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Predictive Biomarkers and Personalized Medicine

A Genome-Wide Association Study Identifies Novel Loci for
Paclitaxel-InducedSensory Peripheral Neuropathy inCALGB
40101

R. Michael Baldwin1, Kouros Owzar5,6, Hitoshi Zembutsu11, Aparna Chhibber1, Michiaki Kubo11, Chen Jiang6,
DorothyWatson6, Rachel J. Eclov1, JoelMefford2, Howard L.McLeod7, Paula N. Friedman8, Clifford A. Hudis9,
Eric P. Winer10, Eric M. Jorgenson3,4, John S. Witte2,4, Lawrence N. Shulman10, Yusuke Nakamura11,
Mark J. Ratain8, and Deanna L. Kroetz1,4

Abstract
Purpose: Sensory peripheral neuropathy is a common and sometimes debilitating toxicity associated

with paclitaxel therapy. This study aims to identify genetic risk factors for the development of this toxicity.

Experimental Design: A prospective pharmacogenetic analysis of patients with primary breast cancer,

randomized to the paclitaxel arm of CALGB 40101, was used to identify genetic predictors of the onset and

severity of sensory peripheral neuropathy. A genome-wide association study in 855 subjects of European

ancestry was conducted and findings were replicated in additional European (n ¼ 154) and African

American (n ¼ 117) subjects.

Results: A single nucleotide polymorphism in FGD4was associated with the onset of sensory peripheral

neuropathy in the discovery cohort [rs10771973; HR, 1.57; 95% confidence interval (CI), 1.30–1.91; P ¼
2.6� 10�6] and in a European (HR, 1.72; 95% CI, 1.06–2.80; P¼ 0.013) and African American (HR, 1.93;

95% CI, 1.13–3.28; P ¼ 6.7 � 10�3) replication cohort. There is also evidence that markers in additional

genes, including EPHA5 (rs7349683) and FZD3 (rs10771973), were associated with the onset or severity of

paclitaxel-induced sensory peripheral neuropathy.

Conclusions: A genome-wide association study has identified novel genetic markers of paclitaxel-

induced sensory peripheral neuropathy, including a common polymorphism in FGD4, a congenital

peripheral neuropathy gene. These findings suggest that genetic variation may contribute to variation in

development of this toxicity. Validation of these findings may allow for the identification of patients at

increased risk of peripheral neuropathy and inform the use of an alternative to paclitaxel and/or the clinical

management of this toxicity. Clin Cancer Res; 18(18); 5099–109. �2012 AACR.

Introduction
Paclitaxel is a useful microtubule-stabilizing agent with

efficacy in the treatment of many cancers. It is effective for
the treatment of breast cancer in the metastatic, adjuvant,
and neoadjuvant settings (1, 2). Sensory peripheral neu-
ropathy remains a significant issue in the clinical use of this
agent.More than 50%of patients experience some degree of
sensory peripheral neuropathy during their course of pac-
litaxel treatment, with 5% to 30% experiencing grade 3 or
4 toxicity (3, 4). Paclitaxel-induced sensory peripheral
neuropathy is dose-, treatment schedule-, and infusion
time–dependent (3). Cumulative dose is a significant pre-
dictor of sensory peripheral neuropathy, as is underlying
diabetes and concurrent or previous administrationof other
drugs associated with this toxicity. A recent study suggests
that mild to moderate symptoms of sensory peripheral
neuropathy can persist for up to 2 years following comple-
tion of paclitaxel treatment (5). Long-term neuropathy is
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particularly concerning for patients with primary breast
cancer, such as those evaluated in the current study, asmore
than 80% will be long-term survivors whose quality of life
will be compromised. Significant sensory peripheral neu-
ropathy during paclitaxel treatment can lead to dose reduc-
tions and treatment suspension, possibly resulting in sub-
optimal disease treatment and the potential for an increased
likelihood of relapse. A predictive marker for this dose-
limiting toxicity would enable studies to identify whether
an individualized assessment of adverse event risk could be
useful in the clinical decision making process. It could also
provide a possible target for therapeutic interventions.

Substantial interindividual differences in the prevalence,
reported and objective severity, and onset of peripheral
neuropathy is consistent with an underlying genetic sus-
ceptibility to this toxicity. CALGB 40101 is a phase III
randomized study comparing cyclophosphamide and
doxorubicin versus single-agent paclitaxel as adjuvant ther-
apy for patients with breast cancer at relatively low risk for
relapse. In addition, the study compared short versus longer
therapy of each regimen as a 2 � 2 factorial design. A
pharmacogenetic companion study (CALGB 60202) was
included in this trial to prospectively evaluate germline
determinants of interindividual differences in response and
toxicity. An initial analysis of treatment outcome in CALGB
40101 has shown no difference in response between the 4
and 6 cycle treatment arms (6); additional analyses of
response await complete follow-up data. The goal of this
present study was to identify genetic markers predictive of
sensory peripheral neuropathies in the paclitaxel treatment
arm of CALGB 40101 and to further our understanding of
the underlying mechanism of injury and repair. Herein, we
report the results of a genome-wide association study

(GWAS) of 1,040 paclitaxel-treated women to identify
novel germline susceptibility loci associated with the devel-
opment of sensory peripheral neuropathies. This represents
the largest prospective breast cancer pharmacogenetic study
of paclitaxel treatment toxicities to date and provides a
paradigm for the identification of genetic markers with
potential clinical application in personalized medicine.

