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Abstract

Essays on Quantitative Marketing

by

Fan Zhang

Doctor of Philosophy in Business Administration

University of California, Berkeley

Professor Przemyslaw Jeziorski, Co-Chair
Professor J.Miguel Villas-Boas, Co-Chair

The dissertation has three chapters. In the first chapter, I estimate consumer search
cost with purchase outcome data. I analyze a model where consumers search sequentially
for the best option based on advertised price and partial product information. I verify the
model’s ability to recover the structural parameters by a numerical experiment. Then
using Nielsen Consumer Panel Data, I estimate the product-specific search costs for
the top five brands in 32oz refrigerated yogurt market. I find that after controlling for
the prices, the private label brand has the lowest search cost. Counterfactual analysis
shows that eliminating the search cost increases overall purchase and decreases the price
sensitivity. Incorrectly ignoring search frictions leads to an overestimation of own-price
elasticity.

In the second chapter, we state conditions under which choice data suffices to iden-
tify preferences when consumers may not be fully informed about attributes of goods.
Our approach can be used to test for full information, to forecast how consumers will
respond to information, and to conduct welfare analysis when consumers are imperfectly
informed. In a lab experiment, we successfully forecast the response to new information
when consumers engage in costly search. In data from Expedia, our method identifies
which attribute was not immediately visible to consumers in search results, and we then
use the model to compute the value of additional information.

In the third chapter, we study consumers’ variety-seeking preferences and explore
their implications for targeted marketing using proprietary data from a food delivery
platform. We document that a substantial fraction of consumers have variety-seeking
preferences. Consumers, on average, are willing to pay 20% more to switch to a different
seller. In the counterfactual analysis, we find that optimizing rankings by taking into
account variety-seeking preferences increases revenue, consumer welfare, and purchase
probability. Furthermore, we find that consumers’ variety-seeking preferences soften price
competition. Optimal targeted pricing implies an increase in prices for rival sellers’
consumers and a decrease in prices for the sellers’ own consumers.
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Chapter 1

Estimation of Consumer Search Cost
with Purchase Outcome Data

1.1 Introduction

The assumption that consumers have full information about all available options is usually
violated in the real world. In such cases quantifying consumer’s search cost is important
for recovering true consumer preferences, evaluating firm’s market power and making
pricing and advertising decisions. Existing empirical research on consumer search over-
whelmingly use data intensive estimation method, including click stream data (e.g. Bron-
nenberg et al., 2016; Chen and Yao, 2016), consideration set data (e.g. Kim et al., 2010;
Honka, 2014), view-rank data (Kim et al., 2010), or at least long panel data (Seiler, 2013).

When such intensive data is not available, researchers mainly use standard discrete
choice differentiated products model that assumes consumers are perfectly aware of their
choices. However, ignoring search costs can leads to biased estimation of demand. Dong
et al. (2018) shows that ignoring search costs leads to an overestimation of product inter-
cepts by 30%. De los Santos et al. (2012) reports that incorrectly assuming consumer’s
full information leads to an underestimation of own-price elasticities.

The contribution of this paper is to recover search cost and consumer preference with
only purchase outcome data. I study a model in which consumers sequentially search for
the best product based on partial product information and advertised prices. I utilize
an elegant necessary and sufficient condition that fully summarizes consumer’s search
outcomes uncovered by Choi et al. (2018a). I apply the condition to discrete choice models
to estimate the extent to which search frictions distort consumers’ purchase decisions,
i.e.,how a consumer’s purchase decision under sequential search differs from that under
perfect information. I implement a numerical experiment to verify the model’s ability to
recover the structural parameters from simulated purchase outcome data. The estimates
are significant and close to true parameters.

I use Nielsen Consumer Panel Data and focus on the 32 oz refrigerated yogurt market
in one retailer. I focus on the 32oz Yogurt market for three reasons. First, most consumers
purchase only one brand in one week because of the big size, which makes the market
fit into the discrete choice model framework. Second, yogurt products are not storable,
which makes it clearer to identify the Not Buy observations. Otherwise the reason why
consumers didn’t buy the products in a trip during a certain week is ambiguous, i.e.,
whether it’s because they have some storage at home or they choose to not consume the
product in this week is uncertain. Third, there are many dimensions of information to
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search regarding refrigerated yogurt products. There are many different brands, flavors,
fat percentages, and calories,etc. The assumption that consumers are aware of all the
available products in the market is very likely to be violated.

I find that after controlling for prices, among the top five brands in the market, the
private label brand has the lowest search cost. One reason for this can be availability.
The private label brand is owned by the retailer and is usually available in all stores
under the retailer. The private label brand products are usually placed at the most
prominent position on the shelf among products of the same category. The inventory and
replacement management is usually more efficient than other brands not owned by the
retailer. I also examine the out-of-sample fit of the model. I evaluate the fit in terms of
market shares, and find that the model predictions fit the holdout data reasonably well.
The largest difference between the data and prediction is within 0.005.

Counterfactual analysis shows that with price being pre-search information, eliminat-
ing search cost leads to more purchase overall, and a less price-sensitive market demand.
This is intuitive: consumers rely less on their pre-search information, price, as they search
more about other product features when search costs decrease, thus less reactive to prices.
Incorrectly assuming consumers have full information will lead to an overestimation of
own-price elasticities. Note that this is different from the existing literature in which
price is the main characteristic to search(Honka, 2014). In that case consumers who
sample only a subset of the products are more reactive to price changes as they search
more when search costs decrease. The general intuition here is that a higher search cost
prevents consumers from making fully informed decisions and makes them rely more on
their pre-search information and thus more sensitive to it.

Other Related Literature The most related theoretical work on consumer sequen-
tial search is Choi et al. (2018a), in which they utilize Weitzman (1979)’s results on
optimal search behavior, including order of search and stopping rule , to further discover
a sufficient and necessary condition, which fully summarize the optimal search outcome.
In this paper I apply the theoretical result to purchase outcome data to estimate consumer
search frictions.

On the empirical side, Abaluck and Adams (2017) also deviate from the existing
data intensive estimation method in a different search framework with consideration set
models. They prove that utility and consideration set probabilities can be separately
identified with only the search outcome data. Their identification result builds on the
insight that imperfect consideration breaks the symmetry between cross-characteristic
responses.

The economic assumptions behind consumer search model and preference heterogene-
ity model are fundamentally different, i.e.,whether goods are demanded because they are
high-utility or because they are more easily to get known. In this paper I focus on the
estimation of sequential search cost with only purchase outcome data, instead of trying
to formally prove identification of search model from preference heterogeneity model with
purchase outcome data.

The structure of the rest of the paper is as follows: section 1.2 introduces the model fol-
lowed by a discussion of the estimation approach and identification. Section 1.3 presents
the data, including details of dataset construction and descriptive statistics. Section 1.4
presents the estimation results, out-of-sample fit and counterfactual prediction. Section
1.5 concludes.

2



1.2 Model

1.2.1 Main assumptions

Before going into the notations, I discuss the main assumptions regarding consumer
behavior. In this paper I assume: (i) consumers observe advertised prices before search;
(ii) regarding the correlation structures for consumer’s known and hidden values besides
observed prices, I assume both are independent across products (iii) consumers use a
sequential search approach.

Different from traditional consumer search models, in which consumers search to re-
solve uncertainty regarding prices, I assume prices are observable before search. With
the development of online shopping and electronic devices, most big stores have their
websites, mobile applications or weekly printed advertisements. The prevalence of such
inventions significantly lowered the cost of collecting price information. Now it is com-
mon to check prices online and visit stores only to get hands-on information and finalize
a purchase. In such important environment, where prices are part of pre-search informa-
tion, prices affect each seller’s demand not only through their effects on consumers’ final
purchase decisions, but also through their effects on consumer search behavior.

Existing literature adopt different assumptions about the correlation structure for
consumers’ known and hidden values. For example, Armstrong and Zhou (2011) assume
that both are perfectly negatively correlated between the products. In this paper, I follow
Choi et al. (2018a) and assume that both are independent.

Besides the sequential search framework I concentrate on in this paper, there is another
strand of literature focusing on simultaneous search(Chade and Smith, 2006), where the
number of search is predetermined. There have been papers testing which search model
is happening in the real world, and the results are mixed Bronnenberg et al. (2016) finds
evidence consistent with sequential search with online digital camera search data, whereas
De los Santos et al. (2012) and Honka and Chintagunta (2016) find evidence in favor of
simultaneous search. I assume consumers search sequentially,i.e., the number of search is
not fixed and is affected dynamically by the result of search in the earlier stage.

1.2.2 Formal Setup

Formally, there are J sellers in the market, each indexed by i = {1, ..., J}, and a unit
mass of consumers. Each consumer demands one unit among all products. The sellers
simultaneously announce prices. Consumers observe those prices and then search opti-
mally. I denote by pi ∈ R+ seller i’s price. Let p denote the price vector for all sellers
(i.e., p = (p1, ..., pJ)).

A consumer’s random utility for seller i’s product is given by Ṽi = Vi + Zi. The
first component Vi represents the consumer’s prior value for product i, while the second
component Zi is the residual part that is revealed to the consumer only when she visits
seller i and inspects his product. Let v = (v1, ..., vJ) and z = (z1, ..., zJ) denote the
realization of a consumer’s value profile for each component.

The products are horizontally differentiated. I assume that Vi and Zi are drawn from
the distribution functions Fi and Gi, respectively, identically and independently across
consumers and products (and independently each other), where both Fi and Gi have full
support over the real line and continuously differentiable density fi and gi, respectively.

Search is costly, but recall is costless. Specifically, each consumer must visit seller i
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and discover her match value zi in order to be able to purchase product i. She needs
to incur search cost si(> 0) on her first visit to seller i. She can purchase the product
immediately or recall it at any point during her search. Each consumer can leave the
market at any point and take an outside option u0.

A consumer’s ex post utility depends on her value for the purchased product , its price
pi and her search history. Let M be the set of sellers a consumer visits. If she purchases
product i (in M), then her ex post utility is equal to

U(vi, zi, pi,M) = vi + zi − pi −
∑
j∈M

sj (1.1)

If she does not purchase and takes an outside option, then her ex post utility is equal
to

U(M) = u0 −
∑
j∈M

sj (1.2)

Each consumer is risk neutral and maximizes her expected utility. Given prices p and
prior values, each consumer faces a sequential search problem. She decides in which order
to search the products and, after each visit, whether to stop,in which case she chooses
which product to purchase, if any, among those she has inspected so far, or search another
product.

1.2.3 Consumer Behavior

Choi et al. (2018a) have the following two results about consumer’s optimal search be-
havior.

Proposition 1. Given p = (p1, ..., pJ) and v = (v1, ...vJ), the consumer’s optimal search
strategy is as follows: for each i, let z∗i be the value such that

si =

∫ ∞

z∗i

(1−Gi(zi))dzi (1.3)

(i)Search order: the consumer visits the sellers in the decreasing order of vi + z∗i − pi
(i.e., she visits seller i before j if vi + z∗i − pi > vj + z∗j − pj).

(ii)Stopping: let M be the set of sellers the consumer has visited so far. She stops,
and takes the best available option by the point, if and only if

max{u0,max
i∈M

vi + zi − pi} > max
j ̸∈M

{vj + z∗j − pj}

Lemma 1. Let wi ≡ vi+min{zi, z∗i } for each i. Given p,v and z, the consumer purchases
product i if and only if wi − pi > u0 and wi − pi > wj − pj for all j ̸= i.

In order to utilize Lemma 1 1, let Hi denote the distribution function for the new
random variable Wi = Vi +min{Zi, z

∗
i }, that is,

Hi(wi) ≡
∫ z∗i

−∞
Fi(wi − zi)dGi(zi) +

∫ ∞

z∗i

Fi(wi − z∗i )dGi(zi) (1.4)

1Lemma 1 holds even if prices are not observable to consumers before search, as long as consumers
have correct beliefs about prices in equilibrium.
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The distribution function Hi crucially depends on si. If si tends to 0, then z∗i becomes
arbitrarily large and, therefore, Hi becomes the convolution of Gi and Fi. If si explodes,
then z∗i approaches negative infinity, in which case Hi depends only on Fi.

Lemma 1 implies that the demand function for each seller can be derived as in standard
discrete-choice models. A consumer purchases product i if and only if his effective utility
for product i, wi − pi, exceeds the outside option u0 and the corresponding utility for
each other product, wj − pj. Therefore, the measure of consumers who purchase product
i is given by

Di(p) =

∫ ∞

u0+pi

(
∏
j ̸=i

Hj(wi − pi + pj))dHi(wi) (1.5)

1.2.4 Simulation

Normalize the outside option u0 at zero. Suppose there are N individuals and J products
in total.To apply the theoretical results into a discrete choice model, denote the utility
of individual n from consuming product i by Uni = X ′

niβ + vni + zni, where Xni denotes
the vector of exogenous variables, vni and zni denote the pre-search and post-search taste
shock, respectively, and wni is defined correspondingly. Then based on Lemma 1, the
probability of consumer n choosing product i is

Pni =

∫ ∞

u0−X′
niβ

(
∏
j ̸=i

Hj(wni +X ′
niβ −X ′

njβ))dHi(wni) (1.6)

Denote the vector of effective values by w = (wn1, ..., wnJ), then the above choice
probability can be expressed as

Pni =

∫ ∞

u0−X′
niβ

I(wni +X ′
niβ > wnj +X ′

njβ, ∀j ̸= i)dH(w) (1.7)

1.2.5 Identification

In this section I verify identification within the sequential search framework. I implement
a simulation exercise to test whether we are able to recover the structural parameters of
sequential search model with a purchase outcome dataset of certain size .

I simulate the behavior of 10,000 consumers. I consider a model with J = 5 products
and fix distributions of random taste shocks, Fi and Gi at standard normal distribution
from now on. Column 1 of Table 1.3 reports the true values of structural parameters
used to generate the dataset. The prices of products are drawn from uniform distribu-
tion U [0, 10], independent across consumers and products. Table 1.1 shows the purchase
outcome in the simulated sample. 7,387 consumers choose the outside option, the re-
maining 2,613 purchase one of the five products. Table 1.2 shows the number of products
searched by the consumers in the simulated sample. Among the 10,000 consumers, 5,928
search none, 3,746 search 1, 316 search 2, 9 search 3 and the remaining 1 searches 4 prod-
ucts. Table 1.1 and 1.2 shows that there is enough variation regarding purchase outcome
and search behavior in the simulated sample. The similarity of the simulated data with
available data helps us to understand whether the available data suffices to recover the
structural parameters.
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Table 1.3 presents the results of the simulation exercise. Overall, coefficients are
precisely estimated; standard errors are small, and all estimates lie within two standard
errors from the truth. I conclude that we are able to successfully recover structural
parameters of the search model in the simulated sample2.

Table 1.1: Simulated Purchase Outcome.

Alternative Count Percent

Product 1 738 7.38%
Product 2 602 6.02%
Product 3 496 4.96%
Product 4 404 4.04%
Product 5 373 3.73%
Not Buy 7387 73.87%

Table 1.2: Number of Products Searched. The table reports the search behavior
of the simulated 10,000 consumers,i.e., how many products are searched before the con-
sumers make a final decision.

Number of Product searched Count Percent

0 5928 59.28%
1 3746 37.46%
2 316 3.16%
3 9 0.09%
4 1 0.01%

Table 1.3: Estimates from Simulation Exercise. The table reports estimates ob-
tained from the simulated sample (column 2) together with the true values of parameters
used to generate the sample (column1). The simulated sample contains 10,000 consumers.

Truth Estimates Standard Errors T-Statistics

β -0.6 -0.6088 0.0070 -87.1471
s1 0.1 0.0870 0.0066 13.0909
s2 0.2 0.1977 0.0001 3791.4242
s3 0.3 0.2986 0.0102 29.2638
s4 0.4 0.3891 0.0271 14.3524
s5 0.5 0.4723 0.0235 20.0540

1.3 Data

I use the Nielsen Consumer Panel data in the year of 2016 and focus on the 32 oz
refrigerated yogurt market. With one household-week as one observation unit, the sample
contains 47,315 observations of 1,642 households’ purchase outcome.

2The simulation is done by logit smoothed A-R estimator. The hessian is calculated by the BFGS
updating procedure.
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I focus on one retailer instead of one store to have reasonably large sample size,
assuming that stores of the same retailer have similar display rules to follow and thus have
approximately the same search cost for the same product. I see products with different
flavors and fat percentages within the same brand as the same product, assuming that
Chobani strawberry flavor yogurt has the same search cost with the vanilla ones. Details
about the collapsing of multiple trips of one household in one week and multiple flavors
within one brand are provided in Appendix A.0.1. I focus on the top five brands in the
market:Chobani, CTL BR 3, Stonyfield, Dannon and Yoplait.

There are two important aspects of data construction. One is to recover the prices
of all alternatives when I only observe the prices of the ones bought. The other is to
determine what count as Not Buy observations.

For the first aspect, I calculate the store-week average price of all products, and use
those to recover the prices unobserved in the trips with the same store-week combination.
When there is no observation of one product within a store-week, I use the weekly average
price of the product to recover that. More details are provided in the Appendix A.0.1. By
doing so I assume that the price for a specific product in the same store in the same week
is approximately the same, and that the prices for the same product in all stores under the
same retailer is close. DellaVigna and Gentzkow (2017) document evidence of uniform
pricing in US retail stores. Using the Nielsen Retailer Scanner and Consumer Panel
dataset,they find that most US food, drugstore, and mass merchandise chains charge
nearly-uniform prices across stores, despite wide variation in consumer demographics
and the level of competition.

For the second aspect, I treat a trip without any purchase of the five products by
one household-week as a Not Buy observation. I utilize the structure of panel data to be
able to follow one household and observe their trip with no purchase of the five product.
Meanwhile I break the panel structure of the data in two ways: one is that I don’t follow
the household every week, i.e., I have different consumer populations for different weeks
in order to get rid of the potential multi-homing problem. A household with no trip to
the retailer in a certain week is likely to have purchased the yogurt from another retailer,
or haven’t finished the last one they bought, or have been travelling outside the city.
The other is that I assume there is no correlation among the observations from the same
household. Note that I only assume the households don’t have a persistent preference
for brands, which is justified further in Appendix A.0.2, but meanwhile I allow for the
preference for flavors, fat percentage and other product features. The brand varieties of
the five brands are similar, i.e., they all have some basic flavors, such as plain,strawberry
and vanilla, some basic fat percentage, like low-fat and no-fat. I allow for the possibility
that a household prefers strawberry to vanilla, no-fat to low-fat, but assume that they
don’t have a persistent preference for Chobani strawberry low-fat yogurt to the Yoplait
one.

1.3.1 Descriptive Statistics

Table 1.4 presents the purchase outcome of the 47,315 observations in the sample. Note
that under the current specification of the Not Buy observations, the Not Buy observa-
tions takes more than 80% of the sample. A large portion of these Not Buy observations
are from the households who only purchased one of the five products once in 2016. Al-
though including these households leads to a high proportion of Not Buy observations , I

3CTR BR stands for the private label brands which are masked in Nielsen data.
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choose not to drop them for two reasons. First, they account for a nontrivial percentage
(more than 10% for each brand) of the total demand. Second, it’s difficult to find a
proper threshold of purchase times to define which households should be dropped. If the
households who purchased once in the market should be dropped, then it’s ambiguous
whether the ones who purchased twice should be kept.

Table 1.4: Purchase Outcome

Alternative Count Percentage

Chobani 457 0.97
CTL BR 2,605 5.51
Dannon 1,435 3.03
Stonyfield 479 1.01
Yoplait 252 0.53
Not Buy 42,087 88.95

Total 47,315 100.00

Table 1.5 presents the descriptive statistics of the five top sellers I focus on.The average
price is $3.14 and I observe the purchase of them in 5,228 household-week observations
from the specific retailer. The private label brand has the lowest average price of $2.42
and highest market share of 49.83%. The minimum prices for Dannon and Stonyfield are
zero because the coupon values are deducted from the tagged price. Chobani has the
highest average price of $5.45, while yoplait has the lowest market share of 4.82%.

Table 1.5: Descriptive Statistics

Product Average Price Std Dev Max price Min price Total Purchase Market share

Chobani 5.45 0.90 11.53 2.49 457 8.74%
CTL BR 2.42 1.04 0.69 8.37 2605 49.83%
Dannon 3.41 1.30 10.98 0 1435 27.45%
Stonyfield 4.19 1.34 13.98 0 479 9.16%
Yoplait 2.94 0.67 5.9 0.67 257 4.82%

Total 3.14 1.45 13.98 0 5228 100%

1.4 Results

1.4.1 Estimation Results

Table 1.6 presents the estimation results. All estimates are significant. The price sensi-
tivity is negative. The private label brand has the lowest search cost of $1.52 and Yoplait
has the highest search cost of $2.42.

Note that in our model, I assume that the consumers need to visit the store to search
for additional information about sell by date, flavors, calories, fat percentage,etc. They
also have to make the trip to purchase the product. So the search cost also includes
transportation cost. People have to travel further to search and purchase the products
that are only available in some stores. The result that the private label brand has the
lowest search cost is intuitive: it is usually available in almost all stores of the retailer
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Table 1.6: Estimation Results.Table present the estimation results from real dataset
of size 47,315.

Coefficients Estimates Standard Errors T-Statistics

Price Sensitivity -0.0298 0.0055 -5.4603
Chobani 2.1422 0.0118 181.7785
CTL BR 1.5269 0.0046 329.5635
Dannon 1.7636 0.0036 493.4059
Stonyfield 2.1828 0.0137 159.5937
Yoplait 2.4191 0.0045 535.8005

and displayed in the most attractive position of the shelves. Consumers usually don’t
need to squat down to reach it at the bottom of the shelf. It also usually has some
advantage in promotion and advertisement position. Also note that although Chobani
has the relatively high average price(5.45) compared with Yoplait(2.94), it is estimated to
have lower search costs(2.14) compared with Yoplait(2.41), and eventually higher market
share. This can be a result of higher availability, or more advertisements or promotions
to attract attention of the Chobani products. Supply and replacement speed, inventory
management can also affect search cost. 4

1.4.2 Model fit

I examine model fit by comparing several key predictions with their empirical counter-
parts. For this purpose, I split the sample of 47,315 observations into a training and
a holdout sample. The training sample includes 24,000 randomly selected observations,
whereas the remaining 23,315 observations constitutes the holdout sample.

Table 1.7 presents the estimation results of the training sample. I find that parameter
estimates for the training sample are similar to those based on the full sample. Table 1.8
reports the simulated predictions using estimation result of the training sample and their
empirical counterparts for the holdout sample.

Table 1.7: Estimation Results of training sample.The training sample includes
24,000 randomly selected observations.

Coefficients Estimates Standard Errors T-Statistics

Price Sensitivity -0.0329 0.0045 -7.3596
Chobani 2.1039 0.0281 74.7468
CTL BR 1.5212 0.0150 101.1172
Dannon 1.7568 0.0181 96.8775
Stonyfield 2.1676 0.0129 168.3591
Yoplait 2.4125 0.0260 92.8691

4Note that a full information traditional brand choice model will conclude that the retailer private
label brand is demanded more because it provides higher utility. This is unconvincing as the brands
like Chobani focus on yogurt products, and it is more likely that they make better yogurt than private
label brands like Safeway Signature. Also, a future test of this can be to do the estimation on other
retailers and see whether there are similar patterns, if so, it’s hard to believe that every grocery retailer
just makes better yogurt than branded products like Chobani.
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Table 1.8: Out-of-sample Fit of the Search Model. I estimate the model on a
training sample, which includes 24,000 randomly selected observations. The holdout
sample consists of the remaining 23,315 observations

Alternative Data Simulate

Chobani 0.0084 0.0108
CTL BR 0.0549 0.0552
Dannon 0.0304 0.0305
Stonyfield 0.0099 0.0103
Yoplait 0.0047 0.0059
Not Buy 0.8917 0.8874

I evaluate the fit in terms of market shares for purchase behavior and find that the
model predictions fit the holdout data reasonably well. The biggest difference between
the real data and the simulated prediction is within 0.005.

1.4.3 Counterfactual Predictions

In this section I use the estimation results to do counterfactual predictions. Table 1.9
presents the counterfactual prediction results if all search costs are eliminated. The
proportion of Not Buy option decreases substantially, and the distribution of purchase
outcome becomes flatter,i.e., the market demand becomes less price-sensitive.

The counterfactual prediction results are consistent with our intuition. The existence
of search cost makes consumers rely more on pre-search information,which in the current
set up is the price. This is different from most current literature. In traditional literature,
consumers search to resolve uncertainty about price. The existence of search cost makes
them less reactive to prices, so ignoring search cost leads to an underestimation of elas-
ticity because econometricians ascribe the unresponsiveness to price changes to low price
elasticity. Whereas in our model, price is observed before search, so search cost makes
consumers put too much weight on pre-search price information and thus more sensitive
to price. Ignoring search cost leads to an overestimation of elasticity, as econometricians
ascribe the responsiveness to price changes to high price elasticity. As shown in the table,
the market shares under search cost setup is more sensitive to prices compared with the
counterfactual prediction where there is no market friction.

Also, an implication of this on firm behavior is that a decrease in search cost can
actually increase market prices, as consumers become less sensitive to prices. Choi et al.
(2018a) provide sufficient conditions that guarantee the existence and uniqueness of pure-
strategy market equilibrium and show that a reduction in search costs increases market
prices.
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Table 1.9: Counterfactual Analysis

Market Share
Product Actual Simulated Counterfactual

Chobani 0.0097 0.0102 0.1805
CTL BR 0.0551 0.0554 0.1993
Dannon 0.0303 0.0307 0.1930
Stonyfield 0.0101 0.0102 0.1884
Yoplait 0.0053 0.0059 0.1960
Not Buy 0.8895 0.8876 0.0427

Table 1.10: Counterfactual Analysis: Search Behavior.

Number of Products Searched Simulate Counterfactual

0 88.73% 0
1 11.25% 0
2 0.02% 0
5 0 100%

1.5 Conclusion

In this paper I estimate consumer search cost with purchase outcome data. I apply a
theoretical result which fully summarizes consumer purchase outcome with a sufficient
and necessary condition into a discrete choice framework.I verify the identification of the
model by a numerical experiment. I am able to recover the structural parameters with
the simulates sample. All parameters are significant and close to the true value.

I apply the estimation to real grocery purchase data, and find that after controlling
for the price, the private label brand has lowest search cost. The low search cost may be
a result of broader availability in stores, more efficient inventory management and faster
replacement speed. I evaluate the out of sample fit of the model in terms of market shares
and find that the model predictions fit the holdout data well. The estimates are significant
and close to the truth. Counterfactual analysis suggest that if there is no market friction
and consumers are fully aware of all products, there will be more purchases and that the
market share will be less reactive to prices.

There are several interesting future research directions. One is to work out a more
formal proof of identification to differentiate the search model with preference hetero-
geneity model. Abaluck and Adams (2017) provides important insights about this. In
the current version I assume that the hidden values,i.e., the post-search information, are
also unobservable to the researcher. An extension of this is to include some product
characteristic that is unobservable to the consumers before search, but observable to the
researchers. Then we may make more progress on identification from the asymmetric
cross-derivative of demand on such characteristic. For example, consider the character-
istic of sell-buy-date. In a model with full information, symmetry would require that
switching decisions be equally responsive to an increase in the days towards sell-buy-date
of one specific purchased good by a week or a decrease in the days towards sell-buy-date
of all rival goods by a week. Suppose instead that there is search frictions and consumers
only have information about a subset of the products. Now, switching decisions will be
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less responsive to changes in the days towards sell-buy-date of rival goods but more re-
sponsive to that of the purchased. In this way we can probably elicit more information
from purchase outcome data. Other directions include to further analyze the full model
and consider the oligopoly market structure and firm price competition.
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Chapter 2

A Method to Estimate Discrete
Choice Models that is Robust to
Consumer Search

1

2.1 Introduction

When consumers purchase cars, houses, food, insurance, schooling and much else, they
are often imperfectly informed about the attributes of relevant products in ways that
substantially alter their choices Allcott and Knittel (2019); Woodward and Hall (2012);
Abaluck and Gruber (2011); Allcott et al. (2019); Hastings and Weinstein (2008). Given
this, models which assume full information may generate wrong conclusions about welfare
and cannot be used to assess how choices would respond to more information. However,
despite the emergence of behavioral economics as a major subfield of economic analysis,
most work in applied economics continues to assume that choices are fully informed. We
count 350 articles published in the AER, QJE, JPE, ECTA or ReStud since 2015 that
estimate discrete choice models. Of these 350, 315 (90%) assume that consumers are fully
informed.2

We believe this occurs for at least three reasons. First, for some positive purposes,
it is irrelevant whether choices are informed since all that is required is to estimate
how demand responds to price (although welfare evaluation still requires preferences)
Berry and Haile (2014).3 Second, the data necessary to directly measure consumers’
beliefs is often unavailable, and even when it is available, survey data is often viewed
with suspicion Gul and Pesendorfer (2008). Third, choice data alone does not suffice to
separately identify preferences and beliefs without further assumptions Manski (2002).
Structural search models in which consumer beliefs can be identified (e.g., Ursu (2018))
require assumptions regarding whether consumers take into account option value, whether
they solve an optimal stopping problem or “satisfice,” distributional assumptions about

1This chapter is based on work joint with Jason Abaluck and Giovanni Compiani.
2The list of papers and their classification is available upon request from the authors.
3For instance, price elasticities are sufficient to predict equilibrium prices after a counterfactual

merger between two firms. But even among the 126 articles in our survey that conduct welfare analyses
and thus must take a stand on whether consumers are informed, 109 (86.5%) assume full information
without testing this assumption.
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prior beliefs and search costs, and whether choices are simultaneous or sequential, among
others.4

In this paper, we state what we believe to be plausible sufficient conditions under
which choice data alone suffices to recover preferences whether consumers are fully or only
partially informed. The approach relies on what we call visible utility, the component
of utility visible to consumers prior to search (but not to the econometrician). In our
baseline model, we impose that consumers search in decreasing order of visible utility — a
condition we make precise below. We show that if this condition is satisfied, along with a
few additional mild restrictions, there is a function of choice probabilities which recovers
preferences whether consumers are fully or partially informed. Our approach does not
require the researcher to fully specify a structural search model beyond the visible utility
assumption. Specifically, no additional assumptions about option value, optimization vs.
satisficing, simultaneous or sequential search, or distributional assumptions about beliefs
and preferences are necessary for identification of preferences.

Recovering preferences under partial information has many applications. First, one
can forecast the impact of informing consumers about attributes of goods prior to con-
ducting such interventions, and compute the associated welfare benefits.5 Second, our
approach can inform firms’ advertising strategies by, e.g., identifying product attributes
that consumers care about but might not be currently aware of. Third, in settings where
one would otherwise assume full information, the visible utility assumption provides a
generalization which allows for both full and partial information, thus permitting a more
realistic normative evaluation of choices.6 Finally, given preferences recovered by our
approach, we show that it is possible to identify other primitives of interest (notably, the
distribution of search costs) under a maintained model of search.

One can think of our approach as a data-driven method of isolating consumers who
maximize utility. Consider the example of consumers purchasing items in a grocery store:
nutritional information is accessible, but at some cost. Consumers may fail to maximize
utility if they do not pay the cost to examine labels. In this case, visible utility represents
utility from all non-nutrient sources, e.g. a combination of prices and perceived taste.
Our assumption states that if you bother to check the nutrition label for good j, you
will first check the label for a good j′ that you would otherwise prefer were it equally
nutritious. This assumption implies that consumers who search the most nutritious good
always choose the good that maximizes utility among all options (which is not necessarily
the most nutritious good). To see this, note that if some other good has higher utility than
the most nutritious good, it must have higher visible utility and thus is searched and then
chosen by the consumer. Further, only consumers who search the most nutritious good
are sensitive to nutrient content for that good. Therefore, by looking at the sensitivity
of choices to the nutrient content of the most nutritious good we are able to isolate

4The empirical literature suggests that canonical assumptions in all of these cases are often rejected
by the data (respectively, Gabaix et al. (2006), Schwartz et al. (2002), Jindal and Aribarg (2018), Honka
and Chintagunta (2016)), limiting the applicability of structural search models.

5If an information intervention also reduces search costs, then the welfare gains via better choices
given by our approach can be viewed as a lower bound to the total increase in welfare.

6 For example, Allcott et al. (2019) propose taxing sugar-sweetened beverages to promote long-term
health. A cost of this proposal might be that these foods are more desirable on other dimensions (e.g.,
tastiness), and conventional models would imply this if consumers appear willing to pay for high calorie
foods. Allowing for imperfect information might reveal that consumers prefer low calorie foods once they
are informed (e.g., for their physical appearance). In this case, the policy would be a win-win rather
than one where health benefits must be weighed against short-term tastes.
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consumers that behave as if they were fully informed; standard arguments then recover
their preferences.

To spell things out in more detail, consider first a J-good model with linear utility
Uij = xjα + zjβ + ϵij where α > 0 and β > 0.7 In the text, we extend this result to
allow vector-valued xj and zj, as well as random coefficients and nonparametric utility.
Suppose that consumer i observes xj and ϵij for all goods, but needs to engage in search
to observe zj. On the other hand, the researcher observes xj, zj, and choice probabilities
sj, but not ϵij. With full information, we have sj = P (Uij ≥ Uij′ ∀j′ ̸= j) and we

could estimate marginal rates of substitution using
∂sj
∂zj
/
∂sj
∂xj

= β/α; in other words, β/α

is identified by whether the choice probability for good j is more sensitive to zj or xj.
If the underlying model is a search model in which consumers are informed about zj
only for some alternatives, then the standard approach will suffer from attenuation bias:∣∣∣∂sj∂zj

/
∂sj
∂xj

∣∣∣ ≤ |β/α|. Some consumers will be insensitive to zj variation not because they

don’t value it, but because they are not aware of it; thus, the observed sensitivity of
choices to zj will understate consumers’ valuation of zj. For each individual i and good j,
we define visible utility as V Uij ≡ xjα+ϵij. We call this quantity “visible utility” because
it defines the utility that i receives from good j based only on xj and ϵij, the attributes of
goods that consumers can observe without engaging in search (our main result also holds
when ϵij is only visible to consumers conditional on search, and so is not part of visible
utility). In our baseline case, we assume that consumers search in decreasing order of
visible utility. In other words, consumers always search first the goods that look more
desirable given the information available to them. Note that the econometrician cannot
tell the order of search since we do not observe ϵij; this implies that observationally
identical consumers can search in different orders.

The visible utility assumption is consistent with a broad class of search models. For
example, in a Weitzman (1979) search model where the priors and search costs are the
same across goods (but the latter vary across consumers), it is optimal to search the good
in decreasing order of visible utility and decide whether to search the next good by com-
paring the expected benefits with search costs. Alternatively, consumers may myopically
decide whether to continue searching by comparing utility in hand with expected utility
of the next good (the “directed cognition” model of Gabaix et al. (2006)), consumers
might engage in “satisficing,” i.e. searching in order of visible utility and stopping when-
ever utility in hand is good enough, or they might simultaneously search all goods with
visible utility above a certain threshold and then give up. In many cases, the underlying
search process is simply unknown; in these cases, the conventional approach is to assume
full information (potentially leading to biased estimates). Our approach is more general,
allowing for full information, as well as a range of partial information models.

Our main result (for the case with linear utility and no random coefficients) is that, un-

der the visible utility assumption and other conditions we make precise below, ∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

= β/α for j ̸= 1, where good 1 is defined as the good with the largest value of the hid-
den attribute z (which, again, is known to the econometrician but not necessarily to the
consumer). This expression holds for any models where consumers search according to
our assumptions above, including the full information case; it is thus robust to whether
consumers are fully or partially informed under our assumptions. The main downside of
our approach relative to the full information assumption is that it is more demanding of
the data, but this may be tolerable in large datasets typical of modern empirical work.

7We will show that the signs of α and β are identified, so assuming they are positive is without loss.
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The intuition for our result parallels the nutrition label example above: the expression
∂s1
∂z1

is only non-zero for consumers who maximize utility, and consumers who maximize
utility respond to attributes of rival goods (zj and xj) in proportion to their preferences.
α is also separately identified from choice data alone,8 and so our approach fully identifies
preferences, not just marginal rates of substitution, and can be used for welfare analysis.

How general is this result? Using additional derivatives of the choice probability
function, we can recover nonparametric utility functions Uij = v(xj, zj)+ϵij. Additionally,
the approach extends to random coefficients on product characteristics. Specifically,
letting Uij = xjαi + zjβi + ϵij, we can recover the distribution of random coefficients
(αi, βi) over a known grid. With a sufficiently long panel and time-invariant preferences,
Uijt = vi(xj, zj) + ϵijt, we can recover individual-specific, nonparametric utility functions
vi(xj, zj). Thus, we can allow for a similar degree of unobserved heterogeneity as other
constructive results on discrete choice demand with full information.9 Berry and Haile
(2009) and Berry and Haile (2014) also provide related results on nonparametric demand
estimation. Their focus is on recovery of the conditional distribution of utilities rather
than the structural parameters of utility; the latter are essential for our task of assessing
whether consumers are informed about relevant attributes. We also consider cases where
the visible utility assumption is not satisfied, such as models with search costs varying
across goods. We extend our model to allow for cases where (i) search costs vary with
observables (e.g., rank on a webpage), (ii) consumers form expectations about z based
on x, (iii) search reveals unobservable information, and (iv) either x or z is endogenous
and valid instruments are available.

Our identification proof lends itself naturally to estimation and testing. If one can
nonparametrically estimate choice probabilities as a function of product attributes, then
our results can be used to directly recover preferences. We also suggest an alternative
parametric approach to estimate cross-derivatives that works well in simulations for larger
numbers of goods. Given estimates of choice probabilities, one can use our result to test
for full information by checking whether our “search-robust” estimates of preferences are
equal to the conventional estimates based on first derivatives. This implies that one does
not need to take an a priori stance on whether or not the attribute z is uncovered only
after searching a good. That hypothesis can be tested provided that the data contains
attributes x that can be assumed to be part of visible utility. Additionally, our model is
overidentified; in the case of homogeneous, linear preferences, for example, ∂2s1

∂z1∂zj
/ ∂2s1
∂z1∂xj

will be equal for all goods j ̸= 1. We also show that the assumptions in our model imply
nontrivial bounds on choice probabilities that can be checked in the data.

We conduct two data analyses to validate our approach. First, we attempt to recover
preferences in a lab experiment where individuals engage in costly search. Individuals
choose from sets of three books with visible titles, authors, genre, star ratings and prices,
but hidden discounts that can only be observed at some cost, with no other constraints on

8When zj is the same for all goods, consumers maximize utility (although they themselves do not
necessarily know this), so conventional methods suffice to recover α.

9Fox and Gandhi (2016) provide identification results for more general models allowing for both
nonlinearity and flexible heterogeneity but these results are non-constructive and assume utility maxi-
mization; we use their result to identify parameters in corner cases where consumers maximize utility,
but they otherwise are difficult to adapt to the more general case where choice probabilities need not
maximize utility. This is in contrast to the constructive methods in Fox et al. (2012), who recover
distributions satisfying the “Carleman condition,” which implies that the distribution of preferences is
uniquely characterized by its moments. Alternatively, we recover weights for distributions supported on
a known and fixed grid, in line with the approach of Fox et al. (2011).
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search. For each individual, we also observe treatments where consumers choose given full
information. As expected, conventional logit estimates using the costly search data give
attenuated coefficients on the discount variable relative to the full information case. By
contrast, our search-robust estimates successfully recover full-information preferences. We
show that our model successfully predicts the impact of an information intervention and
permits an accurate welfare evaluation before the intervention is conducted. Estimated
choice probabilities also satisfy bounds implied by the visible utility assumption.

Second, we apply our method to data from Expedia where consumers search for
hotels. Many attributes of hotels, such as price or star rating, are immediately visible
in search results. One attribute, hotel location desirability within a city, is only visible
if you “search” a hotel by clicking through to find more information. We show that our
approach correctly identifies location desirability as a hidden attribute, and we use the
model to compute the benefits to making location desirability visible without search.
Note that, in this non-experimental setting, consumers are free to search in whichever
way they prefer, i.e. we are not enforcing any part of our model by design. The fact that
the approach continues to work provides evidence that it can be successfully applied to
observational data.

Our result relates to several existing literatures. An important theoretical and empir-
ical literature models consumers as choosing from a possibly strict subset of the options
available, their “consideration set.”10 This paper considers the complementary problem
of imperfect information at the level of attributes rather than goods.11 A growing liter-
ature, including Mehta et al. (2003), Kim et al. (2010), Honka and Chintagunta (2016),
Kim et al. (2017), Ursu (2018) and Gardete and Hunter (2020), models consumers as
searching products in order to uncover some of their attributes. We specifically con-
sider the case when an attribute is observed by the econometrician and (potentially) not
observed by consumers. In this case, we show that preferences can be recovered under
our assumptions without the explicit structural search models used in the existing litera-
ture.12,13 Another related literature studies whether consumers make informed choices by
comparing the choices of regular consumers to that of a more informed subgroup. Bron-
nenberg et al. (2015) ask whether pharmacists make similar prescription drug choices

10Roberts and Lattin (1991), Goeree (2008), Conlon and Mortimer (2013) and Gaynor et al. (2016)
— among others — estimate preferences when consumers may only consider some alternatives. Manzini
and Mariotti (2014) establish that one can recover consideration probabilities as well as preferences if
the data contains choices from every possible subset of the feasible set of goods. Abaluck and Adams
(2017) show that identification can be achieved even without this type of variation under certain models
of consideration set formation. Barseghyan et al. (2021) study partial identification of a general model
with heterogeneous consideration sets.

11The recent theoretical literature on this question includes Branco et al. (2012), Ke et al. (2016) and
Gabaix (2019).

12There is one special case where the problem of imperfect information about attributes has been
addressed in the existing literature. This is the case in which all attributes can be expressed in dollar
terms. For example, consumers should not care whether a health insurance plan saves them $100 in
premiums or out of pocket costs (see Abaluck and Gruber (2011)), or whether a light bulb saves them
money in upfront costs or shelf life (as in Allcott and Taubinsky (2015)). If one dollar-equivalent attribute
is assumed to be visible to consumers, it can provide a benchmark for how consumers should respond
to a hidden dollar-equivalent attribute. However, in many cases, attributes cannot easily be translated
into dollars without first estimating consumer preferences. In these cases, our results still allow one to
recover preferences given imperfectly informed consumers.

13Ericson et al. (2015) consider the related problem of inferring risk preferences separately from risk
types using insurance choices. Their model differs from ours in that, in the special case they consider,
the covariate “risk type” is not observed by the econometrician either.
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to consumers, Handel and Kolstad (2015) ask whether better informed consumers make
different health insurance choices, and Johnson and Rehavi (2016) study whether physi-
cians treat differently when their patients are other physicians. Rather than identifying
informed consumers, our paper develops a data-driven way of identifying consumers who
maximize utility (despite not necessarily searching all goods) and whose choices can thus
be used to recover preferences.

Section 3.4 lays out our formal framework and proves our identification results, Sec-
tion 2.3 considers several empirically important extensions such as endogenous attributes,
Section 3.5 provides details of estimation, Sections 2.5 and 2.6 report results from our ex-
periment and Expedia application, respectively, Section 2.7 discusses the (counterfactual)
questions that can be addressed using our approach, and Section 2.8 concludes.

2.2 Model and Identification

There are J ≥ 2 goods indexed by j = 1, ..., J with attributes xj observed by consumers
and the econometrician and attribute zj observed by the econometrician but not neces-
sarily by consumers.14,15 We assume that xj and zj are continuously distributed. Further,
in order to keep the analysis simple and focus on the intuition underlying our key results,
we make a few simplifying assumptions. Each of these assumptions can be relaxed, as we
discuss below. First, we let xj be scalar for all j; our results immediately extend to the
case of vector-valued xj’s at the cost of some extra notation. Second, we focus on the case
where zj is also a scalar and we let good 1 be the good with the largest value of zj (we
consider the case with multivariate zj in Appendix B.9.2).16 Third, we assume that the
utility that individual i derives from good j is linear in xj, zj and an idiosyncratic shock
ϵij that is observed by consumers prior to search (we allow for nonparametric utility in
Section 2.3.1). Fourth, we focus on the case where both xj and zj are exogenous (Section
2.3.3 discusses how to deal with endogeneity). We formalize these assumptions as follows.

Assumption 1. The utility that individual i derives from good j is Uij = αxj +βzj + ϵij,
where xj, zj are scalars, and x = (x1, . . . , xJ) and z = (z1, . . . , zJ) are independent of
ϵi = (ϵi1, . . . , ϵiJ). The consumer observes xj, ϵij for all j prior to search, but needs to
search good j to uncover zj.

We use the term visible utility to indicate the component of utility that is known to the
consumer before engaging in search, and denote it V Uij = αxj + ϵij.

Next, we state the assumptions that characterize the class of search models we con-
sider.

Assumption 2. (i) Consumer i searches goods in decreasing order of V Uij.
(ii) Conditional on having utility ū in hand, consumer i searches j if and only if

gi(xj, ϵij, ū) ≥ 0 where gi is decreasing in ū.17

(iii) Consumers choose the good which maximizes utility among searched goods.

14Our model also permits the more general case where attributes are potentially both good and
individual-specific, but we write xj and zj rather than xij and zij for notational simplicity.

15Since our model only requires variation in x and z for two goods, any of the remaining J − 2 goods
may be taken to be the outside option.

16The definition of good 1 requires ruling out ties among the top two values of zj .
17Assumption (ii) can be weakened to allow the function gi to depend on a good-specific unobservable,

such as search costs; however, good-specific search costs may lead to violations of Assumption (i). In
Section 2.3, we extend our model to permit search costs to vary across goods with observable factors.
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(iv) Only the value of zj is unknown to consumers prior to search, and search fully
reveals zj.

We discuss these conditions at length in Section 2.2.2. To briefly clarify, Assumption
(i) states that consumers search goods in order of the component of utility visible to
them without search (although not entirely visible to the econometrician). We view this
as the strongest restriction in our model; Section 2.3 considers two relaxations that are
relevant for empirical work. Assumption (ii) states that consumers decide whether or
not to search a good based on their utility in hand and the visible utility of the good
they are considering searching. This rules out, for example, a sequential search protocol
whereby one stops searching after discovering a good with large z irrespective of utility in
hand. Further, Assumption (ii) also accommodates simultaneous search models in which
consumers decide which goods to uncover based on visible utilities and then proceed to
jointly search them. In this case, utility in hand is not a well-defined object and the
function gi does not vary with its second argument. We subscript the function g by i to
emphasize that the function may depend on any individual (unobserved) heterogeneity
in utility or search. For example, in a Weitzman search model, the stopping rule would
depend on consumer i’s reservation value, which in turn depends on i’s search cost.
Assumption (iii) states that consumers must search a good before choosing it.

Assumption (iv)—implicit in the model already—states that the econometrician ob-
serves all the information which is revealed by search, and that search is fully informative
about the hidden attribute.

We pause here to highlight that Assumption 2 accommodates several commonly used
models of search.

Example 1 (Sequential Search). Suppose that consumers search sequentially and con-
sumer i must pay a cost ci every time she uncovers the z attribute for a good. Further,
assume that the consumer has the same prior Fz for all goods. Then, following Weitz-
man (1979), the consumer will rank goods according to their reservation value rv′ij defined
implicitly by

ci =

∫ ∞

rv′ij

(
u− rv′ij

)
dFUij

(u) =

∫ ∞

rvi

βi (t− rvi) dFz (t) (2.1)

where rvi ≡ rv′ij−αixj−ϵij

βi
and the last step follows from a change of variable. We can

interpret rvi as the reservation value in units of z. To see this, note that consumer i ranks
goods according to the visible utility xjαi+ ϵij and for each good j′ she chooses to uncover
zj′ if and only if the maximum utility secured so far is lower than xj′αi+rviβi+ϵij′. Once
she stops searching, she maximizes utility among the searched goods. Thus, Assumption
2 is satisfied with gi (xj, ϵij, ū) = xjαi + rviβi + ϵij − ū.

Example 2 (Directed Cognition Model). As in the model of Gabaix et al. (2006), suppose
that consumers rank goods in terms of expected utility18 and myopically check whether
searching the next good is worth the cost. The directed cognition model has the same gi
function as the Weitzman model,19 but the order of search (and which goods are ultimately
searched) may differ.

18Note that we may assume without loss that E(zj) = 0 for all j since the mean value of the hidden
attribute (known by rational consumers before search) is subsumed by visible utility.

19The result that consumers in the fully rational Weitzman model decide whether to continue searching
“as if” they were myopic is one of the main insights of Weitzman (1979).
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Example 3 (Satisficing). Suppose that consumer i searches in order of visible utility and
stops whenever utility in hand is above a threshold τi. Then, Assumption 2 is satisfied
with gi (xj, ϵij, ū) = τi − ū.

Example 4 (Full Information). The full information model is subsumed within the pre-
vious example by letting τi = ∞ for all i.

Example 5 (Simultaneous Search). Suppose that consumer i simultaneously searches all
goods that have visible utility above a threshold τ̃i. Then, Assumption 2 is satisfied with
gi (xj, ϵij, ū) = αxj + ϵij − τ̃i.

Our results will not require the researcher to take a stand on the specific model
of search that consumers follow (provided that our assumptions are met). Therefore, as
illustrated by the examples above, the approach will be agnostic as to whether consumers
search sequentially or simultaneously, are forward-looking or myopic and have biased or
unbiased beliefs, among other things. In contrast, fully specifying a structural model
requires one to take a stand on each of these dimensions.

Throughout the rest of the paper, we assume without loss that β > 0, i.e. we treat zj
as an attribute that customers value in good j.20 We are now ready to state and prove
a lemma that is at the core of our results.

Lemma 2. Let Assumptions 1 and 2 hold. If consumer i searches good 1 (i.e., the good
with the highest value of z), then i chooses the utility-maximizing good.

Proof. If good 1 is searched but utility is not maximized, then for some unsearched j,
Uij > Ui1. Since z1 > zj, it must be that good V Uij > V Ui1. But by Assumption (i),
this implies that good j is searched, which is a contradiction.

Note that Lemma 2 does not imply that good 1 always maximizes utility if it is searched.
Rather, it implies that if good 1 is searched, the utility-maximizing good will also be
searched (whether it is good 1 or not) and thus the consumer will choose that good.
The lemma also does not mean that consumers searching good 1 are fully informed (in
a search model they typically will not be), but just that those consumers act as if they
were fully informed.

Lemma 2 will have far-reaching implications. To understand why, it will be convenient
to define the choice probability for good j as:

sj ≡ P
({
Uij = max

k
Uik for k ∈ Gi

}
∩ {j ∈ Gi}

)
(2.2)

where Gi denotes the set of searched goods for individual i. Note that this probability is
computed by integrating over any individual-specific unobserved heterogeneity in utility
or search. Therefore, sj is a function of x ≡ [x1, . . . , xJ ] and z ≡ [z1, . . . , zJ ], but we
will often omit the dependence from the notation. Throughout the paper, the sources of
unobserved heterogeneity will vary with the specific models we consider, so the symbol
P will denote integrals over different distributions depending on the context.

20Conditional on Assumption (i), this is without loss, since Assumption 2 implies that an increase in
Uij can only induce consumer i to switch from not choosing j to choosing j, but never vice versa. Thus,

by the chain rule, the sign of β is identified by the sign of
∂sj
∂zj

, where sj is the choice probability function

for good j from the data.
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Now, Lemma 2 implies that z1 only impacts choice probabilities for individuals who
maximize utility. Therefore, looking at ∂s1

∂z1
will isolate individuals who maximize utility

and allow us to recover preferences using standard arguments.
In other words, the probability that good 1 is chosen is the probability that good

1 is utility-maximizing minus the probability of the only type of mistakes that con-
sumers searching good 1 can make, i.e. failing to search good 1 even though it is utility-
maximizing. Failing to search good 1 requires that there exists some other good j with
V Uij ≥ V Ui1 and utility high enough that gi(x1, ϵi1, Uij) ≤ 0. The other type of mistake,
i.e. choosing good 1 when it is not utility-maximizing, is ruled out and thus does not
feature in (??).

We will now show our key result, i.e. that the preference parameters α and β are
identified from the second derivatives of function s1. To keep the notation simple, we
focus on the special case with with J = 2 goods. The result immediately extends to the
case with J ≥ 2 goods.

Lemma 3. Let Assumptions 1 and 2 hold. Further, assume that ∂2s1
∂z1∂x2

(x∗, z∗) ̸= 0 for
some (x∗, z∗), s1 is twice differentiable. Then,

∂2s1
∂z1∂z2

(x∗, z∗)
/ ∂2s1
∂z1∂x2

(x∗, z∗) =
β

α
(2.3)

In addition, α is identified by focusing on markets with zj = z for all j and thus β is also
identified.

Proof. First, we prove equation (2.3). In order to ease notation, we often suppress the
subscript i in what follows. As above, good 1 is defined as the good with the highest
value of zj. Further, we let β > 0 without loss.21 Using Lemma 2, the probability of
choosing good 1 can be written as:

s1 = P (U1 > U2)− P ({U1 > U2} ∩ {G = {2}}) (2.4)

where, as above, G denotes the set of searched goods. This follows because (i) if good 1 is
utility-maximizing, you will always choose it unless you search only good 2; and (ii) you
only choose good 1 if it is utility-maximizing, since otherwise, good 2 must have higher
visible utility, meaning it must be searched (and chosen) if good 1 is searched.

Let ũj ≡ xjα + zjβ, so that Uij = ũj + ϵij, and let (x, z) = (x∗, z∗). Our goal will
be to show that both z2 and x2 only impact ∂s1

∂z1
via ũ2. This, in turn, implies that

∂2s1
∂z1∂z2

= ∂2s1
∂z1∂ũ2

∂ũ2

∂z2
and ∂2s1

∂z1∂x2
= ∂2s1

∂z1∂ũ2

∂ũ2

∂x2
, and the result in equation (2.3) follows. To

establish this, note that we can write:

P ({U1 > U2} ∩ {G = {2}}) =
P ({U1 > U2} ∩ {V U2 > V U1} ∩ {g(x1, ϵ1, U2) ≤ 0}) =

P ({U1 > U2} ∩ {g(x1, ϵ1, U2) ≤ 0})− P ({V U1 > V U2} ∩ {g(x1, ϵ1, U2) ≤ 0})
(2.5)

where the second line follows since V U1 > V U2 implies U1 > U2 . The second term on
the last line of display (2.5) is not a function of z1. The first term is only a function of x2
and z2 via ũ2. This, together with equation (2.4), is sufficient to show that both z2 and

x2 only impact ∂s1
∂z1

= ∂P (U1>U2)
∂z1

− ∂P ({U1>U2}∩{G={2}})
∂z1

via ũ2, thus proving equation (2.3).

21This is without loss, since the sign of β is immediately identified from the data (footnote 20).
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Finally, we show that we can identify α using standard techniques by looking at choice
sets where zj = z for all j. To see this, note that when zj = z for all j then consumers
maximize utility if and only if they maximize visible utility. Since by assumption they
always search the good with the highest visible utility, it follows that they maximize
utility. Thus, one can pin down α by looking at how the choice probabilities vary with
x conditional on zj = z for all j, just like in the full information case.22 Given (2.3) and
α, identification of β follows immediately.

Finally, we show that in many models of interest the conventional way of identifying
preferences based on the ratio of first derivatives leads to understating consumers’ taste
for z. For this result, we further assume that the function gi(xj, ϵij, ū) is weakly increasing
in xj. This condition is satisfied in all the search model considered above (Examples 1–5)
when the coefficient on x in utility is positive and corresponds to the mild requirement
that consumers are (weakly) more prone to searching a good the higher the value of x
for that good.

Lemma 4. Let Assumptions 1 and 2 hold. Further, assume that gi(xj, ϵij, ū) is weakly
increasing in xj. Then, ∣∣∣ ∂sj∂zj/

∂sj
∂xj

∣∣∣ ≤ ∣∣∣β/α∣∣∣. (2.6)

This shows that standard discrete choice models that assume full information—such
as multinomial logit or probit—will typically suffer from attenuation bias under our as-
sumptions.

2.2.1 Alternative Approaches and Support Assumptions

So far we have not focused on the support assumptions required for identification. These
are nonetheless essential to understand our contribution. Alternative approaches to iden-
tification exist which differ principally in requiring much stronger support assumptions.

For instance, one could assume that the data exhibits “at-infinity” variation to effec-
tively go back to a setting that is analogous to full information. As the visible utility
for a subset of goods grows to infinity (minus infinity), the probability of searching those
goods goes to one (zero) under reasonable assumptions on the search process. Using this,
one could identify preferences using conventional arguments. However, in practice, it is
often implausible that any goods are searched with probability close to 1, so this strategy
would require substantial parametric extrapolation.

In contrast, our proof requires much more plausible support assumptions. There is
always a good which maximizes zj (or our weighted index in the vector-valued case, see
Appendix B.9.2). To recover preferences in the homogeneous linear case, we only need

22There is one subtle exception to this argument. Suppose there is an outside option with utility
normalized to 0, and we wish to identify a fixed effect which gives the utility of all inside goods relative
to the outside good. In this case, consumers do not necessarily maximize utility when zj = z for all goods
because consumers may decide to search none of the inside goods, and they may do so even when the
outside good has lower utility than some of the inside goods if search costs are sufficiently high (in other
words, an outside option may violate our assumption that consumers must search a good before they
choose it). When consumers search none of the inside goods, it is never possible to separately identify
whether consumers do not value the inside goods or have high search costs to examine any of the inside
goods. It is possible to say something about the utility of consumers who are induced to search at least
one of the inside goods when price is low enough (for example), but parametric assumptions are needed
to make claims about the utility of consumers who never search any of the inside goods.
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sufficient variation to estimate second derivatives of s1 at a single point. As one would
expect, flexibly recovering a nonparametric utility function or nonparametric random
coefficients distribution requires considerably more variation and data, since it involves
estimating higher order derivatives of choice probabilities, as we show in Section 2.3.
Still, it remains less demanding than “at-infinity” identification. We further discuss
these challenges in Section 3.5.

2.2.2 Discussion of Search Model Assumptions

To reiterate, we consider search models satisfying the following assumptions:

1. Consumer i searches goods in decreasing order of V Uij.

2. Conditional on having utility ū in hand, consumer i searches j if and only if
gi(xj, ϵij, ū) ≥ 0 where gi is decreasing in ū.

3. Consumers choose the good which maximizes utility among searched goods.

4. Only the value of zj is unknown to consumers prior to search, and search fully
reveals zj.

As discussed above, there are several microfoundations for the first assumption. For
example, in the Weitzman (1979) search model, consumers search goods in order of reser-
vation utility, which is a function of the visible attributes of those goods, the distribution
of the hidden attribute zj, and search costs. If zj is i.i.d. across goods and consumers
have the same search cost for all goods, then it follows that consumers will search in order
of visible utility (see Example 1). There are at least three reasons this might fail in the
Weitzman (1979) model: first, there may be more uncertainty about the hidden attribute
for some goods than others, and this might lead individuals to search such goods first.
Second, unobservables might be correlated across goods, so that, e.g., learning good news
about good 1 might cause one to positively update about good 2 and choose to search it
before good 3 even if V Ui3 > V Ui2. Third, search costs might vary across goods, meaning
that consumers prefer to search first goods with lower search costs even if the payoff is
potentially lower.

While the restriction that priors be i.i.d. and search costs be constant across goods
is sufficient for Assumption (i) (the first assumption above), this is not necessary. Pri-
ors may be heterogeneous but consumers may be unsophisticated and fail to take into
account option value, as in the directed cognition model studied in Gabaix et al. (2006).
Consumers searching for a laptop online may enter some attributes into a search function
and look at the items which rank highly according to those attributes without regard
for whether a lower item is worth searching first because its value is more uncertain de-
spite its lower average utility. Such examples also raise the natural concern that in many
settings, factors like the order in which items appear in search may impact search costs
separately from visible utility. Applications in the marketing literature often allow search
costs to vary with observable attributes, such as the position of a good in search (e.g.,
Ursu (2018)). In Section 2.3.4, we extend our main result to allow for these violations
of our visible utility assumption by considering cases where some observable attributes
impact search but not utility. We can also relax the i.i.d. priors assumption by allowing
consumers to form beliefs about the hidden attribute as a function of observed attributes.
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Specifically, in Section 2.3.5, we extend our approach to the case where beliefs about zj
are a linear function of observables.

Our second assumption on search is that consumers search good j if and only if
gi(xj, ϵij, ū) ≥ 0 where ū is utility in hand; we also impose the natural restriction that
one is (weakly) less likely to search as ū increases. This assumption is satisfied in most
search models we are aware of in the literature, including Weitzman search, satisficing,
simultaneously searching all goods with visible utility above a threshold, random search,
and directed cognition. One exception is a model in which consumers simultaneously
search the top K goods in terms of visible utility prior to engaging in search. This
model would violate the assumption because the function gi that determines whether i
searches good j cannot be written only as a function of xj and ϵij since it will depend
on the visible utility of all goods. We show in section 2.3.7 that our methods can be
extended to accommodate one version of this model based on Honka et al. (2017). We
also investigate the robustness of our approach to a violation of this assumption in the
simulations of Section 3.5.

Our third assumption, that consumers choose the good which maximizes utility among
searched goods, embeds two separate ideas: the first is that consumers do not choose a
good they have not searched, and the second is that they maximize utility given the
information available. This is natural in contexts such as e-commerce, where consumers
typically have to open a product’s page in order to add it to their carts. The assumption
that consumers maximize utility given the information available can also be relaxed.
One could specify a positive utility function that allows for consumer errors; as long as
consumers maximize that positive utility function, the weight that they would attach to
the hidden attribute given full information will be revealed. It is then up to the researcher
whether to take this weight as the normative benchmark or whether to use some external
standard.

The fourth assumption again nests two pieces. The first is that only the value of zj
is unknown prior to search. A consumer who clicks through to the product information
page of an Amazon product might learn information about the attributes of a good (“the
battery is compatible with USB-c”), but they also might learn information not observable
to the econometrician (“one reviewer said the battery exploded into flames”). In section
2.3.6, we show that our results continue to hold if the ϵ component of utility is revealed
only conditional on search (as in Kim et al. (2010) and Ursu (2018)). The second piece of
the fourth assumption is that search reveals all information about the hidden attribute.
This assumption is natural in settings where zj is fully observed to the econometrician,
as in our case. This is not always plausible: if the hidden attribute is “school-value
added,” a consumer who searches more may learn about test scores and graduation rates,
but these are (imperfect) signals of the underlying variable. There is a literature on
consumer (Bayesian) learning which models more explicitly the case when search is not
fully informative (see Erdem and Keane (1996), Ackerberg (2003a), Crawford and Shum
(2005), among others).

While our assumptions are not without bite, they subsume a range of search protocols.
Still, one might wonder if they will hold in empirically relevant settings. We address this
in two ways. First, in the next subsection, we show that the assumptions on the search
process can be tested based on the same data required for estimation of the model.
Second, we apply our approach to data from a lab experiment (Section 2.5) as well as
observational data from Expedia (Section 2.6), and show that our method is able to
successfully identify the attributes that are not immediately visible to consumers.
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2.2.3 Testing Search Model Assumptions with and without Ob-
servable Search

Our analysis so far has proceeded as if search were not observed; that is, we observe final
choices as a function of x and z but we do not observe which specific goods were searched.
Datasets increasingly contain some information on what is searched: for example, in
online clickstream data, one observes not only which product was purchased, but also
which products were clicked on en route to purchase (e.g., Ursu (2018)). In many settings,
it is plausible to assume that such clicks reveal which products were searched.

Can preferences be identified without resorting to our approach or an explicit search
model in these cases? One might assume that our identification results would be unnec-
essary in such cases; given data on which products were searched, perhaps preferences
can be estimated conditional on search without any of the assumptions we require here.
However, this is not generally the case because the unobservable component of utility
may also drive the search decision. One example would be if search depends on ϵ. In
such cases, goods with undesirable observables that are searched likely have an especially
high realization of ϵ. Thus, it will appear from conditional choice probabilities as though
the observable attributes are not so bad when in practice, individuals dislike those at-
tributes but this dislike is offset by a large ϵ. A second reason unobservable components
of utility might impact search is if preferences are unobservably heterogeneous (random
coefficients). Even if search does not depend on ϵ, preferences cannot generally be recov-
ered using only conditional choices unless IIA is satisfied.23 Thus, with heterogeneous
preferences, the existing literature requires specifying a search model in order to estimate
preferences even when search is observed. Our approach avoids the need to do this under
the assumptions we have outlined.

Once our approach is used to identify preferences, clickstream data can be used to
conduct additional overidentifying tests if we assume that the distribution of ϵij is known.
In the linear case, visible utility is given by V Uij = αxj + ϵij. As shown in Lemma 3,
examining choices with equal values of the hidden attribute is sufficient to identify α.
Given α, the known distribution of ϵij, and the number of goods searched |Gi|, we can
thus compute:

P (j ∈ Gi|x, z) =
∑
k

P (|Gi| = k|x, z)P (j ∈ Gi||Gi| = k,x, z) (2.7)

since the first probability on the RHS is observed and the second is pinned down by the
model assumptions (specifically, the fact that with k goods searched, those k goods must
be the k goods with the highest visible utility). Checking (2.7) against the observed
search probabilities provides a test of the model.

23To see why heterogeneous preferences create a problem, imagine products have quality ratings from
1-5. There are two types of consumers, one type that cares about quality and one type that does not.
The type that cares about quality is indifferent about quality over the 4-5 range, but values quality over
the 1-4 range sufficiently that quality differences outweigh any other differences observable to consumers.
Suppose that quality is observable to consumers (x) but price is only observed conditional on search
(z). Quality conscious consumers only search goods with quality of at least 4. Other consumers will
search all goods. If we estimate preferences conditional on search, we will wrongly conclude that no one
cares about quality: quality conscious consumers don’t care about quality given the goods they have
searched (quality ranging from 4-5) and non-quality conscious consumers don’t care about quality at all.
To estimate preferences correctly, we would have to jointly model the decision of which goods to search
and preferences conditional on searching.
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Even when we do not observe auxiliary information on which goods are searched,
the assumptions in our model can be jointly tested by checking whether the observed
choice probabilities are consistent with bounds implied by the estimated preferences and
assumed search rule. To construct an upper-bound on choice probabilities, note that a
good j cannot be chosen if there is an alternative good with higher visible utility and
higher utility. Thus, we have:

sj(x, z) ≤ 1− P (Uik ≥ Uij and V Uik ≥ V Uij for some k) (2.8)

The latter probability can be directly computed from knowledge of preferences and the
distribution of ϵ. To construct a lower-bound, note that the probability of choosing good
j is at least as large as the probability that good j maximizes both utility and visible
utility. That is:

sj(x, z) ≥ P (Uij ≥ Uik and V Uij ≥ V Uik for all k) (2.9)

Once again, this probability can be computed given knowledge of preferences and the
distribution of ϵ. We can then check whether our estimated choice probabilities are
consistent with these bounds.

Finally, our model is overidentified. For example, in the case of linear utility and
homogeneous preferences that we have focused on so far, ∂2s1

∂z1∂zj
/ ∂2s1
∂z1∂xj

= β/α for all

alternative goods j ̸= 1 and values of (x, z) at which the derivative in the denominator is
nonzero. This provides a number of overidentifying restrictions which could be used to
further test the model.

2.2.4 Testing for Full Information

Our results suggest a natural test for full information. Under the null hypothesis of full
information, sj = P (Uij ≥ Uik ∀k) and therefore:

∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

=
∂sk
∂zj

/∂sk
∂xj

=
β

α
(2.10)

for all j ̸= 1 and all k. On the contrary, when consumers are unaware of zj for some goods,
then the ratios of first derivatives need not be equal to the ratios of the second derivatives.
For example, Lemma 4 showed that ∂s1

∂z1
/ ∂s1
∂x1

≤ ∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

in the class of search models

we consider. Since both the ratios of first derivatives and the ratios of second derivatives
in (2.10) are estimable from the data, this immediately leads to a test based on the
discrepancy between the two sets of ratios. More specifically, given estimators of the
share functions, one can compute a Wald test-statistic based on the discrepancy between
the two sets of ratios and reject the null hypothesis of full information if the statistic
exceeds a critical value.

Note that this test is valid even if our assumptions on the search process fail to
hold since with full information the two sets of ratios will be equal regardless. When
our assumptions on the search process do hold, we expect the test to have power, since
the first derivative ratio will be attenuated relative to the true preferences, which are
recovered by the cross-derivative ratio.

One may wonder whether this testing approach continues to be valid in the case
where consumers are heterogeneous in their preferences for the xj and zj attributes (we
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consider identification of that model in Section 2.3.2). Specifically, one might worry that,
when consumers have heterogeneous preferences, the ratio of first derivatives might be
attenuated relative to the ratio of second derivatives even under the null hypothesis of
full information. In Appendix B.10, we provide verifiable sufficient conditions that rule
this out and therefore guarantee the validity of our test for the mixed logit model.

2.3 Extensions

In this section, we consider several extensions to the baseline model. We consider each
extension separately, although in principle, one could estimate models combining several
such extensions. For example, Kim et al. (2010) estimate a search model in which only
attributes unobservable to the econometrician are revealed during search, and in which
some observables impact search but not utility.

2.3.1 Nonparametric utility

We start by extending Lemma 2 to the case with nonparametric utility Uij. Without loss
of generality, we can write: Uij = aij(xj) + bij(xj, zj) where bij(xj, 0) = 0 (to see this,
define bij(xj, zj) = Uij(xj, zj) − Uij(xj, 0)). The term aij(xj) is the component of utility
that is known to the consumer before engaging in search, and thus corresponds to what
we defined as visible utility, V Uij. We make the following assumptions on the utility
function.

Assumption 3. (i) For all i and j, Uij is strictly monotonic in zj.
(ii) For all i, the function bij(xj, zj) is not alternative-specific, i.e. bij(xj, zj) =

bi(xj, zj) for all j, and continuous in its first argument.

The class of utility functions satisfying Assumption 7 is broad and subsumes most
specifications commonly used in empirical work as special cases, including logit with
possibly nonlinear-in-characteristics utilities24 and mixed-logit. For instance, in a mixed-
logit model, one may specify Uij = αixj + βizj + ϵij. To map this specification into our
notation, let aij(xj) = αixj + ϵij, and bi(xj, zj) = βizj.

Lemma 5. Let Assumptions 2 and 7 hold, and let xj ∈ [x̄− η, x̄+ η] for all j, for some
η > 0 sufficiently small. If consumer i searches good 1 (i.e., the good with the highest
value of z), then i chooses the utility-maximizing good.

Proof. If good 1 is searched but utility is not maximized, then for some unsearched j,
Uij > Ui1. Since z1 > zj, by monotonicity, bi(x̄, z1) > bi(x̄, zj). By continuity of bi in its
first argument, this implies that for η sufficiently small, bi(x1, z1) ≥ bi(xj, zj).

25 Given
this, Uij > Ui1 implies V Uij > V Ui1. But by Assumption (i), this implies that good j is
searched, which is a contradiction.

24We allow for nonlinearities subject to Assumption (i) being satisfied.
25More formally, by continuity, for all δ > 0 there exists η > 0 such that if |x1 − xj | < 2η, then

bi (xj , zj)− bi (x1, zj) ≤ δ. Therefore, we have:

bi (xj , zj) = bi (x1, zj) + bi (xj , zj)− bi (x1, zj)

≤ bi (x1, zj) + δ

≤ bi (x1, z1)

where the last inequality follows by choosing δ ≡ bi(x1,z1)−bi(x1,zj)
2 .
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Next, we generalize Lemma 3. To this end, we consider the case where utility takes the
form

Uij = v(xj, zj) + ϵij

for an unknown function v. In what follows, we use x and z to denote generic arguments
of v.

Theorem 2. Let Assumption 2 hold and utility be given by Uij = v(xj, zj)+ϵij with v in-

creasing in both arguments and infinitely differentiable. Further, assume that ∂2s1
∂z1∂xj∗

(x∗,

z∗ ̸= 0 for some (x∗, z∗) and j∗ ̸= 1, s1 is infinitely differentiable and ϵi ⊥ (x, z). Then,
v is identified up to an additive constant.

This theorem applies to a broad class of utility functions. The cost of this level of gener-
ality is that it requires the share function s1 to be infinitely differentiable. However, the
marginal rates of substitution are recovered under much weaker differentiability require-
ments.

Corollary 3. Let Assumption 2 hold and utility be given by Uij = v(xj, zj) + ϵij with v
increasing and differentiable in both arguments. Further, assume that s1 is twice differ-
entiable and ϵi ⊥ (x, z) and assume that v(·) is identifiable from fully informed choices.
Then, the marginal effects ∂v

∂z
and ∂v

∂x
can be identified using only second derivatives.

Specifically, (i) marginal rates of substitution, ∂v
∂z
/ ∂v
∂x
, can be recovered using:

∂2s1
∂z1∂zj

(x, z)
/ ∂2s1
∂z1∂xj

(x, z) =
∂v

∂z
(x, z)

/∂v
∂x

(x, z) (2.11)

for all j ̸= 1 such that ∂2s1
∂z1∂xj

(x, z) ̸= 0, and (ii) ∂v
∂x

can be identified from choices where

zj = z for all j.

Finally, we consider the case where the researcher has access to long panel data. This
allows for even more flexibility in the specification of utility. In particular, we consider
the case where

Uijt = vi(xjt, zjt) + ϵijt.

Note that we now let the function v be consumer-specific. This case closely parallels the
proof for Theorem 2. Now, rather than observing only sj(x, z), the choice probabilities for
each alternative as a function of the attributes, panel data allows us to observe sij(x, z),
the choice probabilities for each individual as (x, z) vary over a long period of time. Given
these, the following result holds:

Theorem 4. Let Assumption 2 hold and utility be given by Uijt = vi(xjt, zjt) + ϵijt
with vi increasing in both arguments and infinitely differentiable. Further, assume that
∂2si1

∂z1∂xj∗
(x∗, z∗) ̸= 0 for some (x∗, z∗) and j∗ ̸= 1, si1 is infinitely differentiable and ϵi ⊥

(x, z). Then, vi is identified up to an additive constant.

Corollary 5. Let Assumption 2 hold and utility be given by Uijt = vi(xjt, zjt) + ϵijt
with vi increasing and differentiable in both arguments. Further, assume that si1 is twice
differentiable, ϵi ⊥ (x, z), and assume that v(·) is identifiable from fully informed choices.
Then, the marginal effects ∂vi

∂z
and ∂vi

∂x
can be identified using only second derivatives.

Specifically: marginal rates of substitution, ∂vi
∂z
/∂vi

∂x
, can be recovered using:

∂2si1
∂z1∂zj

(x, z)
/ ∂2si1
∂z1∂xj

(x, z) =
∂vi
∂z

(x, z)
/∂vi
∂x

(x, z)
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for all j ̸= 1 such that ∂2si1
∂z1∂xj

(x, z) ̸= 0, and ∂vi
∂x

can be identified from choices where

zj = z for all j.

The proofs of these two results exactly parallel the arguments for Theorem 2 and Corollary
3.

2.3.2 Random coefficients

The cases considered so far assume either that we have panel data or that all individual
heterogeneity is additively separable. Due to the difficulty of separately identifying pref-
erences and search as well as more practical difficulties with estimation, most empirical
structural search models that we are aware of do not allow for non-separable unobserved
heterogeneity (see, e.g., Ursu (2018), Honka et al. (2017)).

Of course, we would like to understand both from a theoretical perspective whether the
assumption of separable heterogeneity is required for identification and from a practical
perspective whether our results are applicable in such cases. The canonical case of non-
separable heterogeneity that has been studied in the literature and for which constructive
identification results exist is that of the linear random coefficients model. We maintain
linearity and impose two additional assumptions.

Assumption 4. (i) Utility is given by Uij = xjαi + zjβi + ϵij.
(ii) The coefficients αi and βi take values on a known finite support, i.e. αi ∈

{α1, . . . , αKα} and βi ∈
{
β1, . . . , βKβ

}
. Further, the elements of

{
β1, . . . , βKβ

}
all have

the same sign and, without loss, we assume that they are positive.
(iii) The distribution of ϵi is known (or independently identified) and the three random

vectors ϵi, (α, β) and (x, z) are mutually independent.

Assumption (ii) follows Fox et al. (2011) and a recent strand of empirical papers
(e.g., Nevo et al. (2016)) in assuming that the random coefficients are supported on a
finite and known grid of points. Given the restriction that

{
β1, . . . , βKβ

}
all have the

same sign, assuming that they are positive is without loss (see footnote 20). Assumption
(iii) maintains knowledge of the distribution of all unobservables other than the random
coefficients, consistent with recent papers on identification and estimation of demand
(e.g. Fox et al. (2012), Fox et al. (2016)).

Theorem 6. Let Assumptions 2 and 4 hold. If the market share of good 1 is KαKβ−th
order differentiable, then the probability weights π̃kα,kβ for kα = 1, . . . , Kα, kβ = 1, . . . , Kβ

are identified.

As it is clear from the statement of Theorem 6, allowing for heterogeneity across con-
sumers in preferences for attributes typically requires taking derivatives of order higher
than two. Thus, identifying heterogeneous preferences is more demanding of the data.
When the sample size does not allow for direct application of our result, a natural ap-
proach is to impose more structure by specifying a structural search model. Theorem
6 may then be used to establish nonparametric identification of preferences within the
specified model of search.26

Finally, we note that Theorem 6 focuses on recovering the entire distribution of the
random coefficients. If the goal is simply to test whether consumers have full information,

26See Section 2.7 for more on this point.
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then taking second-order derivatives turns out to be sufficient under certain conditions,
which we spell out in Appendix B.10.

Taken together, the utility specifications considered in this and the last section are
comparable in generality to existing constructive identification results for preferences in
standard full information discrete choice models, such as Fox et al. (2012).

2.3.3 Endogenous attributes

So far, we have assumed that the observed product attributes are independent of all
unobservables. This is restrictive, especially in settings in which product attributes —
notably price — are chosen by firms who might know more about preferences or product
attributes than is captured by the observed data. As highlighted by a large literature
(e.g., Berry et al. (1995)), this typically leads to correlation between the attributes chosen
by firms and product-level unobservables.

Here we consider an extension of our model that allows for endogenous product at-
tributes. We specify the utility that consumer i gets from good j as

Uij = αxj + βizj + λipj + ξj + ϵij (2.12)

where pj denotes the endogenous characteristic and ξj is a product-specific characteristic
that is known by consumers before search, but is not observed by the researcher.27 If firms
also know ξj when choosing pj, then the two will typically be correlated, thus leading to
endogeneity of pj. We consider both the case where pj is part of visible utility and that
in which consumers need to search good j to uncover pj (as well as possibly other non-
endogenous attributes zj). If pj is price, the first scenario corresponds to settings such as
e-commerce where typically price is visible on the results page and does not require any
further clicking by the user. On the other hand, the second scenario covers cases in which
price is itself the object of consumer search (there is a large literature on this, particularly
in relation to the often observed price dispersion for relatively homogeneous goods; see,
e.g., Stahl (1989), Hong and Shum (2006) and Hortaçsu and Syverson (2004)). We show
identification of preferences for each of these two cases. To this end, we introduce two
mutually exclusive variants of assumption (ii). Let δj = αxj + ξj for all j.

Assumption 5. (i) The attribute pj is part of the visible utility of good j. Conditional
on having utility ū in hand, consumer i searches j if and only if gi(δj, ϵij, pj, ū) ≥ 0 where
gi is decreasing in ū.

(ii) The attribute pj is uncovered by consumers only upon searching good j. Condi-
tional on having utility ū in hand, consumer i searches j if and only if gi(δj, ϵij, ū) ≥ 0
where gi is decreasing in ū.

Like Assumption (ii), Assumption 5 states that consumers decide whether to search
good j based on utility in hand and the visible utility of j. In Appendix B.9.3, we

27Note that the utility specification in (2.12) allows for random coefficients on both zj and pj , but
not on xj . This is stronger than needed, since the identification argument below only requires that xj

and ξj enter the demand functions via a linear index. Thus, another possible specification is

Uij = α̃i (αxj + ξj) + βizj + λipj + ϵij

The latter is weaker, but also less common in the discrete choice literature, so we focus on model (2.12)
in what follows.
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invoke results from Berry and Haile (2014) to show that these assumptions suffice for
nonparametric identification of the choice probability functions provided we have valid
instruments (in a sense we make precise in the Appendix). Once the choice probabil-
ity functions are identified, one may apply our results in Section 2.3.2 to identify the
distribution of the preference parameters α, βi and λi.

2.3.4 Allowing for variables affecting search but not utility

One important case in which the visible utility assumption (i) is likely to fail is when
factors exist which impact search costs but not utility. An example might be search
position for online purchases. Arguably, search position impacts the order in which people
search but has no direct impact on utility conditional on searching Ursu (2018). In this
case, consumers might first search items with higher search position even if they do not
have higher visible utility. For example, if we randomly assign search order, this is likely
to impact choices even though we are not changing the utility of each item conditional
on search. A second example is if we observe advertising expenditures for each good and
believe that advertising entices consumers to search advertised goods.

Our model can be extended to deal with cases where the factors which impact search
but not utility are observable and the sign of their impact on search probabilities is
known (such as position in search). Denote the variable which perturbs search but not
utility by rj, suppose that rj is observed and that higher values of rj make a good weakly
more likely to be searched. Now, rather than assuming that goods are searched based
on V Uij alone, we assume that goods are searched based on m(V Uij, rj) where m is
strictly increasing in both V Uij and rj. We show in Appendix B.9.4 that a version of our
identification argument continues to hold provided we see sufficient variation in product
attributes conditional on search position.

2.3.5 Allowing for consumers’ expectations on z to depend on
x

Another reason why the visible utility assumption (i) might fail is that consumers could
form expectations about z based on x. For instance, if x is price and z is quality,
consumers might infer that more expensive products tend to be higher quality. As a
consequence, if they value quality to a sufficient degree relative to price, they may search
a high-priced product and not search a low-priced product even if the former has a lower
visible utility than the latter.

In our proofs so far, we have not made any explicit assumption about whether con-
sumers update about zj given xj, but such updating is likely to lead to violations of the
visible utility assumption if not explicitly modeled. We now show that we can identify
preferences given consumer beliefs about zj given xj in a linear model. Further, under
additional assumptions, we will show that we can identify β/α, the relative value of the
hidden attribute, even when beliefs are unknown. In other words, we can do so without
taking a stand on whether consumers have rational expectations and form beliefs based
on the empirical relationship between zj and xj or naively update. Consider the linear
model Uij = xjα + zjβ + ϵij and re-write it as

Uij = xjα + (zj − E (zj|xj)) β + E (zj|xj) β + ϵij

= βγ0 + xj (α + βγ1) + z̃jβ + ϵij
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where the second equality assumes that consumers use the linear projection E (zj|xj) =
γ0+γ1xj and we let z̃j ≡ zj−E (zj|xj). Visible utility is then given by βγ0+xj (α + βγ1)+
ϵij and consumers learn the deviation from their expectation on zj, z̃j, upon searching.
Note that γ0 is not identified, but also does not generally impact choices since it enters
utility as an additive constant.28

In Appendix B.9.5, we show that given γ1, we can recover β and α using an analog
of our usual approach. When γ1 is not observed, we can still identify β/α if we know
its sign and assume that we observe goods with the largest value of zj and the smallest
value of xj. The quantity β/α is not sufficient to simulate choices with full information,
since we cannot tell how responsive consumers would be to xj were choices fully-informed.
However, it is sufficient to identify the relative value placed on the hidden attribute as
well as to conduct tests for full information as in Section 2.2.4.

2.3.6 Unobservables revealed by search

So far, we have focused on the case where the attribute(s) z revealed by searching a good
are entirely observed by the researcher. However, it is easy to imagine settings in which
the data does not capture all of the information that consumers acquire through search.
Indeed, the existing literature often models search as the process whereby the idiosyn-
cratic preference shocks—ϵij in our notation—are revealed (e.g., Kim et al. (2010), Ursu
(2018), Moraga-González et al. (2021)). To accommodate this, we consider a modifica-
tion of our model where the shock ϵij only becomes known to consumer i upon searching
good j (along with zj). In other words, consumers know xj for all j prior to search and
decide whether to acquire ϵik and zk for any given good k through search. This means
that, in Assumption 2, V Uij is now equal to αxj and Assumption (iv) is dropped.

Given this setup, we show in Appendix B.9.6 that the ratio of second derivatives
∂2sj

∂zj∂zk

/
∂2sj
∂zjxk

recovers β
α
provided that one chooses good k to be the good with the highest

value of x (note that j need not be the good with the highest value of z here). Thus, our
approach can be extended to deal with the possibility that search reveals unobservables.

2.3.7 The K−rank Simultaneous Search Model

As noted above, our main model allows for consumers to choose which goods to search in
one simultaneous step. However, one form of simultaneous search that is not accommo-
dated is that in which a consumer optimally chooses the number K of goods to uncover
and then proceeds to simultaneously search the top K in terms of visible utility (e.g.,
Honka et al. (2017)). Our framework from Section 3.4 does not subsume this model since
in this case the decision of whether or not to search good j depends not only on the
visible utility of good j, but on the visible utility of all other goods as well, thus violating
Assumption (ii).

In Appendix B.9.7, we show via an alternative argument that the usual second-
derivative ratio from equation (2.3) still identifies β

α
in the two-good K−rank model.

28There is one exception to the above claim, which is the case when there is an outside option for
which the x and z attributes are not defined, so that a systematic bias in beliefs about the distribution
of zj given xj would change the relative value of all the inside goods relative to that outside option. This
might mean that the relative utility of the outside option cannot be separately identified from γ0; the
model could still be estimated, but the normative interpretation of fixed effects might change.
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We also show in our simulation results that our method succeeds in a model where con-
sumers search the top K goods (with K varying randomly across consumers).

2.4 Estimation

Our identification results show that preferences can be recovered given knowledge of the
choice probability function for good 1, denoted by s1(x, z). We now discuss how s1 can
be estimated from data on choices and product attributes. Note that the model implies
the following conditional moment restrictions

E (yj − sj (x, z) |x, z) = 0 ∀j, (2.13)

where yj is a dummy variable equal to 1 if a consumer chooses good j.29 Thus, methods
designed to estimate conditional moment restriction models can be used. Of course, the
performance of an estimator will depend on how flexibly it captures the derivatives that
identify preferences in our approach.

Here, we consider two approaches to estimating s1(x, z): (i) an approximation via
Bernstein polynomials which is viable when the number of goods and attributes is small;
and (ii) a “flexible logit” model which is more ad hoc, but scales better as the number of
goods increases. As in much of the demand estimation literature, a good in our model
is defined by the collection of attributes observable to the econometrician (potentially
including good fixed effects); in other words, different products with the same attributes
count as the same good. Thus, estimation of choice probabilities and their derivatives
does not require that all consumers have identical products in their choice sets, or even
that the same products are available to many different consumers (unless product fixed
effects are of interest). What we need is sufficient variation in attributes to flexibly
estimate the mapping from the product attributes to choices.

Throughout this section, we focus on the linear homogeneous case of Uij = xjα+zjβ+

ϵij. Lemma 3 shows that β/α can be recovered from ∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

for j ̸= 1. Relative

to conventional estimation of linear homogeneous discrete choice models, our approach
is more demanding of the data, requiring estimation of second derivatives for a specific
good. In return, this allows us to be more agnostic about the underlying information
structure. As discussed above, the model with linear, homogeneous preferences is the
current standard in the empirical literature on search (e.g., Mehta et al. (2003), Honka
and Chintagunta (2016) and Ursu (2018); Kim et al. (2010) is a notable exception in
that they allow for random coefficients). In more general non-linear or random coeffi-
cients models, our identification arguments require recovery of higher-order derivatives
and thus might not directly translate into viable estimation strategies in small to medium
sample sizes or with a large number of goods. In these cases, the best way forward might
be to parametrically specify a full structural search model and estimate it via standard
methods, e.g. MLE. We would then view our identification results as providing reas-
surance that preferences are indeed identified, something that had not been formally
established in the literature (see Section 2.7 and Appendix B.12 for more on this). Ad-
ditionally, given the parametric structure imposed by such a model, one can construct

29Here, we focus on the case where data on individual-level choices are available, as in the experiment of
Section 2.5 and the application of Section 2.6. However, our identification approach could also be applied
to aggregate (i.e., market share) data as long as one can consistently estimate the share functions sj .
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moments using the derivatives in Section 2.2.3 and use them to estimate parameters and
conduct overidentifying tests.

2.4.1 Approximation via Bernstein polynomials

Following Compiani (2022), one can approximate the demand function via Bernstein
polynomials. This allows the researcher to impose natural restrictions via linear (and thus
easy-to-enforce) constraints on the coefficients to be estimated. Specifically, the class of
models considered in this paper satisfies standard monotonicity restrictions in x and z (sj
increasing in xj and zj and decreasing in x−j and z−j). In addition, one can consider other
constraints, such as exchangeability across goods, which requires demand to only depends
on the attributes of the goods, but not their identity.30 Exchangeability is satisfied if
the unobservables entering demand (e.g., preference parameters and shocks, as well as
search costs) have the same distribution across goods. We impose both monotonicity
and exchangeability in the nonparametric results reported below. The purpose of these
restrictions is twofold. First, they discipline the estimation routine in the sense that they
help obtain reasonable estimates of quantities of interest (e.g., negative price elasticities).
Second, they help partially alleviate the curse of dimensionality that arises as the number
of goods increases. The coefficients in the Bernstein approximation of sj can be estimated
by minimizing a GMM objective function based on the restrictions in (2.13) subject to
the constraints. More details on the implementation of the estimator can be found in
Compiani (2022). In Appendix B.3, we report results from numerous simulations with a
variety of data generating processes which suggest that this estimation approach performs
well with a small number of goods (2 or 3) when the assumptions of our model are satisfied;
it also consistently outperforms standard logit estimates in simulations where the visible
utility assumption is violated.

2.4.2 “Flexible Logit”

As the number of goods increases, nonparametric methods face a curse of dimensionality,
and thus it becomes necessary to place some parametric structure on the problem. In this
section, we develop one such parametric approximation which performs well in simulations
for a larger number of goods.

As discussed in more detail in Appendix B.11, conventional full-information models
typically impose strong restrictions on the structure of the derivatives of choice proba-
bilities. We would like to estimate a model of s1 which is sufficiently flexible that ratios
of first-derivatives differ from ratios of second cross-derivatives, as will generally occur
if consumers engage in search. To allow for this additional flexibility, we let the mean
utility for good 1 depend directly on attributes of rival goods as follows:

v1 = ṽ(x1, z1) + b1z1 +
∑
k ̸=1

(γkwz1kzk + γ2kwx1kxk + wz2kδkzkz1 + wx2kδ2kxkz1) (2.14)

where ṽ(x, z) is a differentiable function of x and z, wz1k, wx1k, wz2k and wx2k are known
weights, and b1, γk, γ2k, δk and δ2k are coefficients to be estimated. Further, we let
vk = ṽ(xk, zk) for k ̸= 1. In Appendix B.11, we describe one way of choosing the weights
which we find works well in simulations, and for which the ratio of second derivatives

30See Compiani (2022) for a formal definition of exchangeability.
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(which recovers β/α) is a particularly convenient function of model parameters. We note
that the parameters in (2.14) do not have a causal interpretation (i.e., we are not positing
that the actual utility of good 1 depends on the attributes of good k for k ̸= 1). Instead,
(2.14) is simply a flexible function of (x, z) that captures the second derivatives of s1 well.
In Appendix B.3, we show that the flexible logit performs extremely well in simulations
for a variety of data generating processes. For three DGPs satisfying the assumptions of
our model, conventional logit estimates are biased, but flexible logit confidence intervals
include the true values. For a fourth DGP violating the assumptions of our model, flexible
logit has a small bias with a large number of goods, but is consistently less biased than
the standard logit estimates.

2.5 Experimental Validation

Our identification proof and simulation results show that preferences can be estimated
regardless of whether consumers are fully informed, provided consumers search in a way
that is consistent with our assumptions. Of course, the theorem does not tell us whether
those assumptions are likely to be satisfied in practice.

In this section, we test in a lab experiment whether we can recover preferences in a
setting where consumers engage in costly search. Unlike in our simulations, the search
protocol is unknown to us and not restricted to satisfy the assumptions of our model.
We nonetheless show that we are able to correctly recover preferences using our “search-
robust” estimation technique.

2.5.1 Set-up

We selected 1,000 books for sale on Amazon Kindle chosen from a wide variety of genres.
For each book, we observe its average rating on the site “Goodreads.com” as well as the
average rating from Amazon.com, the number of reviews on Goodreads, and the price of
the book for Amazon Kindle.

In our experiment, conducted via Mechanical Turk, each participant made 40 choices
from sets of 3 randomly selected books. For all books, participants could see a photo of
the cover, the title, author and genre, as well as the Goodreads rating and the number
of ratings. Prices were randomized to integers from $11-$15 (equally likely). All books
were then further discounted by an integer amount from $0-$10 (equally likely). All users
were given a $25.00 bank at the start of each choice, from which any costs incurred were
deducted. There were a total of 93 participants, yielding 3,720 choices.

The discount is our key variable of interest. For 10 of the 40 choices, users could see
all discounts and thus could see the net price of all options at no cost. For 30 of the
40 choices, discounts were hidden and users had to pay a cost to see the discount for
any given book.31 The cost per click was constant for each user across the 30 choices,
and randomly chosen from {$0.10, $0.25, $0.35, $0.50}. For the 30 choices with hidden
information, users could only choose books after they clicked to reveal the discount and
had to choose at least one book. One of the 40 choices made by each user was randomly
chosen to be realized, and users received the chosen book as well as any money left over
from the original $25.00.

31The full information and costly information choice situations were randomly ordered, so that the
10 “full information” choices were intermixed with the costly information choices.
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Figure 2.1: Lab Experiment: Sample Product Selection Screen

Figure 2.1 shows a sample product selection screen from a choice where discounts
were hidden. In this case, the user clicked to reveal the discount of the second book and
could either choose that book or continue by revealing the discounts for additional books.
Note that the user could search books in any order she wished. The 10 choices where
all information is revealed are our benchmark for the “truth.” The goal is then to test
whether the relative weight on discounts and prices that we estimate in the cases where
discounts are costly to observe matches the relative weight we see when discounts are
visible to everyone. Further, because both discounts and prices are in dollar terms, and
because they are randomized (and so not signals of quality), there is a second benchmark:
if consumers are rational, the weight on discounts and prices should be equal.

In other words, we will model choices using a linear utility specification as in our
baseline model from Section 3.4:

Uij = pricej · α1 − discountj · β + ratingj · α2 + ϵij (2.15)

where ϵij is i.i.d. type-I extreme value32 and accounts for any aspects of consumers
taste for books (based on the title, image, author or genre) not summarized by the price,
discount and rating variables. Fully informed and rational consumers should have α1 = β.
Our goal will be to show that we can recover these fully informed preferences using the
choices of beneficiaries for whom revealing discounts is costly.

2.5.2 Estimation Results

Columns 1 and 2 of Table 2.1 show results from estimating a standard logit model on
consumer choices for the 10 choice situations (per consumer) where all information is
revealed (Full Info) and the 30 choice situations where consumers must pay to reveal

32We will compare nonparametric estimates based on our approach to estimates from a conventional
logit model. Only the latter requires distributional assumptions on ϵij .
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information (Costly Info), respectively. With full information, consumers place equal
weight on prices and (negative) discounts, so they pass our test of rationality. In other
words, they care only about the final price of the product. By contrast, when discounts
are costly to reveal, the coefficient on the discount variable in the standard logit model
is attenuated (the “Costly Info” column). This is because consumers are insensitive to
variation in discounts for books they do not search. The ratio of the two coefficients is
0.986 in the full information treatment and 0.683 in the costly information treatment.

Table 2.1: Standard Logit and Cross-Derivative Estimation Results

Standard Approach Our Approach

Variable Full Info Costly Info Costly Info

Price -0.386*** -0.302*** -0.387***
(0.038) (0.018) (0.032)

Discount (-) -0.376*** -0.206*** -0.399
(0.020) (0.009) -

Rating 0.591*** 0.421*** 0.584***
(0.190) (0.099) (0.161)

Discount (-) / Price 0.986*** 0.683*** 1.032***
(0.093) (0.044) (0.102)

N 930 2790 2790

Note: The table shows estimation results from a standard logit model
estimated on the full information and costly information treatments
in columns 1 and 2, and Bernstein polynomials estimation of the
cross-derivative ratio on the costly information treatment in column
3. The minus sign indicates that discount multiplied by -1 so that
the coefficient on discount should equal that of price with full infor-
mation. Standard errors on the ratio of the discount and price coef-
ficients are computed using 250 bootstrap draws.*** denotes signifi-
cance at the 1% level, ** at 5% level, and * at 10%.

Following Section 2.4.1, we estimate the demand function s1(x, z) via Bernstein poly-
nomials. Specifically, we use the tensor product of univariate Bernstein polynomials, one
for each argument of the s1 function.

33 Further, we impose the natural constraint that s1
be decreasing in the price of book 1 and the discount of books 2 and 3, and increasing in
the discount of book 1 and the price of books 2 and 3. The main result of this procedure
is an estimate of β/α1, which we obtain by dividing a trimmed mean (across choices) of

∂2s1
∂discount1∂discountj

by a trimmed mean of ∂2s1
∂discount1∂pricej

for all j ̸= 1, and then averaging

across j.34 The estimate is 1.032, which is close to the corresponding number from column
1. In addition to estimating β/α1, we need to directly recover the α coefficients. Consis-
tent with Lemma 3, we compute these by estimating a logit model using only choice sets

33We use univariate polynomials of degree three for the arguments z1, x2, z2 and of degree two for the
remaining arguments. The total degree of the approximation is 21.

34Specifically, for each second derivative, we take the mean over values in the interquartile range. As
is often the case in nonparametric estimation, trimming helps obtain less noisy estimates.
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where the variance of the discount across goods is in the bottom quintile. The results are
reported in column 3 of Table 2.1, along with the value of β implied by our estimates of
α1 and β/α1. The confidence intervals include the full information values. In other words,
using data only on choices when information is costly, we successfully recover informed
preferences. Further, the confidence interval is sufficiently tight to exclude the standard
logit estimates in the costly information treatment.

Having recovered all preference parameters, we can compute how information will
change behavior and choice quality. Using only data on choices when search is costly,
our model predicts that, on average, full information consumers would save $0.66 per
choice from choosing books with lower discounts. The corresponding number in the data
is $0.69 per choice situation, since consumers in the costly information treatment average
discounts of $6.24, while consumers in the full information treatment average discounts
of $6.93.35 In other words, we can accurately predict how consumers will respond to
information provision before the information is provided. We can also compute the dollar
equivalent welfare benefits of providing consumers with information. To do so, we take
our estimates from column 1 as the normative preferences (i.e., as the correct metric to
compute consumer welfare) and calculate by how much welfare changes when consumers
go from making partially uninformed choices to fully informed choices using the approach
in Appendix B.13. We then repeat this exercise using the estimates from column 3 as the
normative preferences. We estimate an average welfare gain of $0.18 per choice based on
column 1 and of $0.15 based on column 3. Thus, our model again yields results that are
quite close to those coming from the “true” fully informed choices in the data.36

As in most real-world settings, visible utility is not observable to the econometrician in
our experiment: while we can see attributes of the goods in question, we do not know how
individuals will weigh these attributes, nor do we know their preferences for specific genres
or book titles and images. The assumption that consumers search according to the visible
utility assumption is substantive and could be violated in numerous ways: users might
always reveal discounts for the lowest priced book first or they might search in the order
in which books are displayed. Nonetheless, our “robust” estimation approach succeeds
in recovering the preferences consumers reveal with full information. In Appendix B.7,
we report results from the test discussed in Section 2.2.3, showing additionally that the
estimated choice probabilities lie within the upper and lower bounds implied by the visible
utility assumption. Thus, we fail to reject the assumption.

2.6 Field Validation

Our lab experiment demonstrates one setting where our approach correctly identifies
hidden attributes and forecasts how consumers will respond to information about hidden
attributes. Of course, this leaves open the question of whether we can identify preferences
in real-world settings with a larger number of goods, where search costs are implicit and
potentially heterogeneous, and where we (as experimenters) cannot strictly control the
information available to consumers.

In this section, we investigate these issues using publicly available data from a leading

35We look at differences in discounts as opposed to final prices paid since the latter are essentially the
same in the full information and in the costly information conditions.

36Note that the benefits are smaller than the increase in discounts because information induces con-
sumers to be more responsive to discounts, sacrificing some value on unobservable factors.
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online travel agency, Expedia Ursu (2018).37 The data we use includes transactions from
54,648 consumers over an eight-month period between November 1, 2012, and June 30,
2013.38 At the time, consumers would search for a hotel in a given city, and Expedia
would present a list of available options. On the list, consumers observe a range of hotel
characteristics including the price per night, whether the hotel is on promotion or part
of a chain, star rating, and the review score.

One attribute, location, is not visible to consumers in search results but is only visible
after consumers click on the hotel and can see a map showing the exact location of
the hotel within the city. The dataset contains a measure of location desirability, but
this measure is not visible to consumers in search results. We thus ask: can our model
correctly recover that location is a hidden attribute, whereas other attributes are directly
visible in search results?

Table 2.2 provides summary statistics. Hotels on average charge $162 per night, with
3.5 stars and a review score of 4 out of 5. 64% of the hotels belong to a chain, and
34% of the hotels display a promotion. Location attractiveness is a score ranging from
0 to 7 designed by Expedia to measure how centrally a hotel is located, what amenities
surround it, and other aspects of location desirability. The average hotel has a location
score of 3.26. Figure 2.2 illustrates how hotel characteristics appear to consumers in
search. Note that information on features like price, stars, review score, and promotion
flag are saliently displayed. However, consumers do not observe the detailed map unless
they click, and the quantitative location score is not shown. In order to evaluate the
attractiveness of a location, consumers need to spend time and effort to examine the
map.

Figure 2.2: Hotel Characteristics Shown in the Search Impression

Table 2.2: Summary Statistics

Observations Mean Median SD Min Max

Price ($) 546,480 162.11 139.57 92.94 10 1000
Stars 546,480 3.42 3.00 0.91 0 5
Review Score 546,480 4.01 4.00 0.71 0 5
Chain 546,480 0.64 1.00 0.48 0 1
Location Score 546,480 3.26 3.22 1.45 0 7
Promotion 546,480 0.34 0.00 0.47 0 1

As in Section 3.4, we consider a homogeneous linear specification for utility:

Uij = x̃j · α̃ + xj · α + zj · β + ϵij (2.16)

37The data is available for download at https://www.kaggle.com/c/expedia-personalized-sort/
data.

38This is the final dataset. Appendix B.14.1 contains details of data cleaning and variable descriptions.
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where ϵij is type-I extreme value. x̃j is the vector of attributes which we always model
as visible, including the chain, promotion, and position dummies.

Table 2.3: Model Specifications

Model xj zj

I Price, Stars, Review Score Location Score
II Stars, Review Score, Location Score Price
III Price, Stars, Location Score Review Score
IV Price, Review Score, Location Score Stars

For the four remaining variables — stars, review score, location score, and price — we
estimate four models with one of them as zj, and the other three as xj. Table 2.3 shows
the model specifications. We estimate each model using the “flexible logit” approach
described in Section 2.4.2. The model is overidentified, so we construct an estimator of
β using a weighted average of estimates from different moments based on bootstrapped
variance estimators. More specifically, taking Model I as an example, for each bootstrap
draw and each variable in xj, we obtain an estimate of β

αk
, for k ∈ {price, stars, review

score}, and then examine choice sets where variation in zj is limited to estimate αk and
thus obtain the implied βk = β

αk
· αk.

39 We repeat the estimation for 250 bootstrap

samples, and compute the empirical variance for each implied β̂k, denoted var(β̂k). Then
we calculate the weighted average estimate β̂ =

∑
k wk · β̂k, of each repetition, where the

weights, wk =
1/var(β̂k)∑
k(1/var(β̂k))

, are proportional to the inverse of variance so that we put less

weight on less informative estimates. We use the estimates from the original dataset as
point estimates, and the estimates from the bootstrapped samples to construct confidence
intervals.40

Figure 2.3 shows the estimates from standard logit and flexible logit for each candidate
z variable.41 Location score is the only variable where we see clear evidence that standard
logit is attenuated relative to flexible logit, which is consistent with the fact that location
is not immediately available to consumers in the results page. Thus, standard logit tends
to underestimate how much consumers value location. On the contrary, for the visible
attributes – price, review score and star rating – we find that the flexible logit confidence
intervals include the standard logit estimates, and the differences between flexible logit
and standard logit estimates are not significantly different from zero.42 Therefore, our
approach correctly identifies that all attributes except location are immediately visible
on the results page.

Given the evidence that location is a hidden attribute, we use our estimates of con-
sumer preferences to compute how information about location will change behavior and

39Specifically, using Lemma 3, we compute these estimates α̂k by estimating a logit model using only
the choice sets where the variance of the z is in the bottom decile.

40We use bias corrected confidence intervals (with acceleration parameter a = 0) to account for the
skewness of distribution. Details of the construction of confidence intervals are in Appendix B.8.2.

41Values are reported in Appendix B.14.2.
42For price, the standard logit point estimate is somewhat larger in magnitude than the flexible logit

estimate, although the flexible logit confidence interval is wide. This occurs because price is the variable
with the most variation in the data and thus the most precise estimates of β

αk
are obtained when k =

price. When price is treated as the z variable, it of course cannot be used as an x variable and therefore
the flexible logit estimates of the price coefficient tend to be more noisy.
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Figure 2.3: Estimation Results

(A) β Estimates
(B) Difference in Magnitude of β

Estimates

Note: In Panel A, we report 95% confidence intervals for the coefficient β for different choices of z
variable. In each case, we normalize the coefficient by multiplying it by the standard deviation of the
variable. In Panel B, we report 95% confidence intervals for the difference between the absolute value of
the normalized β estimate from flexible logit and the absolute value of the corresponding standard logit
estimate.

choice quality. Table 2.4 shows the counterfactual results when we make the location
score information visible to all consumers. The average location score among transacted
hotels increases from 3.32 in the data to 3.40 in the counterfactual scenario where location
is fully visible. Further, using the approach in Appendix B.13, we compute the welfare
benefits of providing consumers with location score information. We estimate an average
welfare gain of $1.93 per choice, which is 1.4% of the average transaction price.

Table 2.4: Counterfactual Results

Status quo Counterfactual

Average Value for the Transacted Item
Price ($) 143.52 136.90
Stars 3.47 3.42
Review Score 4.03 4.03
Chain 0.64 0.64
Promotion 0.40 0.40
Position 4.55 4.91
Location Score 3.32 3.40
Welfare Difference per Choice ($) - 1.93

Note: Average value of different attributes for the transacted item in the data (first column) and in the
counterfactual scenario where consumers have full information on location (second column). The last
row reports the average welfare change from the status quo to the counterfactual.
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2.7 Which Counterfactuals Can Our Approach Ad-

dress?

In the experiment and empirical application, we showed that our approach can be used
to assess the impact of information interventions on consumer behavior and welfare. In
this section, we discuss more broadly the class of counterfactual questions that can be
addressed using our method. Additionally, we discuss how our results can be used to
aid in estimation of search costs given a fully specified search model or for specification
testing after such a search model is estimated.

2.7.1 Applications without Recovering Search Costs

Benefits of Full Information One important class of counterfactuals asks: how would
consumers choose if search costs were reduced? The most natural counterfactuals in our
baseline case involve directly informing consumers about the hidden attribute. These
counterfactuals are natural in our setting because the hidden attribute is observable to
the econometrician.43 In these cases, knowing preferences is sufficient to simulate how in-
formation would impact choices without a structural search model, as we demonstrate in
our lab and field experiments. In settings like Hastings and Tejeda-Ashton (2008) or All-
cott and Taubinsky (2015) where experimenters fully-inform consumers about attributes
of goods which were previously accessible at a financial or cognitive cost, our approach
can be used to forecast the impact and value of interventions before they are conducted.
Of course, our method quantifies the welfare gains from more informed choices, but not
the gains directly stemming from reduced search costs. In this sense, the estimated in-
crease in welfare can be viewed as a lower bound the total gains from an information
intervention. Estimating the reduction in search costs requires either fully specifying a
search model and recovering the cost distribution (see the next subsection) or using some
auxiliary data on, e.g., time spent searching and value of time.

Advertising and Product Design As a second related example, consider a firm
trying to understand which features to emphasize in the advertising of a product. Condi-
tional on visible attributes, our results could be used to identify features that consumers
value but are not currently always aware of. The firm could use this insight to optimize
its advertising strategy, as well as to inform the design of new products (see, e.g., Bagwell
(2007), Becker and Murphy (1993a)).

Normative Evaluation of Choices In many counterfactuals where limited informa-
tion or search costs are not the primary object of interest, one nonetheless is concerned to
accurately value attributes of goods. In footnote 6, we give the example of a tax on sugar-
sweetened beverages. An alternative example is a subsidy for environmentally friendly
automobiles. To evaluate such a subsidy, one would conventionally estimate demand and
cost parameters in the automobile market Berry et al. (1995). If the market were oth-
erwise competitive and efficient, the subsidy might distort choices (creating deadweight

43This can be contrasted with cases where information is only partial and so some search costs likely
remain. For example, when unobservables are revealed by search (as in Section 2.3.6), some information
consumers learn upon search is not observable to the econometrician, so informing consumers about the
observable component would not eliminate the need to search.
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loss) but have offsetting externalities. If, however, some consumers are unaware of dif-
ferences in energy efficiency, the subsidy might redirect consumers to the products they
would otherwise value if they had more information, meaning that it is both privately
and socially desirable. Our methods can be used to recover whether, prior to imposing
the subsidy, consumers are informed about differences in energy efficiency.

2.7.2 Applications with Search Costs

We focused above on applications where search costs do not need to be recovered. How-
ever, our model can also be used to identify search costs given preferences and an un-
derlying structural search model. In Appendix B.12, we give an explicit example of how
search costs can be recovered in a Weitzman model once preferences are known. Intu-
itively, when preferences are known, we know how consumers would respond to the hidden
attribute with zero search costs, and thus we can trace out the distribution of search costs
from the observed responsiveness of choice probabilities to the hidden attribute. There
are several reasons search costs might be of interest.

Welfare with Structural Search Costs A full normative evaluation of an informa-
tion intervention might directly include search costs: information may benefit consumers
both by helping them make better choices and by helping them make choices more easily,
and search costs quantify the value of making choices more easily. Note that structural
search costs may be the wrong object to use for normative evaluation even if a structural
search model performs well as a positive model of choices. For example, if consumers
spend one hour choosing insurance plans and we estimate that they act as if they have
search costs of $1,000 per plan, this does not imply that they are made $1,000 better off
by eliminating the need to search. Search behavior may be well-described by a model
with large search costs even if consumers’ willingness to pay to avoid search is substan-
tially less than the costs implied by any given model. Back of the envelope estimates
of search costs based on survey data or other information on the time consumers spend
choosing may often be more credible and less prone to misspecification than structural
estimates (e.g. Kling et al. (2008)).

Counterfactuals with Non-Zero Search Costs Search costs may also be of interest
for counterfactuals where the choice environment is altered in ways that change search
behavior without eliminating search entirely. As we emphasize above, eliminating search
entirely is a reasonable counterfactual in our setting where search uncovers objective
information that is available to the econometrician. However, other counterfactuals may
be of interest, such as changing the order in which items are presented to consumers in
search. Modeling explicitly how these changes would impact search costs for different
goods, and thus which goods are chosen, would require an explicit search model.

Validating Parametric Models A final reason to estimate a full structural search
model is to impose parametric restrictions on the data necessary for estimation in fi-
nite samples. Our identification proof shows that, in principle, these parametric restric-
tions are unnecessary for identification. This is confirmed by the simulation results we
presented for models with linear utility and homogeneous preferences over observables.
However, when the coefficients on attributes are heterogeneous—something the empirical
search literature typically rules out—estimation of the higher-order derivatives of choice
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probabilities necessary for nonparametric identification (see Section 2.3.2) may not be
possible given the data available. In such cases, a natural approach is to specify a struc-
tural search model with random coefficients in order to place some parametric structure
on these higher-order derivatives. This requires taking an explicit stand on the under-
lying search model. Nonetheless, once the model has been estimated and preferences
recovered, the results in Section 2.2.3 can be used to conduct specification tests. If these
tests reject, an alternative search model may fit the data better.

2.8 Conclusion

We prove that it is possible to estimate preferences using only data on attributes and
choices in cross-sectional or panel data even when consumers must search to acquire
information about product attributes. This result holds in a broad class of search models.
The functions of choice probabilities which identify preferences in our model are “robust”
in the sense that they work in both full information and search models. Further, our
results can be used to test whether consumers are fully or only partially informed about
a given attribute.

Because our conditions allow preferences to be recovered when consumers are im-
perfectly informed, our results allow a wide range of inquiries that are impossible using
conventional methods. Prior to conducting an information intervention, choice data can
be used to estimate counterfactually how consumers would choose were they fully in-
formed. If preferences are not informed, the preferences consumers would have if they
were informed can be used to conduct a more defensible welfare analyses.

Preferences can (sometimes) be identified in structural search models, but such models
require making many explicit assumptions about how consumers search. Do consumers
consider option value or are they myopic? Do they solve an optimal stopping problem
or search until they find a good enough option? Is search sequential or simultaneous? If
search costs vary across consumers, what is their statistical distribution? Our approach
attempts to avoid these complexities by instead relying on a sufficient condition satisfied
in a broad class of search models that can be falsified by the available data via bounds
on choice probabilities and overidentification tests.

In many settings, one can conceive of reasons that the visible utility assumption would
fail, but it must be assessed relative to the alternatives. The vast majority of empirical
work currently makes the often dubious assumption that consumers are fully informed
about all attributes of products. Even if one lacks contextual information to support the
visible utility assumption, our approach is much weaker than the standard assumption
of full information and may be preferable in settings where preferences are needed to
conduct welfare analysis. The main downside of our approach relative to full information
is statistical power, but this concern is less relevant given rich microdata which is increas-
ingly available. In settings where one would otherwise make many untested structural
assumptions about search, visible utility may be more parsimonious and leads to clear,
testable predictions.

Our assumptions are sufficient for identification but not necessary. This raises several
questions for future research: are there other conditions aside from the visible utility as-
sumption which permit analogous data-driven identification of consumers who maximize
utility? Are there necessary and sufficient conditions for preferences to be recoverable
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from choice data when consumers have partial information?44

Increasingly, empirical analyses relax the assumption that consumers make informed
choices. Typically, behavioral welfare analysis is done using auxiliary data, restrictions
on preferences, or by testing whether consumers choose differently when provided with
information. Despite this, absent data to the contrary, the default assumption in most
economic analysis remains that consumers make informed choices. Our result suggests
this need not be the case. Even with no auxiliary data, researchers can use observed
choices both to test whether choices are informed and to recover what preferences would
be were consumers more informed. This removes the (often compelling) excuse that while
consumers may not be informed, assuming informed choices is the only constructive way
to proceed given the data available.

44This question parallels Falmagne (1978)’s derivation of necessary and sufficient conditions for choice
probabilities to be rationalizable by utility maximization given full information. Our question differs by
relaxing the full information assumption.
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Chapter 3

Variety Seeking in High-Frequency
Consumption: New Implications for
Targeted Marketing

1

3.1 Introduction

Targeted marketing has become a widespread business practice with the arrival and rise of
the Internet. Firms now have access to an unprecedented amount of individual consumer
data such as demographics (Ansari et al., 2000) and purchase history (Rossi et al., 1996;
Villas-Boas, 1999), and then target them with marketing activities based on the informa-
tion. The quality of the targeted marketing strategy depends on which information firms
use. Rossi et al. (1996) find that even a short purchase history of consumers can improve
the profitability of marketing more than using demographic information, highlighting the
importance of utilizing purchase history data. Using purchase history makes it possible
to identify and utilize persistent consumer heterogeneity that is not captured by demo-
graphic information.2 Another potential benefit of using purchase history is to account
for the dynamics in demand or serial correlation of demand across different time periods.
Commonly studied sources of dynamics in demand include inventory effects (Hendel and
Nevo, 2013; Johnson et al., 2013; Gabel and Timoshenko, 2022) and intertemporal price
discrimination in durable goods markets (Gowrisankaran and Rysman, 2012).

In this paper, we highlight consumers’ variety-seeking preferences as an important
source of dynamics in demand that can be estimated from purchase history data and
utilized for targeted marketing. Specifically, we emphasize the dynamics in demand
resulting from consumers’ negative state dependent preferences, which result in a de-
crease in demand following a recent purchase. Failing to account for such dynamics in
demand in targeted marketing practices can decrease consumer welfare and the effec-

1This chapter is based on joint work with Carol Hengheng Lu and Zhijie Lin.
2This application has been the focus of a large literature on personalized pricing, including Besanko

et al. (2003); Pancras and Sudhir (2007); Howell et al. (2016); Morozov et al. (2021); Smith et al. (2021);
Donnelly et al. (2021).
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tiveness of firms’ marketing policies.3,4 We document a substantial fraction of consumers
with variety-seeking preferences, and then study the implications of consumers’ variety-
seeking preferences for targeted ranking and competitive targeted pricing. To the best of
our knowledge, this is the first paper to study the implications of state dependence for
targeted ranking and competitive targeted pricing.

We use proprietary data from a peer-to-peer (P2P) homemade food delivery platform.
Our context provides several advantages that enable us to examine variety-seeking pref-
erences and their implications for targeted marketing. First, food is consumed frequently
with clearly defined daily demand. This eliminates the typical issues of long purchase
cycles, durability, and stockpiling with consumer packaged goods. Second, since the plat-
form is a P2P homemade food platform, the products are uniquely available through this
channel; the outside options are guaranteed to exclude consumption of these products.
In traditional packaged goods markets, we can not distinguish between consumers having
access to the same product from other unobserved channels and no purchase. Moreover,
most of the orders are workday lunch orders. This removes the potential for intrahouse-
hold heterogeneity (Che et al., 2003) to confound measuring variety-seeking preferences
with scanner data. Finally, we observe marketing variables including pricing and rank-
ing in our data, which enable us to estimate the effect of these marketing instruments
and conduct corresponding counterfactual analysis when we optimize them taking into
consideration consumers’ variety-seeking preferences.

We first report motivating evidence on consumers’ variety-seeking preferences. In our
data, the probability that a consumer switches to a different seller from their previous
seller choice is 81%, which stands in stark contrast to the switching probability found
in the existing literature. To better account for alternative driving forces of switching
probability besides variety-seeking preferences, such as choice set size and heterogeneous
preferences, we use a permutation-based test and show that consumers in our data switch
across different kitchens more frequently than the switch frequency in a random reshuffle
benchmark, in which the choice sequences are randomly reshuffled with market shares
fixed. This provides strong suggestive evidence of consumers’ variety-seeking preferences.

We then model consumers’ discrete demand for kitchens allowing for negative state de-
pendence. We estimate a random coefficient multinomial logit model to measure variety-
seeking preferences controlling for heterogeneous preferences, product attributes, and
marketing variables. We find that, on average, consumers exhibit variety-seeking pref-
erences at the kitchen level and consumers are willing to pay 19.9% more to switch to
a different seller. We find rich heterogeneity in consumers’ state-dependent preference:
67.2% of consumers have variety-seeking preferences, and 32.8% of consumers have iner-
tia. We then rule out alternative sources of state dependence that result from information
gained from consumption instead of changes in utility, including learning and new product
discovery.

We use our demand estimates to study the implications of variety-seeking preferences
for two important aspects of targeted marketing: targeted ranking and targeted pricing.

3See Appendix C.5.2 for examples of personalized recommendations that push recommendations on
favorite sellers ordered very recently. Such practices emphasize persistent heterogeneous preferences, but
have the hazard of potentially neglecting the dynamics in demand driven by state dependent preferences.

4Another example of inefficient targeted advertising because of neglect of neg-
ative state dependence is retargeting: https://www.digitaltrends.com/features/

wh-do-you-see-ads-stuff-already-bought/ shows a case where a recent past consumption is
followed by a decrease in demand, and failing to acknowledge this in retargeting advertising decreases
both profits and consumer welfare.
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For targeted ranking, we examine profits, welfare, and purchase probability under several
different counterfactual ranking schemes. The ranking algorithm in the data does not
consider consumers’ personal purchase history, and is based on price, distance, monthly
sales, and ratings. In order to study the effect of personalized ranking, we examine two
alternative ranking schemes: optimal ranking and suboptimal ranking. Under optimal
ranking, the platform ranks kitchens in decreasing order of expected utility, where the
expected utility is calculated incorporating the variety-seeking preference. Under subop-
timal ranking, the platform ranks kitchens in decreasing order of expected utility, where
the variety-seeking term is omitted in the expected utility calculation. We use random
ranking as a benchmark to evaluate the performance of each ranking algorithm. We mea-
sure the effect of variety-seeking preferences on targeted ranking by the following ratio,
Optimal−Suboptimal
Optimal−Random

, where the numerator is the difference between the optimal and the sub-
optimal rankings and the denominator is the difference between the optimal and random
rankings. This ratio measures variety-seeking effect as a percentage of the total ranking
effect. We find that optimizing ranking algorithms with variety-seeking preferences com-
prises 18.2% of the revenue improvement, 14.2% of the consumer welfare improvement,
and 18.9% of the purchase probability improvement out of the total ranking effect.

We next use our demand estimates to study how variety-seeking preferences affect
competitive targeted pricing. Theoretical research generates ambiguous predictions on
the effect of variety-seeking preference on price competition (Seetharaman and Che, 2009;
Sajeesh and Raju, 2010; Zeithammer and Thomadsen, 2013), which suggest that the ef-
fect of variety-seeking preferences on price competition is an empirical question. We start
from studying how optimal targeted pricing strategies affect equilibrium prices, profits,
and consumer welfare at the estimated variety-seeking level. We find that optimal tar-
geted pricing results in lower prices to own consumers and higher prices to rival kitchens’
consumers. In general, the average transaction price level increases by 6.82%, total prof-
its increase by 5.18%, and consumer welfare decreases by 9.12%. We then study more
general targeted pricing implications on price competition when we change the level of
consumer variety-seeking preferences. We demonstrate the directions of pressures on
prices resulting from the kitchens’ current period and future profit incentives when facing
variety-seeking consumers. We find that variety-seeking preferences soften price competi-
tion and leads to a higher average equilibrium price compared to the no state dependence
case. Average equilibrium prices and profits increase with the level of variety seeking,
and consumer welfare decreases with the level of consumer variety seeking. Moreover,
the prices to a kitchen’s own consumers decrease with variety-seeking level while the
prices to rival kitchens’ consumers increase with variety-seeking level. These findings
have important implications for competitive targeted pricing and suggest that kitchens
could increase profits by offering their own consumers coupons for quantity discounts.
However, under current common industry practice, popular food delivery platforms do
not enable merchants to implement this type of state-based targeted pricing.5

This paper contributes to several strands of literature. It adds to the literature on
consumers’ state-dependent preferences. There is a large literature on positive state de-
pendence in economics and business studies (Dubé et al., 2010; Osborne, 2011; MacKay
and Remer, 2019; Kong et al., 2022), mainly using consumer scanner data from grocery
shopping. We find little work on consumers’ variety-seeking preferences in economics.
Meanwhile, variety seeking has been an important topic in marketing. McAlister (1982)
studies variety-seeking preferences for soft drinks using a dynamic attribute satiation

5Section C.5.1 provides more details about the current targeted pricing industry practice.
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model.6 Subsequent research on variety seeking mostly uses stochastic choice models
(Givon, 1984; Kahn and Raju, 1991; Trivedi et al., 1994; Chintagunta, 1998), or a hybrid
version of stochastic choice models and utility-based models (Bawa, 1990; Seetharaman
and Chintagunta, 1998; Chintagunta, 1999; Park and Gupta, 2011; Smith et al., 2020).
In this paper we use a utility-based choice model, to better accommodate the varia-
tion in substantial marketing variables, choice sets, product attributes, and unobserved
heterogeneity. Using a utility-based choice model also enables us to do counterfactual pre-
dictions and welfare analysis. Combined with our high-frequency food consumption data
including various marketing variables, we generate novel implications of variety-seeking
preferences on personalized ranking and pricing on online platforms.

There are different definitions of variety in the existing literature (Van Herpen and
Pieters, 2002). The definition of variety seeking in our project is negative state depen-
dence: a disutility from consuming the same product consecutively. We study consumers’
preferences for dynamic variety over time where the order of the choice sequences matters.
This is different from some other preferences for variety in the existing literature, such as
the size, dispersion level, and diversity of the choice set (Brynjolfsson et al., 2003; Broda
and Weinstein, 2006; Quan and Williams, 2018; Datta et al., 2018; Ershov, 2020; Holtz
et al., 2020; Natan, 2020). For these definitions of variety, the order of the choice sequence
does not matter, and consumers’ choices are aggregated along the time dimension.

With the development of digital platforms and more individual level ranking data
available, there is active literature focusing on improving ranking algorithms from differ-
ent perspectives (Jeziorski and Segal, 2015; Yoganarasimhan, 2020; Compiani et al., 2021;
Derakhshan et al., 2022). Our paper is the first paper to optimize the ranking algorithm
with state-dependent utility. We highlight consumers’ variety-seeking preferences as an
important element in ranking that will affect consumer welfare, purchase probability,
and platform revenue. For the pricing implications of state dependence, Che et al. (2003)
study the forward-looking pricing behavior in markets with state dependence within a
two-period model. Dubé et al. (2008) and Dubé et al. (2009) study the pricing impli-
cations of switching cost with infinite horizon, under monopoly and oligopoly market
structures, respectively.7 Zhang and Krishnamurthi (2004) and Zhang and Wedel (2009)
study the implications of consumers’ state dependent preferences for targeted pricing
in a three-period off-equilibrium analysis, where the target brand is allowed to conduct
targeted pricing while keeping other brands’ prices fixed. We complement this literature
by studying an infinite horizon price competition game with variety-seeking consumers,
allowing the kitchens to set different prices to own and rival’s consumers. Our paper is
the first paper to study competitive targeted pricing with state-dependent utility.

The rest of the paper proceeds as follows: Section 3.2 describes the data and back-
ground, Section 3.3 discusses some motivating evidence of variety-seeking patterns in our
data, Section 3.4 and 3.5 provides details of the structural model and estimation, Sec-
tions 3.6 discusses potential confounding factors and alternative explanations. Section
3.7 reports results from counterfactual analysis of targeted ranking and targeted pricing,
and Section 3.8 concludes.

6McAlister and Pessemier (1982) provides a review of the different psychological factors behind the
variety-seeking behavior, such as satiation, boredom, experience seeking, or thrill and adventure seeking.
In this project, we do not try to differentiate these psychological factors; instead, we summarize them
together by negative state dependence preference.

7Theoretical work on price competition with switching cost include Farrell and Klemperer (2007)
and Villas-Boas (2015).
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3.2 Data

We use proprietary data from a P2P online food ordering platform for this analysis. The
platform, the first P2P homemade food delivery platform in China, was founded in Beijing
in 2014, connecting households offering home-cooked food with nearby consumers. Until
2017 there were more than a million buyers who ordered food from sellers via the mobile
app, and twelve thousands sellers who were mostly homemakers and the retired.8

The data include detailed records of all orders placed by buyers on the platform in
Beijing from November 2016 to January 2017. For each order, we observe the identity
and location of the buyer and seller, time of order, order fee, dishes ordered, delivery
fee, coupon offered, and rating and review for the order. We also observe the ranking
of kitchens shown on consumers’ homepages and the final purchase outcome. We focus
on the frequent users who ordered more than 4 times per month with a duration on the
platform of more than 3 months.9

Because food consumption happens frequently on a daily basis, a natural definition
of one time period is one calendar day. Even though we select the frequent users of the
platform for analysis, there are still 74% of periods when consumers did not order from the
platform. In those 74% periods when consumers chose the outside option, 27% are periods
when consumers opened the platform;p in those cases, we observe the choice sets in their
rank lists. For the other 47% of periods, we do not observe any platform usage. The
periods when consumers opened the app and checked out the kitchen list are important
from the platform’s perspective even though consumers did not order from the platform,
since the pricing and ranking strategies in these periods may have a substantive effect
on the extensive margin. For the periods when consumers did not open the platform,
consumers could obtain food from restaurants, cooking at home, or other food delivery
platforms. We assume that there was no demand for the platform during these periods
when consumers did not open the platform and drop these periods from the analysis.
Meanwhile, we keep the periods when consumers opened the platform but eventually
chose the outside option. We assume that there was potential demand for the platform
in these cases and the outside option is different from the kitchens on the platform. The
following example 3.1 illustrates how we treated the two kinds of outside options when
constructing the choice panel from the full panel. In the example, A, B, C, D represent
different kitchens on the platform, and O represents the outside option.

ABA OOOOO︸ ︷︷ ︸
use platform, no order

OOOCA OOOOOOOOO︸ ︷︷ ︸
no platform usage, no order

AD −→ ABAOOOOOOCAAD

(3.1)
The final sample contains 6,629 consumers, 6,664 kitchens, and 125,646 orders. One

consumer on average placed 18.95 orders during the three-month period, and ordered
2.91 times a week conditional on ordering that week, mostly on weekdays and for lunch.
There are on average 14.04 kitchens available nearby for each consumer per day, and an
average consumer ordered from 9.28 distinct sellers throughout the three-month period.
Detailed summary statistics are shown in Table 3.1.

8Appendix C.1 provides more background information about the market structure of the food delivery
industry, consumers’ daily and weekly order trends, app display, and kitchen cuisine distribution.

9These frequent users take 10% of the consumers and 50% of the orders and revenues.
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Table 3.1: Descriptive Statistics

Mean Std. Dev. 10 Pctile Median 90 Pctile
Consumer-Level Data
No. Platform Uses 40.03 15.22 22 38 62
No. Orders 18.95 8.20 13 16 30
No. Orders per Week 1.91 0.80 1.09 1.70 3.01
No. Orders per Week Conditional on Ordering 2.91 0.94 2 3 4
Prob. of Week with Ordering 0.83 0.13 0.67 0.83 1
Gender (M=1) 0.50 0.50 0 0 1
No. Kitchens (Daily Average) 14.04 5.70 6 15 31
Distinct Kitchens Ordered 9.28 5.21 3 7 15
Distinct Cuisines Ordered 3.65 1.91 1 3 6
Kitchen-Level Data
Rating (1-5) 4.89 0.15 4.49 4.87 5
Menu Size 25.32 9.81 3 23 49
Average Dish Price (CNY) 25.21 9.45 14.29 23.32 29.15
Average Price of a Basket of Food (CNY) 50.23 17.32 26.19 50.86 58.49
No. Orders per Week 18.76 7.64 1.72 10.40 48.25
Delivery Radius (km) 2.27 1.31 2 3 9
No. Days Available per Week 3.96 2.06 1 4.23 6.46
No. Choice Sets Daily Conditional on Availability 17.61 15.96 3.67 13.07 37.01
Order-Level Data
Order Payment (CNY) 45.46 22.37 22 48 68
Delivery Fee (CNY) 2.89 0.77 0 3 3
Coupon Value Applied (CNY) 4.36 4.77 0 4 15
Distance (km) 1.68 0.99 1.54 2.43 2.76
No. Dishes per Order 2.34 1.51 1 2 4
No. Consumers 6,629
No. Sellers 6,664
No. Orders 125,646
No. Platform Usage 265,375

Note: The table presents summary statistics of our sample. We focus on frequent users who ordered
more than 4 times per month with at least 3 months of tenure on the platform. We report buyers and
sellers’ activities from November 2016 to January 2017.

3.3 Motivating Evidence

In this section, we provide motivating evidence of consumers’ variety-seeking preferences.
As variety seeking is about the demand dynamics across different time periods, we study
the switching probability as a measure of consumer choice variety. We find that in our
data consumers stay with the same kitchen they chose in the last period only 19% of the
time, for 36% of the time they switched to a different kitchen on the platform, and for
45% of the time they switched off the platform.10 The switching probability of 81% in
our data stands in stark contrast to that found in the existing literature, which normally
finds a repurchase probability of 80-90% (Dubé et al., 2010). However, the switching
probability is also affected by the size of choice sets and the relative magnitude of con-
sumers’ persistence preferences. A switching probability of 81% has different implications
when consumers face only two options each period, and the case when consumers face
hundreds of options. Switching away from a favorite kitchen is also more informative than
switching away from a less preferred kitchen. Thus in order to have a clearer evaluation
of the switching frequency, we construct a permutation based benchmark to compare the
switching frequency we observed in the data with that when the order of choices does

10As the products on our platform are homemade food only available through the platform channel,
instead of standardized branded food, it is reasonable to assume that people consumed different products
from the ones on the platform when they chose the outside option.
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Table 3.2: Example of Permutation Test

Observed Choice Sequence Switching Probability Permutations Switching Probability
CBAAA 0.5
ABAAC 0.75

ABACA 1 BCAAA 0.5
ACABA 1
CABAA 0.75

... ...

Note: The table illustrates how the permutation test is implemented with an example. Given an observed
choice sequence in the data, we hold fixed the market shares and randomly reshuffle the order of choices.
The distribution of switching probability from the permutations recovers the distribution of switching
probability under the null hypothesis that there is no state-dependent utility and the order of choices
does not matter.

not matter given the observed market shares.11

To account for consumers’ persistent kitchen preference, we construct a permutation
based switching probability benchmark by randomly shuffling the order sequence of each
consumer 100 times while holding fixed the market shares for each kitchen ordered. Table
3.2 presents an example of how the permutations are implemented.

We compare the switching probability observed in the data and the average switch-
ing frequency in the randomly shuffled benchmark. The distribution is shown in Figure
3.1. Panel (A) presents the scatter plot with each dot representing one consumer. For
consumers with actual switching probability greater (less) than the randomly reshuffled
benchmark level, they switch more (less) frequently in the data than the case when the
order of choices does not matter, and exhibit variety-seeking preferences (inertia). A ma-
jority of consumers exhibit variety-seeking preferences (79%), and a minority of consumers
have inertia (21%). The figure also suggests that there is heterogeneity in consumers’
state dependence preferences, and we formally model the heterogeneity through a ran-
dom coefficient model in the structural estimation. Panel (B) presents the cumulative
distribution function of the switching probability in data, in the random reshuffled bench-
mark, and the 95% confidence bands of the reshuffled sequences. For most parts of the
distribution the observed switch probability lies well outside the 95% confidence bands
of the random reshuffled distribution, suggesting that the switch probability observed in
the data is not simply from randomness in choices. The mean switch probability in the
random reshuffled benchmark is 64%, with a 95% confidence interval of [47%, 79%], which
suggests that the consumers switches 17% more than a simple random choice. The aver-
age switching probability across consumers indicates variety seeking with a significance
level p < 0.01.12

11Appendix C.2.1 presents details of the statistical test. Similar permutation based test is used by
Miller and Sanjurjo (2018). By permutations, we preserve the randomness in choices and the number
of orders for each chosen kitchen in the choice sequences while removing the state dependence. If the
observed switching probability is not significantly higher than the random permutation switching prob-
ability, then we can’t reject the null hypothesis that consumers don’t have state dependent preferences.
Such tests of checking for an association that should be present if the design is flawed but not otherwise
are called placebo tests by some existing literature (Larsen et al., 2021). See Eggers et al. (2021) for a
review of placebo tests.

12We conduct this pooled test with the average of standardized switching probability p̄ = 1
N

∑
i p̃

i,
where, for each consumer, the switching probability p̃i is normalized by shifting its mean and scaling
its standard deviation under H0. In this case: H0 : P(yt ̸= st|st ̸= 0) = pi for all t, i, where yt denotes
current period choice and st denotes previous period choice. We stratify the permutations by consumer
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Figure 3.1: Motivating Evidence

(A) Switching Probability Distribution (B) Switching Probability CDF

Note: Panel (A) shows the switching frequency observed in the data relative to that in the randomly
reshuffled benchmark, where the order of choices does not matter given the observed market share. One
dot represents one consumer. The 45-degree line represents the cases when consumers switch as frequently
as the randomly reshuffled benchmark. The consumers above the 45-degree line switch more frequently
in the data than the random reshuffle benchmark and exhibit variety-seeking preferences, whereas the
consumers below the 45-degree line switch less frequently than the randomly shuffled benchmark and
exhibit inertia. Panel (B) presents the cumulative distribution function of the switching probability in
data, in the random reshuffled benchmark, and the 95% confidence bands of the reshuffled sequences.

The analysis above is based on stochastic choice models and does not account for price,
availability, changing of the choice set, and other product attributes such as cuisine type
and menu size, or time-related effects such as day of the week, week of month, and
holiday effects. To formally control for these confounding factors, to measure consumers’
state dependent preferences, and to further conduct counterfactual predictions, we need
structural modeling.

3.4 Structural Model

We introduce the structural model in this section. We assume that consumers maximize
their utility given the available choice set, which we observe from the search result data.13

The indirect utility that consumer i derives from kitchen j on platform in period t is

uijt = βij − αipjt + ηrijt + γi1(sit = j) + γC1(scit = cj) + ψ ·Xijt + ϵijt. (3.2)

The utility from choosing the outside option is ui0t = γO1(sit = 0) + ϵi0t.
We use βij ∼ N(µj, σ

2
j ) to capture the match value of consumer i and kitchen j.

The mean µj captures the unobserved quality of the kitchen, and the variance allows
for heterogeneity across different consumers’ tastes, which is centered around the mean
quality. Different kitchens are allowed to have different mean quality and dispersion

to recover the sampling distribution of average switching probability under null hypothesis. Moreover, a
Kolmogorov-Smirnov test comparing the actual CDF of switching probability to the CDF of the mean
switching probability from permutations yields a p¡0.01.

13We keep the periods when consumers ordered from kitchens on the first page of search results,
which account for 92% of all orders. We drop the purchases on pages beyond the first page because
of the potential selection problem: consumers who search beyond the first page are more likely to be
searching for a specific niche kitchen, and the selection effect will bias the estimates of position cost.

53



of tastes. Price sensitivity is captured by αi ∼ N(µα, σ
2
α), we use random coefficient to

allow for heterogeneity across consumers. Since our main focus is on the state dependence
preference, we use a position cost to capture the ranking effect instead of imposing a full
structural search model: rijt is the rank of kitchen j in consumer i’s rank list in period
t, and η represents the position cost from choosing a lower-ranked kitchen.14

We have three state dependent terms capturing consumers’ state dependent prefer-
ences on different levels. In each period t, consumer i has chosen one option in the last
period, captured by state variable sit ∈ Jit. The choice set Jit includes the outside option
(represented by option index zero) and the observed kitchen list for consumer i in period
t. If the consumer chose option j in the last period, sit = j, and subsequently purchases
product, k ∈ Jit, then his or her state becomes, si(t+1) = k.15 The state variable scit
represents the cuisine type consumer ordered last period. The cuisine type of kitchen
j is cj. The coefficient γi ∼ N(µγ, σ

2
γ) captures the state dependence when consumer i

chooses the same kitchen on the platform. The coefficient γO captures the state depen-
dence when consumer i stays off the platform, and γC captures state dependence for the
cuisine.16 A positive state dependence coefficient suggests inertia, and a negative state
dependence coefficient corresponds to variety seeking. The covariate vector Xijt includes
the menu size, cuisine, day of the week, week of the month and holiday fixed effects. The
idiosyncratic taste shock ϵijt is drawn from type I extreme value distribution.

3.5 Estimation

This section provides our parametric assumptions, estimation strategies, and identifica-
tion inference.

3.5.1 Likelihood Function

We use the simulated maximum likelihood method to estimate the model. We assume that
ϵijt is distributed Type I Extreme Value and is independently and identically distributed
(i.i.d) across consumers, time, and kitchens. We use Uijt to represent the deterministic
part of the utility, i.e., uijt = Uijt + ϵijt. Then the probability of consumer i choosing
option j is

14See Ansari and Mela (2003),Ghose et al. (2014), and De los Santos and Koulayev (2017) for examples
of a similar method to capture the ranking position effect. Partial information models in which previous
period choice has a higher probability of entering the consideration set, or a lower search cost, will imply
that our estimate of variety seeking is conservative, since the information frictions work in favor of the
previous period choice because memory and salience of the recent choice is strongest among all options.
Appendix C.3.6 reports results on the out of sample fit of this model specification.

15As we study high-frequency food consumption, our definition of the state variable when consumers
chose the outside option is different from common practice in the literature, such as Dubé et al. (2010),
which often assume that the state variable does not change when the consumer the chooses outside
option. In the context of our data, it is more reasonable to assume that consumers have lunch every
day and have demand for the platform on the days when they open the platform, and that the outside
option is different from the kitchens on the platform. As our platform was the only P2P platform at the
time, the products were exclusively available through the channel of the platform. This is an advantage
compared with platforms where the sellers are restaurants that can be multi-homing, such as Uber Eats
and DoorDash.

16γO is included mainly for the purpose of separating the state dependence parameter for kitchens on
the platform and the outside option, since there are sequences of consecutive outside option choices in
our data that could confound the estimates of γi if we treat the outside option as one kitchen.
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Pij =
exp (Uijt)∑

k∈Jit
exp (Uikt)

. (3.3)

The likelihood function for a sequence of consumer i’ purchase decisions y∗
i is

Li (y
∗
i | θ) =

1

R

R∑
r=1

Πt∈TΠj∈Jit

(
exp

(
U r
ijt

)∑
k∈Jit

exp (U r
ikt)

)y∗ijt
 , (3.4)

where r is the index for draws of random coefficients. We use 100 draws in the simulations.

3.5.2 Identification

The main challenge of evaluating past choices’ effect on current choices is to disentan-
gle consumers’ heterogeneous preferences and structural state dependence. To solve this
problem, we first control for the unobserved heterogeneity by adding the random coeffi-
cients βij, which captures both vertical heterogeneity across kitchens by the mean quality
and also horizontal taste heterogeneity by the dispersion level of taste distribution.17 We
assume that the unobserved heterogeneity is stable over time, which is a reasonable as-
sumption since we focus on a relatively short time period. Thus the persistent unobserved
heterogeneity is well captured by the random coefficient βij. The identification of the state
dependence parameters separately from heterogeneous preferences then comes from the
variation of purchase probability right after a previous purchase induced by a rich set of
frequent exogenous shocks to availability, prices, and rankings over time in our data.

Availability The special composition of the supply side of the P2P platform provides
exogenous shocks to kitchens’ availability. Since the kitchen owners on the platform are
mostly homemakers and retired workers, they make flexible decisions of availability based
on personal life arrangements, such as childcare and travel. The median number of orders
per kitchen per week is 10; it is reasonable to assume that the kitchens are not making
sophisticated strategic decisions on availability given the sales volume, potential profit
margin, and the lifestyle of kitchen owners.

Price The variation in prices in our data comes from differences across kitchens,
different choices of menu items, menu changes, delivery fees, and promotional discounts.
The potential endogeneity of time-persistent price variation across different kitchens is
captured by βij. We discuss the price variation over time caused by menu changes,
delivery fees, and promotional discounts below. We do not model consumers’ dish-level
choices. Instead, we observe the kitchen’s menus over time and construct the price
variable based on the average price of a basket of food at the restaurant. Specifically,
we calculate a weighted average of menu prices, with each item price weighted by the
aggregate popularity. Sometimes kitchens change their menu by adding or deleting dishes
and adjusting prices. When kitchens need to change menus permanently, they need to

17As there are 6,664 kitchens in our data, it is intractable to allow for a different distribution for each
kitchen. To deal with this dimensionality problem, we follow Bonhomme et al. (2019), Bonhomme et al.
(2022) and use kmeans method to group all kitchens into 16 clusters based on observed average purchase
probability, prices, and kitchen characteristics. Kitchens in each cluster share the same distribution
of βij . The grouping brings approximation error but reduces incidental parameter bias. We restrict
the approximation error by following the data-driven rule provided in Bonhomme et al. (2022). The
reduction in incidental parameter bias comes from two sources: utilizing more informative moments
about the latent types, and regularization.
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schedule an in-person check with the platform before the change is implemented. As
other active kitchens also need to be checked in person at least every three months,
kitchens can not control or predict the timing of menu changes, therefore we assume
that the menu changes are exogenous. We control for the menu size to capture the
potential diversity variation from menu changes. Beyond the menu prices (tax included),
we added the delivery fee. Kitchens set a delivery radius within which they deliver
food to consumers and set a delivery fee.18Thus variation in delivery fee over time is
generated by variation in consumer’ geographic location and distance to the kitchens,
and is assumed to be orthogonal to food consumption utility. The platform has platform-
level promotions such as Tuesday half-price, free delivery on Friday, and coupons on every
17th day of the month. These promotions are provided by the platform to all consumers
and could be potentially correlated with demand. We controlled for day of week, week
of month, and holiday fixed effects to deal with the potential endogeneity problem. The
frequent temporary platform level sales, delivery fee variations, and kitchen level menu
adjustments provide exogenous variation in prices after controlling for day of the week,
week of the month, and holiday fixed effects, which identify consumers’ price sensitivity.

Rank The ranking algorithm in our data is not personalized based on individual
consumption history. Instead, the default ranking is based on distance, price, monthly
sales, and ratings. The time-persistent unobserved heterogeneity is captured by the
random coefficient βij. The remaining factors that vary over time and could affect rank are
availability, new entries, distance, ratings, price, and monthly sales. Since our platform is
a P2P platform, some kitchens may be unavailable on certain days and change the relative
ranking positions of the choice set. There can also be some new kitchens entering the
market, which could change the ranking positions of existing kitchens. We assume these
changes are exogenous for the reasons discussed above. Geographic distance between
consumers and kitchens varies as consumers change location during the period. We
assume that geographic distance does not enter utility and provides an exogenous shock
to rankings over time that identifies the position effect. Monthly sales volume is an
aggregate variable that captures the population choice in past periods. The variation
in monthly sales over time comes mostly from kitchen availability decisions. We don’t
include it in the utility function and assume that it is exogenous after controlling for the
kitchen fixed effects. The rating variable has very limited variation across kitchens and
across time periods. The median rating is 4.87. The median of the ratio of kitchens’
overtime rating standard deviation to mean rating is 0.07%. We don’t include rating in
the utility function as the limited variation makes it less informative given kitchen fixed
effects. The frequent temporary kitchen availability changes, new entries, and geographic
distance changes provide exogenous variation in ranks after controlling for day of week,
week of month, and holiday fixed effects, which identify consumers’ position cost. We
perform a robustness check on rank endogeneity by adding distance and ratings in the
utility function and discuss more details on potential rank endogeneity in Section 3.6.3.

18The sellers can choose to deliver by themselves, use the platform’s delivery service, or use their own
third-party delivery service. In all cases, the consumer needs to pay the delivery fee. If sellers choose
to deliver by themselves, they do not need to pay extra delivery cost to platform or third-party delivery
service. We do not observe great variation in delivery fee across orders, and we assume the heterogeneity
in delivery fee is driven by supply side cost heterogeneity such as transportation cost of the sellers.
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3.5.3 Estimation Results

The estimation results are in column (1) of Table 3.3. The price coefficient is negative
and significant.19 The implied position cost is 3.9% of the average payment per order. We
find γi has a negative mean -0.1981 and a standard deviation of 0.4450. That suggests
that 67.2% of the consumers are variety seeking, with γi < 0; 32.8% of the consumers
have inertia, with γi > 0. The heterogeneity level estimated from structural estimation is
similar to what we see in the reduced form evidence in figure 3.1 panel (B). The ratio of
the mean of γi to αi represents consumers’ willingness to pay for variety seeking, which
is 19.9% of the average payment per order. We do not find significant levels of state
dependence at the outside option level or at the cuisine level.20 Section C.2.2 provides
the results of permutation tests on the switching probability of cuisine types. We find
that a majority of consumers(64.5%) switch cuisines less frequently in the data than in
the random reshuffle benchmark, and the CDF of cuisine switching probability in data is
within the 95% confidence interval of the permutation CDF. The results are consistent
with the positive and insignificant cuisine level state dependence estimate we get in the
structural estimation.

19The average own price elasticity is 1.3, which is inelastic compared with estimates using data from
related industries such as Natan (2020). The difference is likely from the monopoly nature of the platform.
In Natan (2020), there is competition on both the platform and seller level, buyers and sellers can both
be multihoming. Whereas in our setting, the platform is a monopoly in the homemade food subcategory,
and the food is exclusively available from this channel, which enables the platform to price at the more
inelastic region of the demand curve.

20The lack of evidence of variety seeking on the cuisine level can result from categorization method.
Figure C.1.5 presents the distribution of kitchen cuisines in our data, which is based on geographic regions.
The estimation result suggest that at the regional cuisine level, the persistent preference dominates, and
consumers are switching across different kitchens within their favorite cuisine to seek variety.
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Table 3.3: Estimation Results.

(1) Baseline (2) Learning (3) New Product (4) Rank Robustness
State Dependence µγ -0.1981∗∗∗ -0.1796∗∗∗ -0.1847∗∗∗ -0.1713∗∗∗

–Kitchen level (γi) (0.0503) (0.0487) (0.0502) (0.0491)

σγ 0.4450∗∗∗ 0.7829∗∗∗ 0.6979∗∗∗ 0.6797∗∗∗

(0.0635) (0.0609) (0.0595) (0.0732)

Price (αi) µα -0.0219∗∗∗ -0.0213∗∗∗ -0.0226∗∗∗ -0.0207∗∗∗

(0.0036) (0.0032) (0.0051) (0.0042)

σα 0.0107∗∗∗ 0.0105∗∗∗ 0.0102∗∗∗ 0.0101∗∗∗

(0.0011) (0.0013) (0.0022) (0.0019)

Rank -0.0391∗∗∗ -0.0328∗∗∗ -0.0348∗∗∗ -0.0346∗∗∗

(0.0041) (0.0041) (0.0043) (0.0043)

State Dependence γO 0.0705 0.0692 0.0623 0.0819
-Outside option (0.0430) (0.0461) (0.0427) (0.0560)

State Dependence γC 0.0616 0.0705 0.0429 0.0438
–Cuisine (0.0531) (0.0481) (0.0530) (0.0492)

Cumulative Experience γE -0.0023
(0.0019)

New Kitchens γN -0.0051
(0.0255)

Distance -0.0016∗

(0.0009)

Rating 0.0013
(0.0018)

Note: The table shows estimation results after controlling for cuisine, day of week, week of month,
holiday, menu size, distance, rating, monthly sales, and kitchen fixed effects. * p < 0.1, ** p < 0.05, ***
p < 0.01. Column (1) is the baseline model. Column (2)-(4) are robustness checks. Column (2) tests
for learning with the model specified in section 3.6.1. Column (3) tests for new product discovery with
the model specified in section 3.6.2. Column (4) tests for robustness to the potential rank endogeneity
problem.

3.6 Robustness Checks

In this section, we investigate several alternative models that could be sources of the
state dependence we identified, including learning and new product discovery. We do
not impose specific structural models of learning or new product discovery which would
involve some strong structural assumptions on consumer behavior. Rather, we focus
on aspects of consumer behavior that differentiate learning or new product discovery
explanations from variety seeking and that can be directly observed in our data. We also
discuss and test for additional sources of potential rank endogeneity.21

21In Appendix C.3 we provide more robustness discussions about initial conditions bias, rank dummies,
inter-purchase time span, variety seeking on the dish level, and spurious state dependence from negative
autocorrelation in unobserved shocks. We also report results from a test on model out-of-sample fit.
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3.6.1 Learning

One alternative explanation of the negative state dependence we identify is consumer
learning. Consumers can switch away from the recent choice not because of the disutil-
ity of repurchase, but from extra information or newly resolved uncertainty from con-
sumption, especially at the beginning stage of platform experience (Ackerberg, 2003b;
Narayanan and Manchanda, 2009; Osborne, 2011). To investigate this possibility, we
define consumer-kitchen level consumption experience as the cumulative number of a
consumer’s orders of a kitchen, Eijt. We interact the state dependence variable with the
experience variable to compare the learning and variety-seeking models. Specifically, the
indirect utility that consumer i derives from kitchen j on platform in period t is

uijt = βij−αipjt+ηrijt+γi1(sit = j)+γE1(sit = j)Eijt+ϕ
EEijt+γ

C
1(scit = cj)+ψ·Xijt+ϵijt.

(3.5)
The utility from choosing the outside option is ui0t = γO1(sit = 0) + ϵi0t.
Under learning, the interaction term should reduce state dependence as brand expe-

rience accumulates, i.e., γE > 0. This will generate a convergence pattern in consumers’
choice processes, which is prevalent in learning models: they will switch away less from
more frequently ordered kitchens, since more information is gained and more uncertainty
is resolved, and eventually behave in accordance with a standard choice model with no
uncertainty. In contrast, in variety-seeking models, accumulative experience does not
affect the state dependence. Table 3.3 column (2) shows the estimation results. The
coefficient of the interaction term is close to zero and insignificant, which suggests that
the variety-seeking preference we identify does not decrease with accumulative experience
between consumers and kitchens.

3.6.2 New Product Discovery

In Section 3.6.1 we show that negative state dependence does not decrease with the ac-
cumulative experience between consumers and kitchens, which suggests non-convergence
in choice behavior and serves as evidence against learning models. However, the non-
convergence can also come from constant new entries throughout the time period; con-
sumers could be trying out new options as an investment for discovering a potentially
good choice for the future (Ershov, 2020). To examine this possibility we estimate the
following specification, in which we add a variable indicating the number of new kitchens
in consumer i’s choice set in period t, Nit, where a new kitchen is defined by the first time
the kitchen appears in the consumer’s choice set.22 Under new product discovery, the
interaction term should increase state dependence as more new products in the choice set
will encourage consumers to switch away from former purchase, i.e., γN < 0. However,
in variety-seeking models, the state dependence should not be affected by the number of
new products available in the choice set. Specifically, the indirect utility that consumer
i derives from kitchen j on platform in period t is

uijt = βij−αipjt+ηrijt+γi1(sit = j)+γN1(sit = j)Nit+ϕ
NNit+γ

C
1(scit = cj)+ψ·Xijt+ϵijt.

(3.6)

22An alternative definition of a new kitchen is a kitchen from which the consumer has never ordered.
However, since there are kitchens that consumers do not like and will never order from, this definition
would mix new kitchens and old disliked kitchens together.
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The utility from choosing the outside option is ui0t = γO1(sit = 0) + ϵi0t.
The results are in column (3) of Table 3.3. We do not find a significant coefficient

for the interaction term, and thus conclude that the variety seeking we identified is
not from new product discovery or investing in a promising option for the future. The
robustness checks on learning and new product discovery correspond to the explore vs
exploit tradeoff in models with information frictions. Appendix C.6 provides more details
about the difference between variety-seeking behavior and the explore vs exploit tradeoff
in a multi-armed bandit context.23

3.6.3 Rank Endogeneity

We observe the app version history of the platform and observe the factors included in
the ranking algorithm. The platform provides to consumers a default comprehensive
ranking that is based on four factors: price, distance, monthly sales, and ratings. We
do not include distance and ratings in the baseline utility specification. A potential
endogeneity problem is that if time-varying geographic distance and ratings enter both
utility and ranking, then it will bias our position effect estimates away from zero. To
investigate this possibility we also estimate a model with distance and ratings entering
utility. Table 3.3 column (4) shows the results. The distance coefficient is not significant
at the 5% level, and the rating coefficient is not significant. The rank effect estimate does
not change much. The insignificance of the rating coefficient is from a lack of variation
both across kitchens and over time. The insignificance of the distance coefficient suggests
that within the delivery distance limit, geographic distance does not affect consumers’
utility substantively. Thus variation over time in rank associated with geographic location
changes is exogenous.

3.7 Counterfactual

In this section, we use our demand estimates to study the managerial implications of
variety seeking for targeted ranking and targeted pricing.

3.7.1 Targeted Ranking

In this section, we examine the implications of variety-seeking preferences for targeted
ranking. We use our demand estimates to compare consumer welfare, platform revenue,
and purchase probability under several different ranking algorithms shown in Table 3.4.

For each ranking algorithm, we hold the choice set, prices, and all variables in Xijt

fixed as we observed in the data, and only change the ranking positions of kitchens. The
random ranking benchmark ranks kitchens randomly.24 The platform ranking uses the
default ranking we observed in the real dataset. The suboptimal ranking ranks kitchens
in decreasing order of expected utility, where the expected utility is calculated without
the variety-seeking term. The optimal ranking ranks kitchens in the decreasing order of

23Other sources of information frictions include searching. However, search costs belong to forces that
would motivate consumers to stay with the choices with which they are familiar with and from which
they order repeatedly, which is inconsistent with our observation of frequent switching.

24Specifically, the results are averaged across multiple randomly drawn rankings.
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Table 3.4: Ranking Algorithms

Ranking Algorithm

Random Ranking Rank kitchens in a random order.

Platform Ranking The platform ranking observed in the data.

Suboptimal Ranking Rank kitchens in decreasing order of expected utility,
without considering variety seeking effect (γ = 0).

Optimal Ranking Rank kitchens in decreasing order of expected utility,
considering variety seeking effect (γ < 0).

expected utility with the variety-seeking term. The optimal ranking optimizes ex ante
consumer welfare.25

We assume that platform can potentially estimate consumers’ individual specific state-
dependent preferences and rank kitchens corresponding to their personalized utility index.

We measure the total effect of ranking by the difference between optimal ranking
and the random ranking benchmark. The difference between the optimal ranking and
suboptimal ranking represents the effect of considering consumer variety-seeking prefer-
ences in ranking. Then the ratio Optimal−Suboptimal

Optimal−Random
shows how much of the improvement

from random ranking to optimal ranking is due specifically to inclusion of variety-seeking
preferences.

Counterfactual prediction results are shown in Figure 3.2. We simulate choices un-
der each given ranking algorithm 50 times to get the mean and standard deviation of
corresponding market outcome variables. We find that optimizing the ranking algorithm
with variety-seeking preferences takes up 18.2% of the revenue improvement, 14.2% of
the consumer welfare improvement, and 18.9% of the purchase probability improvement,
out of the total ranking effect. We further decompose the welfare gain and find that
consumers benefit both from better matches (higher utility) and lower position costs.
Specifically, we find that, on average, 8% of the increase in welfare comes from lower
position costs, with the optimal ranking decreasing the average position purchased by
0.2 positions.26 Most of the welfare gain (92%) is from consumers purchasing a more
desirable seller under the optimal ranking, which was ranked lower under the suboptimal
ranking such that the consumers choose the outside option or a worse match ranked at a
higher position.27 We also find that the two utility-based rankings are both better than
the platform ranking.28

25Appendix C.4.1 provides detailed discussion of the optimality of rankings. Note that the optimal
ranking of consumer welfare used in the analysis does not necessarily optimize platform revenue, for which
there is no simple index like utility to follow and one need to exhaust all the J ! potential combinatorics
to compare revenues.

26Note that in the comparison between optimal and suboptimal ranking, the average position where
a transaction happens is moved upwards by at most 1 position, since the utility index will be different
for at most one option (the previous period choice) for each choice set.

27Appendix C.4.2 provides more discussion of the decomposition of gains from suboptimal ranking
to optimal ranking. Appendix C.4.3 provides results when platform presents heterogeneous state-based
targeted ranking based on different consumers’ state-dependent preferences.

28In our sample this could result from the naivety of ranking algorithm the start-up platform is
using in the early stage. Moreover, existing literature consistently document that utility-based rankings
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Figure 3.2: Targeted Ranking Counterfactual Results

Note: The figure shows the percentage change in welfare, revenue and purchase probability of Platform
Ranking, Suboptimal Ranking, and Optimal Ranking relative to the Random Ranking benchmark. We
simulate choices under each given ranking algorithms for 50 times to get the mean and standard deviation
of corresponding variables.

3.7.2 Targeted Pricing

In this section, we use the demand estimates to investigate the implications of consumers’
variety-seeking preferences for competitive targeted pricing. Given the large number of
consumers and sellers in our data, it is intractable to estimate a full dynamic pricing game
model. Instead, we use the data to calibrate parameters in consumer preference, and sim-
ulate the optimal pricing strategy in a duopoly model, in order to understand the pricing
implications under variety seeking. Consumers always choose with variety-seeking pref-
erences, and we check the profit and welfare difference between optimal targeted pricing,
where kitchens’ policy functions are gained from the real state dependence parameter,
and suboptimal pricing, where the kitchens do not consider the state dependence prefer-
ence when making pricing decisions. We also analyze the comparative statics when the
level of variety seeking varies.

The model consists of two kitchens competing for consumers with variety-seeking
preferences by pricing heterogeneous products. Each kitchen sets a pricing policy to
maximize the discounted sum of profits over an infinite horizon. Demand is derived from
a population of consumers who make discrete choices from two products and an outside
option. For simplicity, we drop the consumer specific index. In each period t, a consumer
has chosen one option in the last period, st ∈ J = {0, 1, 2}. If the consumer chose option
j in the last period, st = j, and purchases product, k ∈ J , then his or her state becomes,
st+1 = k. Conditional on price pjt and the consumer’s current state st, the utility from

increase consumer welfare and purchase probability.(Compiani et al., 2021; Ursu, 2018; De los Santos and
Koulayev, 2017; Chen and Yao, 2017; Ghose et al., 2014, 2012). Results on how a utility-based ranking
affects revenues are mixed. Ghose et al. (2014) find that it yields the largest total revenue among the
rankings considered, whereas Ursu (2018) find that revenues decrease in three out of the four destinations
in her sample.
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the product j at time t is as follows:

ujt = βj + αpjt + γ1{st = j}+ ϵjt. (3.7)

The preference parameters are from our demand estimation. We assume that the random
utility component, ϵjt is i.i.d. Type I extreme value distributed. We study heterogeneous
products and use the mean estimates µj of the estimates of βj of the two most popular
kitchen groups. Price is targeted based on state:

pjt =

{
pown
jt , if st = j.

privaljt , if st ̸= j.
(3.8)

At any point in time, the market is summarized by the distribution of consumers
over the states. Let xjt ∈ [0, 1] be the fraction of consumers who chose j in the last
period. Let Uj(st, pt) denote the deterministic component of the utility index, such that
ujt = Uj(st, pt) + ϵjt. The consumer’s choice probability has the following logit form:

Pj(st,pt) =
exp[Uj(st, pjt)]∑

k∈J exp[Uk(st, pkt)]
. (3.9)

We assume that a seller is able to observe whether s consumer ordered from its kitchen
in the last period or not, and potentially sets different prices for its own consumers
(st = j) and its rival seller’s consumers (st ̸= j). We obtain the respective aggregate
demand by summing demand over consumer states. Demand from own consumers and
rival’s consumers for product j are:

Down
j (xt,pt) = xjtPj(j,pt) (3.10)

Drival
j (xt,pt) =

∑
k∈J /{j}

xktPj(k,pt) (3.11)

The distribution of consumer states, xt, summarizes all current period payoff relevant
information for the kitchen and describes the state of the market. The transition of the
aggregate state can be derived from the transition probabilities of the individual states.
Conditional on a price vector pt, we can define a Markov transition matrix Q(pt) with
the following elements:

Qjk(pt) = Pj(k,pt). (3.12)

The whole state vector evolves according to the Markov chain:

xt+1 = Q(pt)xt. (3.13)

The evolution of the state vector is deterministic, and we denote the transition function
by f , xt+1 = f(xt,pt). Time is discrete, t = 0, 1, .... Conditional on all product prices
and the state of the market, xt, kitchen j’s current period profit function is

πj(xt,pt) = Down
j (xt,pt) · (pown

j − cj) +Drival
j (xt,pt) · (privalj − cj) (3.14)

where cj is the marginal cost of production, which does not vary over time. We use
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historical ingredient prices during December 10 to 20, 201629 to estimate the marginal
cost of production, and adjust the variance of the logit distribution so that the equilibrium
price at the estimated variety-seeking level equals the observed mean price in our data.
Kitchens compete in prices and choose Markovian strategies, σj : X → R2, that depend
on the current payoff-relevant information, summarized by x. This assumption rules out
strategies that depend on historical prices and potential collusion among sellers. Kitchens
discount the future using the common factor β, 0 < β < 1. For a given profile of strategies,
σ = (σ1, σ2), the present discounted value of profits is

∑∞
t=0 β

tπj[xt, σ(xt)]. Conditional
on a profile of competitor’s strategies, σ−j, kitchen j chooses a pricing strategy that
maximizes its expected value. Associated with a solution to this problem is kitchen j’s
value function, which satisfies the Bellman equation

Vj(x) = max
pj≥0

{πj(x,p) + βVj[f(x,p)]},∀x ∈ X. (3.15)

We use Markov Perfect Equilibrium (MPE) as our solution concept. In pure strate-
gies, MPE is defined by a pricing strategy for each kitchen, σ∗

j , and an associated value
function, Vj, such that

Vj(x) = max
pj≥0

{πj[x,pj, σ
∗
−j(x)] + βVj{f [x,pj, σ

∗
−j(x)]}}, (3.16)

for all states, x, and kitchens. In each subgame starting at x, the kitchen’s strategy is a
best response to the strategies its competitor choose.30,31

We calculate steady-state prices as follows. We begin by computing the equilibrium
pricing strategies of each kitchen. Then, we choose an arbitrary initial state for the
period t = 0 and calculate the corresponding sequence of equilibrium price levels and
state vectors for periods t = 1, 2, .... We stop this process after convergence of the state
vector and corresponding equilibrium prices to fixed values occurs.

Results

Optimal Targeted Pricing We study the effect of state-based targeted pricing strat-
egy by comparing the performance of two pricing schemes: uniform pricing and targeted
pricing. Table 3.5 presents the details of each pricing strategy. In both pricing strategies,
consumers always choose with variety-seeking preferences. Uniform pricing corresponds
to the case where kitchens do not consider consumers’ variety-seeking preferences and do
not do targeted pricing based on it. Optimal targeted pricing corresponds to the case
when kitchens consider consumers’ variety-seeking preferences and set different prices to
their own and rival’s consumers. Table 3.6 shows the percentage changes of the equilib-
rium steady state prices, profits, and consumer welfare. With optimal targeted pricing,
kitchens set lower prices for their own consumers and higher prices for the rival seller’s
consumers; this strategy is similar to a quantity discount for existing customers. Opti-
mal pricing increases average transaction prices by 6.8%, profits by 5.2%, and decreases
consumer welfare by 9.1%.

29Historic prices of ingredients come from the National Bureau of Statistics website: http://www.

stats.gov.cn/tjsj/zxfb/201612/t20161226_1445711.html
30Appendix B1 of Dubé et al. (2009) proves the existence of a pure strategy equilibrium of a similar

model.
31Appendix C.4.4 discusses the procedure for the numerical solution to the dynamic programming
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Table 3.5: Uniform Pricing v.s. Targeted Pricing

Demand Supply
Consumers choose with (1)Uniform Pricing Sellers set the same price to all
VS preferences(γ = γ̂ < 0) (Status quo) consumers (γ = 0, pown

j = privalj )

(2)Targeted Pricing Sellers set targeted prices based on last
period choice (γ = γ̂ < 0, pown

j ̸= privalj )

Note: The table presents details of how we compare the performance of two pricing schemes in the price
competition equilibrium: uniform pricing and targeted pricing.

Table 3.6: Optimal Pricing

% Change with Targeted Pricing

Price1own -0.70

Price1rival 9.42

Price2own -0.18

Price2rival 9.42

Average Price 6.82

Total Profits 5.18

Platform Revenue 1.68

Consumer Welfare -9.12

Note: Percentage change is calculated by formula Targeted−Uniform
Uniform of the corresponding variable. Av-

erage price is the weighted sum of prices, where weights are the corresponding choice probabilities.

This optimal pricing counterfactual predicts that it is profitable to do targeted pricing
based on consumers variety-seeking preferences. However, the platform we study and
most popular food delivery platforms do not have targeted pricing based on recent orders.
The common existing industry practices in targeted pricing are focused on new consumer
acquisition, past consumer retention, and whole platform promotion. Appendix C.5.1
provides more details about the current industry practice for targeted pricing.

Comparative Statics The effect of variety-seeking preferences on price competition
is theoretically ambiguous, and empirical work is necessary to pin down the prediction.
Besides the comparison between optimal targeted pricing and uniform pricing, we also
study how the optimal targeted pricing levels change with the variety-seeking level. We
compute equilibrium prices for a range of variety seeking achieved by scaling the mean
value of γi gained from demand estimation s ∈ {0, 1

3
, 1
2
, 1, 2, 3}.32 Figure 3.3 illustrates the

problem.
32The corresponding level of variety seeking is the mean estimate of γi multiplied by the scale factor

γ = γ̂ ·s. The variety-seeking level we estimate from the original data corresponds to a scale factor equal
to one. The equilibrium when consumers don’t have state-dependent preferences corresponds to a scale
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key pricing incentives in our model. The x-axis is the level of variety-seeking preferences
represented by a scale factor. Similar to the traditional harvest vs invest tradeoff in a
switching cost model, there is also a current period vs future incentive difference under
variety seeking. Panel (A) and (C) in Figure 3.3 show kitchen 1’s prices for its own and
rival’s consumers, respectively. Panel (B) and (D) show kitchen 2’s prices for its own
and rival’s consumers. To decompose kitchens’ current and future period incentives, in
each graph we plot the equilibrium price levels for both cases when kitchens are forward-
looking (β = 0.98) and myopic (β = 0). Then the difference between the price levels
when γ = 0 and the myopic line is the current period incentive for kitchens, and the
difference between the price levels when kitchens are myopic and those when kitchens are
forward-looking reflects the future incentive of kitchens. In terms of the current period
incentive, for consumers who purchased from the kitchen in the last period, the kitchen
has the incentive to decrease the price to keep them from switching to the competitor.
For consumers who did not purchase from the kitchen in the last period, the kitchen has
the incentive to increase the price to exploit the market power induced by consumers’
variety-seeking preferences. In terms of future incentives, the tendency of switching from
consumers’ variety-seeking preferences discourages kitchens from competing for them and
imposes upward pressure on prices. To understand this more formally, we can write down
seller j’s profit-maximizing first-order conditions based on equation 3.16:

∂πj
∂pown

j︸ ︷︷ ︸
Current profits

+ β
∂Vj{f [x,pj, σ

∗
−j(x)]}

∂pown
j︸ ︷︷ ︸

Future distribution of consumer states

= 0, (3.17)

∂πj
∂privalj︸ ︷︷ ︸

Current profits

+ β
∂Vj{f [x,pj, σ

∗
−j(x)]}

∂privalj︸ ︷︷ ︸
Future distribution of consumer states

= 0. (3.18)

The prices affect the current period profits, and meanwhile affects the future distribu-
tion of consumer states. Table 3.7 provides a summary of the direction of the effect of
consumers’ variety-seeking preferences on kitchens’ pricing incentive. When kitchens are
very differentiated, it is possible that variety seeking can intensify price competition, and
the driving force comes from the more popular kitchens trying to maintain a large own
consumer base.33 But in our demand estimate range, it turns out that kitchens are not
differentiated enough and consumers’ variety-seeking preferences softens kitchen price
competition.

In order to study variety-seeking preference’s effect on equilibrium profit and welfare
level and eliminate the difference between “staying cost” and “switching bonus” models,
which is due to the differential impact on the outside good market share under changes
in γ, we calculate the difference of the steady state profit and welfare relative to a pure
demand response benchmark.

Denote the steady state equilibrium price, market shares, profit, and welfare level as
{pγ,xγ(pγ), π(pγ,xγ(pγ)), w(pγ,xγ(pγ), γ)}. The equilibrium profits are defined by the

factor of zero.
33Appendix C.4.5 provides more intuition for how product differentiation and variety-seeking level

affect equilibrium price competition level.
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Figure 3.3: Steady State Equilibrium Pricing

(A) Kitchen 1 Price for Rival’s Consumers (B) Kitchen 2 Price for Rival’s Consumers

(C) Kitchen 1 Price for Own Consumers (D) Kitchen 2 Price for Own Consumers

Note: The figure shows the steady state equilibrium prices for different levels of variety-seeking prefer-
ences. The x-axis is the scale factor, and the corresponding variety-seeking level equals the scale factor
times the mean estimate of γi. Panel (A) and (C) show Kitchen 1’s prices for its rival’s and its own
consumers, respectively. Panel (B) and (D)shows Kitchen 2’s prices for its rival’s its own consumers. In
each graph we plot the equilibrium price levels for cases when kitchens are forward-looking (β = 0.98)
and myopic (β = 0). The difference between the price level at γ = 0 and the myopic kitchen price level
reflects the kitchens’ current period pricing incentives (blue arrow), and the difference between myopic
and forward-looking kitchen prices captures the kitchens’ future pricing incentives (red arrow).

Table 3.7: Variety Seeking’s Effect on Kitchens’ Pricing Incentives

Price for Own Consumer Price for Rival’s Consumer
Current Period – +
Future + +

Note: The table summarizes the effect of consumers’ variety-seeking preferences on kitchen’s pricing
incentives for own and rival’s consumers in the current period and future. ‘+’ suggests an upward
pressure on price levels, and ‘–’ suggests a downward pressure on prices.

total profits of all firms

π(pγ,xγ(pγ)) =
∑

j∈J /{0}

πj(pγ,xγ(pγ))
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Table 3.8: Decomposition of Welfare and Profit Effects of Variety-Seeking Preferences

Decomposition Market Outcome
(0) No VS {π(p0,x0(p0)), w(p0,x0(p0), 0)}
(1) VS, demand-preference {π(p0,x0(p0)), w(pγ,x0(p0), γ̂)}
(2) VS, demand-choice {π(p0,xγ̂(p0)), w(p0,xγ̂(p0), γ̂)}
(3) VS, supply and equilibrium {π(pγ̂,xγ̂(pγ̂)), w(pγ̂,xγ̂(pγ̂), γ̂)}

Note: The table shows decomposition of equilibrium analysis when consumers have varying levels of
variety-seeking preferences. Counterfactual (0) corresponds to the steady state equilibrium when con-
sumers don’t have state-dependent preferences. Starting from this equilibrium, counterfactual (1), (2),
and (3) denote the market outcome when (1) only consumers change state-dependent preferences to
γ = γ̂, (2) consumers changes preferences and choices when sellers don’t change prices, (3) sellers change
prices and consumers change choices responding to the new price levels.

The equilibrium welfare are defined by the sum of ex-ante consumer welfare from con-
sumer with all states.

w(pγ,xγ(pγ), γ) = − 1

α

∑
j∈J

xj ·

[
ln

(∑
k∈J

exp(Uk(j, pk))

)]

where xj denotes the share of consumers with st = j, and pk denotes product k’s price
for consumers with st = j. Table 3.8 presents the decomposition of welfare and profit
effects of changing the levels of consumers’ variety-seeking preference. Starting from
the steady state equilibrium when consumers do not have state-dependent preference
({π(p0,x0(p0)), w(p0,x0(p0), 0)}), as γ becomes negative, we decompose the changes in
steady state equilibrium into three channels. First, before prices and choices change, con-
sumer welfare decreases because of the “staying cost” imposed boredom. Second, before
prices change, as γ decreases the utility from consumption, consumers will switch to the
outside option, which further decreases profits and increases consumer welfare. Third,
kitchens change price levels given the new consumer state dependent preferences and
consumers respond to the changes. The channel of changes in equilibrium that we are
interested is the third channel, which captures the effect of consumers’ variety-seeking
preferences on price competition level. The first two channels are pure demand side re-
sponses from changes in γ and are susceptible to the model specification of “staying cost”
and “switching bonus”.34 This challenge of welfare and profit analysis when consumer
preferences change is related to the challenge in welfare analysis of persuasive advertising
discussed in Becker and Murphy (1993b).

To tackle this problem, we use the pure demand response benchmark to separate the
price competition effects on profits and consumer welfare from the pure demand response.
The profit and welfare in the pure demand response benchmark for each variety-seeking
level are calculated by equations 3.10 and 3.11, where prices and initial state variables are
at the γ = 0 steady state equilibrium level, i.e., the pure demand response benchmark
profit and welfare are π(p0, γ) and π(p0, γ), respectively. Then the price competition
effect at each variety-seeking level is ∆π = π(pγ, γ)−π(p0, γ),∆u = u(pγ, γ)−u(p0, γ).

35

34In this paper we used the “staying cost” specification in accordance with boredom and satiation.
The “switching bonus” specification would be more consistent with thrill seeking. We do not try to
identify the different psychological factors behind negative state dependent preference in this project.

35Dubé et al. (2009) adopts a different approach to solve this problem by changing the intercept of
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Figure 3.4: Steady State Equilibrium

(A) Average Transaction Price (B) Profit

(C) Revenue (D) Consumer Welfare

Note: The figure shows steady state equilibrium average transaction price, profit, revenue, and consumer
welfare. The average transaction price is the weighted average of prices by transaction probability.
Profits, revenue, and welfare are measured in CNY, and are calculated relative to the pure demand
response benchmark to measure the pure price competition effect.

Figure 3.4 shows how steady state prices, profits, and consumer welfare change with
the level of consumers’ variety-seeking preferences. We find that as the variety-seeking
level increases, equilibrium average transaction prices and profits increase, whereas con-
sumer welfare decreases. To summarize, we find that consumers’ variety-seeking prefer-
ences soften price competition.

3.8 Conclusion

In this paper, we document consumers’ variety-seeking preferences in high-frequency con-
sumption. We show that a substantial fraction of consumers have negative state depen-
dent preference, after controlling for potential confounding factors. We also further ruled
out alternative sources of structural state dependence, including learning and new prod-
uct discovery. We find that consumers, on average, are willing to pay 19.9% more for
switching to a different seller. There is heterogeneity in consumers’ state dependence
preference, 32.8% of consumers have inertia, whereas 67.2% of consumers exhibit variety-

the outside option in order to keep the outside option market share fixed. This method also removes the
extensive margin demand response to price changes in price competition in the third channel. We adopt
an alternative method here to capture the extensive margin effect of price competition level.
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seeking preferences. This finding has important managerial implications for targeted
marketing.

Using the demand estimates, we examine the managerial implications of variety seek-
ing on targeted ranking and targeted pricing. For targeted ranking, we examine the
profits, welfare, and purchase probability of several different ranking schemes. We find
that optimizing ranking algorithm with variety-seeking preferences takes up 18.2% of the
revenue improvement, 14.2% of the consumer welfare improvement, and 18.9% of the
purchase probability improvement, out of the total ranking effect.

For targeted pricing, we study the effect of optimal pricing with variety seeking and
the comparative statics of the effect of consumers’ variety-seeking preferences on price
competition. We find that optimal targeted pricing increases prices and profits, and
decreases consumer welfare. The comparative statics analysis shows that the average
equilibrium prices and profits increase with consumers’ variety-seeking level, whereas
consumer welfare decreases with it. In general, variety seeking softens price competition.

Although we only do counterfactual analysis on pricing and ranking in this paper, con-
sumers’ variety-seeking preferences have more general managerial implications in other ar-
eas, including targeted advertising, personalized recommendation systems (Ansari et al.,
2000; Ansari and Mela, 2003), positioning (Sajeesh and Raju, 2010; Zeithammer and
Thomadsen, 2013), and the distributional channel.36 The managerial implications of
consumer variety-seeking preferences are also not limited to the food delivery industry.
Cadario and Morewedge (2021) document the phenomenon that many people eat the
same breakfast every day, yet seek variety for lunch and dinner, and attribute this dif-
ference to a psychological driver: variance in the pursuit of hedonic and utilitarian goals
across meals. This is also helpful to understand the direction of state dependence we
might expect in different industries. In utilitarian choice situations, such as work-day
breakfast, health care, gasoline, and grocery products, former research has found ev-
idence of inertia. In hedonic choice situations, such as lunch, dinner, music, movies,
podcast, magazine, art, and resorts, where people care more about entertainment and
pleasure, it is important to consider consumers’ variety-seeking preferences.

36Cosguner et al. (2017) and Cosguner et al. (2018) study dynamic pricing models with switching cost
in a distribution channel. The implications of variety seeking in a vertical relationship are also important
to investigate.
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Bronnenberg, B. J., J.-P. Dubé, M. Gentzkow, and J. M. Shapiro (2015). Do pharmacists
buy bayer? informed shoppers and the brand premium. The Quarterly Journal of
Economics 130 (4), 1669–1726.

Bronnenberg, B. J., J. B. Kim, and C. F. Mela (2016). Zooming in on choice: How do
consumers search for cameras online? Marketing Science 35 (5), 693–712.

72



Brynjolfsson, E., Y. Hu, and M. D. Smith (2003). Consumer surplus in the digital econ-
omy: Estimating the value of increased product variety at online booksellers. Manage-
ment science 49 (11), 1580–1596.

Cadario, R. and C. K. Morewedge (2021). Why do people eat the same breakfast every
day? goals and circadian rhythms of variety seeking in meals. Appetite, 105716.

Chade, H. and L. Smith (2006). Simultaneous search. Econometrica 74 (5), 1293–1307.

Che, H., S. Seetharaman, and K. Sudhir (2003). Pricing behavior in markets with state-
dependence in demand. Available at SSRN 442580 .

Chen, Y. and S. Yao (2016). Sequential search with refinement: Model and application
with click-stream data. Management Science 63 (12), 4345–4365.

Chen, Y. and S. Yao (2017). Sequential search with refinement: Model and application
with click-stream data. Management Science 63 (12), 4345–4365.

Chintagunta, P. K. (1998). Inertia and variety seeking in a model of brand-purchase
timing. Marketing Science 17 (3), 253–270.

Chintagunta, P. K. (1999). Variety seeking, purchase timing, and the “lightning bolt”
brand choice model. Management Science 45 (4), 486–498.

Choi, M., A. Y. Dai, and K. Kim (2018a). Consumer search and price competition.
Econometrica 86 (4), 1257–1281.

Choi, M., A. Y. Dai, and K. Kim (2018b). Consumer search and price competition.
Econometrica 86 (4), 1257–1281.

Compiani, G. (2019). Market counterfactuals and the specification of multi-product
demand: a nonparametric approach. Working Paper .

Compiani, G. (2022). Market counterfactuals and the specification of multi-product
demand: a nonparametric approach.

Compiani, G., G. Lewis, S. Peng, and W. Wang (2021). Online search and product
rankings: A double index approach. Available at SSRN 3898134 .

Conlon, C. T. and J. H. Mortimer (2013). Demand estimation under incomplete product
availability. American Economic Journal: Microeconomics 5 (4), 1–30.

Cosguner, K., T. Y. Chan, and P. Seetharaman (2017). Behavioral price discrimination
in the presence of switching costs. Marketing Science 36 (3), 426–435.

Cosguner, K., T. Y. Chan, and P. Seetharaman (2018). Dynamic pricing in a distribution
channel in the presence of switching costs. Management Science 64 (3), 1212–1229.

Crawford, G. S. and M. Shum (2005). Uncertainty and Learning in Pharmaceutical
Demand. Econometrica 73 (4), 1137–1173.

Datta, H., G. Knox, and B. J. Bronnenberg (2018). Changing their tune: How consumers’
adoption of online streaming affects music consumption and discovery. Marketing Sci-
ence 37 (1), 5–21.

73
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Kong, X., J.-P. Dubé, and O. Daljord (2022). Non-parametric estimation of habitual
brand loyalty. Available at SSRN 4070747 .

Koren, Y., R. Bell, and C. Volinsky (2009). Matrix factorization techniques for recom-
mender systems. Computer 42 (8), 30–37.

Larsen, B., C. H. Lu, and A. L. Zhang (2021). Intermediaries in bargaining: Evidence
from business-to-business used-car inventory negotiations. Technical report, National
Bureau of Economic Research.

MacKay, A. and M. Remer (2019). Consumer inertia and market power. Available at
SSRN 3380390 .

Manski, C. F. (2002). Identification of decision rules in experiments on simple games of
proposal and response. European Economic Review 46 (4-5), 880–891.

Manzini, P. and M. Mariotti (2014). Stochastic choice and consideration sets. Economet-
rica 82 (3), 1153–1176.

McAlister, L. (1982). A dynamic attribute satiation model of variety-seeking behavior.
Journal of Consumer Research 9 (2), 141–150.

McAlister, L. and E. Pessemier (1982). Variety seeking behavior: An interdisciplinary
review. Journal of Consumer research 9 (3), 311–322.

Mehta, N., S. Rajiv, and K. Srinivasan (2003). Price uncertainty and consumer search:
A structural model of consideration set formation. Marketing science 22 (1), 58–84.

Miller, J. B. and A. Sanjurjo (2018). Surprised by the hot hand fallacy? a truth in the
law of small numbers. Econometrica 86 (6), 2019–2047.

Miller, J. B., A. Sanjurjo, et al. (2014). A cold shower for the hot hand fallacy. Technical
report, Working paper.

77
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Appendix A

Appendix for Chapter 1

A.0.1 More details about Data Construction

To collapse the different products within the same brand, I calculate the average price.
For example, if in one observation I observe a purchase of Chobani strawberry yogurt and
vanilla yogurt, I see them as the same product Chobani and calculate the average price
by dividing the total price paid (after subtracting any coupon value applied) by quantity.

I drop the consumers who never purchase any of the top five 32oz yogurt. Then I
collapse a household’s multiple trips in one week into one to see one household-week as
an observation unit. If a household made multiple trips with no purchase of the five
brands, I collapse the multiple trips into one. If a household made multiple trips in a
week, including trips with purchase of one of the five products and trips with purchase
of none, I collapse the trips into one observation with the purchase of the corresponding
product.

Table A.1 presents the details of data construction.N represents the situation that
the household made no trip to the retailer in the specific week. 1-5 represent the five
products. 0 denotes the case when the household made a trip to the retailer but purchase
none of the five products. Only the colored cells are taken as observations.The light gray
cells are seen as Not Buy observations.

Table A.1: Data Construction. N represents the situation that the household made
no trip to the retailer in the specific week. 1-5 represent the five products. 0 denotes
the case when the household made a trip to the retailer but purchase none of the five
products. Only the colored cells are taken as observations.The light gray cells are seen
as Not Buy observations.

Household
Week

1 2 3 4

1 blue!25 1 light-gray 0 N N
2 blue!25 2 N blue!25 3 blue!25 5
3 blue!25 4 blue!25 1 N light-gray 0
4 N N N blue!25 1

Table A.2shows an example of how the unobserved prices are recovered. In this
example of observations in one store in one week, p1 for household 2 and 3 are recovered
by household 1’s observed price. p2 for household 1 is recovered by an average of household
2 and household 3’s observed prices. As no one bought product 3 in this store in the
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specific week, p3 for all three households are recovered by the average of observed p3 in
all other stores of the retailer.

Table A.2: Price Recovery. In this example of observations in one store in one week,
p1 for household 2 and 3 are recovered by household 1’s observed price. p2 for household
1 is recovered by an average of household 2 and household 3’s observed prices. p3 for all
three households are recovered by the average of observed p3 in all other stores of the
retailer.

Household p1 p2 p3

1 observed

2 observed

3 observed

A.0.2 Choice Persistence Examination

I use the panel data to track one household and gain proper Not Buy observations, but
one potential problem of using the panel data is the potential choice persistence problem.
This section is to show that choice persistence problem is limited in our data.

Table A.3: Distribution of Observations. The variable Trips denotes the total number
of trips in which the household purchased one of the five products in 2016. The variable
Brands denotes the total number of different brands the household purchased in 2016.

Trips
Brands

1 2 3 4 Total

1 21383 0 0 0 21383
2 5908 2783 0 0 8691
3 2584 1314 142 0 4040
4 1512 1013 423 0 2948
5 680 960 190 0 1830
6 915 521 119 0 1555
7 641 361 104 0 1106
8 368 258 80 0 706
9 355 70 83 0 508
10 518 365 0 0 883
11 216 185 111 0 512

≥ 12 1978 830 326 19 3153

Total 37,058 8,660 1,578 19 47,315

Table A.3 presents the detailed structure of the 47,315 observations. Correspondingly,
table A.4 presents the detailed structure of the 1,641 households. The variable Trips de-
notes the total number of trips in which the household purchased one of the five products
in 2016. The variable Brands denotes the total number of different brands the household
purchased in 2016. The cells in table A.3 and A.4 reports the number of observations and
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Table A.4: Distribution of Households. The variable Trips denotes the total number
of trips in which the household purchased one of the five products in 2016. The variable
Brands denotes the total number of different brands the household purchased in 2016.

Trips
Brands

1 2 3 4 Total

1 808 0 0 0 808
2 206 99 0 0 305
3 86 44 4 0 134
4 50 34 12 0 96
5 24 28 6 0 58
6 27 17 3 0 47
7 19 12 3 0 34
8 12 8 3 0 23
9 10 3 2 0 15
10 14 10 0 0 24
11 6 5 3 0 14

≥ 12 50 23 9 1 83

Total 1,312 283 45 1 1,641

households, respectively. Table A.3 shows that although a large number of observations
(37,058) are from the households who only bought one brand in the year of 2016, most of
them (21,383) are from those who only purchased 32 oz yogurt once. Only 1,978 obser-
vations are from the households who purchased more than 12 times but always bought
the same brand. Similarly, in table A.4 note that although a large number of households
(1312) are from the households who only bought one brand in the year of 2016, most of
them (808) only purchased 32 oz yogurt once. Only 50 households purchased more than
12 times but always bought the same brand.

The above analysis of the detailed data structure shows that the households who
exhibit the choice persistence behavior only account for a small portion (3.05%) of the
sample households, and the observations they contribute only account for a small portion
(4.18%) of the whole sample. Thus the potential choice persistence problem is limited in
our sample.
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Appendix B

Appendix for Chapter 2

B.1 Additional Proofs

In this appendix, we collect the proofs not included in the main text. Throughout, we
let J ≡ {1, . . . , J} and use the notational convention ∂f

∂x0 (x) = f (x)∀x for any function
f . We also often drop the i subscript for notational simplicity.

B.1.1 Identifying good 1 when zj is vector-valued in the linear
homogeneous case

For simplicity, the results in the main text are for the case where zj is scalar-valued for
all goods j. This implies that one can label good 1 as the good with the highest value of
z without loss of generality. As we have noted, if there are multiple z attributes per good,
then our results apply if the data contains one choice set where one good is preferable to
all other goods on each of the z attributes. This is not without loss.

We now show how to relax this restriction in the linear homogeneous case of Lemma
3. Let zkj be the k−th hidden attribute of good j and let βk be the associated pref-
erence parameter. As above, let ũj = αxj + βzj. By Assumption 2, we can write

sj = fsj (ũ1, . . . , ũJ , x1, . . . , xJ) for all j and thus
∂sj
∂zkj

=
∂fsj
∂ũj

βk, implying
∂sj
∂zkj/

∂sj
∂zk′j

= βk/βk′

for all k, k′. This means that we can compare the hidden component of utility across
goods. Specifically, letting β1 > 0 without loss, we have that, for any pair of goods j
and j′,

∑
k βkzkj ≥

∑
k βkzkj′ if and only if z1j − z1j′ +

∑
k>1

βk

β1
(zkj − zkj′) ≥ 0. Since

the l.h.s. of the last inequality is identified, we can rank goods based on their non-visible
utility. Lemma 3 then applies by defining good 1 as the good with the highest value of∑

k βkzkj. Note that such a good always exists in any choice set (excluding ties) since∑
k βkzkj is scalar-valued.

(kα, kβ), ak,n,ñ ≡ ∂1+nP6

∂v1∂vn2
(0)αn−ñ

kα
βñ+1
kβ

, bk,n,ñ ≡ αn−ñ
kα

βñ+1
kβ

are known scalars, and fk,n ≡
∂1+nPS

7

(
0,0,0;αkα ,βkβ

)
∂v1∂vn2

and πk ≡ π̃kα,kβ are unknown scalars.

Setting n = K − 1 and stacking the equations corresponding to ñ = 0, . . . , K − 1, we
get

q = Aπ +B(f ∗ π)

where q is a known column K−vector, A,B are known K−by−K matrices, and f ∗ π
denotes the column vector given by the element-by-element product of (f1,K−1 . . . fK,K−1)
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and π ≡ (π1, . . . , πK)
′. We re-write this system of equations in a way that highlights which

objects depend on z ≡ (z1, . . . , zJ) as follows

q(z = 0) = Aπ +B(f(z = 0) ∗ π)

Note that A depends on z only through z1 − zj (i.e. it exhibits a lack of nominal illusion
property) and we leave that dependence implicit. Now consider increasing zj by ∆z for
all j relative to the baseline z = 0. Then we can write

q(z = ∆z) = Aπ +B(f(z = ∆z) ∗ π)

Combining the last two systems, we get

q(z = ∆z)− q(z = 0) = B [(f(z = ∆z)− f(z = 0)) ∗ π]

If B is full rank,1 we obtain identification of (f(z = ∆z)− f(z = 0)) ∗ π. Also, note

that, for all k, lim∆z→0
fk,K−1(z=∆z)−fk,K−1(z=0)

∆z
is the directional derivative of fk,K−1 in the

direction 1 = (1, . . . , 1) and thus is equal to
∑J

j=1
∂fk,K−1

∂zj
(z = 0) if fk,K−1 is differentiable.

Therefore, we can write

lim
∆z→0

q(z = ∆z)− q(z = 0)

∆z
= B

[(
J∑

j=1

∂f

∂zj
(z = 0)

)
∗ π

]

Because the lhs is identified, this shows that we can identify
(∑J

j=1
∂f
∂zj

(z = 0)
)
∗ π.

Next, for j ∈ J , we can take another derivative wrt zj and write

q(j)(z = 0) = A(j)π +B(j)

(
∂f

∂zj
(z = 0) ∗ π

)
(B.1)

for known K−by−K matrices A(j), B(j) and a known column K−vector q(j)(z = 0). Note
that B(j) = B for all j ∈ J and so we can write

J∑
j=1

q(j)(z = 0) =

(
J∑

j=1

A(j)

)
π +B

[(
J∑

j=1

∂f

∂zj
(z = 0)

)
∗ π

]
(B.2)

From above,
(∑J

j=1
∂f
∂zj

(z = 0)
)
∗ π is identified. This implies that π is identified if the

matrix
∑J

j=1A(j) is invertible.
2

B.1.2 Endogenous attributes

Here, we show how to extend our results to the case where some product attributes are
endogenous (Section 2.3.3). Letting δ = (δ1, . . . , δJ), we may write the share of good j as

sj = σj (δ, z,p) (B.3)

1Note that this condition is immediately verifiable since the points in the support of α and β are
chosen by the researcher.

2Again, this condition is immediately verifiable given the support points for α and β chosen by the
researcher.
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for some function σj. Repeating this for all j and stacking the equations, we obtain a
demand system of the form

s = σ (δ, z,p) (B.4)

where s = (s1, . . . , sJ). We also define the share of the outside option as s0 ≡ 1−
∑J

j=1 sj,
with associated function σ0 (δ, z,p). We establish nonparametric identification of this de-
mand system by invoking results from Berry and Haile (2014) (henceforth, BH).3 Specifi-
cally, the results in BH yield identification of (ξj)

J
j=1 for every unit (individual or market)

in the population. This means that all the arguments of σ are known, which immediately
implies (nonparametric) identification of σ itself. Once σ is identified, one may apply our
results in Section 2.3.2 to identify the distribution of the preference parameters α, βi and
λi. Note that, while knowledge of σ is sufficient for several counterfactuals of interest
(e.g., computing equilibrium prices after a potential merger or tax), the preference pa-
rameters are required to predict how choices and welfare would change if consumers were
given full information, among other things. In this sense, our approach complements the
identification results in BH within the class of search models we consider.

To prove identification of σ, we first note that model (B.26) satisfies the index restric-
tion in BH’s Assumption 1. Second, we assume that we have excluded instruments w
which, together with the exogenous attributes, satisfy the following mean-independence
restriction

E (ξj|x, z,w) = 0 for all j (B.5)

almost surely (Assumption 3 in BH) and assume that the instruments shift the endoge-
nous variables (market shares and endogenous attributes p) to a sufficient degree (as in
BH’s Assumption 4). Finally, we verify that the demand system satisfies the “connected
substitutes” restriction defined in BH’s Assumption 2. To this end, we prove the following
result.

Lemma 6. Let utility be given by (2.12) with ϵi supported on RJ and let Assumptions
(i), (iii), (iv), and either (i) or (ii) hold. Then, for all j, k = 1, . . . , J with j ̸= k, σj is
(i) strictly increasing in δj and (ii) strictly decreasing in δk.

Proof. First, assume that pj is part of the visible utility of good j and fix (δj, pj, zj) for
all j. To prove claim (i), we show that an increase in δj can only induce a consumer to
switch from not choosing j to choosing j but never vice versa, and that a positive mass
of consumers will switch to choosing j. To see this, consider the case where consumer
i initially searches j, which happens if and only if gi (δj, ϵij, pj, Uik) ≥ 0 for all k such
that V Uik ≥ V Uij. Let ∆ ≥ 0 be the change in δj. Since gi is increasing in its first
argument, we have gi (δj +∆, ϵij, pj, Uik) ≥ 0 for all k such that V Uik ≥ V Uij + ∆
and thus i will still search j. Moreover, since gi is decreasing in its last argument,
if gi (δk, ϵik, pk, Uij) ≤ 0 for some k such that V Uik ≤ V Uij (i.e. if k is initially not
searched), then gi (δk, ϵik, pk, Uij +∆) ≤ 0 (i.e. k is also not searched after the change in
δj), which means that the set of goods searched by i never becomes larger. Next, note
that if Uij ≥ Uik for all k in the set of searched goods Gi, then Uij + ∆ ≥ Uik for all
k ∈ Gi. Further, since ϵi is supported on all of RJ , there is a positive mass of consumers
for which Uik ≥ Uij for some k ∈ Gi, but Uij + ∆ ≥ Uik for all k ∈ Gi. An analogous
argument proves claim (ii).

3See also Berry et al. (2013).
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Since the argument above does not rely on the fact that pj is part of the visible utility
of good j, the conclusion also holds for the case in which pj is only uncovered upon
searching good j.

Lemma 9 implies that the goods are connected substitutes in δ (see Definition 1 in
BH), which in turn allows us to prove identification of σ by invoking Theorem 1 in BH.4

Since Lemma 9 holds under either Assumption (i) or (ii), we obtain identification of
preferences both in the case where pj is part of the visible utility of good j and in the
case where pj is only uncovered upon searching j. Moreover, Theorem 1 of BH implies
that one can invert the demand system σ for the indices δ and write

αxj + ξj = σ−1
j (s, z,p) (B.6)

for all j. Equations (B.29) and (B.28) naturally lead to a nonparametric instrumental
variable approach to estimate σ−1

j (and thus σj).
5

B.1.3 Identification when Observables Impact Search but not
Utility

Here, we state and prove the results described in Section 2.3.4. We make the following
assumptions:

Assumption 6. (i) If consumer i searches j, then i also searches all j′ s.t. m (V Uij′ , rj′)
≥ m (V Uij, rj), where m is strictly increasing in both arguments;

(ii) There is at least one good j ̸= 1 such that rj > r1;

(iii) The support of (x, z)
∣∣∣ (r1, . . . , rJ) has positive Lebesgue measure for all (r1, . . . ,

rJ .
(iv) The search model admits a discrete choice representation that also satisfies the

independence of irrelevant alternatives (IIA) property.

Assumption (iii) is substantive: for identification purposes, we consider variation in
product characteristics holding fixed product search position. In practice, search position
is likely to vary as a function of observables (e.g. products are sorted in order of price).
However, because of the discrete nature of search position, we are likely to see variation
conditional on search position and this is the variation we will use to identify our model.
Assumption (iv) requires that consumers’ search behavior can be represented as a stan-
dard discrete choice model satisfying IIA. As shown in Armstrong (2017), the Weitzman
(1979) sequential search model (see Example 1) can be represented as a discrete choice
model where consumers maximize product-specific indices defined as the minimum be-
tween the utility and the reservation value for each product. Then, Assumption (iv) is
satisfied by letting the ϵij be Gumbel distributed.

Violations of the visible utility assumption due to search position will cause Lemma
8 to no longer hold as stated: the good with the highest value of zj can be searched,
another good j′ may have higher utility (and thus higher visible utility), but good j′ may
not be searched because it has lower search position. However, an extension of Lemma 8
will still hold in this case, which then allows us to prove identification of preferences.

4Note that the proof of Theorem 1 in BH only uses the fact that goods are connected substitutes in
δ, not in −p.

5Compiani (2022) proposes to approximate σ−1
j using Bernstein polynomials. We use a similar

approach in Section 3.5 to estimate the demand function for the case without endogeneity.
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Lemma 7. Let Assumptions 7, (ii)-(iv), and 8 hold and let xj ∈ [x̄− η, x̄+ η] for all j,
for some η > 0 sufficiently small. Then, if consumer i searches good 1 (i.e. the good with
the highest value of z), then i chooses the good which maximizes utility among all goods
with rj ≥ r1.

Proof. Suppose there was a good j with rj ≥ r1 and Uij > Ui1 that consumer i does not
search. We can follow the proof of Lemma 8 to show that V Uij > V Ui1. By Assumption
(i), this implies that good j is searched, which is a contradiction.

In words, if higher search position only makes a good more likely to be searched, then
goods with higher visible utility and higher search position will always be searched if
good 1 is searched. Given this Lemma, we can apply a modification of the identification
argument in Theorem 2 after conditioning on the subset of goods with higher search
position than good 1 (defined as usual as the good with the largest value of zj):

Theorem 7. Let the assumptions of Lemma 10 hold and let utility be given by Uij =
v(xj, zj) + ϵij with v increasing in both arguments and infinitely differentiable. Further,

assume that ∂2s1
∂z1∂xj∗

(x∗, z∗) ̸= 0 for some (x∗, z∗) and j∗ ̸= 1, s1 is infinitely differentiable

and ϵi ⊥ (x, z). Then, v is identified up to an additive constant.

Proof. Let R = {j : rj ≥ r1}. Under Assumption (iv), the choice probability for good 1
conditional on consumers choosing in R, denoted s1|R, is equal to the choice probability
for good 1 if consumers only faced R as their choice set. Further, by Lemma 10, the only
mistake a consumer can make when faced with choice set R is to fail to search good 1
when it is in fact the good with the highest utility in R.

This argument exactly parallels the argument, except now we have additionally used
the fact that U1 ≥ Uj for all j ∈ R, since (i) if j ∈ S, then m(V U1, r1) ≥ m(V Uj, rj)
implies V U1 ≥ V Uj, which in turn implies U1 ≥ Uj; (ii) if j /∈ S, then g (x1, ϵ1, Uj) ≥ 0 ≥
g (x1, ϵ1, Uk) for all k ∈ S implies Uj ≤ Uk. Note that P S

5new,2 does not depend on z1 and
P S
5new,1 (v, x1, r) only depends on xj and zj via vj for j ̸= 1. In practice, this means that,

when estimating the model, one needs to take R as the choice set faced by consumers
and drop those consumers that choose products outside R.

B.1.4 Identification of a model where consumers form expecta-
tions on zj based on xj

Here, we state and prove the results described in Section 2.3.5. Given γ1, we can identify
the ranking of goods in terms of z̃ and we label good 1 as the good with the largest value
of z̃. Then, an argument analogous to that in Lemma 3 yields identification of β

α+βγ1
.6 We

can also recover α+ βγ1 in a manner that parallels our usual identification of α (Lemma
3). When z̃j = z̃ for all j, consumers who search based on our visible utility assumption
always maximize utility, and thus we can directly estimate α+βγ1 as the coefficient on xj
for those consumers (we provide a formal proof of this in the next subsection). Therefore,
this gives separate identification of β and α given γ1.

When γ1 is unknown, we can identify β/α if we know its sign and make a further
support assumption. Suppose that the sign of γ1 is known (e.g. higher priced goods have

6In Lemma 3, we showed identification of β
α by taking derivatives of s1 w.r.t. z1, z2, x2. Similarly,

here we obtain identification of β
α+βγ1

by taking derivatives of s1 wrt z̃1, z̃2, x2.
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weakly higher quality). Without loss, we assume γ1 > 0. In addition, suppose that there
exist choice sets in which a good has both the highest value of z and the lowest value of
x. Even when γ1 is unknown, this good is known to maximize z̃; thus, we can label it by
1. Note that we cannot differentiate with respect to z̃ as in the case above since γ1 and
thus z̃ is unknown. However, with good 1 defined appropriately, Corollary 3 shows that
cross-derivatives with respect to z1, zj, xj for j ̸= 1 identify β/α (specifically, consumers
who search the good with the highest value of z̃ will always maximize utility, and so their
sensitivity to xj and zj identifies their true preferences).

Identification of α + βγ1

Note that if z̃j = 0 for all j, then consumers always maximize utility. Thus, seeing
how choice probabilities change with x conditional on z̃j = 0 for all j should help identify
α+βγ1. Because the event z̃j = 0 involves xj, we need to differentiate choice probabilities
with respect to xj on the envelope satisfying the condition z̃j = 0 for all xj. Formally, fix
any j ∈ J and choose (xk, zk) so that zk = γ0+ γ1xk (which implies z̃k = 0) for all k ̸= j.
For every δ > 0, let ϵ(δ) ≡ γ0+(xj + δ) γ1−zj, so that zj+ϵ (δ)−E (zj|xj + δ) = 0. Note
that ϵ (δ) is known to the econometrician. Thus, evaluating the last display at x = 0
yields identification of (α + βγ1) under a parametric assumption on ϵi.

B.1.5 Unobservables revealed by search

Here, we show that the ratio of second derivatives in (2.3) robustly identifies β
α
in the

model where ϵij is revealed to consumer i only upon searching good j (Section 2.3.6).
Order goods in increasing order of x. Then, for j = 1, . . . , J ,

sj =

j∑
k=1

P
({

Uj ≥ Uj′ ∀ j′ ∈ {k, . . . , J}
}
∩ {search exactly k, . . . , J}

)
{g(xh, ϵh, Uj) ≤ 0 ∀h = 1, . . . , k − 1})

≡
j∑

k=1

P
(k)
j (ũ,x−J) ,

where ũj = αxj + βzj and ũ = (ũ1, . . . , ũJ), as above. Thus,

∂2sj
∂zj∂zJ

=

j∑
k=1

∂2P
(k)
j

∂ũj∂ũJ
β2

∂2sj
∂zj∂xJ

=

j∑
k=1

∂2P
(k)
j

∂ũj∂ũJ
αβ

So the ratio of the latter two derivatives identifies β
α
. (Note that the ratio of

∂sj
∂zJ

to
∂sj
∂xJ
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for any j would also work). On the other hand,

∂sj
∂zj

=

j∑
k=1

∂P
(k)
j

∂ũj
β

∂sj
∂xj

=

j∑
k=1

(
∂P

(k)
j

∂ũj
+

1

α

∂P
(k)
j

∂xj

)
α

(B.7)

Since 1
α

∂P
(k)
j

∂xj
≥ 0, (B.30) implies that the ratio of first derivatives suffers from attenuation

bias, i.e.

∂sj
∂zj
∂sj
∂xj

≤ β
α
.

B.1.6 K−rank model

Consider the simultaneous search model in Honka et al. (2017) with J = 2 goods. In this
model, a consumer looks at the visible utilities and decides whether to search the good
with the highest visible utility or search both goods. Searching a second good entails a
cost c, constant across consumers. As usual, we denote by 1 the good with the highest
value of z.

Note that consumer i searches 2 but not 1 if and only if V Ui2 > V Ui1 and

Ez1,z2 [max {V Ui1 + βz1, V Ui2 + βz2}]− c < Ez2 [V Ui2 + βz2] (B.8)

i.e.

Ez1,z2 [max {V Ui1 − V Ui2 + β (z1 − z2) , 0}]− c < 0 (B.9)

or gsim (V Ui1 − V Ui2) < 0 for an increasing function gsim. Equation (2.4) then can be
written as

s1 = P (U1 > U2)− P ({U1 > U2} ∩ {V U2 > V U1} ∩ {gsim(V U1 − V U2) < 0})
= P1,sim − P2,sim (B.10)

Letting ũj = αxj + βzj and ṽuj = αxj, we also have:

∂2s1
∂z1∂z2

= β2

(
∂2P1,sim

∂ũ1∂ũ2
− ∂2P2,sim

∂ũ1∂ũ2

)
(B.11)

and

∂2s1
∂z1∂x2

= αβ

(
∂2P1,sim

∂ũ1∂ũ2
− ∂2P2,sim

∂ũ1∂ũ2
− ∂2P2,sim

∂ũ1∂ṽu2

)
(B.12)

So, if
∂2P2,sim

∂ũ1∂ṽu2
= 0, then the ratio of (B.34) to (B.35) identifies β

α
. Note that the event

in P2,sim is equivalent to the following set of inequalities: (i) ϵi1 > ũ2 − ũ1 + ϵi2, (ii)
ϵi1 < ṽu2 − ṽu1 + ϵi2, (iii) ϵi1 < g−1

sim(0) + ṽu2 − ṽu1 + ϵi2, where V Uij = ṽuj + ϵij and

89



Uij = ũj + ϵij, as above. Then, letting ϵ̃ = ϵ1 − ϵ2, we have:

P2,sim =

∫ min(ṽu2−ṽu1,g
−1
sim(0)+ṽu2−ṽu1)

ũ2−ũ1

fϵ̃(ϵ̃)dϵ̃ =

∫ min(0,g−1
sim(0))

β(z2−z1)

fϵ̃(ϵ̃)dϵ̃

Thus,
∂2P2,sim

∂ũ1∂ṽu2
= 0.

Finally, we show that the ratio of first derivatives leads to attenuation bias. This
follows directly from

∂s1
∂z1

= β

(
∂P1,sim

∂ũ1
− ∂P2,sim

∂ũ1

)
∂s1
∂x1

= α

(
∂P1,sim

∂ũ1
− ∂P2,sim

∂ũ1
− ∂P2,sim

∂ṽu1

)
and the fact that

∂P2,sim

∂ṽu1
< 0.

B.2 Testing for full information with heterogeneous

preferences

In Section 2.2.4, we considered the problem of testing the null hypothesis of full informa-
tion and showed that, in the case where the coefficients α and β are homogeneous across
consumers, a valid test rejects the null when the ratios of first derivatives are attenuated
relative to the ratio of second derivatives in (2.10). Here, we provide conditions under
which the same test is valid in the case where one of the two coefficients is allowed to
be heterogeneous.7 We focus on the case where β is heterogeneous and zj is a scalar;
the argument for the case where α is heterogeneous (and xj is a scalar) is analogous.
We also assume that the ϵij shocks are type-I extreme-value distributed and let sj(β̃)
be the market share of good j for consumers with β = β̃ under full information, i.e.

sj(x, z; β̃) ≡ exp(αxj+β̃zj)∑J
k=1 exp(αxk+β̃zk)

.

We let j = 2, k = k′ = 1 in equation (2.10), i.e. we consider the case where the test
compares the ratio of second derivatives taken with respect to good 1 and 2 to the ratio
of first derivatives taken with respect to good 1. Analogous sufficient conditions could be
obtained for different choices of j, k, k′. Then, we want to show that∫
s1(x, z; β)(1− s1(x, z; β))βdFβ

α
∫
s1(x, z; β)(1− s1(x, z; β))dFβ

≥
−
∫
s1(x, z; β)s2(x, z; β)(1− 2s1(x, z; β))β

2dFβ

−α
∫
s1(x, z; β)s2(x, z; β)(1− 2s1(x, z; β))βdFβ

where Fβ denotes the distribution of β. We take a pair (x, z) such that ∂s1(x,z)
∂x1

> 0 and
∂2s1(x,z)
∂z1∂x2

> 0 (both of which can be verified from the data), so that (B.13) holds if and

7The reason why we let only one of the coefficients be heterogeneous is that we leverage a result from
the statistics literature that applies to ratios of one-dimensional integrals.
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only if

− α

∫
s1(x, z; β)s2(x, z; β)(1− 2s1(x, z; β))βdFβ

∫
s1(x, z; β)(1− s1(x, z; β))βdFβ ≥

−
∫
s1(x, z; β)s2(x, z; β)(1− 2s1(x, z; β))β

2dFβα

∫
s1(x, z; β)(1− s1(x, z; β))dFβ

Then, by Theorem 2 of Wijsman (1985), the desired inequality holds if (i) β > 0, and (ii)
α
β
and −s1(x,z;β)s2(x,z;β)(1−2s1(x,z;β))β

s1(x,z;β)(1−s1(x,z;β))
= − s2(x,z;β)(1−2s1(x,z;β))β

1−s1(x,z;β)
are monotonic functions of β

in the same direction. Since we assumed throughout that α > 0, we want to show that
− s2(x,z;β)(1−2s1(x,z;β))β

1−s1(x,z;β)
decreases in β monotonically. After some algebra, we have that

∂
[
− s2(x,z;β)(1−2s1(x,z;β))β

1−s1(x,z;β)

]
∂β

< 0 ∀β

Under these conditions, at the chosen values of x, z, a valid test of the null of full
information rejects when the ratio of first derivatives is sufficiently attenuated relative to
the ratio of first derivatives. Note that the condition in (??) can be verified given the
support of the distribution of β. For example, if β takes values on a finite grid of points
(as in Section 2.3.2), then one needs to check whether (??) holds for all values in the grid.
Finally, we emphasize that (??) is a sufficient, but in general not necessary condition,
implying that the proposed test could be valid even if the restriction is not satisfied.

B.3 Simulations Results

To test the performance of our approach, we consider several simulations. In all simula-
tions, we generate N = 20, 000 choices with utility given by:

Uij = αxij + βzij + ϵij (B.13)

with α = β = 1, xij ∼i.i.d N(0, 1), zij ∼i.i.d. N(0, 1), and ϵij i.i.d. Type 1 extreme value.
We simulate data from four data generating processes, three of which satisfy the

assumptions of our theorem and one of which does not. These are:

1. Weitzman search, with search costs c ∼ LogNormal(−2, 2.25)

2. Satisficing, searching in order of visible utility until utility-in-hand is at least T ∼
LogNormal(−0.35, 2.25)

3. Search all goods with visible utility above a threshold given by c ∼ N(−1, 16) (if no
goods are above the threshold, search and choose the good with the highest visible
utility)

4. Randomly searchK ∈ {1, . . . , J} goods, where the searched goods are theK highest
in terms of visible utility

DGPs 1-3 satisfy our assumptions. By contrast, DGP 4 violates Assumption (ii) because
the decision of whether to search a good does not just depend on that good’s visible
utility, but on the visible utilities of all goods.
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Bernstein Polynomial Simulation Results Table B.1 reports results from the Bern-
stein approximation of the cross-derivative ratio which identifies β/α. For comparison,

we also report estimates of
∂sj/∂zj
∂sj/∂xj

, which would recover β/α with full information. In all

cases, the estimates based on first-derivatives are attenuated relative to the true values.
This occurs for the reason discussed in Section 3.4: consumer insensitivity to variation
in z for goods that are not searched biases the coefficients towards zero. In contrast, the
confidence intervals from Bernstein estimation of the cross-derivative ratio include the
true values in DGPs 1-3, and are fairly precise for the J = 3 case. For DGP 4, where
the assumptions of our model do not hold (see Section 2.3.7), the coefficient is attenu-
ated for J = 3, although the point estimates remain much closer to the true values the
first-derivative estimates.

Table B.1: Bernstein Approximation

Number of Goods
2 3

DGP First-Derivatives Cross-Derivatives First-Derivatives Cross-Derivatives
1 0.610 0.977 0.403 0.997

(0.024) (0.304) (0.012) (0.076)
2 0.691 1.280 0.361 0.935

(0.024) (0.538) (0.014) (0.068)
3 0.527 0.870 0.330 0.872

(0.021) (0.190) (0.010) (0.071)
4 0.444 0.801 0.206 0.626

(0.018) (0.301) (0.010) (0.075)

Note: Across all rows, the data the sample size is N = 20, 000 and the data in
each row is generated by the corresponding DGP described in the main text. In all
cases, the true value is 1. Standard errors, obtained via 250 bootstrap repetitions,
are reported in parentheses.

Flexible Logit Simulation Results For each of the DGPs described in Section 2.4.1,
we consider simulations with J ∈ {2, 3, 5, 10}. We report estimates from the flexible logit
model as well as the standard logit model. We bootstrap the standard errors using 250
repetitions.

Results from these simulations are reported in Table B.2. The table shows estimates of
β/α from a conditional logit model with no adjustment for imperfect information, as well
as the cross-derivative ratio estimates from the flexible logit model. In the standard logit
model, the coefficient is attenuated, typically biased towards zero by 30-50%. The flexible
logit model performs substantially better, with 95% confidence intervals including the true
estimates in DGPs 1-3. Perhaps surprisingly, the flexible logit model also performs well
for DGP 4; the confidence intervals include the true values for 2 and 5 goods, and have
less bias than the standard logit model for 5 and 10 goods.
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Table B.2: Estimator based on cross-derivatives ratio (flexible logit) vs standard logit

Number of Goods
2 3 5 10

DGP Standard Flexible Standard Flexible Standard Flexible Standard Flexible
1 0.6590 1.0214 0.6330 1.0671 0.6050 0.9633 0.5770 0.8986

(0.0158) (0.1208) (0.0122) (0.1259) (0.0095) (0.1254) (0.0089) (0.1053)
2 0.7403 0.9976 0.6194 1.0854 0.4587 1.0407 0.2909 1.0004

(0.0162) (0.1034) (0.0135) (0.1300) (0.0102) (0.1578) (0.0083) (0.2603)
3 0.5424 1.1177 0.5945 1.0286 0.6543 0.9017 0.7246 0.8822

(0.0149) (0.1716) (0.0117) (0.1469) (0.0099) (0.1071) (0.0106) (0.0733)
4 0.4543 1.1358 0.5568 0.9614 0.6691 0.8015 0.7887 0.8151

(0.0140) (0.1906) (0.0118) (0.1659) (0.0105) (0.1012) (0.0104) (0.0679)

Note: Across all rows, the data the sample size is N = 20, 000 and the data in each row
is generated by the corresponding DGP described in the main text. “Standard” refers to
estimates of β/α from a conventional logit model, and “Flexible” refers to estimates from
the flexible logit model. In all cases, the true value is 1. Standard errors, obtained via 250
bootstrap repetitions, are reported in parentheses

B.4 Derivation of Flexible Logit Weights and Choice

Probabilities

To motivate our parametric approach to estimating s1(x, z), note that standard full-
information logit models typically impose strong restrictions on the structure of the
derivatives of choice probabilities. Specifically, if uij = v∗j + ϵij and ϵij is i.i.d. extreme
value where v∗j is a differentiable function of xj and zj, then for qj ∈ {xj, zj}:

∂sj
∂qj

=
∂sj
∂v∗j

∂v∗j
∂qj

=
∂v∗j
∂qj

sj(1− sj)

∂sj
∂qj′

=
∂sj
∂v∗j′

∂v∗j′

∂qj′
= −

∂v∗j′

∂q′j
sjsj′

∂2sj
∂zj∂qj′

= −
∂v∗j
∂qj′

∂v∗j
∂zj

sjsj′(1− 2sj) (B.14)

for j′ ̸= j. Thus, in a conventional logit model, ∂2s1
∂z1∂zj′

/ ∂2s1
∂z1∂xj′

= ∂s1
∂zj′

/ ∂s1
∂xj′

=
∂v∗

j′

∂zj′
/
∂v∗

j′

∂xj′

for all j′ ̸= 1, and this further equals ∂s1
∂z1
/ ∂s1
∂x1

when
∂v∗j
∂qj

=
∂v∗

j′

∂qj′
for all j, j′. We would

like to estimate a model of s1 which is sufficiently flexible that ratios of first-derivatives
differ from ratios of second cross-derivatives, as will generally occur if consumers engage
in search. To allow for this additional flexibility, we let the utility for good 1 depend
directly on attributes of rival goods as follows:

v1 = ṽ(x1, z1) + b1z1 +
∑
k ̸=1

(γkwz1kzk + γ2kwx1kxk + wz2kδkzkz1 + wx2kδ2kxkz1) (B.15)

where ṽ(x, z) is a differentiable function of x and z, wz1k, wx1k, wz2k and wx2k are known
weights, and b1, γk, γ2k, δk and δ2k are coefficients to be estimated. Further, we let
vk = ṽ(xk, zk) for k ̸= 1.

In this section, we derive the relevant derivatives of choice probabilities for the flexible
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logit model described in the text and motivate our choice of weights. The weights wx1k,
wz1k, wx2k and wz2k are chosen so that, given the logit functional form, ∂2s1

∂z1∂zj
/ ∂2s1
∂z1∂xj

can

be constant across goods as our structural model implies when these weights are regarded
as constant in derivatives. With these weights, we have the following derivatives (where
we use the notation ṽj to refer to the function ṽ evaluated at (xj, zj):

∂v1
∂z1

=
∂ṽ1
∂z

+ b1 +
∑
k ̸=1

(wz2kδkzk + wx2kδ2kxk)

∂s1
∂x1

=
∂s1
∂v1

∂v1
∂x1

=
∂ṽ1
∂x

s1(1− s1)

∂s1
∂z1

=
∂s1
∂v1

∂v1
∂z1

=
∂v1
∂z1

s1(1− s1)

∂s1
∂xj′

=
∂s1
∂vj′

∂vj′

∂xj′
+
∂s1
∂v1

∂v1
∂xj′

= −∂ṽj
′

∂x
s1sj′ + [wx1j′γ2j′ + wx2j′δ2j′z1]s1(1− s1)

∂s1
∂zj′

=
∂s1
∂vj′

∂vj′

∂zj′
+
∂s1
∂v1

∂v1
∂zj′

= −∂ṽj
′

∂z
s1sj′ + [wz1j′γj′ + wz2j′δj′z1]s1(1− s1)

∂2s1
∂z1∂xj′

=
∂2s1

∂v1∂xj′

∂v1
∂z1

+
∂s1
∂v1

∂2v1
∂z1∂xj′

=
∂v1
∂z1

(1− 2s1)
∂s1
∂xj′

+ s1(1− s1)wx2j′δ2j′

∂2s1
∂z1∂zj′

=
∂2s1
∂v1∂zj′

∂v1
∂z1

+
∂s1
∂v1

∂2v1
∂z1∂zj′

=
∂v1
∂z1

(1− 2s1)
∂s1
∂zj′

+ s1(1− s1)wz2j′δj′

(B.16)

Thus, we have:

∂2s1
∂z1∂zj′

/
∂2s1

∂z1∂xj′
=

−∂ṽj′

∂z
+ γj′ + δj′

−∂ṽj′

∂x
+ γ2j′ + δ2j′

(B.17)

Given a linear specification of ṽ, ṽ(xj, zj) = xja1 + zja2, this implies that the above ratio
is a constant for each j′.

Estimation of the model with these weights is infeasible since the levels of the choice
probabilities s1 and sk, as well as the derivatives ∂v1/∂z1 are unknown ex ante and thus
we do not know the weights. We estimate the model via a two-step process where s1
and sk are estimated using a standard logit model (where utility for each good is a linear
function of xj and zj), these estimates are used to construct weights, and then the model
in equation (B.15) is estimated treating these weights as constants.8

To recover estimates of β/α from the flexible logit model, we use the ratio in equation

(B.38). With the linear specification of ṽ, this ratio is given by β
α
=

−a2+γj′+δj′

−a1+γ2j′+δ2j′
. In cases

where the identity of goods is not meaningful (e.g. “good 2” does not refer to the same

8Since ∂v1/∂z1 is estimated imprecisely from the standard logit, when 1 + (∂v1/∂z1)(1 − 2s1)z1 is
close to 0 (leading to very large weights), we set ∂v1/∂z1 = 0 when the former term falls below 1 in
absolute value.
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good across different choice sets and there are no alternative-specific fixed effects), we
can further impose γk = γ, γ2k = γ2, δk = δ and δ2k = δ2, which gives a single estimate
of β

α
.

B.5 Recovery of Search Costs Given Preferences in

the Weitzman Model

Suppose that utility is given by Uij = xjα+ zjβ + ϵij and that consumers search sequen-
tially according to the model of Weitzman (1979).

As shown in Armstrong (2017),9 the optimal search strategy is for consumers to
behave as if they were choosing among options in a static model with utilities given by
Ũij = xjα+min {zj, rvi} β + ϵij, where rvi denotes i’s reservation value in units of z (see
Example 1). Thus, dropping i subscripts, ordering goods so that z1 ≥ z2 ≥ . . . ≥ zJ , we
can write

s1 = P (x1α +min {z1, rv} β + ϵ1 ≥ xkα +min {zk, rv} β + ϵk ∀k)
= P (ϵk − ϵ1 ≤ (x1 − xk)α ∀k)P (rv ≤ zJ)

+
J−2∑
t=0

∫
P ({ϵ ∈ Et} ∩ {zJ−t ≤ rv ≤ zJ−t−1}) dFrv (rv)

+ P (ϵk − ϵ1 ≤ (x1 − xk)α + (z1 − zk) β ∀k)P (rv ≥ z1)

where Frv denotes the cdf of rv and the second equality assumes that search costs (and
thus rv) are independent of ϵ. Therefore, we have

∂s1
∂z1

=

[
∂

∂z1
P (ϵk − ϵ1 ≤ (x1 − xk)α + (z1 − zk) β ∀k)

]
P (rv ≥ z1) (B.18)

Given identification of (α, β) by the argument in Section 3.4, the first term on the rhs
of (B.39) is identified given parametric assumptions on the distribution of ϵ. Thus,
P {rv ≥ z1} is identified. Repeating the argument for all z1, one can trace out the entire
distribution of rv. Since c, the search cost for consumer i, is a known transformation of
rv,10 the distribution of c is also identified.

Equation (B.39) also lends itself to a different argument that does not require mak-
ing a parametric assumption on the distribution of ϵ, but instead relies on “at-infinity”
variation. Note that the first term on the rhs of (B.39) is invariant to increasing all zj’s
by the same amount. Thus, we can write

∂s1
∂z1

(z+∆)
∂s1
∂z1

(z)
=
P (rv ≥ z1 +∆)

P (rv ≥ z1)
(B.19)

where ∆ is a J−vector with all elements equal to some ∆. Letting ∆ → −∞, the
numerator on the rhs of (B.40) goes to 1, which yields identification of P (rv ≥ z1).

9See also Choi et al. (2018b).
10This assumes that the prior Fz used by consumers in forming expectations are known to the re-

searcher, as in the case where consumers have rational expectations and Fz coincides with the observed
distribution of z across goods and/or markets.
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Repeating the argument for all z1, one can trace out the entire distribution of rv and
recover the distribution of c as above.

B.6 Welfare Benefits of Information

Evaluating the welfare benefits of information requires three pieces: first, status quo
choice probabilities; second, ex post choice probabilities with information; third, a nor-
mative utility function to evaluate choices. Status quo choice probabilities are identified
nonparametrically from the data. To deal with the curse of dimensionality, we assume
that status quo choice probabilities are well-approximated by the standard logit, esti-
mated on existing choices (the flexible logit estimates could be used here instead). We
assume that informed choices would be given by a logit model with the flexible logit
estimate of β used in lieu of the standard logit estimate. We assume that this same
logit model (with the flexible logit estimate of β) is also suitable for evaluating normative
choices.

Appendix D of Abaluck and Gruber (2009) shows that dollar-equivalent consumer
surplus in logit models where positive preferences (i.e., preferences describing potentially
uninformed behavior) are given by βpos and normative preferences (i.e., those relevant for
welfare evaluations) are given by βnorm can be computed as:

E(CS0) = − 1

αp

[∑
k

(xkβnorm − xkβpos)sk(βpos) + ln
∑
k

exp(xkβpos)

]

where αp is the (normative) marginal utility of income, estimated as the coefficient on
price. Once consumers are informed and their preferences are βnorm, consumer surplus is
given by the conventional log-sum formula:

E(CS1) = − 1

αp

ln
∑
k

exp(xkβnorm)

The change in consumer surplus from providing consumers with information is thus:

∆CS = − 1

αp

[
ln
∑
k

exp(xkβnorm)− ln
∑
k

exp(xkβpos) +
∑
k

(xkβpos − xkβnorm)sk(βpos)

]

B.7 Testing the Visible Utility Assumption in the

Laboratory Experiment

As discussed in Section 2.2.3, while the visible utility assumption cannot be verified
directly, it can be tested along with the other restrictions of our model. One such test is
to compute bounds on the choice probabilities implied by the model. Given our estimates
of preferences and assumptions about the distribution of ϵij, we can compute the upper
and lower bounds described in Section 2.2.3 for each individual via simulation. We sort
the data by the lower bound, bin the data into 100 quantiles, and graph in each quantile
the mean of the upper and lower bounds, as well as the choice probabilities estimated via
Bernstein polynomials.
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Figure B.1 shows the results of this exercise. We can see that the bounds in the
experimental data have some bite: the range between the lower bound and the upper
bound ranges from 15 to 30 percentage points. The estimated choice probabilities in
nearly all cases lie within this range. These probabilities thus appear broadly consistent
with the visible utility assumption.

Figure B.1: Choice Probabilities, Upper and Lower Bounds from Visible Utility Assump-
tion

B.8 Field Validation Details

B.8.1 Data Cleaning

The dataset from Kaggle.com contains 9,917,530 observations on a hotel-consumer level.
We filtered out the following categories of observations.

First, the data set contains some errors in the price information. We removed search
impressions that contain at least one observation for which the listed hotel price is below
$10 or above $1000 per night, or the implied tax paid per night either exceeds 30% of the
listed hotel price, or is less than $1.

Second, we removed the search impressions where the consumer observed a hotel in
position 5, 11, 17, 23. These positions usually correspond to “opaque offers” (Ursu (2018)
provides a detailed description of this feature in the data).

Third, the original data set contains observations on more than 20,000 destinations,
with a median of two search impressions per destination. We focused our attention on
destinations with at least 50 search impressions.

Fourth, we kept the search impressions where all transactions happened within the
top 10 positions excluding the opaque offer positions, and we only kept these top 10 hotels
in these choice sets.
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The final dataset then contains 54,648 choice sets and 546,480 observations. Table
B.6 provides a detailed description of each variable.

Table B.3: Variable Description

Variable Description

Price Gross price in USD
Stars Number of hotel stars
Review Score User review score, mean over sample period
Chain Dummy whether hotel is part of a chain
Location Score Expedia’s score for desirability of hotel’s location
Promotion Dummy whether hotel is on promotion

B.8.2 Confidence Interval Construction

Let β̂ be the estimate from the original dataset. Let n = 1, 2, ..., N denote the bootstrap
samples, and β̂n be the estimate from the nth bootstrap sample. In our case, we set
N = 250.

Let z0 = Φ−1{#(β̂n ≤ β̂)/N}, where #(β̂n ≤ β̂) is the number of elements of the
bootstrap distribution that are less than or equal to the estimate from the original
dataset and Φ is the standard normal CDF. z0 is known as the median bias of β̂. Let

p1 = Φ
(
z0 +

z0−z1−α/2

1−a(z0−z1−α/2)

)
, p2 = Φ

(
z0 +

z0+z1−α/2

1−a(z0+z1−α/2)

)
, where z1−α/2 is the (1−α/2)th

quantile of the normal distribution. The bias-corrected and accelerated (BCa) method
yields confidence intervals [β∗

p1
, β∗

p2
], where β∗

p is the pth quantile of the bootstrap distri-

bution (β̂1, ..., β̂N). We use the bias-corrected (but not accelerated) method as a special
case, i.e. we set a = 0.

B.8.3 Estimation Results

Table B.7 and B.8 show the detailed results from flexible logit and standard logit esti-
mations. To facilitate comparisons, we report the coefficients multiplied by the standard
deviation of the corresponding variable.

Table B.4: Estimation Results: Normalized β Estimates

z Variable Standard Estimate Standard CI Flexible Estimate Flexible CI

Location Score 0.298 (0.278, 0.317) 0.691 (0.591, 0.839)
Price -1.085 (-1.109, -1.061) -0.710 (-1.169, -0.503)

Review Score 0.172 (0.159, 0.185) 0.195 (0.082, 0.250)
Stars 0.386 (0.369, 0.403) 0.364 (0.258, 0.430)

Note: We report point estimates and 95% confidence intervals for the β coefficients for different choices
of z variable. The first two columns report results from the standard logit model and the second two
report results from the flexible logit approach.
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Table B.5: Estimation Results: Difference in Magnitude of β Estimates

z Variable Point Estimate Confidence Interval

Location Score 0.393 (0.296, 0.544)
Price -0.375 (-0.566, 0.085)

Review Score 0.023 (-0.069, 0.038)
Stars -0.022 (-0.135, 0.038)

Note: For different choices of z variable, we report point estimates and 95% confidence intervals for the
difference between the absolute value of the β coefficient estimate from the flexible logit approach and
the absolute value of the estimate from the standard logit model.

B.9 Generalizations

B.9.1 Non-linear utility

Let individual i’s utility from alternative j be denoted by Uij(xj, zj). In what follows,
we often omit the dependence of Uij on (xj, zj) unless it is necessary to avoid confusion.
We can always write: Uij = aij(xj) + bij(xj, zj) where bij(xj, 0) = 0 (to see this, define
bij(xj, zj) = Uij(xj, zj) − Uij(xj, 0)). Since in our setting aij(xj) is the component of
utility that is known to the consumer before engaging in search, we label it “visible
utility,” V Uij. We make the following assumptions on the utility function.

Assumption 7. (i) For all i and j, Uij is strictly monotonic in zj.
(ii) For all i, the function bij(xj, zj) is not alternative-specific, i.e. bij(xj, zj) =

bi(xj, zj) for all j, and continuous in its first argument.

The class of utility functions satisfying Assumption 7 is broad and subsumes most
specifications commonly used in empirical work as special cases, including logit with
possibly nonlinear-in-characteristics utilities11 and mixed-logit. For instance, in a mixed-
logit model, one may specify Uij = αixj + βizj + ϵij. To map this specification into our
notation, let aij(xj) = αixj + ϵij, and bi(xj, zj) = βizj. As another example, consider the
logit specification Uij = αxj + βzj + γxjzj + ϵij. This is subsumed in our notation by
letting aij(xj) = αxj + ϵij, and bi(xj, zj) = βzj + γxjzj.

Lemma 8. Let Assumptions 7 and 2 hold and let xj ∈ [x̄− η, x̄ + η] for all j, for some
η > 0 sufficiently small. If consumer i searches good 1 (i.e. the good with the highest
value of z), then i chooses the utility-maximizing good.

Proof. If good 1 is searched but utility is not maximized, then for some unsearched j,
Uij > Ui1. Since z1 > zj, by monotonicity, bi(x̄, z1) > bi(x̄, zj). By continuity of bi in its
first argument, this implies that for η sufficiently small, bi(x1, z1) ≥ bi(xj, zj).

12 Given

11We allow for nonlinearities subject to Assumption (i) being satisfied.
12More formally, by continuity, for all δ > 0 there exists η > 0 such that if |x1 − xj | < 2η, then

bi (xj , zj)− bi (x1, zj) ≤ δ. Therefore, we have:

bi (xj , zj) = bi (x1, zj) + bi (xj , zj)− bi (x1, zj)

≤ bi (x1, zj) + δ

≤ bi (x1, z1)

where the last inequality follows by choosing δ ≡ bi(x1,z1)−bi(x1,zj)
2 .
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this, Uij > Ui1 implies V Uij > V Ui1. But by Assumption (i), this implies that good j is
searched, which is a contradiction.

To recover derivatives of v with respect to z, we will use Lemma 8. Specifically, we
will take xj ∈ [x̄− η, x̄+ η] for all j, where x̄ and η are defined in Lemma 8, and use the
fact that ∂s1

∂z1
can be written as a function of terms which only depend on x2 and z2 via U2.

To formalize this, we let J1 ≡ {2, . . . , J}, vj ≡ v (xj, zj) for all j, and v ≡ (v1, . . . , vJ).
Similarly, we let v0j = v (xj, 0) and v0 = (v01, . . . , v

0
J).

The first equality follows from basic set algebra while the second follows from the fact
that for all j ∈ S and all k ∈ J1\S, (i) V U1 ≥ V Uj implies U1 ≥ Uj since z1 ≥ zj for all
j ∈ J1; and (ii) g1 (x1, Uk) ≥ 0 ≥ g1 (x1, Uj) implies Uk ≤ Uj, which (together with the
implication in (i)) implies U1 ≥ Uk. Thus the event U1 ≥ Uk ∀k ∈ J1 is implied by the
other events inside the probability and can be dropped.

Note that P S
5,2 does not depend on z1. Thus, omitting the function arguments, we

have

∂s1
∂z1

=
∂P4

∂v1

∂v1
∂z1

−
∑

S⊂J1,S̸=∅

∂P S
5,1

∂v1

∂v1
∂z1

(B.20)

Differentiating again with respect to z2 gives:

∂2s1
∂z1∂z2

=
∂2P4

∂v1∂v2

∂v1
∂z1

∂v2
∂z2

−
∑

S⊂J1,S̸=∅

∂2P S
5,1

∂v1∂v2

∂v1
∂z1

∂v2
∂z2

(B.21)

Differentiating equation (B.20) with respect to x2 gives:

∂2s1
∂z1∂x2

=
∂2P4

∂v1∂v2

∂v1
∂z1

∂v2
∂x2

−
∑

S⊂J1,S̸=∅

∂2P S
5,1

∂v1∂v2

∂v1
∂z1

∂v2
∂x2

(B.22)

Combining (B.21) and (B.22), we obtain

∂2s1
∂z1∂z2

/
∂2s1
∂z1∂x2

=
∂v2
∂z2
∂v2
∂x2

(B.23)

Since this equation holds for all (x, z) such that ∂2s1
∂z1∂x2

̸= 0 and we already showed that

we can recover ∂v
∂x
(0, 0), we can also recover ∂v

∂z
(0, 0).

Next, note that, fixing zk = 0 for all k = 1, . . . , J and xj = 0 for all j ̸= 2 in (B.20),
we can write

∂s1
∂z1

= k(l(x2)) (B.24)

where l (x2) : x2 7→ v(x2, 0). So by the chain rule we have that, for n > 1, ∂ns1
∂z1∂x

n−1
2

is a linear function of the (n − 1)−th derivative of k with slope depending on the first
derivative of l and intercept depending on derivatives of l and derivatives of k of order
strictly less than n − 1. Further, by the above, all derivatives of l are known. Thus,
we have a system of equations that can be uniquely solved for the derivatives of k by
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recursion.13

Next, we differentiate ∂s1
∂z1

once with respect to z2 and n− 2 times with respect to x2.
Similar to the above, we can write

∂s1
∂z1

= k(v(x2, z2)) (B.25)

where now note that z2 is no longer fixed at 0. Again by the chain rule we have that,
for n ≥ 3, ∂ns1

∂z1∂z2∂x
n−2
2

evaluated at (0,0) is a linear function of ∂n−1v
∂z2∂x

n−2
2

(0, 0) with slope

coefficient depending on k′ (v (0, 0)) and intercept depending on lower-order derivatives
of v as well as derivatives of k.14 Because all derivatives of k are known by the argument
above, we can iteratively solve for ∂n−1v

∂z2∂x
n−2
2

(0, 0) for all n ≥ 3.

The remaining terms in the Taylor expansion can be recovered by an analogous ar-
gument. Specifically, for any n ≥ 3,m ≥ 2, by differentiating (B.25) m times wrt z2
and again n − m − 1 times wrt x2, one can write ∂ns1

∂z1∂zm2 ∂xn−m−1
2

as a linear function of

∂n−1v
∂zm2 ∂xn−m−1

2

(0, 0) with known, nonzero slope and known intercept. This system can then

be solved iteratively for ∂n−1v
∂zm2 ∂xn−m−1

2

(0, 0) for all n > m ≥ 2.

Therefore, we know all the coefficients in the Taylor-expansion of v(x, z) except the
constant v(0, 0), i.e. we can recover v(x, z) up to a constant.

B.9.2 Identifying good 1 when zj is vector-valued in the linear
homogeneous case

For simplicity, the results in the main text are for the case where zj is scalar-valued for
all goods j. This implies that one can label good 1 as the good with the highest value of
z without loss of generality. As we have noted, if there are multiple z attributes per good,
then our results apply if the data contains one choice set where one good is preferable to
all other goods on each of the z attributes. This is not without loss.

We now show how to relax this restriction in the linear homogeneous case of Lemma
3. Let zkj be the k−th hidden attribute of good j and let βk be the associated preference
parameter. By Assumption 2, we can write sj = fsj (ũ1, . . . , ũJ , x1, . . . , xJ) for all j

and thus
∂sj
∂zkj

=
∂fsj
∂ũj

βk, implying
∂sj
∂zkj/

∂sj
∂zk′j

= βk/βk′ for all k, k′. This means that we

can compare the hidden component of utility across goods. Specifically, letting β1 > 0
without loss, we have that, for any pair of goods j and j′,

∑
k βkzkj ≥

∑
k βkzkj′ if and

only if z1j − z1j′ +
∑

k>1
βk

β1
(zkj − zkj′) ≥ 0. Since the l.h.s. of the last inequality is

identified, we can rank goods based on their non-visible utility. Lemma 3 then applies by
defining good 1 as the good with the highest value of

∑
k βkzkj. Note that such a good

always exists in any choice set (excluding ties) since
∑

k βkzkj is scalar-valued.

B.9.3 Endogenous attributes

Here, we show how to extend our results to the case where some product attributes are
endogenous (Section 2.3.3). Letting δ = (δ1, · · · , δJ), we may write the share of good j

13Here, we use the fact that, by assumption, the first derivative of l is nonzero.
14Note that ∂2s1

∂z1∂x2
(0,0) = k′ (v (0, 0)) l′ (0), so we have k′ (v (0, 0)) ̸= 0 by assumption.
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as

sj = σj (δ, z,p) (B.26)

for some function σj. Repeating this for all j and stacking the equations, we obtain a
demand system of the form

s = σ (δ, z,p) (B.27)

where s = (s1, · · · , sJ). We also define the share of the outside option as s0 ≡ 1−
∑J

j=1 sj,
with associated function σ0 (δ, z,p). We establish nonparametric identification of this de-
mand system by invoking results from Berry and Haile (2014) (henceforth, BH).15 Specif-
ically, the results in BH yield identification of (ξj)

J
j=1 for every unit (individual or market)

in the population. This means that all the arguments of σ are known, which immediately
implies (nonparametric) identification of σ itself. Once σ is identified, one may apply our
results to identify the distribution of the preference parameters α, βi and λi. Note that,
while knowledge of σ is sufficient for several counterfactuals of interest (e.g., computing
equilibrium prices after a potential merger or tax), the preference parameters are required
to predict how choices and welfare would change if consumers were given full information,
among other things. In this sense, our approach complements the identification results
in BH within the class of search models we consider.

To prove identification of σ, we first note that model (B.26) satisfies the index restric-
tion in BH’s Assumption 1. Second, we assume that we have excluded instruments w
which, together with the exogenous attributes, satisfy the following mean-independence
restriction

E (ξj|x, z,w) = 0 for all j (B.28)

almost surely (Assumption 3 in BH) and assume that the instruments shift the endoge-
nous variables (market shares and endogenous attributes p) to a sufficient degree (as in
BH’s Assumption 4). Finally, we verify that the demand system satisfies the “connected
substitutes” restriction defined in BH’s Assumption 2. To this end, we prove the following
result.

Lemma 9. Let utility be given by (2.12) with ϵi supported on RJ and let Assumptions
(i), (iii), (iv), and either (i) or (ii) hold. Then, for all j, k = 1, · · · , J with j ̸= k, σj is
(i) strictly increasing in δj and (ii) strictly decreasing in δk.

Proof. First, assume that pj is part of the visible utility of good j and Fix (δj, pj, zj) for
all j. To prove claim (i), we show that an increase in δj can only induce a consumer
to switch from not choosing j to choosing j but never vice versa, and that a positive
mass of consumers will switch to choosing j. To see this, consider the case where con-
sumer i initially searches j, which happens if and only if gij (δj, pj, Uik) ≥ 0 for all k
such that V Uik ≥ V Uij. Let ∆ ≥ 0 be the change in δj. Since gij is increasing in its
first argument, we have gij (δj +∆, pj, Uik) ≥ 0 for all k such that V Uik ≥ V Uij + ∆
and thus i will still search j. Moreover, since gij is decreasing in its last argument, if
gik (δk, pk, Uij) ≤ 0 for some k such that V Uik ≤ V Uij (i.e. if k is initially not searched),
then gik (δk, pk, Uij +∆) ≤ 0 (i.e. k is also not searched after the change in δj), which
means that the set of goods searched by i never becomes larger. Next, note that if

15See also Berry et al. (2013).
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Uij ≥ Uik for all k in the set of searched goods Gi, then Uij + ∆ ≥ Uik for all k ∈ Gi.
Further, since ϵi is supported on all of RJ , there is a positive mass of consumers for which
Uik ≥ Uij for some k ∈ Gi, but Uij + ∆ ≥ Uik for all k ∈ Gi. An analogous argument
proves claim (ii).

Since the argument above does not rely on the fact that pj is part of the visible utility
of good j, the conclusion also holds for the case in which pj is only uncovered upon
searching good j.

Lemma 9 implies that the goods are connected substitutes in δ (see Definition 1 in
BH), which in turn allows us to prove identification of σ by invoking Theorem 1 in BH.16

Since Lemma 9 holds under either Assumption (i) or (ii), we obtain identification of
preferences both in the case where pj is part of the visible utility of good j and in the
case where pj is only uncovered upon searching j. Moreover, Theorem 1 of BH implies
that one can invert the demand system σ for the indices δ and write

αxj + ξj = σ−1
j (s, z,p) (B.29)

for all j. Equations (B.29) and (B.28) naturally lead to a nonparametric instrumental
variable approach to estimate σ−1

j (and thus σj).
17

B.9.4 Identification when Observables Impact Search but not
Utility

Here, we state and prove the results described in Section 2.3.4. We make the following
assumptions:

Assumption 8. (i) If consumer i searches j, then i also searches all j′ s.t. m (V Uij′ , rj′) ≥
m (V Uij, rj), where m is strictly increasing in both arguments;

(ii) There is at least one good j ̸= 1 such that rj > r1;

(iii) The support of (x, z)
∣∣∣ (r1, . . . , rJ) has positive Lebesgue measure for all (r1, . . . , rJ).

(iv) The search model admits an Armstrong representation that also satisfies the IIA
property.

Assumption (iii) is substantive: for identification purposes, we consider variation in
product characteristics holding fixed product search position. In practice, search position
is likely to vary as a function of observables (e.g. products are sorted in order of price).
However, because of the discrete nature of search position, we are likely to see variation
conditional on search position and this is the variation we will use to identify our model.

Violations of the visible utility assumption due to search position will cause Lemma
8 to no longer hold as stated: the good with the highest value of zj can be searched,
another good j′ may have higher utility (and thus higher visible utility), but good j′ may
not be searched because it has lower search position. However, an extension of Lemma 8
will still hold in this case, which then allows us to prove identification of preferences.

Lemma 10. Let Assumptions 7, (ii)-(iv), and 8 hold and let xj ∈ [x̄ − η, x̄ + η] for all
j, for some η > 0 sufficiently small. Then, if consumer i searches good 1 (i.e. the good

16Note that the proof of Theorem 1 in BH only uses the fact that goods are connected substitutes in
δ, not in −p.

17Compiani (2019) proposes to approximate σ−1
j using Bernstein polynomials. We use a similar

approach in Section 3.5 to estimate the demand function for the case without endogeneity.
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with the highest value of z), then i chooses the good which maximizes utility among all
goods with rj ≥ r1.

Proof. Suppose there was a good j with rj ≥ r1 and Uij > Ui1 that consumer i does not
search. We can follow the proof of Lemma 8 to show that V Uij > V Ui1. By Assumption
(i), this implies that good j is searched, which is a contradiction.

In other words, if higher search position only makes a good more likely to be searched,
then goods with higher visible utility and higher search position will always be searched if
good 1 is searched. Given this Lemma, we can apply a modification of the identification
argument in Theorem 2 after conditioning on the subset of goods with higher search
position than good 1 (defined as usual as the good with the largest value of zj):

Theorem 8. Let the assumptions of Lemma 10 hold and let utility be given by Uij =
v(xj, zj) + ϵij with v increasing in both arguments and infinitely differentiable. Further,

assume that ∂2s1
∂z1∂xj∗

(x∗, z∗) ̸= 0 for some (x∗, z∗) and j∗ ̸= 1, s1 is infinitely differentiable

and ϵi ⊥ (x, z). Then, v is identified up to an additive constant.

Proof. Let R = {j : rj ≥ r1}. Under Assumption (iv), the choice probability for good 1
conditional on consumers choosing in R, denoted s1|R, is equal to the choice probability
for good 1 if consumers only faced R as their choice set. Further, by Lemma 10, the only
mistake a consumer can make when faced with choice set R is to fail to search good 1
when it is in fact the good with the highest utility in R.

This argument exactly parallels the argument, except now we have additionally used
the fact that U1 ≥ Uj for all j ∈ R, since (i) if j ∈ S, then m(V U1, r1) ≥ m(V Uj, rj)
implies V U1 ≥ V Uj, which in turn implies U1 ≥ Uj; (ii) if j /∈ S, then g1 (x1, Uj) ