as QBlast) and the HMMER web

service at http://hmmer.janelia.org (Finn et al., 2011).

2.5 Conclusion

The BioJava 3 library provides a powerful API for analyzing DNA, RNA and pro-

teins. It contains state-of-the-art algorithms to perform various calculations and provides

a flexible framework for rapid application development in bioinformatics. The library

also provides lightweight interfaces to other projects that specialize in visualization tools.

http://hmmer.janelia.org


16

The transition to Maven made managing external dependencies much easier, allowing the

use of external libraries without overly complicating the installation procedure for users.

The BioJava project site provides an online cookbook that demonstrates the

use of all modules through short recipes of common tasks. We are looking forward

to extending the BioJava 3 library with more functionality over the coming years and

welcome contributions of novel components by the community.
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Chapter 3

Precalculated Protein Structure

Alignments at the RCSB PDB website

3.1 Forward

The Protein Data Bank (PDB) is the worldwide repository for all atomic-

resolution protein structures. The RCSB PDB is one of three access point to this data

and is visited by hundreds of thousands of unique visitors per year (Berman et al., 2000;

Rose et al., 2011, 2012).

The RCSB website includes several tools for comparing structures. This includes

access to BioJava’s CE and FATCAT implementations directly from the website, as well

as several external services for pairwise structure and sequence comparison.

To facilitate rapid comparison of protein structures, pairwise structural compar-

isons were performed for a non-redundant set of all proteins in the PDB. This comparison

was originally performed between protein chains, as described below (Prlić et al., 2010).

After the initial publication, the comparison was re-run using structural domains.

Each protein was split into domains using the SCOP classification (Murzin et al., 1995;

Andreeva et al., 2008b). For newer structures or where SCOP classifications were

otherwise unavailable, domains were assigned automatically using the Protein Domain
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Parser (Alexandrov and Shindyalov, 2003). This resulted in all-vs-all comparisons

between ∼19500 representative domains.

The domain comparison data has been updated weekly as part of the normal

RCSB release procedure for new structures. This allows a list of all structurally similar

domains to be made available for each structure. As of June 2015, the database contains

27322 chain representatives and 41838 domains.

The remaining text of chapter 3 is a reprint of material from:

A. Prlić, S. E. Bliven, P. W. Rose, W. F. Bluhm, C. Bizon, A. Godzik, and
P. E. Bourne. Pre-calculated protein structure alignments at the RCSB PDB
website. Bioinformatics, 26(23):2983–2985, Dec. 2010
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3.2 Abstract

Summary: With the continuous growth of the RCSB Protein Data Bank (PDB), provid-

ing an up-to-date systematic structure comparison of all protein structures poses an ever

growing challenge. Here, we present a comparison tool for calculating both 1D protein

sequence and 3D protein structure alignments. This tool supports various applications

at the RCSB PDB website. First, a structure alignment web service calculates pairwise

alignments. Second, a stand-alone application runs alignments locally and visualizes the

results. Third, pre-calculated 3D structure comparisons for the whole PDB are provided

and updated on a weekly basis. These three applications allow users to discover novel

relationships between proteins available either at the RCSB PDB or provided by the user.

Availability and Implementation: A web user interface is available at http://www.

rcsb.org/pdb/workbench/workbench.do. The source code is available under the LGPL

license from http://www.biojava.org. A source bundle, prepared for local execution, is

available from http://source.rcsb.org.

3.3 Introduction

At its core, the RCSB PDB Protein Comparison Tool contains a new implementa-

tion of the two structure alignment algorithms Combinatorial Extension (CE) (Shindyalov

and Bourne, 1998) and FATCAT (both rigid body and flexible versions) (Ye and Godzik,

2003).

Both the CE and FATCAT algorithms detect aligned fragment pairs (AFPs) during

the alignment process. These AFPs are based on similarities in local geometry. There is

a difference in how initial AFPs are combined in order to calculate an optimal alignment.

CE applies the process of ‘Combinatorial Extension’ to find possible continuous align-

ment paths leading to an optimal alignment. The resulting alignment is a ‘rigid-body’

based alignment. In contrast to this, FATCAT allows the introduction of ‘twists’ into the

http://www.rcsb.org/pdb/workbench/workbench.do
http://www.rcsb.org/pdb/workbench/workbench.do
http://www.biojava.org
http://source.rcsb.org
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alignment with the consequence that different regions of a protein structures can undergo

different geometric transformations. This is required in order to be able to deal with

protein flexibility.

A protein that undergoes significant domain re-arrangement during iron binding

is transferrin. It consists of two domains that can move relative to each other. FATCAT

in its flexible mode can easily detect an alignment between the apo and holo forms that

covers 95% of both protein chains. (e.g. PDB ID 1IEJ chain A and PDB ID 1BTJ chain

A). However, using rigid body superposition only a partial alignment is possible (both

CE and FATCAT using the rigid mode only). One drawback of the flexible mode is that if

distantly related proteins are being aligned, sometimes twists between unrelated regions

can be introduced (e.g. alignment of PDB ID 1CDG chain A and PDB ID 1TIM chain

A), in which case it is better to run the alignments in rigid mode.

A limitation of both CE and FATCAT in their original versions is that they com-

pute sequence order-dependent alignments. A number of difficult to detect relationships

between proteins have been published, some of which require sequence order indepen-

dence for a correct alignment (Andreeva et al., 2006). An algorithm that can detect

such order-independent alignments is Triangle Match (Bachar et al., 1993; Nussinov

and Wolfson, 1991). Dali in its early versions also could detect permuted proteins;

however, this feature seems to have been lost in its recent implementations, (Holm and

Sander, 1993). We have recently improved CE to be able to detect circularly permuted

alignments (Chapter 6). This implementation is available as an option of the RCSB

Protein Comparison Tool.

3.4 Approach

The CE and FATCAT algorithms have been re-implemented in the Java program-

ming language, which is indicated by a lower-case j in front of the new names, jCE and

jFATCAT. Several components were added to these implementations.

First, the alignment algorithms were integrated into the RCSB PDB website
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(Berman et al., 2000) to provide a novel structure alignment service. Second, a stand-

alone application can be run using Java Web Start technology. Third, a client-server

architecture was developed for calculating large-scale comparisons using compute clouds.

Finally, a software bundle is provided that allows local installation of the tool and to run

custom comparisons. We describe some of these components in more detail.

Pairwise Sequence and Structure Alignment

The comparison tool allows pairwise comparison of protein sequences and 3D

structures. For sequence comparison the Smith–Waterman (Smith and Waterman, 1981),

Needleman–Wunsch (Needleman and Wunsch, 1970), and blast2seq (Tatusova and

Madden, 1999) algorithms are provided. Support for structure comparisons includes

the new implementations of CE and FATCAT and links to some of the most prominent

external protein structure alignment services: the original FATCAT server (Ye and

Godzik, 2004), Mammoth (Ortiz et al., 2002), TM-align (Zhang and Skolnick, 2005),

and Topmatch (Sippl and Wiederstein, 2008; Sippl, 2008). Other available structure

alignment software can be found at Wikipedia http://en.wikipedia.org/wiki/Structural

alignment software.

All alignments that are run using jCE and jFATCAT are calculated server-side on

the fly and cached for future retrieval using XML files. If the alignment is requested again

later, it can be instantly returned by reading the XML file. A web user interface provides

access to the alignment results. Alternatively, a Java Web Start client application, based

on Jmol (http://www.jmol.org, 2010), and BioJava (Holland et al., 2008), provides a novel

3D visualization tool that allows the investigation of sequence–structure relationships

between two aligned proteins. See Figure 3.1 for an example alignment.

Systematic structure alignments across the PDB

Sequence database searches are a frequently used tool to identify closely related

proteins within a database. However, with decreasing sequence similarity relationships

http://en.wikipedia.org/wiki/Structural_alignment_software
http://en.wikipedia.org/wiki/Structural_alignment_software
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between proteins become harder to detect. In order to enable identification of relationships

across the PDB, even if sequence similarity is low, we are providing systematic and

precomputed alignments.

The procedure providing pre-computed structure comparisons across the PDB is

split into two steps.

First, the goal is to reduce the complexity of the problem by identifying repre-

sentative protein chains for clusters of related proteins. BLASTClust (Altschul and et al,

2004) is used to cluster all protein chains by sequence similarity. We require 90% overlap

between all sequences in a cluster. Therefore, a shorter fragment (e.g. a single domain)

of a longer sequence (e.g. a multi-domain protein) will usually not be in the same cluster

as the whole sequence. Within clusters, sequences are ranked by experimental method,

resolution and release date. While the RCSB PDB website provides sequence compar-

isons for various levels of sequence identity within a cluster, structural comparisons are

only provided based on clusters with 40% sequence identity; currently approximately

16000 representative protein chains.

Second, the rigid version of jFATCAT is used to calculate all-against-all 3D

structure comparisons across all representative protein chains. This requires a significant

amount of CPU time. Specifically, a client-server architecture has been developed

that allows the user to easily run a large number of jobs in parallel (for details see

http://www.renci.org/publications/techreports/TR-09-03.pdf). A total of 122 million

alignments were calculated on the Open Science Grid, taking approximately 102000 CPU

hours. Another 18 million alignments were calculated on the San Diego Supercomputing

Center (SDSC) Triton Cluster and local RCSB PDB servers. The alignment results were

stored in ∼1 terabyte of XML files.

Weekly Updates

Incremental updates to the all-against-all comparisons are run weekly using in-

house RCSB PDB servers at the same time the PDB itself is updated. Every week new

sequence clusters are calculated and missing alignments for newly added representative

http://www.renci.org/publications/techreports/TR-09-03.pdf
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Figure 3.1: A new user interface for jCE and jFATCAT structure alignments allows the
investigation of sequence and 3D structure relationships. Here, the alignment of two
kinases, the Hepatocyte growth factor receptor PDB ID 3A4P and the Proto-Oncogene
Tyrosine-Protein Kinase Receptor RET PDB ID 2X2K. If the structures contain ligands
they are also superimposed and displayed. The coloring for the sequence representation
of the structure alignment represents the sequence conservation: red: identical residues,
orange: similar and grey: structurally equivalent, but sequence mismatch.

chains are calculated. At present, an average weekly update requires the calculation of

about 1 million structure alignments.

3.5 Discussion

The RCSB PDB website now provides a state of the art protein comparison tool

that can be used as a web service and for local access. Furthermore, pre-calculated

all-against-all comparisons of sequences and 3D protein structures, respectively, are

provided on a weekly basis. Currently, the calculations are done on a whole-chain basis.

We are working on another set of comparisons using domain-based comparisons of all
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chains with an enhanced version of jCE that includes handling of circular permutations.

An alternative is to use TOPS++FATCAT (Veeramalai et al., 2008), which provides a

10-fold speed up as compared to FATCAT. The domain assignment problem is non-trivial,

and for newly released protein structures results are not immediately available from

classifications like SCOP (Andreeva et al., 2008a), or CATH (Cuff et al., 2009). Hence,

we are investigating whether consensus based approaches like pDomains (Alden et al.,

2010), can guide which domain assignments to use for the automated calculations.
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A. Prlić, S. E. Bliven, P. W. Rose, W. F. Bluhm, C. Bizon, A. Godzik, and
P. E. Bourne. Pre-calculated protein structure alignments at the RCSB PDB
website. Bioinformatics, 26(23):2983–2985, Dec. 2010

Computational time was provided by the Open Science Grid and supported by

the OSG Engagement group. The RCSB team maintains weekly updates to the structural

comparisons.
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Chapter 4

Structural Comparison Networks

4.1 Introduction

The domain-based PDB-wide structural comparison resulted in a database of

∼190 million structural similarity scores. In addition to allowing users to quickly access

structurally similar structures on the RCSB website, this database also provides an

overview of known fold space.

The question of the nature of protein fold space has captured the attention of

numerous structural and computational biologists. The number of possible protein

sequences is so large as to be practically infinite, yet proteins with completely different

primary sequences may fold into nearly identical structures (Sippl, 2009). Since the

structure of a protein is essential to performing its function, understanding the nature

of what structures are possible and how evolution has sampled the space of possible

structures can have far reaching consequences.

A number of questions regarding the nature of protein fold space remain open.

One of the more controversial questions is whether fold space is composed primarily of

discrete protein folds, or whether folds are connected by a continuum of possible but

unobserved folds (Sadreyev et al., 2009; Skolnick et al., 2009; Shindyalov and Bourne,

2000; Orengo et al., 1997; Rost, 2002). This question has practical implications on the
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designability of proteins, the utility of structural genomics initiatives, and the design of

structure classification methods.

With the proliferation of protein structures, several schemes for classifying pro-

teins into discrete categories emerged. Notable protein classifications include SCOP

(Murzin et al., 1995) and CATH (Orengo et al., 1997), DALI (Holm and Sander, 1993),

and the recent ECOD (Cheng et al., 2014). Such classifications are undeniably useful as

a description of the possible folds observed in nature. However, numerous examples exist

of proteins with clear structural similarity, yet classified as discrete folds by these methods.

For example, Grishin (2001) describes a sequence of structurally similar proteins leading

from an all-β to an all-α protein. Such observations led to the view of fold space as a

continuum. In this view, protein classifications are more like clusters of closely related

structures. Some structures may lie near the edge of multiple clusters, incorporating

structural features of each. Efforts have been made to formalize the notion of continuous

fold space by defining rigorous distance functions for pairwise comparisons and com-

puting all-against-all pairwise comparisons of known proteins (Sippl, 2008; Shindyalov

and Bourne, 2000; Marsden and Abagyan, 2004). Multidimensional scaling can then be

used to embed protein folds in a Euclidean space (Orengo et al., 1993; Holm and Sander,

1996; Hou et al., 2003). The problem with such approaches is that they are generally

able to distinguish protein classes, but cannot capture the finer classifications of fold and

superfamily. Thus, they have limited utility in predicting evolutionary relationships or

functional characteristics.

It now seems that neither the discrete nor the continuous views of protein fold

space can fully explain the relationships between protein folds (Sadreyev et al., 2009).

Hybrid methods for fold space classification have been developed, such as SCOP2,

which attempts to classify proteins not using a hierarchical tree, but with an acyclic

graph including many types of relationships between folds (Andreeva et al., 2014). An

alternative approach is to treat protein similarities as a graph of pairwise similarity

relationships. Friedberg and Godzik (2005) applied this approach to identify shared

structural fragments.
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More recently, Nepomnyachiy et al. (2014) used a structural similarity network

to analyze structural similarity at a domain level. Their results are remarkably similar to

those described below, which were presented as a poster at the Intelligent Systems for

Molecular Biology Conference in 2011 (Bliven et al., 2011).

4.2 Methods

The structural similarity network consists of nodes representing non-redundant

structures, connected by an edge where significant structural similarity exists. Prior to

the PDB-wide structural comparison, protein chains were clustered with BLASTClust

(Altschul et al., 2004, 1990). The chain-based structure comparison was created using an

early 2010 version of the PDB, while the domain-based comparison used a 2011 version.

Chains were then optionally split into domains using either SCOP or the Protein Domain

Parser (Alexandrov and Shindyalov, 2003).

Following the all-vs-all computation with jFATCAT (Chapter 3), comparisons

were retained as significant if they had p-value ≤ 0.001, contained over 25 aligned

residues, and covered over 50% of both aligned chains or domains.

Since proteins with < 40% sequence identity can nonetheless have very similar

structures, the resulting network was still highly redundant at a structural level. To reduce

this redundancy, agglomerative hierarchical clustering was performed to iteratively merge

proteins with the highest degree of structural similarity. Changing the clustering threshold

changes the degree of structural diversity represented in the graph, with higher thresholds

being analogous to superfamilies and lower threshold clustering together whole folds.

