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ABSTRACT

The concentrations of Sr, Mg and other elements in calcite are widely used to infer the

conditions of mineral growth. However, such inferences are dependent on the mechanisms

that govern the incorporation of minor constituents into the calcite lattice during mineral

growth. A particularly confusing observation is that both Sr and Mg are readily incorpo-

rated into growing calcite crystals at low concentration but inhibit calcite growth at higher

concentrations. Here we show that the growth rate dependence of Sr and Mg incorporation

into calcite, as well the inhibitory effects on calcite growth, can be predicted with an ion-

by-ion crystal growth model where ion attachment is confined to kink sites on the crystal

surface.

The exchange of ions between active growth (kink) sites on the mineral surface and

aqueous solution governs both the efficiency of incorporation of minor constituents and the

kinetics of mineral precipitation. Ions such as Sr and Mg in calcite, that are not stoichio-

metric constituents, may attach to kink sites and impede crystal growth by either block-

ing propagation of the kink (kink blocking), or if incorporated into the growing mineral,

straining the local crystal lattice, and hence increasing the mineral solubility (incorporation

inhibition). Here we investigate the effects of including these growth inhibition mecha-

nisms into a microscopic model for crystal growth based on kink creation, propagation and

collision (CPC) theory. This model, while also accounting for the efficiency of impurity

ion incorporation, predicts that kink blocking causes an exponential decrease in mineral

growth rate with increasing impurity concentration, while incorporation inhibition results

in more complicated functional forms of the growth rate effect depending on the thermo-

dynamics of the solid solution. Applying this model to existing data on the partitioning of

strontium and magnesium into calcite and the simultaneous effects on growth kinetics and

mineral composition, we find that strontium uptake inhibits growth by enhancing mineral

solubility while magnesium inhibits growth primarily by kink blocking. Our model should

be widely applicable to understanding the impurity content of a large range of sparingly

soluble minerals that form by precipitation from aqueous solutions.
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1. INTRODUCTION

Impurity ions and ionic molecules are widely known to inhibit the growth and alter

the composition of carbonate minerals precipitating from aqueous solution (Meyer, 1984;

Burton and Walter, 1990; Cabrera and Vermilyea, 1958; Davis et al., 2000b; Reddy and

Hoch, 2000; Wasylenki et al., 2005b,a; Lin and Singer, 2006). Use of trace element sig-

natures for paleoclimate reconstruction, retardation of contaminant transport (Lukashev,

1993), and preventing pipe scaling requires an understanding of controls on impurity in-

corporation during carbonate mineral growth. Despite the widespread application of trace

element signatures, the nonlinear effects of certain trace elements, such as strontium, on cal-

cite precipitation rate have largely eluded explanation (Wasylenki et al., 2005b). No single

theory has described growth inhibition by both the kink pinning and incorporation inhibi-

tion mechanisms simultaneously. Although significant advances have been made in atomic-

scale understanding of growth (Zhang and Nancollas, 1990; Teng et al., 1998; Zhang and

Nancollas, 1998; Teng et al., 1999, 2000), rate equation and trace element partitioning mod-

els are still empirically-based and relatively crude. While most rate equations ignore the

feedbacks between ion incorporation and mineral growth kinetics, impurity uptake affects

subsequent growth kinetics and should therefore be treated explicitly.

Precipitation of calcite from natural aqueous fluids leads to the incorporation of nu-

merous trace, non-constituent ions, which affect mineral growth kinetics and composition.

Divalent ions of metals including iron (Katz et al., 1993), copper (Parsiegla and Katz,

1999), cadmium, manganese (Lorens, 1981), barium (Tesoriero and Pankow, 1996), mag-

nesium (Plummer and Busenberg, 1987; Davis et al., 2000a,b) and strontium (Tesoriero and

Pankow, 1996; Gabitov and Watson, 2006) have been shown to co-precipitate with calcite

and to subsequently affect growth rate. Anions including sulphate (Flaathen et al., 2011),

phosphate (House and Donaldson, 1986), and uranyl (Reeder et al., 2001) may also be

sparingly incorporated into the calcite lattice. In general, increased impurity loading and

uptake leads to decreased growth rate (e.g. Meyer, 1984), but in some cases, small amounts

of impurity may speed crystallization kinetics (Wasylenki et al., 2005b).
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Several models have been proposed to describe the relationship between growth rate

and impurity uptake in calcite. Decreased precipitation rate with increasing tracer concen-

tration is generally attributed to a kink blocking mechanism (Wasylenki et al., 2005b) or

to increased mineral solubility (Davis et al., 2000) or a combination of both. In the lat-

ter case, the overall solubility of the impurity-CaCO3 solid solution is invoked to explain

the decrease in growth rate. No model has successfully captured the effect of strontium

incorporation on calcite precipitation rate (Wasylenki et al., 2005b), and most models de-

scribe qualitative behavior without allowing direct calculation of predicted growth rates and

partition coefficients as a function of solution composition.

By accounting for the molecular mechanisms of growth inhibition at the mineral aque-

ous interface, we derive widely-applicable expressions relating solution composition to

precipitation rate and crystal composition. In the case of non-incorporating impurities,

these may be solved analytically, while in the nonlinear case of trace element incorpora-

tion, numerical solution is required. The expressions predict that kink blocking by strong-

adsorbing aqueous species will cause an exponential decrease in mineral precipitation rate

with increasing impurity concentration, consistent with classical growth inhibition theory

(Cabrera and Vermilyea, 1958) and with Langmuir-type inhibitor adsorption (Weaver et al.,

2010). Growth inhibition by the incorporation of trace species into the bulk lattice will be

shown to depend on the thermodynamics of solid solution and the rates of trace ion incor-

poration relative to the constituent ions. We demonstrate the wide applicability of these

expressions by modeling calcite growth in the presence of a variety of impurities that have

been explored experimentally.

2. UNDERLYING MECHANISMS AND GOVERNING EQUATIONS

The net flux of ions to the mineral surface governs the composition and growth kinet-

ics of precipitating minerals. At ambient temperature and supersaturations not exceeding

the solubility of amorphous calcium carbonate (ACC), ion incorporation into calcite occurs

primarily at kink sites along step edges at the mineral aqueous interface (DeYoreo et al.,
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2009; Larsen et al., 2010; Nielsen et al., 2012). Overall growth occurs when the net rate

of ion attachment at kink sites exceeds the net rate of ion detachment. Calcite precipita-

tion from aqueous solution may be described by the creation-propagation-collision (CPC)

model, where kink sites are created by the formation of stable 1D nuclei along the step,

and propagate (i.e. grow by ion addition from solution) parallel to the step until they disap-

pear by collision with a kink moving in the opposite direction (Zhang and Nancollas, 1990,

1998; Larsen et al., 2010).

Recent studies of calcite growth in the presence of impurities concluded that, for the

cases of polyaspartate (Elhadj et al., 2006) and Mg2+ (Davis et al., 2000a,b), the observed

inhibition is caused by 1) blocking of kink sites by non-incorporated ions or molecules, and

2) incorporation of trace ions or molecules that alter the mineral solubility, respectively.

Regardless of the mechanism of inhibition, the relative rates of constituent ion and trace

element incorporation control the final bulk calcite composition (DePaolo, 2011; Nielsen

et al., 2012) and can thus be related to the relative rates of attachment and detachment by

constituent ions and impurities.

2.1. Governing equations

The net rate of ion attachment to kink sites (s−1) is defined by

ui = ki[i]Pj − νiPi (2.1)

for ion i attaching to a j-type kink site, where [i] is the ion activity in solution, k and ν are

the ion attachment (s−1M−1) and detachment (s−1) rate coefficients respectively, and Pi is

the probability of a given kink site being an i site (Zhang and Nancollas, 1990). We note

that rate coefficients of attachment and detachment can be cast in terms of fluxes following,

ki = φe−EA/kbT , (2.2)

5



where φ represents a flux due to Brownian collisions, EA is the activation energy barrier

for reaction (J/mol), kb is the Boltzmann constant (J mol−1 K−1), and T is temperature (K).

However, this level of detail is not currently useful given our limited understanding of the

energy landscape of relevant reactions. It is thought that kinetics of attachment are domi-

nantly dissociative, controlled by the kinetics of ion or kink site desolvation. Attachment

of calcium ions to carbonate kink sites is likely limited by the rate of calcium desolvation,

while the rate of carbonate ion attachment may be limited by the rate of calcium kink de-

hydration (e.g. Larsen et al., 2010). Here we assume that detachment rate coefficients are

controlled by the affinity of ions for kinks and are independent of site-type along the step, as

was also assumed in other studies (Zhang and Nancollas, 1990, 1998; Elhadj et al., 2006).

In the case of a trace impurity interacting with the growing calcite surface, the attach-

ment kinetics of calcium ion (denoted by A), carbonate ion (denoted by B), and impurity

ions (denoted by M) control growth rate. To determine net ion attachment fluxes and there-

fore growth rate and overgrowth composition, the kink site probabilities (PA, PB, and PM )

must be known. Three constraint equations are required to solve for the probabilities of

A, B and M kink sites, where M is assumed to attach to carbonate ions and substitute for

calcium (A) ions. To preserve crystal stoichiometry, one B ion must attach for each A and

M ion. It follows that:

uA = uB−A, (2.3)

and

uM = uB−M , (2.4)

where uB−i is the net frequency of B attachment to i. Three types of kink sites are defined,

so,

PA + PB + PM = 1. (2.5)

Once kink probabilities and ion attachment frequencies have been determined, the over-

all growth rate may be calculated from the net ion attachment frequency (unet = uA+uB +
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uM ) following

R =
ρunethbd

2y0
=
vstbd

y0
(2.6)

where ρ is the kink density, h is the step height (m), b is kink depth (m), d is mineral density

(mol/m3), y0 is terrace width, and vst (m/s) is the step velocity (Teng et al., 1998; Zhang

and Nancollas, 1998; Nielsen et al., 2012). Terrace width may be written,

y0 =
8Γhabα

kbTσ
, (2.7)

where a (m) is molecular unit width along the step, Γ is approximately 1 for calcite, σ is

supersaturation (= ln[IAP/Ksp]) and α (J/m2) is step edge free energy per unit step height

(Teng et al., 1998).

Kink density, ρ, is given by the expression,

ρ =

√
2I

unet
, (2.8)

where I is the stable 1D nucleation rate (Nielsen et al., 2012). Following Zhang and Nan-

collas (1990), I may be approximated by,

I = P0

(
kA[A]

ΩA

+
kB[B]

ΩB

)
, (2.9)

where Ω−1A and Ω−1B effectively represent acceptance probabilities for A and B kink nucle-

ation, and P0 is the probability that a given site along the step is a non-kink site (P0 = 1−ρ;

Zhang and Nancollas, 1998). Assuming stable 1D nuclei ultimately grow to infinite length,

ΩA = 2 +

(
ν ′′A

kB[B]
+

ν ′′A
kA[A]

νB
kB[B]

)
×
(

1− νAνB
kA[A]kB[B]

)−1
, (2.10)

where the detachment frequencies of single ions adsorbed to the step with kink formation

energy ε (J mol−1 K−1) may be expressed ν ′′A = νAe
2ε/kbT and ν ′′B = ν

2ε/kbT
B (Zhang and
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Nancollas, 1998). Upon substitution of Eq. 2.9, Eq. 2.8 simplifies to

ρ =
√

(1− ρ)× C, (2.11)

where

C =
2

unet

(
kA[A]

ΩA

+
kB[B]

ΩB

)
. (2.12)

Kink probability ρ may be determined by solving Eq. 2.11.

The kink formation energy can be obtained from measurements of equilibrium kink

spacing. Equilibrium kink spacing (Leq= 1/ρeq) for a given value of kink formation energy

may be calculated by substituting the 1D nucleation rate (Eq. 2.9) and net kink propagation

rate into Eq. 2.8, setting [A] and [B] equal to the equilibrium activities of calcium and car-

bonate ions in solution (
√
Ksp). In this calculation, we use the attachment and detachment

rate coefficients fitted to Larsen et al. (2010) obtuse step velocities , which may be found in

Nielsen et al. (2012). DeYoreo et al. (2009) determined a near-equilibrium kink spacing for

calcite of ∼5-7 molecular unit widths at 298 K. An ε/kbT corresponding to the observed

spacing is approximately equal to 2.8.

The calcite kink formation energy may also be estimated using the BCF expression for

equilibrium kink spacing:

Leq = 1 + (1/2)eε/kbT (2.13)

(Burton et al., 1951; Chernov et al., 2004). If we assume that Leq = 7, we find that ε/kbT es-

timated in this way is equal to 2.5, which is similar to our calculated value. These estimates

of kink formation energy factor are significantly smaller than a prior estimate of ε/kbT =

7.775 (Larsen et al., 2010) based on molecular simulation (Kristensen et al., 2004), which

corresponds to an equilibrium kink spacing of 842 molecular unit widths.

2.2. Non-incorporating impurities (kink blocking)

The strong specific adsorption of ions to kink sites on the calcite surface may inhibit

growth by preventing the subsequent attachment of calcium or carbonate ions. This class of

8



calcite growth inhibitors presumably includes large molecules such as polyaspartate (Elhadj

et al., 2006) and citrate (DeYoreo et al., 2009) that bind strongly to kink sites but do not

fit into the calcite lattice in appreciable amounts. In this case, the concentration of kink-

blocking large molecules will reach a steady state or constant value. The net impurity

attachment rate will be negligible (uM = uB−M = 0), so kink probabilities can be determined

analytically by solving Eqs. 2.3-2.5 using Eq. 2.1. The kink site probabilities are given by

PA =
νM(kA[A] + νB)

νM(kA[A] + kB[B] + νA + νB) + kM [M ](kB[B] + νA)
, (2.14)

PB =
νM(kB[B] + νA)

νM(kA[A] + kB[B] + νA + νB) + kM [M ](kB[B] + νA)
, (2.15)

and

PM =
kM [M ](kB[B] + νA)

νM(kA[A] + kB[B] + νA + νB) + kM [M ](kB[B] + νA)
, (2.16)

which depend solely on the rate coefficients for ion attachment and detachment frequencies

(k and ν) and ion activities in solution. The affinity of impurity ions for kink sites will

control the kinetics of impurity ion detachment (Elhadj et al., 2006) and thus the efficiency

of kink blocking.

Rate coefficients of ion exchange at kink sites k and ν control net ion attachment fluxes

and thus the overall precipitation rate. For pure calcite growing in the presence of a kink-

blocking impurity, the values for kA, kB, νA and νB may be constrained by the solubility of

calcite. At equilibrium, the net attachment fluxes of A and B must be zero. Setting uA and

uB = 0, from 2.1 we find,

[A]eq =
νAPA
kAPB

, (2.17)

and

[B]eq =
νBPB
kBPA

. (2.18)

The solubility of an AB mineral is equal to the product of equilibrium ion activities,KAB =
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[A]eq[B]eq, so

KAB =
νAνB
kAkB

. (2.19)

If the rate coefficients of attachment and detachment are equal for ions A and B (kA =

kB = k and νA = νB = ν), only one fitted parameter is sufficient to determine both k and

ν:

ν =
√
KABk2. (2.20)

The dependence of calcite growth rate on non-incorporating impurity concentration may

be solved following the procedure detailed in Appendix B.

2.3. Incorporation inhibition

We model calcite growth kinetics and composition during precipitation in the presence

of impurities using a CPC approach. Net ion attachment rates are determined numerically

based on the constraint equations 2.3-2.5. Following Eq. 2.1, the net rate of B ion attach-

ment to A kink sites is expressed,

uB−A = kB[B]PA − νBPB−A, (2.21)

where PB−A = PB(1 − x) is the probability that a carbonate kink site sits adjacent to a

calcium along the step, with mole fraction CaCO3 in the solid solution of (1 − x). An

analogous expression may be written for the net rate of B ion attachment to kink sites

occupied by impurities,

uB−M = kB−M [B]PM − νB−MPB−M , (2.22)

where PB−M = PBx. Carbonate ions may attach to and detach from calcium and impurity

kink sites with different frequencies, so the rate coefficients of B ion reaction with A sites

may not equal those of B ion reaction with M sites (kB−M 6= kB & νB−M 6= νB). The ratio

of impurity to calcium in the crystal (rx) during steady state crystal growth is equal to the

10



ratio of net impurity and calcium ion attachment rates,

rx = uM/uA, (2.23)

which is related to the mole fraction of the impurity carbonate by the following relation,

x =
rx

1 + rx
. (2.24)

2.3.1. Thermodynamics of metal carbonate solid solutions

During the formation of a solid solution between impurity carbonate and calcite, the

affinity of ions for kink sites imposes a control on the rate of ion detachment from those

sites. We propose that the solubility of each solid solution end-member constitutes a mea-

sure of this affinity and may therefore be used to calculate ion detachment frequency ν.

Specifically, the detachment frequency of a given ion will depend upon the equilibrium

aqueous ion activity corresponding to the endmember component of MxA1−xB, where x is

the impurity carbonate mole fraction in the solid solution.

The thermodynamics of metal carbonate solid solutions can be represented with Lipp-

mann diagrams, which portray the thermodynamic relationship between the solid solution

and aqueous solution. We refer the reader to Glynn and Reardon (1990) and Gamsjäger

et al. (2000) for a comprehensive discussion of Lippmann diagrams.

In the Lippmann construct, the total solubility of a solid solution with mole fraction of

impurity carbonate equal to x is defined by a “solidus” equation, which for a metal impurity

(M) calcium carbonate, MxA1−xB, may be expressed:

ΣΠ = KABaAB +KMBaMB, (2.25)

where aAB = γAB(1−x) and aMB = γMBx are the solid end-member activities with activ-

ity coefficients γ, and KAB and KMB are the AB and MB solubilities (Glynn and Reardon,

1990). Total solubility is equivalent to the sum of end-member component equilibrium ion
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activity products,

ΣΠ = [A]eq[B]eq + [M ]eq[B]eq. (2.26)

The composition of the aqueous solution at equilibrium with this solid solution phase

can be characterized with a corresponding aqueous phase mole fraction (y):

y =
[M ]eq[B]eq

[M ]eq[B]eq + [A]eq[B]eq
. (2.27)

The value of y can be determined from the solutus equation for non-ideal solid solutions

(Glynn and Reardon, 1990):

ΣΠ =

(
y

KMBγMB

+
1− y

KABγAB

)−1
. (2.28)

At equilibrium, the ion activity products of AB and MB may be expressed in terms of

solid activities or in terms of total solubility (ΣΠ) and y,

[A]eq[B]eq = (1− x)KABγAB = ΣΠ× (1− y), (2.29)

and

[M ]eq[B]eq = xKMBγMB = ΣΠ× y. (2.30)

If the relationship between γAB, γMB and the mole fraction of MB in the solid solution

(x) is known (in others word, if the thermodynamics of the solid solution are known), the

equilibrium activities of A, B and M (calcium, carbonate, and trace metal) ions may be

calculated.

2.3.2. Solubility controls on detachment kinetics

The net attachment fluxes of A, B and M must equal zero at equilibrium, so equations

for uA, uB, uB−A and uB−M (Eqs. 2.1, 2.21, and 2.22) can be reorganized to solve for

[A]eq, [B]eq and [M]eq. Combining these expressions with Eqs. 2.29 and 2.30, the product

of ion detachment frequencies for solubilities as a function of the equilibrium ion activity
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becomes,

νAνB =
[A]eq[B]eqkAkB

1− x
, (2.31)

and

νMνB−M =
[M ]eq[B]eqkMkB−M

x
. (2.32)

The exact form of solid activity coefficients varies among impurity elements, so the

effect of impurity incorporation on detachment frequencies and overall growth kinetics is

impurity element-dependent. Increasing the activity coefficient of either solid solution end-

member will result in an increased frequency of detachment for its ionic constituents. Vari-

ation in ion detachment frequencies is mechanistically related to the effects of lattice strain

on bond strength during the incorporation of ions of different sizes. Increasing detachment

frequency reflects decreasing affinity of an ion for its kink site.

To minimize the number of parameters, we have assumed that impurity ions in positions

other than the currently propagating step do not affect attachment frequencies. Astilleros

et al. (2010) observed that the steps propagating across the original, pure calcite substrate

maintained higher step velocities than those propagating across the magnesian calcite over-

growth, so this assumption is not strictly valid. However, this effect is transient, and the

step velocities reach steady state within a few minutes. The model in its current form cap-

tures the primary co-dependencies of growth rate and trace element incorporation; it would

be straightforward to add additional complexity once the rate coefficients of ion attachment

to and detachment from different types of kink sites are experimentally or computationally

accessible.

2.3.3. Partition coefficients

The steady state growth rate and solid solution composition corresponding to a given

[A], [B] and [M] can be determined by numerically solving the nonlinear system of equa-

tions 2.3-2.5 and 2.21-2.24 (see Appendix C for further detail). With rx it is trivial to
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calculate the observed partition coefficient,

Kp =
rx
rs
, (2.33)

where rs = [M ]/[A], the concentration ratio of impurity to calcium in solution. If growth

occurs at near equilibrium supersaturation, the measured partition coefficient can be related

to a thermodynamic equilibrium constant for the ion exchange reaction:

M + AB → A+MB. (2.34)

The equilibrium constant for this reaction is the ratio of impurity to calcium carbonate

activities divided by the ratio of impurity to calcium activities in solution,

Kp,eq =
aMB/aAB
[M ]/[A]

=
KAB

KMB

, (2.35)

which follows from [A]eq[B]eq = KABaAB and [M]eq[B]eq = KMBaMB. This expression can

be related to the measured partition coefficient by solid and aqueous activity coefficients,

such that

Kp,eq = Kp
γMB/γAB
γP/γA

, (2.36)

where γi is the activity coefficient for solid or aqueous species i (Morse and Bender, 1990;

Rimstidt et al., 1998).

3. EXAMPLES OF MODEL APPLICATION

In the following section, the equations presented above are used to model calcite growth

from aqueous solutions containing three types of impurities: the non-incorporating impu-

rity, polyaspartate, and two key trace constituents of calcite, strontium and magnesium.

These impurities were selected because of the availability of high quality atomic force mi-

croscope (AFM) step velocity data. Divalent cations of strontium and magnesium also
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bracket Ca2+ in size, illustrating the effects of large and small cation substitution on calcite

growth kinetics.

3.1. Kink inhibition by polyaspartate

Elhadj et al. (2006) performed a series of calcite precipitation experiments varying the

concentrations of several polyaspartates with varying affinity to kink sites on the calcite

surface. Polyaspartates are protein components found in biomineralizing organisms, which

are thought to control crystal morphology through specific interactions with the calcite

surface (Elhadj et al., 2006). With an exponential increase in polyaspartate concentra-

tion, the rate of calcite precipitation remains relatively constant (polyaspartate-1 and -2)

or increases slightly (polyaspartate-4, -5 and -6) until a certain threshold concentration is

reached. Above this threshold, step velocity plummets to zero. Figure 1 illustrates the ob-

served dependence of obtuse step velocity on polyaspartate-1 and -2 concentrations with

the corresponding model curve using parameters listed in Table 1.

[Figure 1 about here.]

[Table 1 about here.]

Two significant effects of polyaspartate on calcite obtuse step velocity are not captured

by the model in its most basic form: 1) increasing step velocity with increasing polyaspar-

tate concentration and 2) complete step stoppage at sufficiently high [Asp]. The increased

step velocity with increasing [Asp] is observed for longer-chain polyaspartates and cannot

be modeled when the rate coefficients for calcium and carbonate attachment are assumed

to be constant. However, disruption of the mineral surface solvation structure by adsorbed

polyaspartate molecules could labilize sorbed water at the surface, thereby accelerating ion

attachment and growth (Elhadj et al., 2006; Piana et al., 2007; Chen et al., 2011). It is

possible to model the complete stoppage of step growth by assuming that the rate of 1D

nucleation (I) goes to zero when the average distance between kinks is less than the width

of the footprint of a given polyaspartate molecule along the step (Fig. 1, dotted line), at
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which point the entire step is effectively coated with the impurity and there are no exposed

active kink sites where crystal growth can continue.

For slowly adsorbing impurities including certain peptides (Friddle et al., 2010; Weaver

et al., 2010), terrace lifetime may not exceed the time to equilibrate the adsorbed impurity

concentration. These effects may lead to unexpected non-linear step kinetics that, in turn,

should impact impurity incorporation (Friddle et al., 2010; Weaver et al., 2010). Such

disequilibrium adsorption adsorption does not appear to affect polyaspartate adsorption to

calcite but may affect the kinetics of calcite growth inhibition by other common organic

molecules.

3.2. Strontium in calcite

Strontium occurs as a trace element in near-surface terrestrial fluids. Its uptake in calcite

is of interest to the scientific community as a potential reservoir for the radioactive contam-

inant 90Sr (Lukashev, 1993), and the thermodynamics of the calcite-SrCO3 solid solution is

well-studied (e.g. Kulik et al., 2010, and references therein). The partitioning of strontium

into calcite is rate dependent (Lorens, 1981; Tesoriero and Pankow, 1996; Gabitov and Wat-

son, 2006), and the rate dependence has been attributed to aqueous (Rimstidt et al., 1998)

and solid state diffusion (Gabitov and Watson, 2006) effects. Although strontium carbonate

forms an aragonitic-type structure at low temperatures, and rhombohedral SrCO3 does not

exist in nature, Sr2+ substituted into calcite is 6-fold coordinated with oxygen (Pingitore

et al., 1992). Thus, the thermodynamics of SrxCa1−xCO3 solid solutions relies upon deter-

minations of the hypothetical rhombohedral SrCO3 solubility (Böttcher, 1997; Kulik et al.,

2010). The proposed equilibrium solubility of this phase ranges from 10−6.1 to 10−8.2, with

most estimates being close to 10−7.6.

[Figure 2 about here.]

To calculate detachment frequencies of strontium and calcium ions during SrxCa1−xCO3

solid solution formation, the equilibrium ion activity products [Sr2+]eq[CO2−
3 ]eq and [Ca2+]eq-

[CO2−
3 ]eq must be determined. For the strontium-calcite rhombohedral solid solution, these
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ion activity products can be equated to the product of end-member solubilities and activities

following Eqs. 2.29 and 2.30:

[Ca2+]eq[CO
2−
3 ]eq = (1− x)γCaCO3KCaCO3 , (3.1)

and

[Sr2+]eq[CO
2−
3 ]eq = xγSrCO3KSrCO3 , (3.2)

where γCaCO3 , γSrCO3 , KCaCO3 and KSrCO3 are the activity coefficients and solubilities of

the calcite and rhombohedral SrCO3 end-members respectively (Plummer and Busenberg,

1987; Astilleros et al., 2003). The rhombohedral SrCO3-calcite solid solution can be mod-

eled as a regular solution, with mixing parameter (a0) ranging from 1.1 to 3.2 (Kulik et al.,

2010). The activity coefficient of each regular solution end-member component i and j can

be approximated by the following expressions:

γi = exp(a0x
2
j), (3.3)

and,

γj = exp(a0x
2
i ), (3.4)

where xi and xj are the mole fractions of components i and j in the solid solution.

