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18Structural health monitoring
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in railway bridges using traffic
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18.1 Introduction

The high dependency of modern societies on structural and mechanical systems leads

to an active field of research that aims to reduce the costs of visual inspection and

maintenance. Particularly, the maintenance of bridges is central to the structural integ-

rity and cost-effectiveness of any transportation system [1]. However, in the case of

railway infrastructures, their intense use by frequent and heavy traffic makes the task

of detection and possible repair of damaged sections problematic. Moreover, many of

these infrastructures are currently nearing the end of their life cycle.

Because these systems cannot be economically replaced, techniques for damage

detection that make use of structural monitoring in real-time, are being developed

and implemented so that these infrastructures can continue to be safely used if their

operation is extended beyond the design basis service life. These circumstances

demand that the onset of damage in new systems can be detected at the earliest pos-

sible time to prevent failures that can have serious life safety and economic

consequences [2].

Structural Health Monitoring (SHM) represents a promising strategy in this ongo-

ing challenge to achieve sustainable infrastructure since it has the potential to identify

a structural change before it becomes critical. SHM for damage detection involves the

collection of reliable data on the baseline condition of a bridge, the observation of its

evolution over time, and the characterization of the degradation. By permanently

installing a number and variety of sensors, which continuously measure structural

responses, it is possible to obtain a real-time representation of the structure’s current

state. However, this information is only useful by assuring that reliable SHM systems,

methods for data analysis, and statistics tools are put into practice.

In this context, the present research work aims at developing and validating

an SHM strategy for damage detection in railway bridges using traffic-induced
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dynamic responses. To achieve this goal, an unsupervised data-driven strategy is

implemented, consisting of multivariate statistical techniques. The signals resulting

from train crossings correspond to a large mass traveling at significant speeds, thus gen-

erating features that can obscure information associated with damage. The set of tech-

niques implemented herein allows removing all the train-related features to expose, with

high sensitivity, those generated by damage. The effectiveness of the proposed method-

ology is validated in a long-span steel-concrete composite bowstring arch railway bridge

tunedwith a permanent structural monitoring system. An experimentally validated finite

elementmodel was used, alongwith experimental values of temperature, noise, and train

loadings and speeds, to realistically simulate baseline and damage scenarios.

After this introduction, in Section 18.2, a literature review on SHM for damage

detection is conducted. Section 18.3 presents the case study, detailing the monitoring

system installed and the simulation of different structural conditions. In Section 18.4,

the strategy for damage detection is implemented and validated. Finally, Section 18.5

presents the main conclusions drawn from this research work.
18.2 Literature review on SHM for damage detection

The assessment of damage usually requires a comparison between two states and, con-

sequently, each SHM approach requires a baseline system. How the training set is

defined will depend on which level of damage detection is aimed and, therefore,

the data set can be established based on normal conditions only or a combination

of normal and damaged conditions of the structure. Hence, SHM for damage detection

can be seen as a four-step process (Fig. 18.1): (i) operational evaluation, (ii) data

acquisition, (iii) feature extraction and (iv) feature discrimination.

The first step to developing an SHM strategy is to perform an operational evalu-

ation. This phase attempts to provide answers to four questions, which are mentioned

in Fig. 18.1, regarding the implementation of a damage detection investigation [3,4].

By providing answers to these questions, the operational evaluation process begins to

set limitations on what will be monitored and how the monitoring will be

accomplished.

Obtaining accurate measurements of a system’s dynamic response is essential to

SHM. There are many different sensors and data acquisition systems that can be

applied to the SHM problem and the one employed will be application-specific. In

this sense, Fig. 18.1 details the several considerations that one should make during

the data acquisition step.

Identifying features that can accurately distinguish a damaged structure from an

undamaged one is the focus of most SHM technical literature. Fig. 18.1 summarizes

the main ideas that support the third step of the process, i.e., the feature extraction.

Fundamentally, feature extraction refers to the process of transforming the mea-

sured data into some alternative form where the correlation with the damage is more

readily observed [5]. Often in SHM, the feature extraction process is based on fitting

some model, either physics-based or data-based, to the measured response data.

The parameters of these models, quantities derived from the parameters, or the



1. OPERATIONAL
EVALUATION

D
at

a 
m

od
el

lin
g,

 c
le

an
si

ng
, f

us
io

n
 a

n
d

co
m

p
re

ss
io

n

2.DATA
ACQUISTION

3. FEATURE
EXTRACTION

4. FEATURE
DISCRIMINATION

?

D
I

Undamaged Damaged

Acc1
Acc2

Acc3

Fa

Fb

Fc

1. What are the life safety and/or economic justifications for performing SHM?
2. How is damage defined for the system being monitored?
3. What are the operational and environmental conditions under which the
     monitored structural system functions?
4. What are the limitations on acquiring data in the operational environment?

1. Types and amount of data to be collected;
2. Periodicity in data acquisition;
3. Monitoring typologies (static-,vibration-based or both);
4. Sources of variability (e.g. changing environmental conditions);
5. Data modelling and cleansing procedures;
6. Feedback from data processing and feature extraction.

Extraction of the best features for damage identification.

1. Physical models for feature extraction (e.g. liner VS nonlinear);
2. Basis for feature selection (numerical analysis or past experience);
3. Damage-sensitive features based on static, vibration or both measurements;
4. Data modelling, fusion and compression;
5. Feedback from data processing.

Choose an approach:
a. Damage identification is an inverse problem (model-based)
b. Damage identification is a forward problem (data-driven)

Build a statistical model for feature discrimination based on
a. Supervised learning (data available from undamaged and damaged state)
b. Unsupervised learning (data available from baseline state)

Fig. 18.1 SHM for damage detection as a four-step process.
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predictive errors associated with these models, become then the damage-sensitive

features [6].

Modal or model-based features are the most common in the literature [7–11] due to
the advantage of being directly associated with the mass and, more importantly, with

structural stiffness, which is expected to change in the presence of damage. Regardless

of these advantages, OMA-based information can also be considered not sensitive to

early damage due to the need of identifying high order modes shapes, which proved to

be very challenging for real structure monitoring [12]. Symbolic data [13], wavelet

components [14] and basic signal statistics are also examples of techniques success-

fully applied as extractors of damage-sensitive features for both static and dynamic

monitoring. In applications comprising acceleration measurements, autoregressive

(AR) models, wavelets, and principal component analysis (PCA) have been widely

reported [12,15–21].
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Once an operational evaluation stage has passed and a sensor network has been

designed, the SHM system can begin to deliver data. At this stage, one is now faced

with the challenge of making an accurate assessment of the damage condition of a

given structure based on any extracted features. Feature discrimination, which com-

prises the choice and implementation of algorithms to process the data and carry out

the identification, is arguably the most crucial component of an intelligent SHM strat-

egy for damage detection. Before even choosing the algorithm, it is necessary to

choose between two complementary approaches to the problem, as described in

Fig. 18.1: (a) model-based or (b) data-driven.

The inverse approach (model-based) combines an initial model of the structure and

measured data to improve themodel or test a hypothesis. In practice, the model is com-

monly based on finite element analysis. Once the model is built, it is updated based on

measured data from the real structure, such as acceleration and force responses, often

in the form of a modal database, although frequency response function data may also

be directly used [22,23]. The goal is to adjust the built model in such a way as to make

it conform better with data from the real structure. Although, it is important to be

aware that the updating step brings up an important point; it is very difficult to build

an accurate model of a structure since the information will be lacking in many areas.

For example, the material properties may not be known with great accuracy, espe-

cially in civil engineering where each structure is unique.

In turn, the forward approach (data-driven) does not require the development of

numerical or analytical models to be fitted with in situ data; instead, it is based on

the discipline of machine learning or, often more specifically, the pattern recognition

aspects of machine learning. The idea is that one can learn relationships from data. In

the context of SHM, this means that one can learn to assign a damage state or class to a

given measurement vector from the structure or system of interest. The measurement

vectors must be formed from measurements that are sensitive to the damage; in the

normal terminology of pattern recognition, they are referred to as features, as previ-

ously discussed. Once features have been defined, the mapping between the features

and the diagnosis can be constructed. In the forward approach, one can still make

effective use of the law-based models as a means of establishing good features for

damage identification [24].

The portion of the SHM process that is less documented in the technical literature is

the development of statistical models for discrimination between features from the

undamaged and damaged structures. Statistical model development is concerned with

the implementation of algorithms that operate on the extracted features to quantify the

damage state of the structure. The functional relationship between the selected fea-

tures and the damage state of the structure is often difficult to define. Therefore,

the statistical models are derived using machine learning techniques. The machine

learning algorithms used in statistical model development for feature discrimination

usually fall into two categories (i) supervised learning and (ii) unsupervised learning,

see Fig. 18.1.

When training data is available from both undamaged and damaged structures,

supervised learning algorithms can be used; group classification and regression anal-

ysis are primary examples of such algorithms. In the case of group classification, the
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output of the algorithm is a discrete class label. In its most basic form, this algorithm

might simply assign a “damage” or “not damage” label to features. This type of algo-

rithm is useful in the sense that the algorithms can be trained to give the probability of

class membership. Using a regression algorithm, the outputs are one or more contin-

uous variables. This problem is often nonlinear and is particularly suited to neural net-

works or other machine learning algorithms [3].

Since data obtained from damaged civil engineering structures is rare or inexistent,

unsupervised learning algorithms have been increasingly observed in the literature.

Damage detection methods are the primary class of algorithms used in this situation.

This type of algorithm is a two-class problem that indicates if the acquired data comes

from normal operating conditions or not [3]. There are many damage detection tech-

niques, e.g., outlier analysis, kernel density estimation, and auto-associative neural

networks [25,26]. All techniques fit a probability distribution to the normal condition

data, then assess the probability of the test data having been generated by the same

mechanism. It is important to notice that supervised and unsupervised learning come

usually associated with a forward damage identification approach.

Inherent in the data acquisition, feature extraction, and feature discrimination por-

tions of the SHM strategy are data cleansing, fusion, and compression procedures, as

well as data modeling (see Fig. 18.1). Data cleansing is the process of selectively

choosing data to pass on to, or reject from, the feature selection process. On the other

hand, data fusion focuses on reducing the volume of data, while preserving its most

relevant information. The fusion process may combine features from a single sensor,

features from spatially distributed sensors, or even heterogeneous data types. In all

situations, the objective of a data fusion process is to reach a new type of information

with less volume and greater or similar ability to characterize the measured phenom-

ena, when compared to that achieved when using any of the original information

sources alone [27]. TheMahalanobis distance has been thoroughly used in this context

due to its capacity to describe the variability in multivariate data sets [7,28]. Data com-

pression, in turn, is the process of reducing the dimensionality of the data, or the fea-

tures extracted from the data, to facilitate efficient storage of information and to

enhance the statistical quantification of these parameters.

The ability to perform robust data modeling is one of the biggest challenges facing

SHMwhen attempting to transition this technology from research to field deployment

and practice on in situ structures [2]. As it applies to SHM, data modeling is the pro-

cess of separating changes in sensor reading caused by damage from those caused by

varying operational and environmental conditions, such as temperature or trains cross-

ing at different speeds [29]. Two approaches are generally found in the literature and

in the practice of feature modeling [12]: (i) input-output, based on regression methods

such as multiple linear regression (MLR) [30,31] or (ii) output-only, based on latent

variable methods such as PCA [8,12]. The first removes the effects of the environmen-

tal and operational variations (EOVs), establishing relationships between measured

actions (e.g., temperature, traffic, wind) and measured structural responses. When

monitoring systems do not include the measurement of EOVs, latent variable methods

can be employed. These methods are able to suppress independent actions using only

structural measurements.
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18.3 Railway bridge over the Sado River

18.3.1 Bridge description

A bowstring-arch railway bridge over the Sado River was selected as the case study

used throughout this work. It is located on the southern line of the Portuguese railway

network that establishes the connection between Lisbon and the Algarve (Fig. 18.2).

The bridge is prepared for conventional and tilting passenger trains with speeds up to

250km/h, as well as for freight trains with a maximum axle load of 25 t. Even though

the bridge accommodates two rail tracks, only the upstream track is currently in

operation.

The bridge has a total length of 480m, divided into three continuous spans of 160m

each. The bridge deck is suspended by three arches connected to each span of the deck

by 18 hangers distributed over a single plane on the axis of the structure. The super-

structure is composed of a steel-concrete composite deck, while the substructure,

which includes the piers, the abutments, and the pile foundations, is built with

reinforced concrete. The deck is fixed on pier P1, whereas on piers P2, P3, and P4

only the transverse movements of the deck are restrained, while the longitudinal

movements are constrained by seismic dampers.
18.3.2 Monitoring system

The structural health condition of the railway bridge over the Sado River has been

controlled with a comprehensive autonomous online monitoring system, as detailed

in Fig. 18.3, since the beginning of its life cycle. This monitoring system was defined

based on an operational evaluation and allowed the acquisition of data necessary to

implement the strategy for damage detection (steps 1 and 2 of Fig. 18.1).

To identify each train that crosses the bridge and compute its speed, two pairs of

optical sensors were installed at both ends of the bridge. The structural temperature
Fig. 18.2 Overview of the bridge over the Sado River.
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Fig. 18.3 The SHM system of the railway bridge over the Sado River.
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action is measured using PT100 thermometers and NTC thermistors. Three sections of

the arch were instrumented with 12 NTC thermistors. Additionally, four NTC therm-

istors were fixed to the steel box girder and three PT100 thermometers were embedded

in the concrete slab. To control the behavior of the bearing devices, the responses from

longitudinal displacement transducers were obtained from four sensors, each adjacent

to a bearing device. The set of sensors also includes one vertical piezoelectric accel-

erometer fixed at the midspan of the concrete slab, two triaxial force balance accel-

erometers at the thirds of the midspan steel box girder, and 12 vertical force balance

accelerometers fixed along each span of the steel box girder. Four longitudinal MEMS

DC accelerometers were also installed at the top of each pier. Data acquisition is car-

ried out continuously, at a sampling rate of 2000Hz, by a locally deployed industrial

computer to save the time history during the passage of the trains.
18.3.3 Numerical modeling and validation

A simulation of healthy and damage scenarios was conducted to test and validate the

strategy implemented in Section 18.4 since damage scenarios were not observed

experimentally during the period of this research. After an effective validation of

the strategy, it can be applied straight to experimental data from different types of

bridges.

For this purpose, a 3D finite element (FE) numerical model of the bridge was devel-

oped in ANSYS software and fully validated with experimental data (Fig. 18.4A).

Among the modeled structural elements, those defined as beam finite elements consist

of piers, sleepers, ballast-containing beams, rails, arches, hangers, transverse stiff-

eners, diaphragms, and diagonals. Shell elements were used to model the concrete slab

and the steel box girder, while the pads, the ballast layer, and the foundations were

modeled using linear spring-dashpot assemblies. The mass of the nonstructural ele-

ments and the ballast layer was distributed along with the concrete slab. Concentrated

mass elements were used to reproduce the mass of the arches’ diaphragms and the

mass of the sleepers, which were simply positioned at their extremities. The connec-

tion between the concrete slab and the upper flanges of the steel box girder, as well as

the connection between the deck and the track, were performed using rigid links. Spe-

cial attention was paid to the bearings supports, as they can strongly influence the
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Fig. 18.4 Numerical modeling and validation: (A) 3D FE numerical model of the bridge over

the Sado River, (B) static validation of the displacements measured on pier P4, and (C) dynamic

validation of vertical accelerations at the concrete slab (Ac1) with the AP at 216km/h.
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performance of the bridge. Hence, to simulate the sliding behavior of the bearings,

nonlinear contact elements were applied. Moreover, constraint elements located

between the bearings were used to restrict the transversal movement in each pier,

and the longitudinal and transversal movements in the case of the first pier.

To validate the static behavior of the numerical model, the response of the structure

to the action of temperature was studied. The structural static behavior of the bridge

was simulated in the FE model by running a time-history analysis using experimental

data as input. The simulation procedure consisted of using the temperatures acquired

every hour on-site over the course of 1 year. Fig. 18.4B presents a very good agree-

ment between the numerical and experimental displacements of pier P4 for the tem-

perature measured on-site between November 2015 and November 2016.

Regarding the dynamic behavior, numerical simulations were conducted consider-

ing the Alfa Pendular (AP) train as a set of moving loads crossing the bridge over the

Sado River at a speed of 216km/h. Fig. 18.4C shows a very good agreement between

the experimental and numerical responses, in terms of the vertical accelerations

acquired on the concrete slab at the second midspan (Ac1). Before the comparison,

the time series were filtered based on a low-pass digital filter with a cut-off frequency

equal to 15Hz.

A detailed description of the numerical model and its validation can be found in

Meixedo et al. [32].
18.3.4 Simulation of different structural conditions

The dynamic numerical simulations implemented in the present research work aimed

at replicating the structural quantities measured in the exact locations of the acceler-

ometers installed on-site (Fig. 18.3) during the passage of a train in the bridge.
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To correctly reproduce these structural responses, the temperature action was intro-

duced as input in the numerical model. The measurements of the optical sensors’ setup

were used to obtain the train speed and axle configuration, as well as the type of train.

The dynamic analyses mentioned hereafter were carried out for two of the passen-

ger trains that typically cross the bridge over the Sado River, namely, the AP train and

the Intercity (IC) train. Their frequent speeds on the bridge are 220km/h for the AP

train and 190km/h for the IC train. The nonlinear problem was solved based on the

Full Newton-Raphson method and the dynamic analyses were performed by the

Newmark direct integration method, using a methodology of moving loads [9].

The integration time step (Δ t) used in the analyses was 0.005s.

Fig. 18.5A summarizes the 100 simulations of the baseline (undamaged) condition

that aim at reproducing the responses of the bridge taking into account the variability

of temperature, speed, type of train, and loading schemes (LS) [33].

On the other hand, the damage scenarios were chosen based on possible vulnera-

bilities identified for the type of structural system, taking into account its materials,

behavior, loadings, and connections [34]. As shown in Fig. 18.5B, damage scenarios

were simulated according to different groups:
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(i) damage in the bearing devices (type D1);

(ii) damage in the concrete slab (type D2);

(iii) damage in the diaphragms (type D3);

(iv) damage in the arches (type D4).

Each scenario was simulated considering only one damage location. Regarding the

group of type D1, four severities of damage were included, namely, increases of

the friction coefficient from a reference value of 1.5% to 1.8%, 2.4%, 3.0%, as well

as to a full restrain of the movements between the pier and the deck. The remaining

damage scenarios consisted of 5%, 10%, and 20% stiffness reductions in the chosen

sections of the bridge (Fig. 18.5B) on the concrete slab (type D2), the diaphragms

(type D3), and arches (type D4). These structural changes were simulated by reducing

the modulus of elasticity of concrete (type D2) and of steel (types D3 and D4). A total

of 114 damage scenarios were simulated for AP train crossings.

To obtain the most reliable reproduction of the real SHM data, the noise measured

on-site by each accelerometer was added to the corresponding numerical output.

These noise distributions were acquired while no trains were traveling over the bridge

and under different ambient conditions. Each simulation was corrupted with different

noise signals acquired at different days, thus ensuring the most representative valida-

tion for the techniques developed herein.

The time-series illustrated in Fig. 18.6 are examples of simulated responses for

baseline and damage conditions, acquired from the accelerometer Ac1.

The variations associated with different train types, loading schemes, and train

speeds are shown in Fig. 18.6A1 and A2. A clear distinction between the bridge

responses for the IC (Fig. 18.6A1) train and the AP train (Fig. 18.6A2) passages

can be observed, thus displaying the necessity of taking into account different train

types for implementing damage detection strategies. Contrariwise, Fig. 18.6A1 allows

observing that different LS generate smaller changes in the dynamic responses. The

train speed also has an important influence on the structural response induced by trains

crossing the bridge, as shown in Fig. 18.6A2.

The influence of damage scenarios in the signal obtained for the train crossings

appears to be much smaller than that observed for changes in operational and envi-

ronmental conditions, even when regarding sensors adjacent to the damages and

for the biggest magnitudes considered (20% stiffness reductions). This conclusion

can be easily observed in Fig. 18.6B1 and B2, where the bridge responses considering

friction increments in the bearing devices of pier P2 and stiffness reductions in the

concrete slab are, respectively, presented.
18.4 Strategy for damage detection using train induced
dynamic responses

18.4.1 Overview

To address steps 3 and 4 of Fig. 18.1, an unsupervised data-driven strategy for damage

detection in bridges, based on traffic-induced dynamic responses, which aims at being

as effective as robust, is presented in Fig. 18.7, and comprises the following main

operations:
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series considering stiffness reduction D2 (m2).
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(i) damage-sensitive feature extraction from the acquired structural responses and feature

modeling to remove EOVs, through the implementation of a double PCA (a latent-variable

method);

(ii) data fusion using the Mahalanobis distance to merge multisensor features without losing

damage related information;

(iii) feature discrimination to classify the extracted features in two categories, healthy or dam-

aged, by applying an outlier analysis.
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FEATURES FUSION

FEATURE
DISCRIMINATION
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Undamaged Damaged
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Double PCA
Mahalanobis

Distance
Outlier

Analysis

&

Fig. 18.7 Flowchart of the SHM strategy for damage detection.
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18.4.2 Feature extraction and modeling—Double PCA

Feature extraction and feature modeling are addressed in this research work by

implementing a double PCA. PCA is a multivariate statistical method that produces

a set of linearly uncorrelated vectors called principal components, from a multivariate

set of vector data [35].

The first operation intends to extract damage-sensitive features from the dynamic

responses of the bridge. Considering an n-by-mmatrix X with the original time series,

where n is the number of measurements (i.e., 2112 in this case study) and m is the

number of sensors (i.e., 23), a transformation to another set ofm sensors, Y, designated
principal components or scores, can be achieved by the following equation:
Y ¼ X � T (18.1)

re T is an m-by-m orthonormal linear transformation matrix that applies a rotation
whe

to the original coordinate system. The covariance matrix of the measurements, C, is
related to the covariance matrix of the scores, Λ, as follows:
C ¼ T � Λ � TT (18.2)

hich T and Λ are matrixes obtained by the singular value decomposition of the
in w

covariance matrix C. The columns of T are the eigenvectors and the diagonal matrix

Λ comprises the eigenvalues of the matrix C in descending order. Hence, the eigen-

values stored in Λ are the variances of the components of Y and express the relative

importance of each principal component in the entire data set variation [7].

To allow data compression, four statistical parameters, namely the root mean

square (RMS), the standard deviation, the Skewness, and the Kurtosis, are afterward

extracted from the scores, Y. Thereby, the information presented in a matrix of

2112-by-23 is transformed into a matrix of 4-by-23. A total of 92 features are thus

extracted from the 23 acceleration measurements. This operation is implemented

for each of the 214 structural conditions.

To illustrate the feature extraction procedure, the four statistical parameters

obtained for two of the twenty-three sensors, AL-P1 and AsV3, are represented in

Fig. 18.8. The eight features are divided according to the structural condition in

two main groups: baseline (first 100 simulations) and damage (subsequent 114

simulations). A comparison between the values of the four features from each sensor,

across all 214 scenarios, allows concluding that each statistical parameter is describ-

ing distinct trends in the analyzed data. Also, the information obtained from each fea-

ture is different depending on the sensor location. The main changes in the amplitudes

of the features are induced by the type and speed of the trains. In addition, for each

speed value, the changes observed in the amplitude of the statistical parameters are

generated by changes in the structural temperature values (chosen for autumn, spring,

summer, or winter). The different LS (the seven symbols in a row in the case of the AP

and three symbols in a row in the case of the IC) considered for each train type and

speed, and each temperature, are the operational factors with the smallest influence on

the feature variability regarding the baseline simulations.
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the PCs, and (D) Kurtosis of the PCs.
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The analysis of the features shown in Fig. 18.8, as well as the time series presented

in Fig. 18.6, allow drawing some conclusions about the difficulty in distinguishing

undamaged and damage scenarios since the variations caused by environmental

and operational effects result in similar or greater changes in the parameters.

Assuming that environmental conditions have a linear effect on the identified fea-

tures, the implementation of a double PCA to the continuous monitoring results may

efficiently remove environmental and operational effects, without the need to measure

these actions [7,28].

Considering now an n-by-mmatrix X with the features extracted from the dynamic

responses, where n is the number of simulations for the baseline condition (i.e., 100 in

this case study) and m is the number of features from all the sensors (i.e., 92), a trans-

formation to another set of m parameters, Y, can be achieved by applying Eq. (18.1).

As demonstrated by Santos et al. [12], the PCA is able to cluster meaningful infor-

mation related to EOVs in the first components, while variations related to other

small-magnitude effects, such as early damage, may be retained in latter components.

Since the purpose of the present research work is to detect damage, which has gener-

ally a local character, the feature modeling operation consists of eliminating the most

important principal components (PCs) from the features and retaining the rest for sub-

sequent statistical analysis. Bearing this in mind, the matrix Λ from Eq. (18.2) can be

divided into a matrix with the first e eigenvalues and a matrix with the remaining m-e
eigenvalues. Defining the number of e components remains an open question with

regard to the representation of the multivariate data; although several approaches have

been proposed, there is still no definitive answer [36]. In this work, the value of e (or
the number of PCs to discard) is determined based on a rule of thumb in which the

cumulative percentage of the variance reaches 80% [36,37]. After choosing e, the
m-e components of the matrix Y can be calculated using Eq. (18.1) and a transforma-

tion matrix bT built with the remaining m-e columns of T. Those m-e components can

be remapped to the original space using the following:
FPCA ¼ X � bT � bTT
(18.3)

re F is the n-by-m matrix of double PCA-based features, expected to be less
whe PCA

sensitive to environmental and operational actions and to be more sensitive to the

damage scenarios.

Since the cumulative percentage of the variance of the sum of the first six principal

components was higher than 80% for different structural conditions, these six PCs

were discarded during the modeling process (i.e., e¼6).

Fig. 18.9 shows the series of eight features across the 214 scenarios obtained for the

AL-P1 and AsV3 accelerometers, after the application of the double PCA. The direct

comparison of these action-free damage-sensitive features with those shown before

the feature modeling (Fig. 18.8) allows observing that the feature modeling enabled

removing the variations generated by the temperature, as well as by the type and speed

of the train, but not those generated by damage. Moreover, the feature’s sensitivity to

the damage scenarios was increased.
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18.4.3 Multisensor features fusion

To improve the features’ discrimination sensitivity, data fusion was performed. A

Mahalanobis distance was implemented to the modeled features, allowing for an

effective fusion of the multisensor information. The outcome was a damage indicator,

DI, for each train crossing. The analytical expression of the Mahalanobis distance for

each simulation i, denoted as DIi, is the following
D
I

0

50

100

150

Fig.
consi
DIi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xð Þ � S�1

x � xi � xð ÞT
q

(18.4)

re x is a vector of m features representing the potential damage/outlier, x is the
whe i

matrix of the means of the features estimated in the baseline simulations, and Sx is
the covariance matrix of the baseline simulations.

Hence, to detect all damage scenarios, a data fusion of the double PCA-based fea-

tures from all the 23 sensors located on the bridge was implemented. It leads to a single

vector 214-by-1 that represents all the data acquired through the 23 sensors. As a

result, a clear distinction between simulations of the baseline condition and damage

scenarios was achieved, as presented in Fig. 18.10.
18.4.4 Feature discrimination—Outlier analysis

Feature discrimination is addressed herein applying an outlier analysis that allows for

automatic classification of each DI into healthy or damaged. A statistical confidence

boundary CB based on the Gaussian inverse cumulative distribution (ICDF) function

considering a mean μ and standard deviation σ of the baseline feature vector, and for a
level of significance α is implemented. The inverse function can be defined in terms of

the Gaussian cumulative distribution function as follows
CB ¼ invF 1� αð Þ (18.5)
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where
F xj μ, σð Þ¼ 1

σ
ffiffiffiffiffi
2π

p
Z x

�∝
e�

1
2

x�μ
σ

� �2

dy, for x�ℝ (18.6)

, a feature is considered an outlier when its DI is equal or greater than CB. A sig-
Thus

nificance level of 1% was defined, as it is commonly observed in several SHM works

addressing damage identification [2,38].

Fig. 18.11 corroborates the effectiveness of the methodology in distinguishing

baseline from damage scenarios. The strategy does not display either Type I (false

positive) nor Type II errors (false negative).
18.5 Conclusions

This research presents an innovative data-driven SHM strategy for conducting

unsupervised damage detection in railway bridge vibration response from traffic-

induced excitation, applying multivariate statistical techniques. The strategy consists

of fusing sets of acceleration measurements to improve sensitivity and combines:

(i) double PCA for feature extraction and modeling;

(ii) Mahalanobis distance for data fusion;

(iii) outlier analysis for feature discrimination.

The effectiveness of the presented strategy was validated on a bowstring-arch railway

bridge through the simulation of several structural conditions using only experimen-

tally obtained actions as input, namely temperature, noise, train loadings, and speeds.

Damage severities of 5%, 10%, and 20% stiffness reductions in the concrete slab, dia-

phragm, and arches were simulated, as well as friction increases in the movements of

the bearing.

The damage-sensitive features were extracted by implementing a PCA to the

bridge accelerations induced by train crossings in different locations along the bridge.
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Statistical parameters were extracted from the principal components to allow data

compression. The study of damage-sensitive features obtained from different struc-

tural conditions, allowed concluding the supremacy of the environmental and opera-

tional variations when compared with damage, proving the importance of feature

modeling. Moreover, the information obtained from each feature is different

depending on the sensor location and the statistical parameter. PCA was once again

implemented to model the features, allowing to successfully remove the environmen-

tal and operational effects without losing sensitivity to damage.

To enhance sensitivity, the fusion of the 92 features extracted from all the sensors

was implemented and a single damage indicator for each train crossing was defined

and obtained. This step proved to be crucial to achieve the highest possible level of

information fusion and to obtain a clear distinction between undamaged and damaged

conditions.

To automatically detect the presence of damage, an outlier analysis was performed

based on a CB computed for a significance level of 1%. The robustness and effective-

ness of the proposed strategy were demonstrated by automatically detecting the dam-

age scenarios as different from those belonging to undamaged structural conditions.

Using features modeled based only on measurements of structural responses, no false

detections occurred.
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cation of railway bridges using genetic algorithms, Eng. Fail. Anal. 118 (August) (2020),

https://doi.org/10.1016/j.engfailanal.2020.104845, 104845.

[12] J.P. Santos, C. Cr�emona, A.D. Orcesi, P. Silveira, Multivariate statistical analysis for early

damage detection, Eng. Struct. 56 (2013) 273–285, https://doi.org/10.1016/j.

engstruct.2013.05.022.

[13] A. Cury, C. Cremona, Assignment of structural behaviours in long-termmonitoring: appli-

cation to a strengthened railway bridge, Struct. Health Monit. 11 (4) (2012) 422–441,
https://doi.org/10.1177/1475921711434858.

[14] D. Posenato, P. Kripakaran, I.F.C. Smith, Methodologies for model-free data interpreta-

tion of civil engineering structures, Comput. Struct. 88 (7–8) (2010) 467–482, https://doi.
org/10.1016/j.compstruc.2010.01.001.

[15] E. Figueiredo, G. Park, C.R. Farrar, K. Worden, J. Figueiras, Machine learning algorithms

for damage detection under operational and environmental variability, Struct. Health

Monit. 10 (6) (2010) 559–572, https://doi.org/10.1177/1475921710388971.
[16] O.R. De Lautour, P. Omenzetter, Damage classification and estimation in experimental

structures using time series analysis and pattern recognition, Mech. Syst. Signal Process.

24 (2010) 1556–1569, https://doi.org/10.1016/j.ymssp.2009.12.008.

[17] A. Datteo, G. Busca, G. Quattromani, A. Cigada, On the use of AR models for SHM: a

global sensitivity and uncertainty analysis framework, Reliab. Eng. Syst. Saf. 170

(2018) 99–115, https://doi.org/10.1016/j.ress.2017.10.017.
[18] R. Azim, M. G€ul, Damage detection of steel girder railway bridges utilizing operational

vibration response, Struct. Control Health Monit. (2019) 1–15, https://doi.org/10.1002/
stc.2447. August.

[19] A. Meixedo, J. Santos, D. Ribeiro, R. Calçada, M. Todd, Damage detection in railway
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