This process results in an undirected graph consisting of the protein structural

clusters and weighted edges indicating the maximum p-value between members of each

cluster. All edge weights fall between the significance threshold (0.001) and the clustering

threshold, which varied between 10−6 and 10−10 in our analyses.

The graph was visualized using Cytoscape (Shannon, 2003; Smoot et al., 2011).

A number of properties were mapped onto the clusters for visualization and analysis
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purposes. SCOP version 1.75 classifications were mapped to the representative proteins.

In cases where multiple SCOP superfamilies mapped to the cluster, the majority annota-

tion was used. The Transporter Classification Database (TCDB) provides a functional

classification for many membrane transporter proteins (Saier et al., 2006, 2009, 2014).

TCDB classifications were mapped onto clusters, with each cluster annotated with the

union of all member annotations.

4.3 Results

The full chain-based network is presented in Figure 4.1. For stringent clustering

thresholds, most proteins fall into a single large connected component, with only a few

disconnected “orphan” folds. Reducing the significance threshold removes less significant

edges and causes this component to break up into smaller disjoint networks. Thus, fold

space can be considered as either mostly continuous or mostly discrete depending on the

significance threshold considered.

The clustering threshold controls the granularity of the network. At extremely low

thresholds, only identical proteins are clustered together, whereas at higher thresholds

families and folds begin to be clustered. Thus, the clustering threshold can be thought

of analogously to the various levels of hierarchical classifications. It was found that

thresholds of p < 10−6, p < 10−7, and p < 10−10 correspond roughly to SCOP class,

fold, and superfamily levels (Figure 4.2). At these thresholds, around 90% of edges link

clusters with the same SCOP classification, with the remaining 10% of edges representing

structural similarities between discrete SCOP groupings.

The relationship between structure and function can be investigated by mapping

various functional attributes onto the structural similarity graph. As an example of this,

TCDB annotations were mapped onto the domain-based network to analyze structural

conservation of transporter proteins. The subgraph of the domain-based network cor-

responding to proteins annotated as transporters is shown in Figure 4.3. A relatively

stringent significance cutoff of TM-Score ≥ 0.5 was used to identify close structural
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Figure 4.1: Structural similarity network for all protein chains. Structural clusters are
colored according to their dominant SCOP class, or grey if no SCOP annotations were
available.
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Figure 4.2: The agreement between the chain-based similarity network and SCOP
categories. For a given clustering threshold, the plot gives the percentage of edges
which connect two nodes of the same SCOP category. The dashed line shows that
thresholds of p < 10−6, p < 10−7, and p < 10−10 can represent SCOP class, fold, and
superfamily classifications with 90% accuracy.

similarities. It can be seen that most nodes fall into a small number of discrete clusters

that correspond to single TCDB classes. A few larger connected components contain

several transporter classes with significant structural similarity, such as the alpha-helical

membrane proteins. One structural class with notable functional diversity is shown in

Figure 4.3b, where four of the five main transporter classes are present. These were

found to be Rossmann-like folds, which are common as accessory domains for membrane

proteins.

Properties such as protein symmetry can also be used to annotate the network.

Figure 4.4 shows the β-propeller domain-level structural similarities. Most propellers

form a single densely connected graph, indicating the strong stuctural similarity within
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Figure 4.3: TCDB structural similarity network. (a) Structural similarities between
domains of transmembrane proteins, as classified by the Transporter Classification
Database (TCDB). A moderate significance threshold of TM-Score ≥ 0.5 was used,
leaving the network fairly sparse. The nodes are colored according to their TCDB
classification, with intermediate colors representing clusters with multiple TCDB anno-
tations. The maximum TM-Score between clusters is indicated by the edge thickness.
(b) Enlargement of the boxed section of the graph, with 3D structures overlaid. All
structures are similar to the Rossmann fold, but several are classified in different SCOP
folds (e.g. PTS system IIB component-like [SCOP:d1iiba ]. A wide diversity of TCDB
functions are annotated to this subgraph.
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Figure 4.4: The β-propeller subgraph. Nodes are colored according to propeller
symmetry.

this family. Since the structural comparisons were performed at the level of domains,

proteins with the same order of internal symmetry tend to cluster tightly together. Decom-

position of the structures into their internal repeats using CE-Symm (Chapter 7) would

presumably improve the alignment between structures with different order and identify

similarities and differences in the core blade motif.

4.4 Discussion and Conclusion

Structural similarity networks are a valuable tool for visualizing and understand-

ing fold space. Rather than imposing either discrete clusters or a continuous metric

on fold space, the network is able to capture both discrete and continuous features by

varying the thresholds chosen for clustering and significance.

Annotating the network with various types of functional data can highlight correla-

tions between structure and function. It is also useful for identifying cases where function
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does not follow structure, either in the case of promiscuous folds with many functions

(such as the Rossmann-like folds), or for functions that can be found in numerous folds.

One challenge in combining pairwise structural comparisons is that the alignments

between three related proteins are not transitive due to the possibility of aligning different

parts of the structures (Sadreyev et al., 2009). One method to combat this is to enforce

high coverage in the alignments, but this misses cases with large insertions. Reducing the

aligned subunits to the most evolutionarily relevant unit is important for mitigating this.

Manual inspection of the alignments from the domain-based comparison showed that

they tended to better capture the structural relationships than in the original chain-based

comparison. Further reducing the subunits, for example through the use of CE-Symm

to detect internal repeats or CE-CP (Chapter 6) to compare proteins with a circular

permutation, would be expected to give additional gains in the ability of the network to

fully capture structural relationships.
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Chapter 5

Circular Permutations

5.1 Forward

Circular permutation is the simplest type of rearrangement which can occur

within a protein. Proteins that undergo a circular permutation typically retain their overall

structure, which provides a view into the evolutionary history of the protein. Circular

permutation is linked to a wide range of functional changes, both in natural proteins and

in artificially created permutations.

Research into CE-CP (Chapter 6) had begun in 2011 when PLOS Computational

Biology began discussing Topic Pages. These were inspired by the observation that

while Wikipedia is an extremely popular reference for all topics, few incentives existed

to motivate scientists to contribute to the project. Topic Pages were envisioned as a

way to improve the quality of computational biology articles on Wikipedia (Wodak

et al., 2012). They are review-style articles suitable for the general audience, and

published simultaneously as a peer reviewed, static copy of record for the page in PLOS

Computational Biology and as a living, community-edited Wikipedia article. This process

is possible because the open access license that PLOS Computational Biology uses is

compatible with Wikipedia’s Creative Commons license.

Due to Philip Bourne’s position as editor in chief of PLOS Computational Biology
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at the time, we learned about the Topic Page concept when it was first implemented. Our

article on Circular Permutation in Proteins was the first published Topic Page. As part of

the article, I also set up a private MediaWiki instance to allow drafting of topic pages,

which I still maintain on behalf of PLOS Computational Biology.

The remaining text of chapter 5 is a reprint of the material from:

S. E. Bliven and A. Prlić. Circular permutation in proteins. PLoS Comput
Biol, 8(3):e1002445, Mar. 2012

The most current version of the article is available on Wikipedia at https://en.

wikipedia.org/wiki/Circular permutation in proteins.

https://en.wikipedia.org/wiki/Circular_permutation_in_proteins
https://en.wikipedia.org/wiki/Circular_permutation_in_proteins
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Figure 5.1: Schematic representation of a circular permutation in two proteins. The
first protein (outer circle) has the sequence a-b-c. After the permutation the second
protein (inner circle) has the sequence c-a-b. The letters N and C indicate the location
of the amino- and carboxy-termini of the protein sequences and how their positions
change relative to each other.

Circular permutation describes a type of relationship between proteins,

whereby the proteins have a changed order of amino acids in their protein sequence, such

that the sequence of the first portion of one protein (adjacent to the N-terminus) is related

to that of the second portion of the other protein (near its C-terminus), and vice versa (see

Figure 5.1). This is directly analogous to the mathematical notion of a cyclic permutation

over the set of residues in a protein.

Circular permutation can be the result of evolutionary events, post-translational

modifications, or artificially engineered mutations. The result is a protein structure with

different connectivity, but overall similar three-dimensional (3D) shape. The homology

between portions of the proteins can be established by observing similar sequences

between N- and C-terminal portions of the two proteins, structural similarity, or other

methods.
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5.2 History

Figure 5.2: Two proteins that are related by a circular permutation. Concanavalin
A (left), from the Protein Data Bank [PDB:3CNA], and peanut lectin (right), from
[PDB:2PEL], which is homologous to favin. The termini of the proteins are highlighted
by blue and green spheres, and the sequence of residues is indicated by the gradient
from blue (N-terminus) to green (C-terminus). The 3D fold of the two proteins is highly
similar; however, the N- and C-termini are located on different positions of the protein
(Cunningham et al., 1979).

In 1979, Bruce Cunningham and his colleagues discovered the first instance of

a circularly permuted protein in nature (Taylor, 2007; Cunningham et al., 1979). After

determining the peptide sequence of the lectin protein favin, they noticed its similarity to

a known protein—concanavalin A—except that the ends were circularly permuted (see

Figure 5.2). Later work confirmed the circular permutation between the pair (Einspahr

et al., 1986) and showed that concanavalin A is permuted post-translationally (Carrington

et al., 1985) through cleavage and an unusual protein ligation (Bowles and Pappin, 1988).

After the discovery of a natural circularly permuted protein, researchers looked
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for a way to emulate this process. In 1983, David Goldenberg and Thomas Creighton

were able to create a circularly permuted version of a protein by chemically ligating the

termini to create a cyclic protein, then introducing new termini elsewhere using trypsin

(Goldenberg and Creighton, 1983). In 1989, Karolin Luger and her colleagues introduced

a genetic method for making circular permutations by carefully fragmenting and ligating

DNA (Luger et al., 1989). This method allowed for permutations to be introduced at

arbitrary sites, and is still used today to design circularly permuted proteins in the lab.

Despite the early discovery of post-translational circular permutations and the

suggestion of a possible genetic mechanism for evolving circular permutants, it was not

until 1995 that the first circularly permuted pair of genes were discovered. Saposins are a

class of proteins involved in sphingolipid catabolism and lipid antigen presentation in

humans. Christopher Ponting and Robert Russell identified a circularly permuted version

of a saposin inserted into plant aspartic proteinase, which they nicknamed swaposin

(Ponting and Russell, 1995). Saposin and swaposin were the first known case of two

natural genes related by a circular permutation.

Hundreds of examples of protein pairs related by a circular permutation were

subsequently discovered in nature or produced in the laboratory. The Circular Permutation

Database contains 2,238 circularly permuted protein pairs with known structures, and

many more are known without structures (Lo et al., 2009). The CyBase database collects

proteins that are cyclic, some of which are permuted variants of cyclic wild-type proteins

(Kaas and Craik, 2010). SISYPHUS is a database that contains a collection of hand-

curated manual alignments of proteins with non-trivial relationships, several of which

have circular permutations (Andreeva et al., 2007).

5.3 Evolution

There are two main models that are currently being used to explain the evolution

of circularly permuted proteins: permutation by duplication and fission and fusion. The

two models have compelling examples supporting them, but the relative contribution of
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each model in evolution is still under debate (Weiner and Bornberg-Bauer, 2006). Other,

less common, mechanisms have been proposed, such as ”cut and paste” (Bujnicki, 2002)

or ”exon shuffling”.

5.3.1 Permutation by Duplication

1 2 3 

1 2 3 1 2 3 

2 3 1 

Figure 5.3: The permutation by duplication mechanism for producing a circular permu-
tation. First, a gene is duplicated in place. Next, start and stop codons are introduced,
resulting in a circularly permuted gene.

The earliest model proposed for the evolution of circular permutations is the

permutation by duplication mechanism (Cunningham et al., 1979). In this model, a

precursor gene first undergoes a duplication and fusion to form a large tandem repeat.

Next, start and stop codons are introduced at corresponding locations in the duplicated

gene, removing redundant sections of the protein (Figure 5.3).

One surprising prediction of the permutation by duplication mechanism is that

intermediate permutations can occur. For instance, the duplicated version of the protein
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should still be functional, since otherwise evolution would quickly select against such

proteins. Likewise, partially duplicated intermediates where only one terminus was

truncated should be functional. Such intermediates have been extensively documented in

protein families such as DNA methyltransferases (Jeltsch, 1999).

Saposin and Swaposin

Figure 5.4: Suggested relationship between saposin and swaposin. They could have
evolved from a similar gene (Ponting and Russell, 1995). Both consist of 4 alpha helices
with the order of helices being permuted relative to each other.

An example for permutation by duplication is the relationship between saposin

and swaposin. Saposins are highly conserved glycoproteins that consist of an approxi-

mately 80 amino acid residue long protein forming a four alpha helical structure. They

have a nearly identical placement of cysteine residues and glycosylation sites. The cDNA

sequence that codes for saposin is called prosaposin. It is a precursor for four cleavage

products, the saposins A, B, C, and D. The four saposin domains most likely arose from

two tandem duplications of an ancestral gene (Hazkani-Covo et al., 2002). This repeat
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suggests a mechanism for the evolution of the relationship with the plant-specific insert

(PSI) (see Figure 5.4). The PSI is a domain exclusively found in plants, consisting of ap-

proximately 100 residues and found in plant aspartic proteases (Guruprasad et al., 1994).

It belongs to the saposin-like protein family (SAPLIP) and has the N- and C-termini

”swapped”, such that the order of helices is 3-4-1-2 compared with saposin, thus leading

to the name ”swaposin” (Ponting and Russell, 1995). For a review on functional and

structural features of saposin-like proteins, see Bruhn (2005).

5.3.2 Fission and Fusion

1 2 3 

1 2 3 2 3 1 

Figure 5.5: The fission and fusion mechanism of circular permutation. Two separate
genes arise (potentially from the fission of a single gene). If the genes fuse together in
different orders in two orthologues, a circular permutation occurs.

Another model for the evolution of circular permutations is the fission and fusion

model. The process starts with two partial proteins. These may represent two independent

polypeptides (such as two parts of a heterodimer), or may have originally been halves of a

single protein that underwent a fission event to become two polypeptides (see Figure 5.5).

The two proteins can later fuse together to form a single polypeptide. Regardless

of which protein comes first, this fusion protein may show similar function. Thus, if a

fusion between two proteins occurs twice in evolution (either between paralogues within

the same species or between orthologues in different species) but in a different order, the

resulting fusion proteins will be related by a circular permutation.
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Evidence for a particular protein having evolved by a fission and fusion mech-

anism can be provided by observing the halves of the permutation as independent

polypeptides in related species, or by demonstrating experimentally that the two halves

can function as separate polypeptides (Lee and Blaber, 2011).

Transhydrogenases

IIα

B. taurus I (NAD) II III (NADPH)
P11024

E. coli I
P07001 D8AU95

R. rubrum I
Q2RSB2 Q2RSB3 Q2RSB4

III IIβ

Rb. capsulatus

D5APA9

IIαI III IIβ

IIα III IIβ

E. tenella III IIβ IIαI 
Parasitic protozoans

Vertebrates

Bacteria

Q07600

D5APA8

Figure 5.6: Transhydrogenases in various organisms can be found in three different
domain arrangements. In cattle, the three domains are arranged sequentially. In the
bacteria E. coli, Rb. capsulatus, and R. rubrum, the transhydrogenase consists of two
or three subunits. Finally, transhydrogenase from the protist E. tenella consists of a
single subunit that is circularly permuted relative to cattle transhydrogenase (Hatefi and
Yamaguchi, 1996).

An example for the fission and fusion mechanism can be found in nicotinamide

nucleotide transhydrogenases (Hatefi and Yamaguchi, 1996). These are membrane-bound

enzymes that catalyze the transfer of a hydride ion between NAD(H) and NADP(H) in a

reaction that is coupled to transmembrane proton translocation. They consist of three

major functional units (I, II, and III) that can be found in different arrangement in bacteria,

protozoa, and higher eukaryotes (see Figure 5.6). Phylogenetic analysis suggests that the

three groups of domain arrangements were acquired and fused independently (Weiner

and Bornberg-Bauer, 2006).
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5.3.3 Other Processes that can Lead to Circular Permutations

Post-Translational Modification

The two evolutionary models mentioned above describe ways in which genes

may be circularly permuted, resulting in a circularly permuted mRNA after transcription.

Proteins can also be circularly permuted via post-translational modification, without

permuting the underlying gene. Circular permutations can happen spontaneously through

auto-catalysis, as in the case of concanavalin A (see Figure 5.2) (Bowles and Pappin,

1988). Alternately, permutation may require restriction enzymes and ligases (Goldenberg

and Creighton, 1983).

5.4 The Role of Circular Permutations in Protein Engi-

neering

Many proteins have their termini located close together in 3D space (Thornton and

Sibanda, 1983; Yu and Lutz, 2011). Because of this, it is often possible to design circular

permutations of proteins. Today, circular permutations are generated routinely in the

lab using standard genetics techniques (Luger et al., 1989). Although some permutation

sites prevent the protein from folding correctly, many permutants have been created with

nearly identical structure and function to the original protein.

The motivation for creating a circular permutant of a protein can vary. Scientists

may want to improve some property of the protein, such as

• Reduce proteolytic susceptibility. The rate at which proteins are broken down

can have a large impact on their activity in cells. Since termini are often accessible

to proteases, designing a circularly permuted protein with less accessible termini

can increase the lifespan of that protein in the cell (Whitehead et al., 2009).

• Improve catalytic activity. Circularly permuting a protein can sometimes increase

the rate at which it catalyzes a chemical reaction, leading to more efficient proteins
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(Cheltsov et al., 2001).

• Alter substrate or ligand binding. Circularly permuting a protein can result in

the loss of substrate binding, but can occasionally lead to novel ligand binding

activity or altered substrate specificity (Qian and Lutz, 2005).

• Improve thermostability. Making proteins active over a wider range of tempera-

tures and conditions can improve their utility (Topell et al., 1999).

Alternately, scientists may be interested in properties of the original protein, such

as

• Fold order. Determining the order in which different parts of a protein fold is

challenging due to the extremely fast time scales involved. Circularly permuted

versions of proteins will often fold in a different order, providing information about

the folding of the original protein (Viguera et al., 1996; Capraro et al., 2008; Zhang

and Schachman, 1996).

• Essential structural elements. Artificial circularly permuted proteins can allow

parts of a protein to be selectively deleted. This gives insight into which structural

elements are essential or not (Huang et al., 2011).

• Modify quaternary structure. Circularly permuted proteins have been shown

to take on different quaternary structure than wild-type proteins (Beernink et al.,

2001).

• Find insertion sites for other proteins. Inserting one protein as a domain into

another protein can be useful. For instance, inserting calmodulin into green

fluorescent protein (GFP) allowed researchers to measure the activity of calmodulin

via the florescence of the split-GFP (Baird et al., 1999). Regions of GFP that

tolerate the introduction of circular permutation are more likely to accept the

addition of another protein while retaining the function of both proteins.
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• Design of novel biocatalysts and biosensors. Introducing circular permutations

can be used to design proteins to catalyze specific chemical reactions (Turner,

2009; Cheltsov et al., 2001), or to detect the presence of certain molecules using

proteins. For instance, the GFP-calmodulin fusion described above can be used to

detect the level of calcium ions in a sample (Baird et al., 1999).

5.5 Algorithmic Detection of Circular Permutations

Many sequence alignment and protein structure alignment algorithms have been

developed assuming linear data representations and as such are not able to detect circular

permutations between proteins. Two examples of frequently used methods that have

problems correctly aligning proteins related by circular permutation are dynamic program-

ming and many hidden Markov models. As an alternative to these, a number of algorithms

are built on top of non-linear approaches and are able to detect topology-independent

similarities, or employ modifications allowing them to circumvent the limitations of

dynamic programming. Table 5.1 is a collection of such methods.

The algorithms are classified according to the type of input they require. Sequence-

based algorithms require only the sequence of two proteins in order to create an alignment.

Sequence methods are generally fast and suitable for searching whole genomes for

circularly permuted pairs of proteins. Structure-based methods require 3D structures of

both proteins being considered. They are often slower than sequence-based methods,

but are able to detect circular permutations between distantly related proteins with low

sequence similarity. Some structural methods are topology independent, meaning that

they are also able to detect more complex rearrangements than circular permutation.

Table 5.1: Algorithmic Detection of Circular Permutations

Name Type Description Reference
FBPLOT Sequence Draws dot plots of suboptimal se-

quence alignments
Zuker (1991)

continued . . .
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Table 5.1: (Continued) Algorithmic Detection of Circular Permutations

Name Type Description Reference
Bachar et al Structure,

topology
indepen-
dent

Uses geometric hashing for the topol-
ogy independent comparison of pro-
teins

Bachar et al.
(1993)

Uliel et al Sequence First suggestion of how a sequence
comparison algorithm for the detection
of circular permutations can work

Uliel et al.
(1999)

SHEBA Structure Duplicates a sequence in the middle;
uses SHEBA algorithm for structure
alignment; determines new cut position
after structure alignment

Jung and Lee
(2001)

Multiprot Structure,
Topology
indepen-
dent

Calculates a sequence order indepen-
dent multiple protein structure align-
ment

Shatsky et al.
(2004)

RASPODOM Sequence Modified Needleman & Wunsch se-
quence comparison algorithm

Weiner et al.
(2005)

CPSARST Structure Describes protein structures as one-
dimensional text strings by using a
Ramachandran sequential transforma-
tion (RST) algorithm. Detects circular
permutations through a duplication of
the sequence represention and ”double
filter-and-refine” strategy.

Lo and Lyu
(2008)

GANGSTA + Structure Works in two stages: Stage one iden-
tifies coarse alignments based on sec-
ondary structure elements. Stage two
refines the alignment on residue level
and extends into loop regions.

Schmidt-
Goenner
et al. (2010)

SANA Structure Detect initial aligned fragment pairs
(AFPs). Build network of possible
AFPs. Use random-mate algorithm to
connect components to a graph.

Wang et al.
(2010)

CE-CP Structure Built on top of the combinatorial ex-
tension algorithm. Duplicates atoms
before alignment, truncates results af-
ter alignment

Prlić et al.
(2010);
Bliven et al.
(2015)

https://en.wikipedia.org/w/index.php?title=Needleman%E2%80%93Wunsch_algorithm
https://en.wikipedia.org/w/index.php?title=Needleman%E2%80%93Wunsch_algorithm
http://en.wikipedia.org/w/index.php?title=Structural_alignment#Combinatorial_extension
http://en.wikipedia.org/w/index.php?title=Structural_alignment#Combinatorial_extension
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5.6 Further Reading

• David Goodsell (2010) “Concanavalin A and Circular Permutation.” Research

Collaboratory for Structural Biology (RCSB) Protein Data Bank (PDB). Molecule

of the Month. April 2010. http://www.rcsb.org/pdb/101/motm.do?momID=124

• Yu and Lutz (2011), for a review of the use of circular permutation in protein

design.

• Weiner and Bornberg-Bauer (2006), for a review of evolutionary mechanisms for

circular permutations.

• Cyclic permutation on Wikipedia (https://en.wikipedia.org/wiki/

Cyclic permutation)
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Chapter 6

Detection of Circular Permutations

within Protein Structures using CE-CP

6.1 Forward

One factor used to distinguish protein structural comparison algorithms is their

ability to align residues which occur in a difference order in each of the sequences,

referred to as nonsequential or topology-independent alignments. Both CE and FATCAT

are unable to detect nonsequential alignments, but several topology-independent algo-

rithms exist for that purpose (Nguyen and Madhusudhan, 2011; Dundas et al., 2007;

Abyzov and Ilyin, 2007; Guerler and Knapp, 2008).

The simplest form of nonsequential alignment is circular permutation, where the

proteins consist of just two aligned blocks with different order. Circular permutation is

an attractive relationship to detect because it has a clear evolutionary basis, as described

below. Limiting the number of permutation sites also avoids problems of overfitting

which are possible with more general topology-independent methods. Thus, algorithms

specifically designed to detect circular permutations are desirable.

The CE-CP algorithm for aligning circularly permuted proteins was initially

developed in 2011. Later development led to its incorporation into the RCSB PDB

61
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website, and to its eventual publication.

The remaining text of chapter 6 is a reprint of the material from:

S. E. Bliven, P. E. Bourne, and A. Prlić. Detection of circular permutations
within protein structures using CE-CP. Bioinformatics, 31(8):1316–1318,
Apr. 2015

6.2 Abstract

Motivation: Circular permutation is an important type of protein rearrangement. Natu-

ral circular permutations have implications for protein function, stability, and evolution.

Artificial circular permutations have also been used for protein studies. However, such re-

lationships are difficult to detect for many sequence and structure comparison algorithms

and require special consideration.

Results: We developed a new algorithm, called Combinatorial Extension for Circular

Permutations (CE-CP), which allows the structural comparison of circularly permuted

proteins. CE-CP was designed to be user friendly and is integrated into the RCSB Protein

Data Bank. It was tested on two collections of circularly permuted proteins. Pairwise

alignments can be visualized both in a desktop application or on the web using Jmol and

exported to other programs in a variety of formats.

Availability: The CE-CP algorithm can be accessed through the RCSB website at

http://www.rcsb.org/pdb/workbench/workbench.do. Source code is available under the

LGPL 2.1 as part of BioJava 3 (http://biojava.org; urlhttp://github.com/biojava/biojava).

Contact: info@rcsb.org

http://www.rcsb.org/pdb/workbench/workbench.do
http://biojava.org
mailto:info@rcsb.org


63

(a)
(b)

Figure 6.1: CE-CP algorithm for aligning circular permuted proteins. (a) CE-CP
alignment of the dynamin A GTPase domain (yellow and red, SCOP:d1jwyb ) and the
YjeQ protein (blue and green, SCOP:d1u0la2). N- and C-termini are shown with blue
and red spheres. Arrows indicate the positions of the circular permutation. (b) Dotplot
of the alignment with YjeQ duplicated. The optimal alignment is shown in black, with
the inferred equivalent positions in blue and red.

6.3 Introduction

Circular permutation describes a relationship between two proteins where the

N-terminal portion of one protein is related to the C-terminal portion of the other. While

the order of amino acids changes, circularly permuted proteins are generally found to

assume the same structure. Circular permutation has been documented to naturally

occur in a number of protein families, such as lectins (Cunningham et al., 1979) and

DNA methyltransferases (Jeltsch, 1999). Two general mechanisms for the evolution of

circularly permuted proteins are known, so detecting such events can shed light on the

evolutionary history of protein families (Weiner and Bornberg-Bauer, 2006). Circular

permutation can influence protein folding, dynamics, and function (Bliven and Prlić,

2012). Synthetic circular permutatants have been engineered to alter activity, control
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regulation, and improve stability (Yu and Lutz, 2011; Whitehead et al., 2009; Ostermeier,

2005).

Natural circular permutants generally have quite low sequence similarity, with

previous studies finding less than 0.3–2.6% of proteins share >30% identity (Jung and

Lee, 2001; Lo and Lyu, 2008). Thus, including structural information is essential for de-

tecting circular permutations. Many structural alignment algorithms are unable to detect

rearrangements in sequence, while general sequence-order independent methods lack a

clear evolutionary mechanism by which complex rearrangements could occur. Therefore,

algorithms that specifically search for circular permutations are needed. Several existing

algorithms have been reported, including SHEBA (Jung and Lee, 2001) and CPSARST

(Lo and Lyu, 2008).

Here we describe a method, Combinatorial Extension with Circular Permutations

(CE-CP), for the identification of circular permutations based on protein structure.

6.4 Methods

Combinatorial Extension (CE) is a rigid-body structural comparison algorithm

(Shindyalov and Bourne, 1998). It uses dynamic programming to identify regions of

local similarity between the alpha-carbons of two protein structures, followed by iterative

refinement to find a global superposition with low RMSD and high number of aligned

residues.

To adapt CE to quickly find circular permutations, we use an algorithm analogous

to that proposed by Uliel et al. (1999) for detecting circular permutations by sequence

similarity. The atoms of the shorter structure are virtually duplicated. This allows the

alignment of the first protein to wrap around from the carboxyl terminus to the amino

terminus of the second protein (see Figure 6.1b). Thus, the path with optimal structural

similarity will contain some residues from each copy of the duplicated protein, allowing

the permutation site to be identified. In the case of structures that are not circular

permuted, two equivalent paths are possible.
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After identifying the highest scoring alignment to the duplicated protein, the

result is processed to map the alignment onto the original query. While this is generally

unambiguous for high-scoring alignments, it is possible that a single residue in the

duplicated protein will align to multiple residues. In this case, a single aligned residue is

chosen such that the total alignment length is maximized.

This technique is agnostic to the details of the actual alignment algorithm. Thus, it

could be easily adapted to allow other sequence-order dependent alignment algorithms to

detect circular permutations. For instance, CE-CP was used in our recent tool CE-Symm

for identifying internally symmetric structures (Myers-Turnbull et al., 2014).

To reduce computational time, CE by default limits gap sizes to 30 residues. Since

terminal insertions are common in protein structures, due to both biological variability in

tail regions and experimental tags and artifacts, this limit is often restrictive for circularly

permuted proteins, and all gaps are considered used in CE-CP by default. This ensures

that the optimal path can be found regardless of insertions and deletions.

6.5 Results and Discussion

CE-CP is integrated into the RCSB PDB Comparison Tool, along with several

other algorithms for structural alignment (Prlić et al., 2010). Two user interfaces are

available: a web version, and a standalone Java application that can be downloaded or

run via Java Web Start.

CE-CP results are presented to the user graphically, using the Jmol visualization

program, and as a pairwise alignment. The portions before and after the permutation site

are displayed in different colors if a permutation is found. The alignment is also available

for export in a variety of formats, including a parsable text format or a two-model PDB

file containing the two superimposed structures. The standalone application provides

additional features, such as the ability to compare custom PDB files and perform full

database searches.

As shown in Figure 6.1, CE-CP is able to identify the conserved structural core
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between highly divergent structures. It is robust to insertions and deletions, making it

suitable for the detection of circular permutations in multi-domain structures.

No large, balanced benchmarks of circularly permuted structures are available.

However, CE-CP performance was evaluated on the small but accurate RIPC benchmark

(Mayr et al., 2007), as well as compared to results from the semi-automated Circular

Permutation Database (CPDB) (Lo et al., 2009).

The RIPC dataset is a small benchmark of “challenging” manual alignments, due

to the presence of insertions, conformational variability, and permutations. All 11 pairs

of circularly permuted proteins from the dataset were correctly identified by CE-CP, with

most residues matching the reference alignment within 0–4 residues.