[Table 2 about here.]

A Lippmann diagram depicting the solidus (Eq. 2.25) and solutus (Eq. 2.28) of rhom-

bohedral strontian calcite is shown in Fig. 2. With small amounts of Sr incorporation, the

total solubility of the SrxCa1−xCO3 solid solution increases substantially. The steeply rising

solutus indicates that the increase in solubility is due in large part to enhanced solubility of

the CaCO3 end-member. The detachment frequency of Ca2+ ions depends upon the CaCO3

ion activity product and therefore increases with increasing mole fraction SrCO3 (Eq. 2.31).

This pattern indicates that Sr uptake weakens Ca bonds within the calcite lattice.
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[Figure 3 about here.]

Step velocities (Fig. 3; Wasylenki et al., 2005b) and partition coefficients (Fig. 4;

Gabitov and Watson, 2006) were modeled as a function of supersaturation and Sr/Ca ratios

in solution. Strontian calcite step velocities were calculated as a function of solution com-

position from Eq. 2.6 using net kink propagation rates calculated by numerically solving for

uSr, uCa, and uCO3 (Eqs. 2.3-2.5 and 2.21-2.22). Details of the numerical methods are in

Appendix C. Detachment rate coefficients were recalculated based on Eqs. 2.31 and 2.32

for each aqueous solution and the corresponding steady state solid composition. Partition

coefficients were then calculated from the steady state solid composition based on Eq. 2.23

and 2.33. The model converges to an equilibrium partition coefficient around Kp = 0.03,

which is close to the value estimated by Fantle and DePaolo (2006), Kp ∼ 0.02, for calcite

equilibrated with deep sea pore fluid.

Data fitting was optimized using the method of steepest descent. Fitted values for ther-

modynamic parameters a0 and KSrCO3 (rhombohedral) were limited to the range of values

reported in Kulik et al. (2010). No constraints on kinetic parameters for strontium attach-

ment to kink sites exist in the literature, so we allowed them to vary. The highest observed

Sr distribution coefficient at 25 ◦C is approximately 0.3 (Gabitov and Watson, 2006), so we

assigned this value to the kinetic end-member partition coefficient (= kSr2+/kCa2+) which is

the fast growth rate limit of the partition coefficient. It is possible that this threshold value

could represent transport limitation, where strontium diffuses more slowly than calcium to

the mineral surface, instead of limitation by ion attachment rates to kinks. Because Sr2+

is weakly hydrated (relative to Ca2+) in solution, it is expected that kSr2+ might approach

or even exceed kCa2+ , but this is not supported by observed Sr partitioning into rapidly

precipitated calcite (Gabitov and Watson, 2006). Further experiments may be necessary to

constrain the absolute kinetic end-member partition coefficient for strontium. Fitted solu-

bility, attachment, and detachment rate coefficient parameters are listed in Table 2. Fits to

step velocity data from Wasylenki et al. (2005b) and to strontium partitioning data compiled

by Gabitov and Watson (2006) are displayed in Figs. 3 and 4 respectively.
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The model presented here is the first to successfully fit the step velocity data of Wa-

sylenki et al. (2005b). The calcite step velocity increases slightly at low Sr concentrations

and drops off abruptly once a threshold concentration is reached (Fig. 3). The slight in-

crease in growth rate at low strontium concentration occurs because Sr incorporation con-

tributes to the overall precipitation rate. With sufficiently large amounts of Sr incorporation,

the total solubility of the mineral exceeds the concentration of constituent ions in solution.

At this point, the net rate of calcium and carbonate ion attachment approaches 0, causing

the observed abrupt drop in mineral precipitation rate with increasing aqueous strontium.

[Figure 4 about here.]

By reducing solid solution precipitation to its constituent reactions, we are able to

identify the mechanisms controlling the nonlinear relationship between step velocity and

aqueous strontium concentration. Carbonate ions attach readily to kink sites occupied by

strontium ions, so strontium ions do not inhibit growth via a kink blocking mechanism.

Strontium incorporation enhances the detachment kinetics of calcium and carbonate ions –

likely by causing strain on the crystal lattice – inhibiting growth at relatively low Sr con-

centrations. Furthermore, strontium uptake decreases the detachment rate coefficient for

Sr ions, suggesting that the lattice strain promotes the stability of the SrCO3 solid solution

end-member. These combined effects cause runaway Sr uptake and an abrupt decline in

growth rate with increasing strontium activity in solution.

[Figure 5 about here.]

3.3. Magnesium in calcite

Magnesian calcite is ubiquitous in terrestrial settings, and magnesium partitioning into

calcite is a key paleotemperature proxy. Numerous experimental studies indicate that there

is no growth rate dependence of Kp for magnesian calcite over a wide range of supersatu-

rations (Mucci and Morse, 1984; Mucci et al., 1985; Morse and Bender, 1990; Hartley and

Mucci, 1996), from σ = 0.18 to σ = 2.8. It has been proposed that this occurs because Mg
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reaches exchange equilibrium with calcium at the surface (Mucci et al., 1985). This the-

ory contrasts with the notion that the formation of high-magnesian calcite and dolomite are

kinetically inhibited (cf. Morse et al., 2007). Magnesium partitions into bulk calcite from

seawater with Kp ∼ 0.016.

[Table 3 about here.]

[Table 4 about here.]

The thermodynamics of the Mg-calcite solid solution has been widely studied, and

Lippmann diagrams effectively capture the relationship between equilibrium solid and aque-

ous compositions for magnesian calcite (Königsberger and Gamsjäger, 1992). Solid com-

positions obtained during precipitation experiments correspond exactly to the modeled

solidus equation (Eq. 2.25) using the following activity coefficient formulations, which

are different from those of the simple regular solution model used above for Sr-Ca solid

solutions:

γCaCO3 = e(−ε
′/2)x2 , (3.5)

and

γMgCO3 = eln(γ∞)+ε′x−(ε′/2)x2 . (3.6)

Thermodynamic parameters for the Lippmann diagram of the Mg-calcite system used in

Fig. 5 are listed in Table 3. Experimentally determined solution compositions do not corre-

spond to the solutus curve (Fig. 5), indicating that the experimental results do not represent

thermodynamic equilibrium. Estimates of true equilibrium magnesium partitioning into

calcite based on marine carbonate sediments and their corresponding pore fluids (∼0.001;

Fantle and DePaolo, 2006) are significantly less than the equilibrium partition coefficients

predicted from laboratory experiments (e.g. Mucci and Morse, 1984; Oomori et al., 1987;

Lea et al., 1999).

[Figure 6 about here.]
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[Figure 7 about here.]

We have modeled the dependence of magnesian calcite growth rate (Figs. 6 and 7) and

magnesium partitioning (Fig. 8) on Mg concentration in solution following the procedure

detailed in Appendix C using fitted kinetic parameters listed in Table 4. Ion attachment rate

coefficients are controlled primarily by desolvation kinetics, and the Mg2+ ion desolvates

much more slowly than Ca2+ in aqueous solution, thus the fitted kMg2+/kCa2+ is much

less than 1. Detachment rate coefficients were calculated by inserting γCaCO3 and γMgCO3

into Eqs. 2.31 and 2.32. Varying γ∞ affects the calculated Mg partition coefficient at low

supersaturations (Fig. 8). Using a value of γ∞ of 1.2 yields a nearly constant ratio of Mg and

Ca detachment rate coefficients and consequently results in partition coefficients with little

supersaturation (or growth rate) dependence. In any case, Mg partition coefficients obtained

from natural and experimental precipitates likely reflect kinetic end-member partitioning,

where magnesium uptake is limited by desolvation kinetics. The observed T dependence of

magnesium partitioning (Oomori et al., 1987; Lea et al., 1999), then, may be due to changes

in the relative rates of Ca2+ and Mg2+ ion desolvation. Higher temperature will promote

magnesium desolvation and thus Mg uptake at kink sites.

[Figure 8 about here.]

Fitting the step velocity data of Astilleros et al. (2010) requires that the rate coefficient

of carbonate ion attachment to Mg be much smaller than the coefficient of Mg attachment

(Table 4). The exponential drop in precipitation rate with increasing Mg activity suggests

that magnesium inhibits calcite precipitation via a combined kink blocking and solubility

mechanism. Magnesium attachment inhibits the subsequent attachment of carbonate, much

like the blocking of a kink by a non-incorporating impurity. The total solubility and equi-

librium ion activity product of MgCO3 increase significantly with Mg incorporation, but

the solubility of the calcite end-member, [Ca2+]eq[CO2−
3 ]eq, does not change significantly

with Mg uptake. Instead, the calcite end-member behaves as it would in a non-ideal so-
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lution with small positive deviations from ideality, where γCaCO3 remains close to 1 up to

relatively high magnesium contents.

[Figure 9 about here.]

The model we have developed based on the Astilleros experimental data is not consis-

tent with the linear dependence of calcite step velocities on aqueous magnesium activity

reported in Davis et al. (2000a,b). Astilleros et al. (2010) point out that steps growing upon

the original (Mg-free) substrate propagate much more quickly than those precipitating on

overgrowth, which are typically rough. It is possible that the Davis et al. (2000a) step ve-

locities were recorded before a steady state growth rate was reached, where steps propagate

over substrate of the same composition. This scenario is unlikely, because step propagation

rates were relatively high. Davis et al. (2000a,b) use a 0.1M NaCl electrolyte solution in

their experiments, while Astilleros et al. (2010) add no additional salts to their solutions.

At low supersaturations, NaCl may inhibit precipitation. The complete stoppage of steps

observed by Davis et al. (2000a,b) at low magnesium concentrations could possibly be due

to kink pinning by the “background” electrolyte NaCl (Weaver et al., 2007). The calcite

precipitated by Astilleros et al. (2010) continued growing even at very high magnesium

concentrations.

If the assumption that detachment rate coefficients are controlled by thermodynamic

equilibrium ion activity products is relaxed, it is possible to model the dependence of step

velocity on Mg activity observed by Davis et al. (2000a,b). In this case, we need to assume

that all detachment rate coefficients are equal, and calculate ν from the stoichiometric sol-

ubility of magnesian calcite (Kss = ([Mg2+]eq[CO
2−
3 ]eq)

x([Ca2+]eq[CO
2−
3 ]eq)

1−x), where

[Mg2+]eq[CO
2−
3 ]eq = ν2x

kMg2+kCO2−
3 −Mg2+

, and [Ca2+]eq[CO
2−
3 ]eq = ν2(1−x)

kCa2+kCO2−
3

(from Eqs.

2.31 and 2.32). Alternative model fits to Davis et al. (2000b) data are shown in Fig. 9. If

the same procedure is used to model Sr incorporation, however, it becomes impossible to

model the observed dependence of strontian carbonate step velocity on Sr in solution. We

conclude therefore that it is more appropriate to model solid solution formation assuming

kink detachment kinetics are controlled by the activity of each endmember.
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3.4. Comparison of Sr and Mg inhibition effects

The inhibitory effects of strontium and magnesium on calcite growth are different.

Strontium uptake has little effect on calcite growth kinetics until a threshold strontium con-

centration is reached. Precipitation then abruptly halts as the solid solution becomes under-

saturated. Magnesium adsorption exponentially decreases the rate of calcite precipitation

even at very low concentrations. With increasing magnesium concentration in solution, cal-

cite step velocities have been shown to level off (Astilleros et al., 2010). The differences in

inhibitory action may be attributed to the varying mechanisms of inhibition.

To compare the effects of Sr and Mg on calcite kink dynamics, we have plotted the Ca2+

detachment rate coefficient as a function of impurity mole fraction in the solid solution

(Fig. 10; from Eqs. 2.31 and 3.1). Increasing xSrCO3 causes a significant increase in

the solubility of the CaCO3 end-member and therefore accelerates the kinetics of calcium

detachment. Magnesium uptake, on the other hand, stabilizes Ca2+ kinks slightly. The

observed exponential decrease in step velocity with increasing Mg, then, must be due to

blocking of kinks by Mg ions.

[Figure 10 about here.]

4. CONCLUSIONS

Calcite precipitation from natural aqueous fluids usually results in the formation of solid

solutions, where impurities substitute for Ca2+ or CO2−
3 in the mineral lattice. Even in the

absence of impurity uptake, precipitation kinetics are typically slower in natural fluids than

in simple growth solutions due to the blocking of active growth sites by adsorbed ions or

molecules. Although impurity uptake and its inhibitory effects on mineral growth rate are

widely observed, it has been difficult until now to formulate a model that accounts for the

processes that retard growth. We demonstrated that the effects of both non-incorporated and

incorporated impurities on calcite growth kinetics can be modeled using the same frame-

work, where growth rate and composition are controlled by net ion attachment to kink sites.
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Incorporation of trace elements into the calcite lattice affects the mineral solubility and

therefore bond energies and ion detachment kinetics. The equilibrium ion activity prod-

ucts of solid solution end-member components are controlled by the net fluxes of ions to

and from kink sites. Using a regular solution model for strontian calcite, we are able to

model the nonlinear relationship between aqueous strontium and step velocity observed by

Wasylenki et al. (2005b). Using the same model, we are able to capture the exponential

decrease in step velocity with increasing magnesium concentration observed by Astilleros

et al. (2010). In the former case, strontium uptake causes the calcium activity coefficient

to increase, which subsequently enhances the detachment rates of calcium ions and ulti-

mately destabilizes calcite relative to the solution and stops its growth. The growth rates of

strontian calcite is solubility controlled. Magnesium uptake has little effect on the activity

coefficient of calcium, so solubility does not control the effects of Mg on growth inhibition

on calcite. Instead, Mg2+ ions must effectively act as kink blockers. This interpretation

of the mechanism of Mg growth inhibition in calcite is not consistent with the findings of

Davis et al. (2000b), who observed a linear decrease in step velocity with increasing aque-

ous magnesium. It is unclear whether the results of Davis et al. (2000b) or Astilleros et al.

(2010) are correct, but only the Astilleros et al. (2010) results are consistent with the model

presented here.

The kinetic steady state model describing the effects of impurities on calcite growth

kinetics and composition derived here is widely applicable to natural carbonates. The con-

straint equations (Eqs. 2.3-2.5) can be generalized to three or more component solid solu-

tions if the appropriate thermodynamic relations are known. To ensure the predictive power

of this model, independent constraints on attachment and detachment rate coefficients –

and the dependence of these parameters on solution compositional variables such as ionic

strength – are required. Future in situ AFM growth experiments, aqueous cluster experi-

ments, and corresponding molecular simulations may be useful to extend our mechanistic

understanding of controls on ion fluxes at kink sites. These experimental and computa-

tional efforts will be critical for moving us towards a fully molecular description of the
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macroscopic growth rates and mineral compositions sampled in natural systems.
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APPENDIX A. VARIABLE INDEX

Variable Units Description
a m molecular spacing along the step
aij M activity of solid solution end-member ij
α J/m2 step edge free energy per unit step height
b m kink depth
d mol/m3 solid density
ε J kink site formation energy
γi activity coefficient of i
h m step height
I s−1 stable 1D nucleation rate
Kp partition coefficient
Kij solubility of ij
Ksp equilibrium solubility product
kb J/K Boltzmann constant
kj s−1M−1 rate coefficient of j attachment to a kink site
νj s−1 rate coefficient of j detachment from a kink site
Pj probability that a given kink site is a j site
rx ratio impurity and calcium carbonate in the crystal
ρ kink density
Ω oversaturation (IAP/Ksp)
σ supersaturation (ln(IAP/Ksp))

ΣΠ M2 total solubility
T K temperature
uj s−1 propagation rate of kink type j
vst m/s lateral step velocity
x mole fraction of impurity carbonate in solid solution
y mole fraction of impurity carbonate in aqueous solution
y0 m step spacing or terrace width
[j] M activity of j in solution
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APPENDIX B. CALCULATION OF GROWTH RATE INHIBITION BY

NON-INCORPORATING IMPURITIES

The following procedure may be used to calculate precipitation rate as a function of

calcium [A], carbonate [B] and impurity [M] ion concentration in solution using fitted at-

tachment and detachment rate coefficients (kA, kB, kM , νA, νB and νM ).

• Solve for kink probabilities, PA, PB and PM using Eqs. 2.14-2.16

• Calculate the net kink propagation rate by substituting kink probabilities into Eq. 2.1

for each ion. The kink propagation rate of M is 0 by definition, so

unet = uA + uB = kA[A]PB + νAPA + kB[B]PA + νBPB.

• Calculate resistance to nucleation for A and B (ΩA and ΩB; Eq. 2.10).

• Determine kink density (ρ) by substituting unet, ΩA and ΩB into Eq. 2.12 to calculate

C. Substitute C into Eq. 2.11, which may be solved using the quadratic equation.

• Finally, surface normal growth rate and step velocity may be determined by inserting

unet and ρ into Eq. 2.6.

APPENDIX C. NUMERICAL SOLUTION OF STEADY STATE GROWTH

RATE AND COMPOSITION

Both growth rate and steady state crystal composition depend on A-, B- and M-type

kink propagation rates. In the case of impurity incorporation, kink probabilities cannot be

calculated analytically. Instead, the constraint equations (2.3-2.5) may be solved numeri-

cally as a function of solution composition (ion activities [A], [B] and [M]) and attachment

and detachment rate coefficients (kA, kB−A, kB−M , kM , νA, νB−A, νB−M and νM ). We use
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pseudocode to demonstrate a method for solving the system of equations using the Newton-

Raphson method, but the equations may also be solved using a built-in solver such as fsolve

in Matlab.

• Define inputs: ion activities, attachment rate coefficients, initial detachment rate co-

efficients, end-member carbonate solubilities, and thermodynamic constants (i.e. a0).

• Initialize activity coefficients and kink probabilities: γAB = 1, γMB = 0, PA = 0.50,

PM = 0.01 (PB = 1 - PA - PM ).

• For 20 iterations

– (Re)calculate ν for A, B-A, M and B-M using Eqs. 2.31 and 2.32.

– Pass rate coefficients and kink probabilities as values to the solver function.

∗ Define step size for varying PA and PM (dP ∼ 1e-8) and step length (α ∼

0.2).

∗ For 50 iterations

· (Re)calculate uM and uA using (1) PA and PM , (2) PA + dP and PM ,

and (3) PA and PM + dP.

· Calculate the M/A ratio of the solid for (1) - (3), where rx = uM /uA for

each set of kink propagation rates (Eq. 2.23).

· Calculate uB−A and uB−M for (1) - (3) using Eqs. 2.21 and 2.22.

· Define errors based on Eqs. 2.3 and 2.4 for (1) - (3). For case (1),

EA1 = uA,1 − uB−A,1

EM1 = uM,1 − uB−M,1,

where ui,1 is the kink propagation rate for kink type i calculated using

case (1) kink probabilities.
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· Calculate error sensitivity relative to changes in PA and PP . For exam-

ple, sensitivity to changes in PA may be expressed,

dEA/dPA = (EA2 − EA1)/dP

dEM/dPA = (EM2 − EM1)/dP.

· Define the Jacobian,

J =

 dEM/dPA dEM/dPM

dEA/dPA dEA/dPM

 .

· Calculate the change in kink probabilities, dP =

 dPA

dPM

, where

dP = J−1
 EM1

EA1

 .

· Update A and M kink probabilities, PA = PA + α dPA and PM = PM +

α dPM .

∗ Calculate PB = 1 - PA - PM using final PA and PM .

– Calculate kink propagation rates for A and M from Eq. 2.1 using numerically

determined kink probabilities.

– Calculate the steady state M/A ratio (rx; Eq. 2.23).

– Solve for the partition coefficient (Kp; Eq. 2.33).

– Substitute rx into Eqs. 2.21 and 2.22 for uB−A and uB−M , and finally calculate

unet.

– Follow Appendix B directions to determine ρ, vst and R.

• After 20 iterations, the calculated precipitation rate (R) and partition coefficient (Kp)
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should reach steady state values.
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Table 1: Optimized fit parameters to obtuse step velocities from Elhadj et al. (2006) exper-

imental data, assuming kCa2+ = kCO2−
3

= k and νCa2+ = νCO2−
3

=
√
KCaCO3k

2.

Asp k kAsp/νAsp
(s−1M−1) (M−1)

1, 2 1.8e7 6.0e2
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Table 2: Optimized fit parameters to obtuse step velocities from Wasylenki et al. (2005b)

experimental data.

a0 kCa2+= kCO2−
3

kSr2+ kCO2−
3 −Sr2+

νCO2−
3 −Sr2+

/νSr2+ R2

s−1M−1 s−1M−1 s−1M−1

2.37 1.22e7 3.7e6 1.65e8 0.621 0.78
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Table 3: Mg thermodynamic solid solution parameters. End-member solubilities and ε′

were taken from Königsberger and Gamsjäger (1992), while γ∞ was fitted to observed

solution compositions (black ◦ symbols in Fig. 5).

KCaCO3 KMgCO3 ε′ γ∞
10−8.48 10−6.75 3.69 1.2
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Table 4: Fit parameters to step velocities from Astilleros (2010) experimental data, total

solubility compiled in Davis et al. (2000a,b), etc.

kCa2+= kCO2−
3

kMg2+ kCO2−
3 −Mg2+ νCO2−

3 −Mg2+/νMg2+

(s−1M−1) (s−1M−1) (s−1M−1)
3.0e6 5.1e4 1.53e3 1.0e3
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Figure 1: Calcite precipitation rate increases slightly and then decreases rapidly as a func-

tion of the concentration of polyaspartates Asp-1 and Asp-2. The solid line represents a

model fit to the experimental data from Elhadj et al. (2006) using parameters listed in Table

1. Step velocity was calculated based on Eq. 2.6 using kink propagation rates determined

by substituting Eqs. 2.14-2.16 into Eq. 2.1. Dashed line assumes that 1D nucleation ter-

minates when the kink spacing is less than 2 molecular units, the approximate step width

occupied by Asp-1.
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Figure 2: Lippmann diagram for the SrxCa1−xCO3 solid solution. The solid line gives the

solid solution composition that would be in equilibrium with an aqueous solution (dashed

line; referred to as the “solutus”) for different values of total solubility. An example is

shown for a solid of mole fraction SrCO3 = x, which would have a total solubility log of

-8.12. That solid solution composition would be in equilibrium with an aqueous solution

with analogous mole fraction y shown by the small circle. Note that as ySrCO3 approaches

0.8, the solid has a miscibility gap. This represents the point where Sr-bearing CaCO3

ceases to grow as the Sr/Ca ratio of the solution in increased (see Fig. 3b).
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Figure 3: Obtuse step velocities optimized as a function of a) [Sr2+] and b) ySrCO3 for a

kinetic end-member fractionation factor of 0.3. The fit was optimized using the Levanburg-

Marquardt algorithm to data from Wasylenki et al. (2005b), with a final R2 value of 0.78.
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Figure 4: Partition coefficients optimized for a kinetic end-member partition coefficient

of 0.3 modeled as a function of surface normal precipitation rate (nm/s). Literature data

are compiled from (Gabitov and Watson, 2006, circles and triangles), (Lorens, 1981, dia-

monds), (Tesoriero and Pankow, 1996, squares)
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Figure 5: Lippmann diagram of magnesian calcite total solubility as a function of mole

fraction of MgCO3 in the solid solution (xMgCO3), which is represented by the solidus

line (solid line), and mole fraction of aqueous magnesium in solution (yMgCO3), which

is represented by the solutus line (dashed). The solution with the composition denoted

by the black circle is tied (gray horizontal line) to the corresponding equilibrium solid

xMgCO3 . Experimentally precipitated solid MgxCa1−xCO3 compositions and corresponding

solution compositions from Mucci and Morse (1984) are represented by black× and gray ◦

symbols. The modeled total solubilities of solid and aqueous solution compositions based

on the Mucci and Morse (1984) results are marked as solid black and dotted gray lines

respectively. The Mucci and Morse (1984) data (gray circles and grey dotted line) do not

match the equilibrium solution compositions (black dashed line). This means that Mucci

and Morse (1984) did not manage to precipitate calcite at equilibrium in their experiments,

which is not surprising.
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Figure 6: Modeled step velocity as a function of magnesium activity during calcite pre-

cipitation from oversaturated solution (σ = 1.6) with Ca2+:CO2−
3 = 1 from Astilleros et al.

(2010). Fitted kinetic coefficients are listed in Table 4 and thermodynamic data are listed in

Table 3.
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Figure 7: Calcite precipitation rates from NaCl - CaCl2 solutions and seawater solutions

as a function of calcite supersaturation reported by Lopez and Zuddas (2009). Rate data

from NaCl - CaCl2 solutions were fitted by setting (Mg2+) = 0 (dashed line) , and data from

seawater were fitted using the reported Mg2+/Ca2+ = 5.4 (solid line). Both model fits use

the same thermodynamic and kinetic coefficients listed in Tables 3 and 4, except the kinetic

coefficients for ion attachment were all increased by a factor of 2.8 to fit the observed

growth rates from seawater (solid line). Both models use a calcium activity [Ca2+] = 0.002

equal to the approximate seawater value (Berner, 1965) with varied [CO2−
3 ]. This plot

shows that our model for growth inhibition of calcite by Mg is in accord with experimental

data.
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Figure 8: Modeled magnesium partition coefficient as a function of supersaturation with

respect to calcite (σ = log(IAP/Ksp)). Typical measured magnesium partition coeffi-

cients during precipitation from seawater vary from 0.01 to 0.03, and estimated equilibrium

partition coefficients range from ∼0.001 to 0.03 (Huang and Fairchild, 2001; Fantle and

DePaolo, 2006). Fitted kinetic and thermodynamic parameters are the same as those listed

in Tables 3 and 4, with the exception of γ∞, which is varied from 0.1 (solid line) to 2 (lower

dashed line). Magnesium partitioning modeled using parameters fitted to step velocity and

total solubility data (γ∞ = 1.2) is represented by the upper dashed line.
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Figure 9: Fit to Davis (2000) obtuse step velocities using their reported IAP values. De-

tachment rate coefficients for Mg and Ca are assumed to be equal. Activities calculated

from attachment and detachment rate coefficients violate the Gibbs-Duhem relation.
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Figure 10: Detachment rate coefficients for calcium calculated as function of SrCO3 and

MgCO3 mole fraction in the solid solution, normalized to the νCa2+ of pure calcite. Adding

Sr to calcite tends to increase the Ca detachment rate, eventually making calcite undersatu-

rated and thereby stopping growth. The addition of Mg does not increase the detachment,

so there is no increase in calcite solubility, and hence calcite remains stable in solution but

its growth rate slows abruptly due to kink blocking.
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