Materials and Methods
Participants

All study participants were enrolled in CALGB 40101 and
gave their additional consent to participate in the pharma-
cogenetic companion study (CALGB 60202). CALGB
40101 was open from May 15, 2002 until July 30, 2010.
The final total accrual was 3,873 patients. Patients eligible
for the treatment protocol were females with histologically
confirmed invasive carcinoma of the breast and 0 to 3
axillary nodes positive for cancer. Eastern Cooperative
Oncology Group (ECOG) performance status of 0–1, ade-
quate organ function, and absence of congestive heart
failure or myocardial infarction in the previous 6 months
were required. Enrollment was required within 84 days of
breast surgery (either modified radical mastectomy or
lumpectomy) and the treatment began within 7 days of
registration. Patients with locally advanced, inflammatory,
or metastatic breast cancer or involvement of dermal lym-
phatics were ineligible. Patients were disease-free from any
prior malignancies for at least 5 years. Previous trastuzu-
mab, chemotherapy, or hormonal therapy, with the excep-
tion of tamoxifen, for the current malignancy was not
permitted nor was anthracycline treatment for any previous
disease. Patients who received tamoxifen or any other
selective estrogen receptor modulators (SERM) for preven-
tion or other indications (e.g., osteoporosis) were eligible.
Treatment with tamoxifen, other SERMs, or exogenous
hormones (e.g., hormone replacement therapy, oral contra-
ceptives, raloxifene) was discontinued before enrollment.
Trastuzumab was recommended for patients with HER2-
positive disease. Patients could also enroll in adjuvant
studies of bisphosphonates or hormonal therapies (e.g.,
ovarian suppression concurrent with chemotherapy). All
patients provided written informed consent for both the
treatment and companion protocols that met state, federal,
and institutional guidelines.

Treatment
Patients were randomly assigned with equal probability

to 4 or 6 cycles of cyclophosphamide/doxorubicin (AC) or
paclitaxel. A full description of the study design is included
in a recent publication describing the initial analysis of
treatment response (6). The first 570 patients were treated
with AC every 3 weeks, or paclitaxel weekly for 12 or 18
weeks. Thereafter, both regimens were administered every 2
weeks for 4 or 6 cycles. Pharmacogenetic samples were
collected only from patients enrolled on every 2-week regi-
mens, who received dose-dense paclitaxel for 4 or 6 cycles.
Paclitaxel was given for more than 3 hours at 175 mg/m2

when given every 2 weeks. The 6 cycle treatment arms for

Translational Relevance
Paclitaxel is widely used in the treatment of many

cancers, including breast cancer. Treatment with pacli-
taxel is often limited by the development of peripheral
neuropathies that can significantly impact a patient’s
quality of life. Biomarkers for the prediction of paclitax-
el-induced peripheral neuropathy could be used to opti-
mize the use of paclitaxel. A genome-wide genotyping
approach in women receiving single-agent paclitaxel as
adjuvant therapy for breast cancer identified several
novel genetic loci implicated in paclitaxel-induced sen-
sory peripheral neuropathy. In particular, a common
genetic variant in FGD4, a causal gene for the congenital
peripheral neuropathy Charcot–Marie–Tooth disease,
was associated with increased onset of neuropathy in
both Europeans and African Americans. This variant and
others identified in these studies could be validated as
genetic predictors of paclitaxel-induced sensory periph-
eral neuropathy. The genetic variants identified in these
studies will also lead to investigations into novel path-
ways for this common chemotherapy-induced toxicity.
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both drugs were closed after enrolling 3,172 patients.
Arms were stratified by menopausal, estrogen receptor
(ER), progesterone receptor (PR), and HER2 status.
Patient demographics are shown in Table 1. Premedica-
tion recommendations for the initial dose were 12.5 to 50
mg diphenhydramine and 50 mg ranitidine, 300 mg
cimetidine, or 20 mg famotidine administered i.v. 30 to
60 minutes before paclitaxel. Dexamethasone was given
as a 10 mg i.v. dose within 60 minutes of paclitaxel or
alternatively, as a 10 mg or 20 mg oral dose more than
one hour before paclitaxel. To facilitate the 14-day dosing

schedule, filgrastim was recommended on days 3 to 10 of
each cycle (5 mg/kg rounded to either 300 or 480 mg).
Sargramostim (250–500 mg/m2, days 3–10) or pegfilgras-
tim (6 mg s.c., 24–36 hours after paclitaxel) could be used
in place of filgrastim. The treating physician could omit
granulocyte colony-stimulating factor (G-CSF) treatment
when confident neutrophils would recover within 14
days; however, if treatment could not be delivered on
schedule, then a G-CSF was required in subsequent cycles.
Erythropoetin was permitted at the discretion of the
treating physician. Patients positive for HER2 by either

Table 1. Patient demographics

Randomizeda
Post Quality
Controlb Discoveryc

European
Replication

African
American
Replication

Sample size 1,940 1,023 855 154 117
Age Mean (SD) 53.4 (9.6) 53.4 (9.6) 53.7 (9.6) 55.2 (9.4) 54.1 (9.2)
Self-reported race
and ethnicity

White (Non-Hispanic/Non-Latino) 1,434 788 772 143 1d

White (Hispanic or Latino) 63 15 1 — —

White (Unknown) 115 77 72 11 —

Black or African American
(Non-Hispanic/Non-Latino)

204 85 — — 101

Black or African American
(Hispanic or Latino)

10 2 — — 1d

Black or African American
(Unknown)

17 13 1 — 13

Asian 29 10 — — —

Native Hawaiian or Pacific Islander 2 2 — — —

American Indian or Alaska Native 18 7 2 — —

Multiple 2 — — — —

Unknown (Non-Hispanic/Non-Latino) 9 4 4 — —

Unknown (Hispanic or Latino) 24 13 — — —

Unknown (Unknown) 13 7 3 — 1d

Menopausal status Post 1,176 (61%) 609 (60%) 513 (60%) 99 (64%) 81 (69%)
Pre 764 (39%) 414 (40%) 342 (40%) 55 (36%) 36 (31%)

ER/PR Status ERþ/PRþ 1,059 (55%) 546 (53%) 475 (56%) 108 (70%) 35 (30%)
ERþ/PR� 223 (11%) 119 (12%) 98 (11%) 15 (10%) 18 (15%)
ERþ/PR unknown 3 (<1%) 2 (<1%) 2 (<1%) 1 (1%) 0 (<1%)
ER-/PRþ 24 (1%) 15 (1%) 13 (2%) 1 (1%) 2 (2%)
ER-/PR� 629 (32%) 341 (33%) 267 (31%) 29 (19%) 62 (53%)
ER unknown/PR unknown 2 (<1%) — — — —

HER2 status Positive 1,505 (78%) 790 (77%) 660 (77%) 120 (78%) 88 (75%)
Negative 361 (19%) 195 (19%) 163 (19%) 27 (18%) 26 (22%)
Unknown 74 (4%) 38 (4%) 32 (4%) 7 (5%) 3 (3%)

Assigned number
of cycles

4 1,151 (59%) 572 (56%) 471 (55%) 139 (90%)e 75 (64%)

6 789 (41%) 451 (44%) 384 (45%) 15 (10%) 42 (36%)

a Randomized refers to all patients enrolled in CALGB 40101 and assigned to the paclitaxel treatment arm.
b Post quality control refers to patients with whole genome data passing quality control (n ¼ 1,029) and excluding patients without
evaluable phenotype data (n ¼ 6).
c Discovery cohort is all patients with Northwestern European ancestry and evaluable phenotype data.
d Identified using principal components analysis of whole genome data.
e This reflects the early closure of the 6 cycle arm of the study.
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immunohistochemical 3þ staining or gene amplification
by FISH could initiate adjuvant trastuzumab concurrent
with paclitaxel (weekly administration) or at the com-
pletion of paclitaxel (weekly or every 3 weeks). Weekly
trastuzumab consisted of a 4 mg/kg i.v. loading dose
followed by weekly doses of 2 mg/kg and the 3-week
schedule of a loading dose of 8 mg/kg and 6 mg/kg every
3 weeks for a total duration of one year.

Genotyping and quality control
A summary of the steps included in sample and single

nucleotide polymorphism (SNP) quality control and in
principal components analysis (PCA) is illustrated in Sup-
plementary Fig. S1. A total of 1,040 paclitaxel-treated
patients with informed consent and a DNA sample
(obtained from peripheral blood) available as of July 1,
2009 were included in the primary study. Genomic DNA
was genotyped using the HumanHap610-Quad Genotyp-
ing BeadChip (Illumina), which interrogated 592,532
SNPs. Subjects with call rates less than 0.98 (n¼ 5) or with
suboptimal genotype clustering performance (n ¼ 1) were
excluded followed by reassessment of genotypes within the
remaining subjects. SNPs with call rates less than 0.95, poor
genotype clustering performance, more than 1 replicate or
Mendelian discordance, relative minor allele frequency
(MAF) less than 0.005, nondiploid (e.g., Y ormitochondrial
chromosomes), or deemed unreliable by Illumina (n ¼
4,106; Tech Note: Infinium Genotyping Data Analysis,
2007) were excluded, leaving 572,745 SNPs. Identity-by-
descent (IBD) analysis verified the absence of closely related
individuals (proportion IBD > 0.15) and identified one
unintended duplicate pair, which was removed and later
confirmed to be due to a DNA plating error (PLINK version
1.07; ref. 7). Evaluation of X-chromosome heterozygosity
identified 3 genetic males that were also removed and
similarly confirmed to be due to a DNA plating error (8).
PCA, as implemented by EIGENSOFT version 3.0, was used
to visualize the genetic ancestry of the 1,029 individuals
passing quality control (9). PCA was conducted using
genotypes from study subjects combined with genotypes
of unrelated individuals from the HapMap Project repre-
senting Northwest European (CEU, n ¼ 73), African (YRI,
n ¼ 77), and Chinese (CHB, n ¼ 75) ancestries and geno-
typed using the same platform by Illumina (Supplementary
Fig. S2; ref. 10). To address the potential bias arising from
population stratification, we chose to focus our primary
analysis on individuals of Northern European descent. A
second PCAwas conducted using only 1,029 study subjects.
Mean values for the first 3 eigenvectors within all patients
self-declaring "White" race and "Non-Hispanic" ethnicity
were determined. "Genetic Northwest Europeans" (herein
called Europeans) were defined as individuals with each of
their first 3 eigenvectors within 2 SDs of each mean value
irrespective of self-declared race and ethnicity. A total of 859
individuals were identified and identical results were
obtained when repeated with the inclusion of HapMap
individuals (data not shown). These 859 individuals were
the focus of the primary analysis (Supplementary Fig. S2).

Imputation of genotypes was conducted within the 859
Europeans using MACH 1.0 (11) and reference haplotypes
from unrelated CEU individuals from either HapMap (r22)
or the 1000 Genomes Project (June 2010 release). Before
imputation, study genotypes were more stringently filtered
and limited to autosomal SNPs withMAF 0.01 ormore and
exact Hardy–Weinberg P values� 0.001 in control subjects.
To address any potential stranding inconsistencies between
study genotypes and the reference haplotypes, all symmetric
SNPs (A/T or C/G) withMAFmore than 0.40, and therefore
difficult to resolve, were removed leaving 548,596 and
547,465 SNPs for imputation using the HapMap and
1000 Genomes reference haplotypes, respectively. Imputed
SNPs with MAF less than 0.01 or R2 less than 0.5 were
excluded. Genotyping within the replication cohorts
(described below) was conducted using TaqMan Allelic
Discrimination assays (Applied Biosystems), and individ-
ual assays are shown in Supplementary Tables S1 and S2.

One hundred fifty nine self-declared "White" individuals
with either "Non-Hispanic" or "Unknown" ethnicity, who
enrolled in theCALGB40101pharmacogenetic companion
study subsequent to the genotyping of the original 1,040
subjects, were used as a replication cohort. Within the
discovery set, these criteria accurately identified 98.7% of
the 859 Europeans with a false-positive rate of 2.4%. An
additional 100 individuals of African ancestry were also
identified from within the group of 1,029 individuals
passing sample quality control. African ancestrywas defined
using individuals who self-declared "Black/African Ameri-
can" race with either "Non-Hispanic" or "Unknown" eth-
nicity. Any individual with their first 3 eigenvectors within 3
SDsof each eigenvectormeanvaluewere considered tobeof
African descent. This self-declared race/ethnicity criteria
identified 94.2% of individuals with African ancestry and
incorrectly identified 2.0%. The final African American
replication cohort consisted of the 100 patients of African
descent with genome-wide data and an additional 20 self-
declared "Black/African American" individuals with either
"Non-Hispanic" or "Unknown" ethnicity, who enrolled
after the original genotyping.

Statistical analysis
The primary objective was the identification of SNPs

associated with the occurrence of sensory peripheral neu-
ropathy. The analyses were carried out using 2 complemen-
tary endpoints: (i) the cumulative dose level triggering the
first grade II or higher treatment related sensory peripheral
neuropathy episode and (ii) the maximum observed treat-
ment-related sensory peripheral neuropathy grade. The
adverse events were graded according to the National Can-
cer Institute Common Toxicity Criteria for Adverse Events
(NCI-CTCAE) version 2.0. The timing of sensory peripheral
neuropathy was assessed with a time-to-event approach in
which an eventwas defined as the first incidence of a grade II
or higher neuropathy and the time as cumulative paclitaxel
exposure (mg/m2). For patients not experiencing any event,
the total study paclitaxel drug exposure was used. These
patients are effectively right-censored at the cumulative dose
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level. The marginal associations were tested using the Cox
score test (12). The severity of sensory peripheral neurop-
athy, defined as the maximum grade neuropathy observed
during paclitaxel treatment or within 30 days following the
last dose, was evaluated using ordinal logistic regression.
Cumulative dose (mg/m2) was log-transformed and incor-
porated into the ordinal regression model. For both cases,
the marginal null sampling distribution was approximated
using asymptotics. These analyses were powered for an
additive genetic model. To minimize type I error due to
sparseness, SNPs within the European discovery set were
constrained to relative MAF of 1% or more and the obser-
vation of a minimum of 2 minor allele homozygous geno-
types leaving 521,600 evaluable SNPs. Imputed genotypes
were represented as allele dosages bound between 0.0 and
2.0. All analyses were conducted using the R statistical
environment version 2.12 with the cumulative dose-to-
event and ordinal analyses implemented using functions
from the survival and MASS extension packages (13–16).
Quantile-quantile plots of themarginal asymptotic P values
were evaluated for potential remaining population stratifi-
cation or inflation of significance levels. Each SNP with a
marginal P value� 10�5 was evaluated further for potential
errors by checking its MAF (vs. HapMap), Hardy–Weinberg
Equilibrium within unaffected subjects, and potentially
informative missing rates; they were also visually inspected
for genotype clustering performance.
On the basis of the combined results of the time-to-event

and ordinal regression analyses of the 859 European
patients, a replication plan delineating SNPs, regression
model, genetic model (the most plausible model suggested
fromKaplan–Meier estimates), and effect direction for one-
sided testing was drafted a priori to any data collection
within the replication cohorts. Three SNPs from the genes
FZD3, EPHA5, and FGD4 (rs7001034, rs7349683, and
rs10771973) were selected for replication based on mar-
ginal significance levels, biologic plausibility, and estimated
effect size (as detailed in theResults). An additional 10 SNPs
with P values < 10�5 and/or previously implicated in
congenital sensory peripheral neuropathies (NDRG1) were
also evaluated with the specified limitation of being con-
strained to exploratory analyses. Genotypes for the FZD3
SNP rs7001034 were captured indirectly using a proxy SNP
(rs7833751;R2¼ 1.0 CEUHapMap r27) due to the absence
of acceptable TaqMan assays to evaluate the locus directly.
Because of the impracticality of capturing the FZD3 linkage
disequilibrium (LD) block to the same extent as the Euro-
pean group, this locus was not evaluated in the African
ancestry replication group. Direct sequencing was used to
capture the FGD4 rs10771973 genotypes within the repli-
cation cohorts. To limit the overall type I error rate for the
validation study at the one-sided 0.05 level, we tested each
of the 3 SNPs at the marginal 0.01 level. Because the FGD4
locus replicated in both populations and there are signif-
icant differences in LD structure between the European and
African American populations, an additional 4 coding
region SNPs were chosen from the approximately 30 kb
LD block containing rs10771973 to further extend this

finding. In addition, to evaluate the independence of the
identified association in rs10771973, the time-to-event
analysis was repeated with rs10771973 as a covariate. This
analysis was conducted using the R extension package
GenABEL (13). A haplotype-based association test was also
conducted for the 3 genes containing the top hits (EPHA5,
FZD3, and FGD4), using all genotyped SNPs within 100 kb
of the transcription start and stop sites for each gene. Phase
for each SNP set was estimated using fastPHASE v 1.1 in all
samples combined (17). Haplotype block boundaries using
the method of Gabriel and colleagues were generated in
Haploview v4.2 usingHapMap v3 r2CEU samples (18). For
each haplotype block that included an allele with a per SNP
association signal of less than 10�3, individual haplotypes
were extracted from fastPHASE output, andhaplotypeswith
frequency less than 5% were combined. Association with
outcome was analyzed on a per haplotype basis using time-
to-event or maximum grade as described above.

Results
Of the 859 individuals with European ancestry randomly

assigned to paclitaxel treatment, 4 withdrew before study
treatment and were therefore excluded (Supplementary Fig.
S1). Patient characteristics of the CALGB 40101 paclitaxel
treatment arm, the genotyped samples, and the discovery
and replication cohorts are listed in Table 1. The meno-
pausal, ER, PR andHER2 status, and the assigned number of
cycles were not different between the genotyped paclitaxel
cohort and the European discovery cohort. The genotyped
samplewas also representative of all patients randomized to
paclitaxel treatment in CALGB 40101. One exception is a
fewer number of samples from the 6 cycle paclitaxel arm
in the European replication cohort, which reflects the
early closure of the 6 cycle arm and the later study enroll-
ment of this group of patients. Peripheral sensory neurop-
athy was the major dose limiting toxicity in the paclitaxel
arm, and the distribution of toxicity grades within the 855
patients in the primary analysis, stratified for number of
treatment cycles assigned, is shown in Table 2. Sensory
peripheral neuropathy was dose dependent with 17% of
the patients randomized to 4 cycles of paclitaxel experienc-
ing a grade II or greater event as comparedwith 33%of those
randomized to 6 cycles of treatment. The cumulative inci-
dence of sensory peripheral neuropathy was similar
between the entire cohort randomized to paclitaxel treat-
ment and the discovery set (Supplementary Fig. S3), and
between the discovery set and both replication groups (data
not shown). There was no effect of age on cumulative dose
triggering a grade II or greater peripheral neuropathy event
(data not shown).

Among the SNPs analyzed in the GWAS for association
with the initial onset of sensory peripheral neuropathy,
none reached genome-wide significance although 7 had a
marginal significance level of P < 10�5 (Table 3 and Sup-
plementary Fig. S4). Inspection of the quantile-quantile
plot of the marginal P values (Supplementary Fig. S5A)
indicates the absence of any remaining population sub-
structure (l ¼ 1.01). Of these top SNPs, biologic relevance
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was apparent for polymorphisms in EPHA5 (rs7349683;
per allele HR, 1.63; 95%CI, 1.34–1.98; P¼ 9.6� 10�7; Fig.
1A) and FGD4 (rs10771973; per allele HR, 1.57; 95% CI,
1.30–1.91; P ¼ 2.6 � 10�6; Fig. 1B). EPHA5 encodes an
ephrin receptor gene implicated in the process of neuronal
regeneration following nerve injury and FGD4 encodes a
Rho-GTPase guanine nucleotide exchange factor previously
implicated in congenital peripheral neuropathies (19–22).
The FGD4 (Table 3; Supplementary Fig. S6A and S6B) and
EPHA5 (Table 3; Supplementary Fig. S7A and S7B) SNPs
were tested in replication cohorts, and association for the
former was confirmed in both the European and African
American samples (Europeans: rs10771973; per allele HR,
1.72; 95% CI, 1.06–2.80; P ¼ 0.013; African Americans:
rs10771973; per alleleHR, 1.93; 95%CI, 1.13–3.28;P¼6.7
� 10�3). Considering the high minor allele frequency of
this risk allele in Europeans, 42%of patients are expected to
have a 1.6-fold increased risk and 9% a 2.6-fold increased
risk of peripheral neuropathy; in African Americans (MAF
17%), the increased risk is 1.9- and 3.7-fold, respectively.
Inspection of the Kaplan–Meier genotype stratified time to
neuropathy distributions suggests that an allele dose–effect
assumption for FGD4 rs10771973 is appropriate (Fig. 1B).

No haplotypes in FGD4 or EPHA5 showed stronger asso-
ciation with time to sensory peripheral neuropathy than the
single SNP analyses in these regions (data not shown). After
conditioning the time-to-event analysis on rs10771973, no
other genotyped markers at the FGD4 locus showed asso-
ciation with time to peripheral neuropathy (data not
shown). Using imputation to infer additional untyped
markers andvisualizing theLDstructurewithin theHapMap
CEU population revealed an approximately 30 kb region of
high LD within the FGD4 locus showing a strong and
reproducible association with the onset of sensory periph-
eral neuropathy (Supplementary Fig. S8). Approximately,
16 SNPs are strongly linked (R2� 0.80) with rs10771973, 5
of which are synonymous variants within the coding region.

Ordinal logistic regression analyses were used to identify
SNPs associated with the severity of sensory peripheral
neuropathy. Four SNPs were associated with toxicity grade
with a significance level of P < 1 � 10�5 (Table 4 and
Supplementary Fig. S4). As with the Cox analysis, a quan-
tile-quantile plot of the normalized marginal P values
(Supplementary Fig. S5B) suggests the absence of any
remaining population substructure (l ¼ 0.986). A SNP
within the Frizzled 3 homologWNT signaling receptor gene
(FZD3) met the threshold of genome-wide significance
(rs7001034; P ¼ 3.1 � 10�9; OR, 0.57; 95% CI, 0.48–
0.69) and showed a clear relationship between allele dosage
and sensory peripheral neuropathy grade (Fig. 2). However,
none of these top SNPs from the ordinal regression analysis
replicated in either the European or African American
populations (Table 4).

Discussion
A small subset of patients exposed to paclitaxel have

significant and occasionally protracted neuropathy that
has a major impact on quality of life. If we could prospec-
tively identify these patients before administration of
paclitaxel, they might be otherwise equally well served
with alternative nonpaclitaxel containing regimens. Using
a genome-wide association study of CALGB 40101, we have
identified several genetic loci associated with the onset or
severity of paclitaxel-induced sensory peripheral neuropa-
thy. One of these novelmarkers associatedwith early-onset,
paclitaxel-induced sensory peripheral neuropathy (FGD4,
rs10771973) was replicated in both Europeans and African
Americans and resides within a gene with a clearly estab-
lished role in the hereditary peripheral neuropathy Char-
cot–Marie–Tooth disease (CMT). These findings will
inform studies to test the application of genetic markers
for optimization of paclitaxel selection, dosing, and adverse
event management. Several features of the study design and
analysis support the robustness of our findings, including

Table 2. Incidence of sensory peripheral neuropathies in study groups

Sensory peripheral neuropathy grade

0 1 2 3 4 Event rateb

Discovery set
4 Cycles 181 (38%)a 209 (44%) 66 (14%) 15 (3%) 0 (0%) 17%
6 Cycles 99 (26%) 160 (42%) 81 (21%) 44 (11%) 0 (0%) 33%
European replication
4 Cycles 44 (32%) 67 (48%) 24 (17%) 4 (3%) 0 (0%) 20%
6 Cycles 6 (40%) 4 (27%) 3 (20%) 2 (13%) 0 (0%) 33%
African American Replication
4 Cycles 23 (31%) 33 (44%) 12 (16%) 7 (9%) 0 (0%) 25%
6 Cycles 9 (21%) 19 (45%) 7 (17%) 6 (14%) 1 (2%) 33%

a Number of patients and percentage (in parentheses) of all patients in the discovery or replication cohort assigned to 4 or 6 cycles of
dose dense paclitaxel.
b Event rate is the incidence of a grade 2 or greater sensory peripheral neuropathy.
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the prospective design, a large cohort of patients with
primary breast cancer who are chemotherapy naive and
treated with single-agent paclitaxel, careful collection of
sensory peripheral neuropathy and covariate data, strict
censoring for dose and cycle reductions for other adverse
reactions and preexisting neuropathy, and the use of cumu-
lative dose to the initial incidence of grade 2 toxicity to
account for the established effect of total drug exposure on
sensory peripheral neuropathy.

The current finding that FGD4 plays a role in the devel-
opment of paclitaxel-induced sensory peripheral neuropa-
thy and/or the repair response of peripheral nerves follow-
ing paclitaxel injury is consistent with the known functions
of the gene. FGD4 encodes for the protein FGD1-related F-
actin binding protein (Frabin), and previous studies have
shown specific point mutations in FGD4 can cause the
congenital peripheral neuropathy CMT (CMT4H; refs. 21–
24). The disease is characterized by a slow progressive
demyelination of peripheral sensory and motor neurons
accompanied by distal muscle weakness and atrophy, sen-
sory loss, hyporeflexia, and skeletal deformity (25). Pacli-
taxel-induced peripheral neuropathy shares some of these
characteristics, including sensory loss and secondary demy-
elination (26–28). Frabin is a guanine nucleotide exchange
factor for cdc42, a Rho-GTPase that regulates cellular mor-
phogenesis, including myelination. Several hypotheses
have been proposed to explain how mutations in FGD4
might lead to demyelinating CMT4H disease, including
disruption of the actin/microtubule cytoskeleton, loss of
c-Jun-NH-terminal kinase (JNK) activation signals, and
disruption of phosphoinositide signaling pathways, all of
which could affect Schwann cell myelination and/or the
bidirectional communication between Schwann cells and
axons (21).

The observed association between the FGD4 SNP
rs10771973 and paclitaxel-induced sensory peripheral neu-
ropathy is consistent with the hypothesis that common
FGD4 polymorphisms subtly affect the development and/
or maintenance of Schwann cell function. In this case,
carriers of common FGD4 polymorphisms would have
preexisting subclinical abnormalities and a predisposition
for toxicity. This is supportedby increased risk for paclitaxel-
induced sensory peripheral neuropathy in asymptomatic
patients with diabetes, previous platinum drug exposures
and alcohol use (3), and early Schwann cell activation in
response to paclitaxel administration (29). Alternatively,
FGD4 polymorphisms could lead to impaired repair pro-
cesses such as Schwann cell remyelination and/or axonal
regeneration after paclitaxel exposure. Genetic variation in
FGD4 could also directly affect the response of Schwann
cells to axonal injury via its ability to activate JNK (30). A
neuronal protective role for activated JNK in cultured dorsal
root ganglion cells exposed to oxaliplatin has been reported
(31). Whether changes in frabin activity or expression lead
to a decreased neuronal regenerative capacity and/or an
increased sensitivity to paclitaxel-induced sensory periph-
eral neuropathy requires further study. Interestingly, FGD4
was identified through a genome-wide siRNA screen in lung
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cancer cell lines as a paclitaxel chemosensitizer. The che-
mosensitizing properties of FGD4 are related, at least in
part, to its ability to prevent mitotic progression (32).
Whether a similar mechanism is involved in the repair
response to paclitaxel-induced peripheral neuropathy is
unknown.

The FGD4 rs10771973 SNP is located in the intronic
region and is in tight LD with a number of other SNPs.
Computational analysis of the genomic region surrounding
this SNP found that rs10771972, another intronic SNP in
high LDwith rs10771973 in both the European andAfrican
populations, is predicted to alter conserved transcription
factor–binding sites for Myc-Max and USF (data not
shown). One could speculate that disruption of either one
or both of these transcription factor–binding sites in
patients carrying the rs10771973 SNP could lead to altered
expression and therefore function of FGD4/Frabin.

The other 2 top hits from the genome-wide analysis are
also of potential interest for the paclitaxel-induced sensory
peripheral neuropathy phenotype. In the time-to-toxicity
analysis, the most significant SNP was in EPHA5, which

encodes for an ephrin receptor involved in axonal guidance
and regeneration following injury. Recent studies have
shown that in mice, EphA5 mRNA is rapidly upregulated
in response to a sciatic nerve lesion (20) and that EphA5
signaling during synaptogenesis is transduced via cdc42
(19), the Rho-GTPase involved in Frabin signaling. A com-
mon SNP in FZD3 reached genome-wide significance in the
ordinal analysis. FZD3 encodes a Wnt receptor with
reported roles in neurite outgrowth (33). In light of the
biologic relevance of EPHA5 and FZD3 and the limited size
of the replication cohorts available for these studies, it will
be necessary to further explore the role of these 2 genes in
larger populations of paclitaxel-treated patients. Additional
studies are also warranted for other top hits, including
rs2233335 in the N-myc downstream-regulated gene 1
(NDRG1; Supplementary Table S1). Rare mutations in
NDRG1 are also associated with a different subtype of CMT
(CMT4D; ref. 34).

Until the availability of genome-wide approaches
for identifying genetic predictors of paclitaxel-induced
peripheral neuropathy, candidate gene approaches focused
mostly on drug metabolizing enzymes and transporters
implicated in paclitaxel exposure. These candidate gene
studies yielded no replicated associations of SNPs with
paclitaxel-induced sensory peripheral neuropathy, and
most were complicated by a very small number of subjects,
a retrospective analysis of toxicity, and chemotherapy with
multiple agents (35–38). In the current analysis, no signif-
icant associations were observed for any SNPs residing
in the candidate genes known to influence paclitaxel expo-
sure (Supplementary Table S3), providing further evidence
that factors contributing to the function and repair
of peripheral nerves are more important than alterations
in paclitaxel pharmacokinetics for determining genetic sus-
ceptibility to this toxicity. Interestingly, recent analyses
of peripheral neuropathy induced by treatment with borte-
zomib, thalidomide, and vincristine have provided evi-
dence that genes involved in repair mechanisms, inflam-
mation, peripheral nervous system development, and
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Figure 2. Association of FZD3 SNP rs7001034 with sensory peripheral
neuropathy. The minor allele frequency of rs7001034 in the European
discovery cohort is expressed as a function of maximal grade of sensory
peripheral neuropathy in 855 individuals.
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mitochondrial dysfunction could influence an individual
patient’s riskof developing toxicity (39–42).However, there
was no overlap of implicated genes with the current study
(Supplementary Table S3), suggesting that the mechanisms
underlying this common toxicity might be drug specific.

To assess the potential translational implications of this
finding to clinical practice, we estimated the cumulative
dose level triggering an event for each FGD4 rs10771973
genotype. Considering the data in Fig. 1B, to control the
probability of experiencing a neuropathy event at a critical
threshold of 33%, the tolerated cumulative dose level for
patients with 2 copies of the risk allele is 710 mg/m2. The
corresponding expected critical dose level for patients with
one copy of the risk allele is increased to 877 mg/m2.
Patients with no copies of the risk allele are expected to
tolerate more than 1047 mg/m2, corresponding to the full
dose of paclitaxel for 6 cycles. If these thresholds are
prospectively validated and further refined in follow-up
studies, they may be used to estimate tolerable dose levels
based on genotype and to tailor the treatment regimen.

While this pharmacogenetic study has several advantages
over previous studies on paclitaxel pharmacogenetics,
including a large cohort of treatment-naive patients receiv-
ing single-agent paclitaxel and a genome-wide approach to
discovery, several limitations also exist. Themost significant
limitation is the sole use of the NCI-CTC for assessment of
sensory peripheral neuropathy. It is widely recognized that
detailed patient-reported symptomdata and a quality of life
assessment more accurately describes this phenotype and
that physician-reported NCI-CTC grading underreports
peripheral neuropathy (43–45). However, it remains diffi-
cult to apply these techniques across the multiple sites and
large sample sizes required for the sufficient power for
pharmacogenetic analyses. In a recent phase III study of
1,060 women treated with taxanes, the Patient Neurotox-
icity Questionnaire and the Functional Assessment of Can-
cer Therapy-General were administered to only the first 300
patients in the study (46). The only use of patient-reported
toxicity data and symptom measurements for pharmaco-
genetic analysis of taxane peripheral neuropathy is limited
by the very small sample size of the study (38). While it will
be important in follow-up studies to validate these findings
using additional instruments, it should be noted that
despite its limitations, the NCI-CTC scores are widely
accepted for primary evaluation of treatment toxicity in
large phase III studies such as CALGB 40101. A second
limitation of the current study is the small sample size of the
replication cohorts, a common issue confronting almost all
pharmacogenetic studies (47).

In summary, our findings support the use of prospective
pharmacogenetic analyses of well-phenotyped data sets
collected under controlled clinical trial settings and unbi-
ased genome-wide genetic approaches for the identification
of novel genes involved in drug efficacy and toxicity. Using a
prospective design for validation and replication and awell-
controlled single-agent clinical study, we have identified an
SNP in FGD4 associated with increased risk of developing
paclitaxel-induced sensory peripheral neuropathy. The
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involvement of FGD4 in CMT disease, a congenital periph-
eral neuropathy, provides strong evidence for the biologic
significance of this finding. The fact that a common FGD4
SNP is associated with an increased risk of paclitaxel-
induced sensory peripheral neuropathy in patients with
both European and African ancestry makes it of potentially
broad clinical significance. Additional SNPs in EPHA5 and
FZD3 were also identified as potential risk factors for the
onset and severity of sensory peripheral neuropathy. Addi-
tional samples for extension and validation of these find-
ings are currently being collected inongoingCALGB clinical
trials of paclitaxel in the setting of metastatic breast cancer.
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