The CPDB contains 4169 pairs of circularly permuted proteins, as identified by

the CPSARST algorithm, followed by manual screening for false positives. Thus, entries

contain a plausible circular permutation but are not verified as evolutionarily related.

CE-CP identified a circular permutation in 3666 (88%) of CPDB pairs. Of the cases

where a permutation was not detected, many are internally pseudosymmetric structures

that have reasonable sequential alignments. Since both circularly permuted proteins and

internally symmetric proteins can evolve through duplication and fusion mechanisms,

the high correlation between the two phenomena should be unsurprising. A portion of

these symmetric cases may prove to be false positives from CPSARST given additional

evolutionary or functional data.

CE-CP is a readily available and easy to use tool for detecting circular permuta-

tions from protein structures. It is incorporated into the RCSB PDB Comparison Tool,

which allows the comparison of structures through a variety of methods both on the

RCSB PDB website and via a Java Webstart executable. CE-CP is available as part of

the BioJava open source project (Prlić et al., 2012).
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Chapter 7

Systematic detection of internal

symmetry in proteins using CE-Symm

7.1 Forward

Proteins that are composed of multiple copies of a structural motif are said to

have internal symmetry. Unlike the quaternary symmetry commonly observed in protein

crystals or oligomeric complexes, internal symmetry need not be perfect, but may be

pseudosymmetry from structurally similar substructures.

Internal symmetry is thought to evolve via duplications, similarly to the mecha-

nisms for circular permutation discussed in Chapter 5. This suggests that the structural

repeats could share a common ancestor. Internal symmetry is thought to often evolve

from complexes with quaternary symmetry. Like circular permutations, this process

conserves the overall structure despite the significant changes in gene lengths.

The CE-Symm algorithm was developed to detect internal symmetry. It is able to

identify the top-scoring alignment between a protein and a rotated copy of itself. The

original CE-Symm version was able in some cases to identify the order of symmetry in a

protein as well. Other methods for detecting the order are discussed in Chapter 8.

While CE-Symm was originally created to find symmetry in protein structures, it

70
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Figure 7.1: CE-Symm alignment of FMN Riboswitch [PDB:3F4E]. The alignment has
52% sequence identity.

can also be run on DNA, RNA, and other polymers. For instance, the FMN riboswitch

contains internal symmetry (Jones and Ferré-D’Amaré, 2015). Intriguingly, the flavin

molecule is located directly on the axis of symmetry (Figure 7.1).

The remaining text of Chapter 7 is a reprint of the material from:

D. Myers-Turnbull, S. E. Bliven, P. W. Rose, Z. K. Aziz, P. Youkharibache,
P. E. Bourne, and A. Prlić. Systematic Detection of Internal Symmetry in
Proteins Using CE-Symm. J Mol Biol, 426(11):2255–2268, May 2014

7.2 Abstract

Symmetry is an important feature of protein tertiary and quaternary structure that

has been associated with protein folding, function, evolution and stability. Its emergence

and ensuing prevalence has been attributed to gene duplications, fusion events, and

subsequent evolutionary drift in sequence. This process maintains structural similarity

and is further supported by this study. To further investigate the question of how internal

symmetry evolved, how symmetry and function are related, and the overall frequency of

internal symmetry, we developed an algorithm, CE-Symm, to detect pseudo-symmetry

within the tertiary structure of protein chains. Using a large manually curated benchmark
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of 1007 protein domains, we show that CE-Symm performs significantly better than

previous approaches. We use CE-Symm to build a census of symmetry among domain

superfamilies in SCOP and note that 18% of all superfamilies are pseudo-symmetric. Our

results indicate that more domains are pseudo-symmetric than previously estimated. We

establish a number of recurring types of symmetry–function relationships and describe

several characteristic cases in detail. Using the Enzyme Commission classification,

symmetry was found to be enriched in some enzyme classes but depleted in others.

CE-Symm thus provides a methodology for a more complete and detailed study of the

role of symmetry in tertiary protein structure.

Availability: CE-Symm can be run from the web at http://source.rcsb.org/jfatcatserver/

symmetry.jsp. Source code and software binaries are also available under the GNU Lesser

General Public License (v. 2.1) at https://github.com/rcsb/symmetry. An interactive

census of domains identified as symmetric by CE-Symm is available from: http://source.

rcsb.org/jfatcatserver/scopResults.jsp.

7.3 Introduction

Many proteins have a high degree of symmetry in both their tertiary and qua-

ternary structures. This observation dates back to the determination of the quaternary

structure of hemoglobin in 1960 (Perutz et al., 1960), which was discovered to contain

symmetric pairs of subunits. Subsequently, symmetry has been found to be important

for understanding protein evolution (Lee and Blaber, 2011), DNA binding (Juo et al.,

1996; Waldrop, 2011), allosteric regulation (Monod et al., 1965; Changeux and Edelstein,

2005), cooperative enzyme effects (Goodsell and Olson, 2000), and folding (Wolynes,

1996). The relationships between protein symmetry, evolution, and function are reviewed

in (Giraldo and Ciruela, 2013; Broom et al., 2012; Matthews et al., 2012; Goodsell and

Olson, 2000; Kinoshita et al., 1999).

Symmetry is characterized by an alignment between equivalent substructures.

http://source.rcsb.org/jfatcatserver/symmetry.jsp
http://source.rcsb.org/jfatcatserver/symmetry.jsp
https://github.com/rcsb/symmetry
http://source.rcsb.org/jfatcatserver/scopResults.jsp
http://source.rcsb.org/jfatcatserver/scopResults.jsp
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(a) (b)

(c)

(d)

Figure 7.2: Several protein domains with internal symmetry that CE-Symm detects.
Coloring is by symmetry unit. (a) A ferredoxin-like fold with two-fold symmetry.
(SCOP ID: d2j5aa1) (b) A 6-bladed β propeller. Each blade contains a Kelch sequence
motif (Adams et al., 2000), which is also found in some 7-bladed β-propellers (SCOP
ID: d1u6dx ) (c) A single DNA clamp domain of a human proliferating cell nuclear
antigen (PCNA). The full biological assembly contains 6 of these domains arranged with
six-fold symmetry as a trimer of PCNA chains (SCOP ID: d1vyma1) (d) Adiponectins
normally assemble into homotrimers of 3 single-domain chains. Shown here (PDB
ID: 4DOU) is a designed single-chain three-fold symmetric repeat of an adiponectin
globular domain that folds much like an adiponectin trimer (Min et al., 2012). The
construct was found to increase insulin sensitivity in mice (Ge et al., 2010).
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In the case of quaternary symmetry, these substructures are defined by the inherent

equivalence of interactions between identical chains, and often can be determined from

the space group of the crystal for X-ray structures. However, this equivalence can be

relaxed to allow for evolutionary divergence, revealing pseudo-symmetric arrangements

within individual polypeptide chains (internal symmetry) or that span two or more non-

identical chains. Figure 7.2 contains examples of proteins with such symmetry within a

single chain. This study will focus on internal pseudo-symmetry.

7.3.1 Symmetry and protein evolution

Considering all proteins in the Protein Data Bank (PDB) (Berman et al., 2000;

Rose et al., 2012) that contain at least two chains in the annotated biological assembly, we

find that approximately 80% of all protein complexes contain quaternary structural sym-

metry (unpublished, see http://www.rcsb.org). Large symmetric oligomers are thought to

have been present in primordial life (Goodsell and Olson, 2000; Koshland, 1976), and

symmetry continues to be an important feature of proteins.

One model explaining the evolution of internal symmetry has been described by

Andrade et al. (2001) and Abraham et al. (2009). They proposed gene duplication and

fusion as a model for the emergence of symmetric protein chains from complexes with

quaternary symmetry. These architectures are then subject to evolutionary drift, but their

overall symmetric architectures are preserved. An alternative hypothesis, the emergent

architecture model, posits that symmetric architectures arise primarily via convergent

evolution (Blaber et al., 2012). Most likely both mechanisms are correct for different

protein families. Another possible driving force for the evolution of symmetry could be

random chance, driven by negative selection against destabilizing mutations (Bershtein

et al., 2012).

Well-known cases of symmetry include TIM barrels, β-trefoils, β-propellers,

ferredoxin-like proteins, pentein propellers, and immunoglobulin proteins.

TIM barrels consist of eight pairs of alternating α-helices and β-sheets that
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interact in parallel to form a cylinder. The TIM barrel fold is extremely versatile and

supports a wide diversity of enzymatic reactions (Nagano et al., 2002). Canonical TIM

barrels have eight-fold symmetry around the central channel. However, the overall

structure is robust to changes in the (βα)8 sequence: functional TIM barrels are known

with single anti-parallel sheets, with deleted (βα) subunits (Grishin, 2001; Sadreyev

et al., 2009), and even as a dimer of (βα)4 chains (Fortenberry et al., 2011).

The β-trefoil fold has three-fold symmetry and similarly spans a wide range of

functions. Several studies have investigated the role of symmetry in β-trefoils by creating

β-trefoils with perfect three-fold symmetry (Broom et al., 2012; Lee and Blaber, 2011;

Blaber et al., 2012). Both studies found that perfect trimeric β-trefoils are highly stable.

One of these constructs—a synthetic glycosidase carbohydrate binding domain—not

only retained its function, but was found to have increased binding activity. However, a

similar construct of an FGF-1 protein showed none of its normal binding activity. This

suggests that exact symmetry improves the function of some proteins, while the normal

function of other proteins requires imperfect symmetry.

Adiponectin is a hormone involved in metabolic regulation (Hug and Lodish,

2005) whose normal functioning has been associated with increased insulin sensitivity

(Maeda et al., 2002; Shklyaev et al., 2003; Combs et al., 2004; Min et al., 2012). The

protein normally assembles as a homotrimer with three-fold crystallographic symmetry

(PDB ID: 1C3H). Ge et al. (2010) constructed a single-chain repeat of an Adiponectin

globular domain (Figure 7.2d), which folded into a perfectly three-fold symmetric

monomer with a structure similar to that of its multimeric counterpart. Expression of the

protein construct increased insulin sensitivity in mice and is hoped to be useful in the

treatment of diabetes. Given the contribution of symmetry to protein stability, symmetry

may become important in protein design, similar to the increased importance of circular

permutations (Bliven and Prlić, 2012).
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7.3.2 Algorithms that detect symmetry

The examples described in the previous section provide a compelling reason to

accurately establish and classify symmetry in protein tertiary structure. Many symmetry-

detection algorithms have been developed, including COSEC2 (Mizuguchi and Go, 1995;

Kinoshita et al., 1999), DAVROS (Murray et al., 2004), OPAAS (Shih and Hwang, 2004;

Shih et al., 2006), Swelfe (Abraham et al., 2008), RQA (Chen et al., 2009), GANGSTA+

(Guerler et al., 2009), and SymD (Kim et al., 2010).

Some of the early methods are based on the alignment of secondary structure

elements. These are sensitive to secondary structure assignment, which limits their

power to detect some cases of pseudo-symmetry. Moreover, several of these approaches

are no longer available. One algorithm, SymD, is still being actively developed. It

aligns proteins at the residue level, detecting symmetry by systematically performing a

structural alignment for all possible circular permutations of a protein. This results in the

determination of protein symmetry, including the detection of multiple axes of symmetry

for some cases. Using SymD, Kim et al. (2010) estimated that 10–15% of known protein

domains are symmetric.

7.3.3 Symmetry detection using structural alignment

We have previously developed the Combinatorial Extension (CE) algorithm for

global three-dimensional protein structure alignment (Shindyalov and Bourne, 1998; Jia

et al., 2004) and integrated it into the RCSB PDB as part of the Protein Comparison Tool

(Prlić et al., 2010). CE is a well-established protein structure comparison algorithm that

has been used in a number of benchmarks as one of the reference methods in terms of

alignment accuracy (Mayr et al., 2007; Zhang and Skolnick, 2005; Ye and Godzik, 2003).

Here, the intention is to use our experience in performing protein structure alignments

using CE and employ it to detect symmetry in protein tertiary structure using a new

variation of CE, called CE-Symm.

With several algorithms for the detection of symmetry available, it is surprising
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that no reference benchmark to evaluate and compare the quality of these algorithms has

been introduced previously. Here we present a manually curated benchmark containing

1007 protein domains.

In the following sections we describe CE-Symm and the benchmark, and we use

both to demonstrate that CE-Symm is currently the leading method for the detection of

symmetry. Finally, we systematically apply CE-Symm to establish a census of symmetry

found in superfamilies as defined by SCOPe 2.03 (formerly SCOP 1.75C) (Fox et al.,

2014; Murzin et al., 1995; Andreeva et al., 2008).

7.4 Results

To evaluate the accuracy of CE-Symm and competing methods overall, a total of

1100 SCOP superfamilies from SCOPe 2.01 (SCOP 1.75A)1 were initially sampled at

random, with one domain arbitrarily selected as the representative structure. Sampling

superfamilies rather than domains was intended to reduce the effect of bias in the PDB

towards easily crystallized or heavily studied proteins. Repeated motifs were classified

as cyclic symmetry, dihedral symmetry, linear repeats, helical symmetry, or superhelical.

For explanations of these types of symmetry, see Detailed evaluation.

The presence and type of symmetry for each of these domains was determined

manually, resulting in a table of SCOP IDs with their corresponding space groups

presented in Supplemental File 7.1. When testing algorithms against the benchmark, we

considered only cyclic and dihedral symmetry to be cases of symmetry.

7.4.1 Evaluating CE-Symm

CE-Symm performed well on the benchmark set, and fared particularly well

at higher thresholds for specificity (fewer false positives). While maintaining a false-

1The census (described in the preceding paragraph) originally used SCOPe 2.01 but was updated to
SCOPe 2.03 when that version was released. The benchmark was fixed at SCOPe 2.01. No differences at
the level of superfamily or higher exist between the two versions.
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positive rate (FPR) of just 3.3%, it correctly identified 86% of the symmetric domains in

the benchmark set. Among true-positive results, CE-Symm determined the correct order

of symmetry 83% of the time. In 96% of cases, it reported either the correct order or an

integral multiple or divisor of it.

Figure 7.3: Receiver Operating Characteristic curves for CE-Symm and SymD on a
benchmark set of 1007 SCOP domains. Two curves for CE-Symm are shown: using
only TM-score for scoring (light blue), and using TM-score and the order-method
described in Methods (dark blue, solid). Two curves for SymD are shown, one for
SymD 1.3hw3 (green), and one for the unpublished version 1.5b (red). The thresholds
used for determining symmetry (refer to the footnotes in Table 7.1) are indicated with
circles.
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To compare CE-Symm against what we considered the best previously available

method, we also ran results from SymD (version 1.3hw3) against our benchmark set.

Kim et al. (2010) provided us with a copy of an unpublished update to SymD (version

1.5b), which we also benchmarked. For comparison, SymD 1.3hw3 found only 39% of

symmetric domains while maintaining the same FPR of 3.3%. The two algorithms are

compared in the receiver operating characteristic (ROC) curves shown in Figure 7.3.

The ROC curve for CE-Symm (dark blue) results had an area under curve (AUC)

of 0.95, and this value was 0.87 for SymD (version 1.3hw3; orange). The difference

between these values was determined to be highly statistically significant (P-value

= 2.2×10−5) using StAR (Vergara et al., 2008). Therefore, overall CE-Symm performs

much better than SymD. We also benchmarked an alternate scoring system for CE-Symm

(light blue).

Based on these results, suggested thresholds for the binary decision of symmet-

ric/asymmetric using CE-Symm were established (Table 7.1). Thresholds for SymD are

included for reference.

7.4.2 Folds with well-known symmetry

In the interest of continuing the benchmark by Kim et al. (2010), which compared

SymD against the secondary structure-based symmetry detection algorithm GANGSTA+,

we ran CE-Symm on a set of 8 SCOP folds that are known to be symmetric (Table 7.1).

This evaluation is useful to compare CE-Symm with GANGSTA+, and CE-Symm with

SymD for selected cases; however, we emphasize that this table contains only a limited

and arbitrary choice of folds compared to the more comprehensive benchmark described

above. CE-Symm was at least as likely to classify a domain as symmetric than either

SymD and GANGSTA+ in 7 of 8 cases. It was 6 times as likely to find symmetry among

immunoglobulin-like β-sandwiches than SymD, and 23 times as likely as GANGSTA+

to find symmetry among TIM barrels.
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7.4.3 Detailed evaluation

We analyzed a number of cases where CE-Symm determined symmetry correctly

but SymD did not, and vice versa. Generally, we found that CE-Symm was more robust to

insertions and small structural differences than SymD. For example, CE-Symm correctly

identified C2 symmetry in the Ferredoxin-like domain d1r0bl1 and C8 symmetry in the

β/α barrel domain d2i5ia1.

One strength of SymD is its superior order-detection capabilities, due to its

systematic consideration of all circular permutation points. The order-detection methods

used by CE-Symm are useful for eliminating many asymmetric cases and for estimating

the order of symmetry. However, the methods are heuristics and sometimes incorrectly

report the order, particularly among structures with order greater than 8 or those whose

order has no small factors (Supplemental Table 7.S3). The order-detection heuristic can

also fail for proteins with variable-length subunits, such as some β-barrels. For example,

CE-Symm’s order-detection incorrectly reports C1 for the autotransporter domain (SCOP

ID: d1uyox ), but CE-Symm is able to correctly classify it as symmetric based on TM-

Score alone. A complete listing of predictions on the benchmark set by CE-Symm and

SymD is available in Supplemental File 7.2.

CE-Symm and SymD were found to have comparable computation times. Both

SymD 1.3hw3 and CE-Symm with order-detection completed in about 2 seconds per

domain when run on the benchmark set in a single-threaded environment on a 64-bit Mac

OS system with a 2.8Ghz Intel Core i7 processor and 16GB RAM. On the same system,

SymD 1.5b required about 4 seconds per domain; however, we note that this version has

not been released publicly.

7.4.4 Symmetry order

The types of symmetry identified in the benchmark set are given in Table 7.2). We

found that 23.9% of the superfamilies sampled contained some form of structural repeat.

Of these, cyclic symmetry was by far the most common (91.3%). Two-fold symmetry
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Table 7.2: Benchmark symmetry by order. Types of symmetry found in the benchmark.

Order Superfamilies Example Folds
Asymmetric

766 76.1%
Rotational

2 166 16.5% Immunoglobulin-like, Ferredoxin-like, Rossmann, γ-
crystallin-like, DNA clamp, up-down 4-helical bundle

3 10 1.0% β-Trefoil, β-Prism, Flavodoxin-like
4 2 0.2% 4-bladed β-propeller, Streptavidin-like, Prealbumin-

like, OMPA-like
5 3 0.3% 5-bladed β-propeller, Pentein β/α-propeller, PT-barrel
6 9 0.9% 6-hairpin glycosidases, 6-bladed β-propeller, auto-

transporter
7 9 0.9% 7-bladed β-propeller, 7-bladed α/α-toroid, 7-hairpin

glycosidase
8 21 2.1% TIM barrel, 8-bladed β-propeller

Dihedral
2 2 0.2% Transmembrane β-barrels, Streptavidin-like
4 1 0.1% Streptavidin-like

Helical
2 9 0.9% Leucine-rich repeat, β-helix, α-α superhelix
3 2 0.2% α-α superhelix, β-helix

Non-integral 2 0.2% α-α superhelix, Triple-stranded β-helix
Superhelical 2 0.2% α-α superhelix
Translational

3 0.3% Ankyrin repeat, β-helix, Bacteriochlorophyll A protein
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was the most common type of cyclic symmetry (75.5%), followed by eight-fold cyclic

symmetry.

Dihedral symmetry, helical symmetry, and translational repeats accounted for the

remainder, about 2.1%. Linear repeats have translational symmetry, which is given by

the repeated application of a translation but no rotation. In most helically symmetric

structures, rotating by 360◦/k for some integer k is equivalent to no rotation; such a

structure is said to have helical symmetry of order k. For some structures, no such integer

exists; we labeled this type of symmetry “non-integral helical”. Superhelical symmetry

is the unusual symmetry seen in domains such as in Leucine-rich repeats.

7.4.5 A census of symmetry in SCOP

A census of symmetry in the tertiary structure of domains was created by running

CE-Symm on every domain in each superfamily in SCOPe 2.03 Fox et al. (2014); Murzin

et al. (1995). This version of SCOP is an update by John-Marc Chandonia, Naomi K.

Fox, and Steven E. Brenner; it is available at http://scop.berkeley.edu.

SCOPe 2.03 contains 1766 superfamilies over 5 main classes: all-α, all-β, α/β,

α+β, and trans-membrane. We constructed a census of symmetry over these super-

families by running CE-Symm (with order detection enabled) on every domain in each

superfamily and normalizing by the number of domains per superfamily. We found that

18.0% of these superfamilies are symmetric. This percentage of symmetric superfamilies

is slightly higher than the percentage of symmetric domains in SCOP among ASTRAL 40

representatives (Chandonia et al., 2004) found by SymD, which was 10–15% (Kim et al.,

2010). Figure 7.2 shows some examples of symmetric proteins identified by CE-Symm.

Interestingly, symmetric α+ β superfamilies are disproportionately rare (Ta-

ble 7.3). α+β folds consist of α and β regions that are physically separated in sequence;

we hypothesize that this separation limits the number of viable symmetric architectures.

In contrast, all-β proteins are enriched for symmetry. This class contains a number of

common symmetric folds, such as β-barrels and β-propellers. The extended hydrogen-

http://scop.berkeley.edu
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Table 7.3: Symmetry by SCOP class. Percentage of superfamilies identified as sym-
metric by CE-Symm. Note that, to maintain a low false-discovery rate, CE-Symm
underestimates the number of symmetric superfamilies in SCOP by about 27% (see
Figure 7.3).

Class Total Number % Symmetric
α 507 18.5%
β 354 24.6%

α/β 244 16.8%
α+β 551 14.3%

Multi-domain1 66 4.5%
Membrane 109 23.8%

Overall 1831 18.0%

1 These are large protein chains that have only been observed in their entirety.

bonding networks in β-sheets may also contribute to this enrichment, as planar structures

are inherently more likely to be symmetric due to their reduced dimensionality.

Symmetry is also disproportionately frequent among membrane superfamilies,

in agreement with previous observations (Klingenberg, 1981; Choi et al., 2008). Mem-

brane proteins often contain additional quaternary symmetry in addition to the internal

symmetry within individual domains. The axis of symmetry is typically perpendicular to

the membrane plane, although some cases are known with the axis of symmetry parallel

to the plane (Goodsell and Olson, 2000). The symmetric arrangement of subunits in

membrane proteins minimizes the lipid interface for each subunit, and the gap formed at

the axis of symmetry often forms the channel for membrane transporters.

7.4.6 Sequence conservation

Using all superfamilies in the census, we calculated the percentage identity of the

alignment given by CE-Symm. In the case of self-alignments given by CE-Symm, the

percentage identity is defined as the percentage of amino acids that are conserved when

the domain is superimposed on itself following a rotation about the axis of symmetry.

Percent identity was graphed separately for symmetric and asymmetric superfamilies
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Figure 7.4: Sequence identity between symmetry units. Distribution of sequence
identity between aligned subunits for symmetric superfamilies (blue). For comparison,
the distribution of percentage identity among asymmetric superfamilies (red). Most
CE-Symm alignments of asymmetric proteins represent random alignments, although a
few examples contain translational repeats or helical symmetry.

(Figure 7.4).

Surprisingly, the distributions in Figure 7.4 are very similar. Indeed, the mean

%id among symmetric results is 8.2%, not substantially higher than the mean %id among

asymmetric results, 5.8%. Moreover, there are few symmetric domains with greater

than 16 %id. Considering amino acid similarity rather than identity produces similar

results (see Supplemental Figure 7.S1). This lack of sequence conservation between the

structural units that give rise to the symmetry (symmetry units) could indicate (a) that

the majority of internally symmetric superfamilies arose following ancient duplication

events, (b) that convergent evolution between subunits is a more significant contributor
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to internally symmetric proteins than previously thought, or (c) that the relationship

between sequence and structural motifs is relatively flexible, making it difficult to detect

sequence similarities based on structure-based methods such as CE-Symm. A similar

observation has also been made by Wright et al. (2005), where a low sequence identity

between proteins might be associated with the inhibition of misfolding and aggregation

of proteins in the crowded environment of a living cell.

7.4.7 Enzyme function

To investigate the relationship between symmetry and protein function, we

grouped symmetric superfamilies by their Enzyme Commission (EC) numbers (Bairoch,

2000)). Consistent with our methodology for the census, we normalized by the number

of domains per superfamily to mitigate bias in the PDB. A superfamily was assigned

an EC number if it contained a domain having that EC number, meaning that multiple

enzyme classes can be assigned to a single superfamily.

Analysis of the top-level EC classes proved difficult due to the breadth of struc-

tures which provide scaffolds for each type of reaction. Isomerases were enriched for

internal symmetry (24% symmetric), while oxidoreductases and ligases contained fewer

symmetric domains than average (each 15%; see Supplemental Figure 7.S2). Oxidore-

ductases span a broad range of evolutionarily and structurally disparate folds (148 in the

analysis), and the distribution of folds and the distribution of superfamilies over these

folds are both diffuse. Therefore, the low level of symmetry cannot be ascribed to the

class having a constrained set of viable folds.

Considering second-level EC subclasses allows the relationship between symme-

try and function to be more clearly established. The number of symmetric superfamilies

for selected EC subclasses is given in Table 7.4 and is fully detailed in Supplemental

Table 7.S1. Although the number of superfamilies annotated with each subclass is fairly

small, enrichment for symmetry also could not be explained by a lack of structural

diversity in enzymes with each function.
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Table 7.4: Percentage of superfamilies found to be symmetric for selected second-
level Enzyme Commission numbers. The most and least symmetric 5 EC subclasses
containing at least 20 superfamilies are shown. See Table 7.S1 for the complete list.

EC Description %S1 NSf2

5.1 Isomerases: racemases and epimerases 38 21
5.3 Isomerases: intramolecular oxidoreductases 26 34
4.1 Lyases: carbon–carbon lyases 26 57
2.5 Transferases: transferring alkyl or aryl groups, other than methyl

groups
23 31

3.4 Hydrolases: acting on peptide bonds (peptide hydrolases) 21 95
6.3 Ligases: forming carbon–nitrogen bonds 11 74
1.8 Oxidoreductases: acting on a sulfur group of donors 10 29
4.2 Lyases: carbon–oxygen lyases 10 79

1.10 Oxidoreductases: acting on diphenols and related substances as
donors

10 20

1.4 Oxidoreductases: acting on the CH-NH(2) group of donors 8.3 24

1 Percentage of superfamilies that are symmetric
2 The number of superfamilies

One of the most enriched subclasses for symmetry is that of the racemases and

epimerases (EC 5.1). While perfect symmetry would be unexpected in racemase active

sites based on their need to bind multiple sterioisomers equally well, pseudo-symmetric

scaffolds may be amenable to these types of function (Whitman et al., 1985). Many

racemases exhibit quaternary symmetry, in addition to the internal symmetry considered

for the census. Several oxidoreductase subclasses are significantly below average for

symmetry. Oxidoreductases often contain multiple cofactors for electron transport, which

may be less easily supported by symmetric protein scaffolds. Thus, certain enzymatic

reactions may support or preclude symmetry.

7.5 Discussion

To further investigate potential relationships between symmetry and protein

function, we analyzed a large number of proteins to ascertain their symmetry–function

relationships. Based on this analysis, we identified recurring types of symmetry–function
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relationships.

7.5.1 Symmetry around ligand-binding sites

(a)
(b) (c)

(d) (e)

Figure 7.5: Examples of proteins with symmetry and function relationships. (a) Glyox-
alase I contains a duplication around the nickel-binding active site (PDB ID: 3HDP). (b)
CheX protein contains two identical active sites (PDB ID: 1SQU). (c) CLC-ec1 chloride
carrier, where ions are thought to flow along its symmetric interface (PDB ID: 2FEE).
(d) A chorismate lyase-like protein with a two-fold symmetry that is not clearly related
to its little-understood function (PDB ID: 3DDV). (e) PTSIIA/GutA-like domain (PDB
ID: 2F9H). Both subdomains of the symmetry contain the same 8-amino-acid sequence
(residues 9–16, shown in purple and 67-74, shown in brown).

Symmetry around ligand-binding sites is the most basic symmetry–function

relationship. For example, glyoxalase I (Figure 7.5a) is a two-fold symmetric protein

with a metal-binding site at its center. (Bergdoll et al., 1998). Searching systematically



89

in our census and counting only one domain per superfamily, we found that 22% of

symmetric, ligand-containing domains contained a ligand within 5Å from the centroid of

the domain. Unaligned residues, such as insertions, were excluded from the calculation

of the centroid.

7.5.2 Function along symmetric interfaces

Many symmetric proteins have function at the interface between symmetry units,

the repeated structural units that describe the symmetry. This differs from symmetry

around a ligand–binding site, described above, in that the functional site can occur

anywhere along the axis of symmetry. An example of this relationship is the chloride

channel, in which the symmetric interface between the two symmetry units forms a

gate at the core of the channel (Dutzler et al., 2003). Interestingly, the chloride channel

is thought to be moderately rigid compared to other channels, such as potassium ion

channels or bacterial leucine transporters, both of which are activated by the rotation

of subunits relative to each other (Dutzler et al., 2003; Forrest and Rudnick, 2009).

Currently, it seems that only the movement of one side chain at the core of the gate is

responsible for letting Cl− ions pass. Using the same systematic, preliminary analysis we

applied to find ligands near the centroids of domains, we found that 63% of symmetric,

ligand-containing domains contained a ligand within 5Å from the axis of symmetry. This

number was 37% within a mere 1Å of the axis.

7.5.3 Duplication of ligand-binding sites

Duplication of ligand-binding sites is another common feature of symmetric

proteins. For example, it occurs in the chemotaxis protein CheC (Figure 7.5b), which is a

globular α/β protein that functions in bacterial chemotaxis and is involved in flagella

movement. The protein is two-fold symmetric. Each of the two units of symmetry

contains a dephosphorylation center comprising asparagine and glutamate residues. Gene

duplication followed by domain swapping has been proposed as an evolutionary process
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for the emergence of CheC (Park et al., 2004).

7.5.4 Unknown functions

Besides examples such as those listed above, there are many symmetric domains

with no obvious relationship between their symmetry and their function. The chorismate

lyase-like protein (Figure 7.5d) consists of a two-fold internally symmetric domain. Its

biologically active form is a dimer such as PhnF from E. coli (PDB ID: 2FA1) or YurK

from B. subtilis (PDB ID: 2IKK).

7.5.5 Conserved sequence motifs

In some cases we can identify conserved sequence motifs shared between sym-

metry units. The PTSIIA/GutA-like domain is an antiparallel β-barrel fold with highly

conserved two-fold symmetry. The overall sequence identity of this symmetry is 16%.

Little is known about this protein structure since it is a novel fold and does not have an

associated publication. Similarly, not much is known about its sequence, with Uniprot

only listing a manuscript that describes the larger genomic region covering the gene

encoding this structure. However, by investigating the symmetric alignment, we can

identify a motif that corresponds to equivalent residues in the structure and that is ob-

servable in the Pfam domain (PF03829) (Punta et al., 2012), which contains a conserved

[IV]XX[IV]GXX[VA] motif at the corresponding positions (Figure 7.5e). Sequence

homology between the subunits can be established using the protein sequence alone.

However, the analysis of symmetry reveals structural homology and shows that the

two types of homology correspond. Based on this correspondence, we postulate that

these residues are important functionally, and that they can serve as a guide for further

experimental analysis.



91

7.5.6 Relationship between tertiary and quaternary symmetry

We also suggest that there is a relationship between symmetry of proteins and

their biological assemblies. It has been speculated that this can be related to mono-

and oligomerization events during evolution that keep the biologically active assembly

essentially unmodified (Abraham et al., 2009). We can confirm this finding and identify

several domains with complex relationships between symmetry in the biological assembly

and internal symmetry in tertiary structure. An example of this is the DNA clamp. In

eukaryotes (PDB ID: 1VYM), it exists as a three-chain symmetric biological assembly.

Each chain consists of two protein domains, which in turn have two-fold symmetry

(Figure 7.2c). Thus, the overall assembly has six-fold pseudo-symmetry. The overall

symmetry is highly conserved in the bacterial DNA clamp, which has only two chains

in the biological assembly, but with each chain consisting of three internally symmetric

domains (PDB ID: 1MMI; Kelman and O’Donnell (1995)).

Another example with an interesting relationship between the biological assembly

and internal pseudo-symmetry is the vitamin B12 transporter BtuCD-F (PDB ID: 4FI3;

Korkhov et al. (2012)). It consists of three components: BtuC, BtuD, and BtuF. BtuC and

BtuD are present as a dimer and bound to BtuF, which is a monomer in the biological

assembly. However, BtuF has has internal pseudo-symmetry, giving the whole complex

pseudo-twofold symmetry. For a classification of symmetry in structural complexes of

proteins see (Levy et al., 2006).

7.5.7 Types of symmetry CE-Symm identifies

The modifications described in the Methods section enable CE-Symm to detect

rotational pseudo-symmetry within protein backbones. It can also detect non-rotational

repeats, such as linear repeats, helical proteins, and β-helices. Rotational symmetry can

be easily distinguished from other repeats using geometric criteria (see Materials and

Methods).

Because CE-Symm uses dynamic programming, it is limited to finding alignments
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that contain at most a single circular permutation. Types of symmetry that contain more

than one axis of symmetry (dihedral, tetrahedral, octahedral, or icosahedral) require

multiple changes in sequence topology to align. In such cases, CE-Symm typically

will identify one axis of rotation, though additional axes may be found by rerunning

CE-Symm on just one of the symmetric domains identified by the first run.

CE-Symm is also limited to returning the single highest-scoring alignment. This

may not correspond to the smallest rotational symmetry present in the protein. For

instance, in proteins with four-fold pseudo-symmetry, the alignment corresponding to the

180◦ rotation may score higher than the 90◦ or 270◦ alignments. This sometimes leads to

the protein being identified as containing two-fold pseudo-symmetry, which incompletely

describes the relationships within the protein. More broadly, accurate detection of order

of symmetry is a current limitation in CE-Symm which we expect to rectify in a future

version.

7.6 Conclusions

In this study we introduced a new method for determining pseudo-symmetry

in protein structure and used it to build a census of symmetry over domains in SCOP.

We also established a reliable benchmark set containing SCOP domains for which both

presence and type of symmetry was determined manually. We used this benchmark

set to compare our algorithm and previously published symmetry-detection algorithms

and demonstrated that our algorithm is more suitable than other methods for detecting

symmetry at high specificity. The benchmark set can be used to verify the accuracy of

results from other methods for symmetry detection or classification.

By systematically applying CE-Symm on many protein domains we found that

more proteins contain internal symmetry than previously estimated. The symmetry of

most domains lacks any sequence signal that CE-Symm readily detects. However, clear

sequence signals were found for certain folds, such as β-propellers (Chaudhuri et al.,

2008).
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We also found symmetry to be more associated with some types of enzymatic

activity than with others and suggest that certain enzymatic functions preclude or hinder

symmetry. We note that in several cases there is a clear relationship between protein

symmetry and function, which may explain why certain domains are symmetric.

The analysis of symmetry and pseudo-symmetry in protein structures leads to

a deeper understanding of protein function and evolution. Besides detecting pseudo-

symmetry in protein structures, CE-Symm allows also the detection of conserved se-

quence motifs in symmetry units. This can provide insight useful for further analysis of

a protein. This is particularly important if the function or active sites of the protein are

unknown.

7.7 Materials and Methods

7.7.1 CE-Symm Algorithm

The Combinatorial Extension (CE) algorithm operates by using a geometric

distance score to evaluate the local structural similarity between two proteins around

each residue (Shindyalov and Bourne, 1998). Dynamic programming is used to identify

high-scoring paths in the dynamic programming matrix, corresponding to regions of local

structural similarity. An iterative algorithm then heuristically combines local fragments

to identify a high-scoring global superposition of the two proteins.

Building on the CE concept, and to identify self-similar regions within a protein,

CE-Symm compares a protein structure to itself. It runs CE to compare two copies of the

input protein, with the following modifications:

1. Prohibit alignments near the diagonal. To prevent the algorithm from finding

trivial identity similarity, the distance score between residues less than δ residues

apart was defined as infinity, preventing the optimal path from traversing the region

near the diagonal in the dynamic programming matrix (black line in Figure 7.6).

δ = 8 performed well in practice.
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(a) (b)

Figure 7.6: Self-similarity in FGF-1, a three-fold symmetric protein. (a) 3D structure
of FGF-1 (PDB ID: 3JUT), colored to highlight the three analogous portions of the
protein. (b) Dot plot showing corresponding residues within the single chain. Three
alignments are possible, corresponding to rotations of 0◦ (black), 120◦ (magenta), and
240◦ (cyan)

2. Allow circular permutations. When comparing a protein to a rotated copy of

itself, the aligned sequence of the rotated copy will appear to be circularly permuted

relative to the original protein. This can be seen in Figure 7.6b as discontinuities

in the magenta and cyan alignments. To detect circular permutations we apply

an approach similar to Uliel et al. (1999). The dynamic programming matrix is

duplicated in one direction (see Figure 7.6) and CE is run normally. This allows the

full length of a symmetric protein to be aligned. The results are then post-processed

to map the alignment back onto the single protein. While it is possible with this

technique that single residues may be aligned twice, this is rare in practice. In

cases where it does occur, alignment length is used as a heuristic to choose which

residues to include in the final alignment.

7.7.2 Identifying symmetry order

CE-Symm identifies self-similar structures within a protein. Rotational symmetry

is the most abundant form of structural repeat, but linear repeats with high self-similarity

can also be found (concentric turns of β-helices, for example). To filter out such cases,
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we developed an algorithm to estimate the symmetry order of a self-alignment. Proteins

with order 1 (no rotational symmetry) were removed from the results.

The algorithm considers a self-alignment to be a function from the set of residues

in a protein to itself. We say that f (x) = y if CE-Symm aligned residues x and y. If

CE-Symm identified rotational symmetry within the protein, then the repeated function

composition f k(x) corresponds to repeated rotations. When the function is applied a

number of times equal to the order of the underlying CE-Symm alignment, k∗, then

f k∗(x)≈ x, corresponding to a rotation by 360◦. To identify the order of a self-alignment,

successively larger values of k are tried and the root mean squared deviation (RMSD)

found for each according to the formula:

RMSD =
√

∑
i

(
f k(xi)− xi

)2

The correct order is determined by identifying large decreases in RMSD. In

practice, a threshold of 40% decreases was found to correctly identify the order in most

cases. If no such drops are identified for k of 8 or less, an order of 1 (no rotational

symmetry) is assumed.

We also employed a secondary method to determine order based on the angle

between aligned subunits. The rotation axis and angle of rotation is first calculated based

on the procedure in Kim et al. (2010). We then compare the angle of rotation, θ, to the

ideal angles for proteins with low orders of rotational symmetry.

ε(θ) = min
2≤k≤8

∣∣∣∣2π

k
−θ

∣∣∣∣
If this angle is below a threshold, τ, we label the protein as symmetric with order

k. For this study we used a stringent threshold of τ = 1◦.

Initial tests found two methods to be complementary. Method 1 is more robust to

geometrical distortions, while method 2 is more robust to inaccuracies in the alignment.

Thus, proteins were classified as symmetric if either method determined the symmetry
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order to be greater than one.

7.7.3 Scoring schemes

Several alternate scoring schemes were considered, both for optimizing the

alignment and for detecting the presence of symmetry. By default, the CE scoring scheme

is used to judge the quality of alignments (Shindyalov and Bourne, 1998). This is a purely

structural scoring which attempts to maximize the alignment length while maintaining a

low RMSD. We also implemented an alternate score that incorporates sequence similarity

in addition to the structural alignment. Sequence similarity is quantified using the

structure-derived substitution matrix (Prlić et al., 2000), which is optimized for the

alignment of distantly related proteins. The relative weight of structure and sequence

scores can be adjusted with a configuration parameter.

A number of features were considered for classifying proteins as either rotation-

ally symmetric or asymmetric, including RMSD, TM-score, Z-score (as reported by CE),

alignment length, and sequence identity. Of these, the TM-score gave the best perfor-

mance on the ROC curves. A variant of TM-score that incorporates order information was

also evaluated, in which 1.0 was added to the TM-score if either method for determining

symmetry order determined an order of symmetry greater than 1. This ensures that

rotationally symmetric structures always have scores strictly greater than asymmetric

ones, reducing false positives especially from helical symmetry and translational repeats.

To classify the structure as symmetry or asymmetric, a threshold of ≥ 1.4 is applied to

the sum. This last method yielded the best performance and is recommended by the

authors.
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7.8 Supplemental Methods

7.8.1 Scoring Functions

To compare CE-Symm with competing algorithms, we also ran predictions by

SymD against the benchmark set. We wanted to compare the two algorithms using their

respective best scoring methods. Therefore, for SymD we considered TM-score as well

as T-score and Z-score, two scores reported by SymD. T-score is similar to TM-score

in the sense that both are essentially length-normalized RMSD. It is defined (Kim et al.,

2010) by:

T = ∑
i j:|i− j|>3

1
1+di j/d2

0

where d0 = 2.0Å is a normalization constant. The Z-score is then defined over a distribu-

tion of T-scores as:

Z =
T −T (N)

σ(N)

It is important to note that the moments T (N) and σ(N) are both functions of the structure

length N. We found TM-score to be the best scoring method for both SymD 1.3hw3 and

the unpublished update (version 1.5b). Interestingly, Z-score performed almost equally

well as TM-score for SymD 1.3hw3, but performed quite poorly for 1.5b. For SymD 1.5b,

we used the TM-score that version calculates; however 1.3hw3 does not output a TM-

score, so we recalculated this from the FASTA alignment. We note that, in 52 cases of the

1007 domains on the benchmark, there was a non-negligible (≥ 0.001) difference between

our recalculated TM-score and the TM-score that SymD 1.5b provided. Although we

were unable to determine a precise explanation for this discrepancy, we believe that our

recalculation correctly matches the definition by Zhang and Skolnick (2004). Of the

differing cases we examined, the alignment by SymD uses the trivial alignment (that is,

aligns residues to themselves) entirely or in part.
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7.8.2 Symmetry and order of symmetry for superfamilies

Because superfamilies can contain many domains, the determination of symmetry

for superfamilies is ambiguous.

We deemed a superfamily (or fold) to be symmetric if the mean TM-score over

the domains within that superfamily (or fold) was at least 0.4, and an order of symmetry

greater than 1 was identified in at least 50% of domains.

7.8.3 Symmetric folds benchmark

For each fold in Table 7.1, we generated a list of SCOP domains by taking the

intersection of SCOP 1.73 and ASTRAL40 1.73, as done in Kim et al. (2010). However,

we found 5 Ferredoxin-like domains and 2 4-helical bundles that Kim et al. (2010) did

not: d1aopa1, d1fxda , d2bv3a4, d1zhva1, d2fdna , d1okkd1, and d1st6a6.
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7.9 Supplemental Figures
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Figure 7.S1: Distribution of sequence similarity among symmetric (blue) and asym-
metric (red) SCOP superfamilies. The two curves are normalized to have the same
area.
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Figure 7.S2: Percentage of superfamilies that are symmetric by top-level Enzyme
Commission Numbers (Webb and IUBMB, 1992). For each EC number class, the
number of SCOP folds and the number of superfamilies are given in parenthesis. Note
that some superfamilies are included in more than one category.
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Figure 7.S3: TM-score among symmetric (solid blue) and asymmetric (dashed black)
domains in the benchmark set. Although the distribution among symmetric domains
is significantly right-shifted, an arbitrary result with TM-score of 0.5 is as likely to be
asymmetric as symmetric. The two curves are normalized to have the same area.
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Figure 7.S4: Receiver Operating Characteristic curves for CE-Symm and SymD. In
addition to the scoring functions shown in Figure 7.3, SymD performance was also
analyzed using the Z-score reported by the program. The thresholds used for determining
symmetry (see Table 7.1) are indicated with circles.
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7.10 Supplemental Tables

Table 7.S1: Second-level Enzyme Commission numbers and their percentage symmetry
among SCOP superfamilies.

EC Description % S1 NSf2

1.10
Oxidoreductases: acting on diphenols and related
substances as donors 10 20

1.13
Oxidoreductases: acting on single donors with
incorporation of molecular oxygen 33 15

1.14
Oxidoreductases: acting on paired donors, with
incorporation or reduction of molecular oxygen 16 32

1.18
Oxidoreductases: acting on iron–sulfur proteins as
donors 13 8

1.1
Oxidoreductases: acting on the CH-OH group of
donors 16 38

1.20
Oxidoreductases: acting on phosphorus or arsenic
in donors 25 4

1.21
Oxidoreductases: acting on x-H and y-H to form an
x-y bond 0 1

1.2
Oxidoreductases: acting on the aldehyde or oxo
group of donors 16 25

1.3
Oxidoreductases: acting on the CH-CH group of
donors 16 32

1.4
Oxidoreductases: acting on the CH-NH(2) group of
donors 8.3 24

1.5
Oxidoreductases: acting on the CH-NH group of
donors 18 28

1.7
Oxidoreductases: acting on other nitrogenous
compounds as donors 18 22

1.8
Oxidoreductases: acting on a sulfur group of
donors 10 29

2.10
Transferases: transferring molybdenum- or tungsten
-containing groups 33 3

2.2
Transferases: transferring aldehyde or ketone
residues 20 5

2.5
Transferases: transferring alkyl or aryl groups,
other than methyl groups 23 31

continued . . .
1 Percentage of superfamilies that are symmetric
2 The number of superfamilies
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Table 7.S1: (Continued) Second-level Enzyme Commission numbers and their percent-
age symmetry among SCOP superfamilies.

EC Description % S1 NSf2

2.7
Transferases: transferring phosphorous-containing
groups 17 170

2.8
Transferases: transferring sulfur-containing
groups 6.3 16

2.9
Transferases: transferring selenium-containing
groups 0 1

3.4
Hydrolases: acting on peptide bonds (peptide
hydrolases) 21 95

3.5
Hydrolases: acting on carbon–nitrogen bonds, other
than peptide bonds 12 60

1.11 Oxidoreductases: acting on a peroxide as acceptor 6.3 16

1.12 Oxidoreductases: acting on hydrogen as donor 13 8

1.15 Oxidoreductases: acting on superoxide as acceptor 40 5

1.16 Oxidoreductases: oxidizing metal ions 0 3

1.17 Oxidoreductases: acting on CH or CH(2) groups 19 16

1.23 Oxidoreductases: reducing C-O-C group as acceptor 100 1

1.6 Oxidoreductases: acting on NADH or NADPH 16 25

1.9 Oxidoreductases: acting on a heme group of donors 6.3 16

1.97 Oxidoreductases: other oxidoreductases 40 5

2.1 Transferases: transferring one-carbon groups 13 53

2.3 Transferases: acyltransferases 17 53

2.4 Transferases: glycosyltransferases 16 45

2.6 Transferases: transferring nitrogenous groups 22 9

3.1 Hydrolases: acting on ester bonds 14 142

3.11 Hydrolases: acting on carbon–phosphorus bonds 33 3

3.13 Hydrolases: acting on carbon-sulfur bonds 100 1

3.2 Hydrolases: glycosylases 20 56

continued . . .
1 Percentage of superfamilies that are symmetric
2 The number of superfamilies
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Table 7.S1: (Continued) Second-level Enzyme Commission numbers and their percent-
age symmetry among SCOP superfamilies.

EC Description % S1 NSf2

3.3 Hydrolases: acting on ether bonds 11 9

3.6 Hydrolases: acting on acid anhydrides 19 99

3.7 Hydrolases: acting on carbon–carbon bonds 0 5

3.8 Hydrolases: acting on halide bonds 0 3

4.1 Lyases: carbon–carbon lyases 26 57

4.2 Lyases: carbon–oxygen lyases 10 79

4.3 Lyases: carbon–nitrogen lyases 18 11

4.4 Lyases: carbon–sulfur lyases 11 9

4.5 Lyases: carbon–halide lyases 33 3

4.6 Lyases: phosphorus–oxygen lyases 33 9

4.99 Lyases: other lyases 33 6

5.1 Isomerases: racemases and epimerases 38 21

5.2 Isomerases: cis-trans-isomerases 17 12

5.3 Isomerases: intramolecular oxidoreductases 26 34

5.4 Isomerases: intramolecular transferases (mutases) 21 28

5.5 Isomerases: intramolecular lyases 20 10

5.99 Isomerases: other isomerases 17 12

6.1 Ligases: forming carbon–oxygen bonds 17 24

6.2 Ligases: forming carbon-sulfur bonds 50 4

6.3 Ligases: forming carbon–nitrogen bonds 11 74

6.4 Ligases: forming carbon–carbon bonds 0 5

6.5 Ligases: forming phosphoric ester bonds 33 9

6.6 Ligases: forming nitrogen–metal bonds 0 1
1 Percentage of superfamilies that are symmetric
2 The number of superfamilies
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Table 7.S2: Percentages of superfamilies that are symmetric among folds with sig-
nificant symmetry. Specifically, folds with at least 30% symmetry, excluding those
containing with fewer than 10 domains. % Symm is calculated by normalizing by the
number of domains per superfamily.

Fold % Symm No. Superfamilies No. Domains

a 18 507 24891

a.102 67 6 536

a.124 100 1 27

a.126 100 1 334

a.129 100 1 201

a.132 100 1 214

a.139 100 1 12

a.174 100 1 22

a.194 100 1 18

a.2 60 20 562

a.213 100 1 16

a.24 57 28 681

a.246 33 3 35

a.25 50 6 2021

a.26 100 1 271

a.28 33 3 145

a.281 100 1 12

a.29 33 15 480

a.30 62 8 65

a.40 67 3 90

a.41 100 1 48

a.42 100 1 90

a.56 100 1 59

continued . . .
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Table 7.S2: (Continued) Percentages of superfamilies that are symmetric among folds
with significant symmetry. Specifically, folds with at least 30% symmetry, excluding
those containing with fewer than 10 domains. % Symm is calculated by normalizing by
the number of domains per superfamily.

Fold % Symm No. Superfamilies No. Domains

a.65 100 1 87

a.66 100 1 69

a.7 31 16 272

a.77 100 1 57

b 24 354 39497

b.1 39 28 11419

b.11 100 1 116

b.111 100 1 12

b.114 100 1 10

b.12 100 1 58

b.123 100 1 25

b.129 50 2 32

b.138 100 1 24

b.15 100 1 72

b.159 50 2 59

b.2 30 10 667

b.23 67 3 38

b.42 100 8 580

b.44 100 2 90

b.45 33 3 174

b.49 67 3 207

b.52 50 2 173

b.58 100 1 133

continued . . .
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Table 7.S2: (Continued) Percentages of superfamilies that are symmetric among folds
with significant symmetry. Specifically, folds with at least 30% symmetry, excluding
those containing with fewer than 10 domains. % Symm is calculated by normalizing by
the number of domains per superfamily.

Fold % Symm No. Superfamilies No. Domains

b.61 50 8 461

b.66 100 1 21

b.67 67 3 103

b.68 82 11 535

b.69 50 14 375

b.70 33 3 305

b.77 100 3 130

b.78 100 1 65

b.8 100 1 78

b.86 100 1 16

b.9 100 1 26

c 17 244 46576

c.1 36 33 7442

c.121 100 1 67

c.129 100 1 29

c.135 100 1 24

c.2 100 1 4088

c.25 100 1 154

c.26 33 3 787

c.32 100 1 131

c.34 100 1 42

c.44 50 2 75

c.54 100 1 33

continued . . .
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Table 7.S2: (Continued) Percentages of superfamilies that are symmetric among folds
with significant symmetry. Specifically, folds with at least 30% symmetry, excluding
those containing with fewer than 10 domains. % Symm is calculated by normalizing by
the number of domains per superfamily.

Fold % Symm No. Superfamilies No. Domains

c.57 100 1 119

c.59 100 1 32

c.65 100 1 80

c.77 100 1 302

c.92 67 3 247

c.93 100 1 233

d 14 551 39793

d.127 100 1 143

d.131 100 1 254

d.137 100 1 31

d.151 100 1 84

d.152 100 1 10

d.156 100 1 20

d.160 100 1 46

d.18 100 1 42

d.19 100 1 802

d.190 100 1 51

d.215 100 1 11

d.240 100 1 97

d.32 100 1 389

d.323 100 1 29

d.37 100 1 109

d.52 30 10 150

continued . . .
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Table 7.S2: (Continued) Percentages of superfamilies that are symmetric among folds
with significant symmetry. Specifically, folds with at least 30% symmetry, excluding
those containing with fewer than 10 domains. % Symm is calculated by normalizing by
the number of domains per superfamily.

Fold % Symm No. Superfamilies No. Domains

d.58 58 59 3765

d.60 100 1 16

d.61 100 1 30

d.64 50 2 16

d.74 80 5 237

d.76 50 2 11

d.80 100 1 356

d.95 50 2 95

e 4.6 66 3827

e.23 100 1 80

f 24 109 2848

f.14 100 1 88

f.17 80 5 138

f.19 100 1 42

f.20 100 1 54

f.24 100 1 89

f.28 100 1 43

f.34 100 1 14

f.4 50 6 207

f.44 100 1 19

f.54 100 1 29

f.55 100 1 10

all 18 1831 157432
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Table 7.S3: Errors in order detection. Each domain in the benchmark is binned accord-
ing to its manually determined order (rows) and CE-Symm-determined order (columns).

Reported order
1 2 3 4 5 6 7 8

Tr
ue

or
de

r

1 37 21 0 3 0 1 0 1
2 9 134 1 5 1 0 0 0
3 1 0 10 0 0 0 0 0
4 0 1 0 2 0 0 0 0
5 0 0 0 0 3 0 0 0
6 2 1 4 0 0 2 0 0
7 0 0 0 0 0 0 9 0
8 2 3 0 8 0 0 0 7

7.11 Supplemental Files

File 7.1: Types of symmetry for domains in the benchmark, manually annotated.

File 7.2: A table of predictions by CE-Symm and SymD on the benchmark set.

File 7.3: A compressed XML file of CE-Symm results over all domains in SCOP 2.03,
restricted to classes a–f. The full alignment, alignment scores, and the axis of symmetry
are included for each result.
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Chapter 8

Order Detection Methods in CE-Symm

8.1 Introduction

One of the most interesting properties of internally symmetric proteins is their

order of symmetry, but this is a property which has been hard to automatically determine.

CE-Symm is a structure alignment program, and outputs a single alignment between a

symmetric protein and a rotated copy of itself. However, structural biologists tend to

think of symmetric proteins as a multiple alignment between the repeated substructures.

Thus, we have tried to develop tools to reflect this view of symmetric proteins.

One of the difficulties of determining the order comes from inconsistencies in how

humans would assign it. Assuming an evolutionary mechanism for internal symmetry,

the ideal order of an internally symmetric protein would reflect a series of duplication

and rearrangement events that led from the primordial set of protodomains to the folds

observed today. However, such a model ignores cases of convergent substructures, and

even in homologous cases the alignment between symmetric repeats is rarely clear or

unambiguous. Thus we are forced to rely on structural similarity between substructures,

which leads to a difficulty in choosing thresholds for similarity. For instance, TIM barrels

contain 8 βα repeats, so they are often considered to have C8 symmetry. However,

structural distortions can lead to significantly better alignments at some rotation angles
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than others, which can make the correct order ambiguous (see fig. 8.1). It has been

suggested that the ancestral motif for TIM barrels may be a (βα)2 subunit that underwent

four-fold duplication, which would imply a C4 symmetry rather than C8 (Nagano et al.,

2002).

Figure 8.1: Structural distortion in the TIM barrel protein, Hevamine [PDB:2HVM].
The 1/2 turn rotation has significantly lower RMSD than the 1/4 or 1/8 turn rotations,
leading one to potentially favor a C2 classification over the C8.

Given these difficulties, several approaches to order detection have been devel-

oped. These can be grouped into three broad categories: those based on the rotation

angle, those based on the rotation axis, and those based on the alignment itself.

8.2 Rotation Angle

Perhaps the most straightforward method for detecting the order is to measure

the rotation angle for the alignment. The order is then chosen based on the error between

the observed angle and the ideal rotation angles for a given order. The angular error for

each order as a function of the observed angle is shown in Figure 8.2. Angles can then be

partitioned into discrete order determinations when the error to an ideal angle falls below

some threshold.



121

Figure 8.2: Distance from a given angle to the closest ideal angle for orders 1–8. The
black horizontal line indicates an error of 1/112 of a turn (.056 radians), or half the
difference in angle between a C7 and C8 rotation. Color swatches below the axis give
order predictions for this error rate; uncolored regions default to C1 order.

Note that the original CE-Symm publication (Chapter 7) used an incorrect equa-

tion for determining the angular error. The correct equation for observed angle θ and

order k is a triangle wave with period 1/k:

δ(θ,k) =
τ

k

∣∣∣∣∣∣∣∣θk
τ
− 1

2

∣∣∣∣ mod 1− 1
2

∣∣∣∣ (8.1)

The difficulty with this scheme is that high angular accuracy is required to

differentiate between high orders. For instance, rotations by 1/8 and 1/7 turns differ by

only 0.056 radians.1 Significant CE-Symm alignments of symmetric proteins have an

1Angles are given in turns or radians, and may use τ = 2π for ease of interconversion.
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significance.

average error of 0.05 radians (see fig. 8.3), so even considering only angles up to 8 pushes

the bounds of feasibility. While this could potentially be minimized by optimizing which

angular intervals are assigned to each order, it can never be fully obviated. One such

attempt is the normalized scheme in Figure 8.4, which omits the initial τ/k term from

equation 8.1. This scheme favors lower orders (following the general trend observed in

internally symmetric proteins in the PDB) by broadening the angles assigned to lower

orders.

In addition to practical limitations from errors in the CE-Symm superposition,

rotation angle methods are also liited to finding the order of the CE-Symm alignment,

and are unable to find higher orders that might be compatible with the given alignment.
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8.3 Rotation Axis

While determining the order for a CE-Symm alignment is difficult, the rotation

axis can be determined fairly accurately for significant alignments. The rotation axis

methods work by rotating the protein along the alignment and comparing the structural

similarity at each angle.

While it is possible to efficiently find an optimal pairwise alignment between

proteins for a given orientation (Poleksic, 2011), we instead opt for a simpler alignment-

free heuristic. The coordinates of α-carbon atoms of the protein are first transformed

by rotating them around the axis by the desired angle, θ. For every transformed atom,

the nearest atom in the original protein is identified, and vice versa. This does not form

a pairwise alignment, since an atom may be the closest partner to several transformed

atoms. The average distance over all Cα atom in both the original and transformed
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structures is used, which provides an estimate of the goodness of fit between the original

and the rotated structure.
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Figure 8.5: Cusp function. Graph of equation 8.3 for orders 1–4, with a perfect triangle
wave for comparison.

In symmetric structures, the average distance is a periodic function of the rotation

angle. A number of methods were used to fit analytical functions to the calculated

distances and determine the order. Initial experiments used the “harmonic” function for a

given order k:

fk (θ) = sin2
(

kθ

2

)
(8.2)

Later, the “cusp” function was used. It is derived from the expected distance

between a perfectly symmetric point as it is rotated around the axis of symmetry. For
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higher orders, the cusp function converges to a triangle wave (Figure 8.5).

fk (θ) = min
i∈N

√
2−2cos

(
θ+

iτ
k

)
.

=

√
2−2cos

(
τ

k

∣∣∣∣∣∣∣∣kθ

τ
− 1

2

∣∣∣∣ mod 1− 1
2

∣∣∣∣) (8.3)

To determine the order, the observed data were fit to each of the orders under

consideration (typically k ∈ {1, . . . ,8}) using linear regression. The order with the lowest

sum squared error to the observed data were chosen (Figure 8.7).

The PeakCounting method used a LOESS fit to smooth data, followed by a count

of the number of local maxima to determine the order.
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8.4 Alignment Map

Rather than relying on geometric properties of the superposition, the third method

for determining the order relies only on the alignment itself. This method is described in

detail in Myers-Turnbull et al. (2014).

The algorithm considers a self-alignment to be a function from the set of residues

in a protein to itself. We say that f (x) = y if CE-Symm aligned residues x and y. If

CE-Symm identified rotational symmetry within the protein, then the repeated function

composition f k(x) corresponds to repeated rotations. When the function is applied a

number of times equal to the order of the underlying CE-Symm alignment, k∗, then

f k∗(x) ≈ x, corresponding to a rotation by one turn. To identify the order of a self-

alignment, we try successively larger values of k and find the root-mean-square deviation

(RMSD) found for each according to the formula:

RMSD =
√

∑
i

(
f k (xi)− xi

)2

The correct order is determined by identifying large decreases in RMSD. In

practice, a threshold of 40% decrease was found to correctly identify the order in most

cases. If no such drops are identified for k of 8 or less, an order of 1 (no rotational

symmetry) is assumed.

8.4.1 Multipass Map

One possible way to improve the alignment map method would be to generalize

it to include alignments for multiple rotation angles. The existing method takes the single

top alignment and uses that to generate the map. By preventing CE-Symm from finding

previous alignments via blacking out the relevant portions of the dynamic programming

matrix, it is possible for CE-Symm to find slightly lower-scoring paths corresponding

to other valid rotations (see Figure 8.8). This does come at the cost of significant

computational overhead, since CE-Symm must be run a number of times proportionate
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(a) (b) (c)

Figure 8.8: Sequential passes of CE-Symm on the C3 protein interleukin-1 beta
[PDB:1ITB.A]. (a) In the first pass, only the diagonal is disallowed, yielding the top-
scoring alignment. (b) Later passes disallow earlier alignments, forcing CE-Symm to
find new rotations. (c) After alignments for all rotations have been identified, only
low-scoring paths are available, leading to very low alignment scores.

to the order of the structure.

This multipass mode of executing CE-Symm provides a heuristic method for

order detection. In proteins with clear symmetry, the alignments corresponding to all

valid rotations give scores above the standard threshold of TM-Score≥ 0.4. However,

after all valid alignments have been found and forbidden, further attempts to find an

alignment result in erroneous alignments with low scores (Figure 8.8c). Thus, the order

can in some cases be detected due to the precipitous drop in score for the pass following

the correct order (Figure 8.9a). However, for cases where the repeated subunits have

significant divergence, this method becomes less reliable. This is particularly noticeable

for proteins with high order (Figure 8.9a). Thus, the additional computational cost may

not be justified compared to other methods for order detection.

Together, the multipass alignments contain redundant information about the pair-

wise relationships between the repeats of the internally symmetric protein. In principle,

this information should be usable to increase the accuracy of the alignment map method,

since correctly aligned residues will tend to reinforce relative to incorrectly aligned

residues. However, the alignment map technique has not yet been generalized from the

simple graphs from single alignments to the hypergraphs for high-order proteins. For

difficult cases such as in Figure 8.10, these hypergraphs can consist of well connected
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(a) (b)

Figure 8.9: Alignment scores over multiple passes. The alignment scores for selected
(a) C6 and (b) C8 SCOP domains are shown. In most cases, the scores drop below
the TM-Score≥ 0.4 threshold after the pass corresponding to the correct order. Cases
with inconsistent scores such as SCOP:d1flgb (lower yellow line in (b)) typically have
significant structural divergence between repeats.

(a)

17

132128

18 19

133

173

87

112
65

1

223

198

199

88

174

150

362

66

113

67

37

3

114

151

175

200

89

149
196 222

0

35

64

195

172

197

111

159

11

14

48

122

97

135

13

16

98

184

50

53

126

127

209

76

163

55

25
212

213

101

77

186

102

139

100

22

211

185

136

54

24

138

162

123

15

49

160

124

12

46

210

23

137

99

161

187

56

188
165

214

140

164

141

26
78

103

21

52

208

51

125

183

75

158

207

182

74

45

44

121

47

134

20

10

206

9

96

221 171

194

148

34

63

86

110

146

84

144

192

30

108

27

57
80

142

79

104

60

169

32

190

82

61

168

219

193

33

62

170

85

147

220

109

81

143

105

29

59

167

217

106

215

28

189

58

166

216

83

31

218

191

145107

177

5

153

116

39

202

69

91

176

38

115

152

201

68

4

90

157

43

181

120

73 95

8

72 180

205

119

156

42

94

71

179

204

118

155

41

7

93

203

178

154

70

6

117

40

92

None

(b)

Figure 8.10: Graph of aligned residues from multiple passes of PDB:1VZW. (a)
Structure colored by subunit. (b) Graph showing residues of the protein, roughly
colored by subunit. Edges are drawn between residues that align in any of the eight
rotations. An ideal alignment would contain disjoint cliques of eight vertices each.
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modules with sparse interconnections due to incorrect assignments. Additional algo-

rithmic development is required to optimally decompose such networks into cliques of

consistent size.

8.5 Comparison of Order Detection Methods

The CE-Symm benchmark includes information about the order of symmetry over

1007 proteins (Myers-Turnbull et al., 2014). Proteins were selected uniformly at random

from SCOP superfamilies, so this benchmark provides a broad, non-redundant sample of

protein space, including many cases with significant divergence among proteins. Since

order detection occurs as a step after the generation of the initial CE-Symm alignment

and after determination of whether the protein is symmetric, the benchmark was filtered

to 197 cases with closed symmetry (cyclic or dihedral symmetry) and where the initial

alignment passed the scoring threshold of TM-Score≥ 0.4.

An additional benchmark consisting of all 1098 β-propeller proteins from SCOPe

2.0.1 was generated (Fox et al., 2014). β-propellers range from C4 to C8 symmetry.

They tend to be “easy” cases for symmetry detection due to the high degree of similarity

between structural repeats. The inclusion of all SCOP domains in this benchmark does

lead to a high degree of redundancy, which could potentially increase the noise in the

results. Thus the balanced CE-Symm benchmark should be considered more trustworthy.

Figure 8.11 shows the performance of various methods on the two benchmarks.

Two metrics are considered for comparison. The accuracy is the more stringent metric,

and is defined as the percentage of structures where the correct order is found. To account

for cases such as TIM barrels where some ambiguity exists in the correct order, the lenient

accuracy was defined as the percentage of structures where either the correct order or

a non-trivial divisor thereof is found. Under this metric, detecting 2-fold symmetry in

a protein annotated as C4, for example, would still be counted as a correct annotation.

Our goal is to create an order detection algorithm with good accuracy, but analyzing the

lenient accuracy can highlight reasons for poor performance.
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Figure 8.11: Comparison of the various order detection algorithms. Performance was
assessed for symmetric, significant results from running CE-Symm on (left) symmetric
structures from the CE-Symm benchmark, and (right) β-propeller structures annotated
in SCOPe 2.01. Two metrics of accuracy are used: (top) accuracy, the percentage of
structures reporting the correct order, and (bottom) lenient accuracy, the percentage of
structures reporting a divisor of the correct order.
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Methods based on the angle or rotation had the best overall performance. The

angle method had the best performance when the order with minimal error from the

ideal angle was used. Requiring that the observed angle be within a narrow window of

the ideal angle only decreased the performance, even though most alignments do fall

near the ideal. The normalization scheme from Figure 8.4 did not significantly impact

the results. The angle methods had better performance on the CE-Symm benchmark

than on the β-propellers. This may be explained by much higher average order of the

propeller proteins. Since the angle order detector is limited to detecting the order of the

top-scoring alignment, in a significant number of cases a divisor of the correct order is

returned. This can only happen in high-order proteins with multiple factors, so it is more

likely to occur in the propeller benchmark. This type of error is reflected in the very high

lenient accuracy of all the angle methods, particularly on the propeller dataset.

The rotation axis methods performed similarly, with the best accuracy coming

from fitting the cusp function and choosing the order with the highest amplitude. Mea-

suring lenient accuracy gave little to no performance increase. This is expected since

the methods depend on information from the full range of rotation, and are thus less

likely to erroneously choose a particular sub-order at the expense of the global order.

Instead, errors typically arise from noise in the distance function being fit. Errors in

the placement of the rotation axis and deviations from the perfectly symmetric arrange-

ment of repeats can mask the periodic signal in the average distance (e.g. Figure 8.7).

Incorrectly assigned orders are thus not strongly biased towards divisors of the true

order. The PeakCounting method was particularly prone to such errors, and often found

one more or fewer peaks than should have been present according to the correct order.

While optimizing the smoothing parameter in the LOESS regression could potentially

improve the performance, the extreme difference in performance between the CE-Symm

benchmark and the propeller dataset indicates that PeakCounting is unlikely to perform

well on difficult cases with significant deviation from perfect symmetry.

It was hoped that the high lenient accuracy of the angle method could be combined

with the insensitivity of the rotation axis method to the original alignment. This resulted
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in a hybrid method, where a set of possible orders was determined based on the angle,

followed by rotation axis analysis to determine the best scoring multiple of the base order.

This was found to work well on the propeller benchmark, but failed on the unbiased

benchmark. Inspection showed that this procedure generally overestimated the order.

The alignment map method, which was the primary method used in the original

CE-Symm publication, performed well, with similar results to the angle-based method.

The map is also limited to finding the order of the top-scoring alignment, so it has very

high lenient accuracy. One additional benefit of the map method is that it is closely

related to the algorithm for refining pairwise CE-Symm refinements into a consistent

multiple alignment, so the order returned is particularly useful when such refinement is

desired.

Surprisingly, the preliminary multipass method did not perform better than the

other methods, despite requiring significantly more computation time. This appears to

be due to significant noise in the scores for latter alignments for proteins with lower

similarity between repeats. Comparing the performance using lenient accuracy showed

that the error was not significantly biased to divisors of the true order. However, it is

likely that with additional algorithmic development the additional information available

to the multipass method could be used to create an improved order detector.

8.6 Conclusion

Determining the order of internal symmetry for a protein is an important goal for

automated internal symmetry detection. Additionally, correctly determining this order is

a prerequisite for the automatic decomposition of proteins into repeats. Thus, significant

effort has been expended attempting to improve this step.

The existing alignment map method for order detection was among the best

performing methods. The simple angle-based method also performed well. However,

both these methods suffer from bias towards a divisor of the correct order because of

their reliance on the initial pairwise CE-Symm alignment.
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The rotation axis method was less sensitive to this bias, but had lower overall

accuracy. Attempts to combine the methods have so far not resulted in a method with

comparable accuracy to manual inspection. Future algorithmic advances for hybrid

methods or novel multipass methods may lead to further improvements.
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Chapter 9

Conclusion

The various structural alignment algorithms developed here form a toolkit for

analyzing protein fold space. These tools are useful both for detailed comparison of

individual cases and for automated, systematic analysis of PDB-wide properties. Corre-

lating structural similarity with protein function provides new insights into evolutionary

pressures, physical folding constraints, and functional mechanisms.

The all-vs-all structural comparison network shows that fold space is highly

connected at fold-level similarity thresholds, but that a more discrete nature appears

at more stringent levels of similarity. This is consistent with the growing consensus

that protein fold space has both continuous and discrete attributes. Mapping functional

attributes such as transporter classifications shows how functions are conserved in a given

fold. Identifying outliers where the function or structure is not conserved are particularly

interesting, as they highlight areas of divergence and evolution. This could also be used

to identify incorrect annotations for families with highly conserved functions.

Applying CE-Symm systematically shows that internal symmetry is quite com-

mon among proteins. However, the reasons for this are still unclear. Internal symmetry

is tied to the function of many proteins, including binding ligands near the active site

and increasing cooperativity between subunits. It may also have benefits for folding and

thermostability, which could cause evolution to converge on symmetric structures.

136
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Running CE-CP systematically for the whole PDB proved to be computationally

infeasible. However, previous searches for circularly permuted protein pairs have found

thousands (Lo et al., 2009), although this may be overinflated to to the presence of

internal symmetry. Given additional resources, the combination of CE-CP and CE-Symm

would be able to distinguish true circular permutations from other types of structural

repeats.

(a) (b)

Figure 9.1: Symmetry in the vitamin C transporter UlaA (Luo et al., 2015). (a)
Overview of the dimer complex along the two-fold crystallographic axis. The left chain
is colored to show internal pseudosymmetry between the V-motifs (dark green; dark
red) and the core motifs (light green; orange). (b) CE-Symm alignment of one chain,
shown from the dimerization interface along the 2-fold pseudosymmetry axis.

For individual proteins, deeper analysis is possible. Many membrane proteins

exhibit internal and quaternary symmetry (Forrest, 2015). The inherent polarity imposed

by the membrane may make symmetry more favorable by limiting the degrees of freedom

for association. UlaA transports vitamin C in E. coli as part of the phosphoenolpyruvate-

dependent phosphotransferase system (PTS). It is a symmetric dimer with the axis of

symmetry perpendicular to the membrane (Figure 9.1a). However, each chain consists of

an internal duplication of five transmembrane segments (TMS). The duplication of an odd

number of helices leads to an inversion of the second repeat, giving a pseudosymmetry

axis parallel to the membrane. While the full mechanism of transport in UlaA is not
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well understood, it is interesting to speculate about how the ancestral protein might have

functioned immediately following the five TMS duplication. This hypothetical ancestor

would be symmetric across the membrane, suggesting that it would function as a passive

transporter. Furthermore, the mechanism of transport would also be symmetric across

the membrane. The halves of UlaA have diverged significantly (16% sequence identity;

49% similarity) and the existing structure has noticeable asymmetry in the position

of the dimerization V-motif (gray portion of Figure 9.1b). However, without further

experimental evidence a reasonable hypothesis for the mechanism of action could be to

assume that the inward and outward conformations of the protein are similar, reflecting

the vestiges of the original symmetry. This hypothesis would mean that the mechanism of

transport involves the movement of the V-motifs across the ascorbic acid binding site to

expose the ligand to the other side of the membrane. In the absence of a structure for the

inner conformation, evidence for this hypothesis could even be gained computationally

by building a homology modelling for UlaA using the CE-Symm alignment to invert the

orientation of the protein in the membrane and analyzing the stability of the resulting

structure.

(a) (b) (c)

Figure 9.2: Symmetric repeats in DNA clamps. (a) A dimeric bacterial clamp, DNA
polymerase IIβ from E. coli [PDB:1MMI]. (b) A trimeric eukaryotic clamp, proliferating
cell nuclear antigen from H. sapiens [PDB:1VYM]. (c) The trimer structure, colored to
show the 12 structural repeats. Lines show the two-fold pseudosymmetry axes within
each domain.

The orthogonal quaternary and pseudosymmetric axes in UlaA represent one
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area of CE-Symm where manual intervention is still required. Such mixed quaternary

and internal symmetry is common and can come about in intermediate stages between

oligomeric and fully internally symmetric structures, or where duplications proceed

in different ways in several species. One example of this phenomenon are the DNA

clamps. Clamps consist of six copies of processivity fold that assemble in a ring around

a DNA strand during replication. However, bacterial clamps consist of dimers with

three domains per chain, while eukaryotic clamps are trimers with two domains per

chain (Sippl and Wiederstein, 2012). Furthermore, each domain contains a twofold

pseudosymmetry axis perpendicular to the DNA strand, for a total of 12 structural repeats

arranged with D2 symmetry (Figure 9.2). The overall structure and function of DNA

clamps is preserved across the full tree of life, but the exact order of duplications in

prokaryotes and eukaryotes differs. Automated structural comparisons are as yet unable

to detect such multi-level similarities. The ability to detect multiple symmetry axes and

synthesis them into a picture of how biological assemblies evolve would be extremely

powerful. CE-Symm provides a first step towards that goal.

Questions about the role of internal symmetry in the evolution of new protein folds

remain. Although CE-Symm can detect internal symmetry with high accuracy, comparing

repeats in proteins with different symmetry can best be done using single representatives

of repeats. This is currently the focus of a project by Aleix Lafita to convert CE-Symm

results into multiple structural alignments between the repeated subunits. His approach

is based on the refinement procedure used by the alignment map order detector strategy,

followed by optimization of the multiple alignment. Using this procedure, representative

symmetric repeats could be compared using a similar methodology to the FATCAT

comparison. With this, CE-Symm would be able to track changes in quaternary structure

and internal symmetry together and allow quantification of the prevalence of duplications

and rearrangements in the evolution of new folds.

Decomposing proteins into structural domains was essential for capturing the

structural similarities between proteins, since domains are frequently reused between

proteins as functional building blocks.(Campbell and Downing, 1994). In the same
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way, the tools in this thesis could be used to identify the fundamental protodomains

that evolution has reused in the evolution of folds. As a more distant goal, the repeats

identified by CE-Symm and CE-CP could be combined with tools and concepts from

phylogenetics to gain an even better understanding of the events that led to the current,

wonderful variety of folds and symmetries found in the Protein Data Bank.
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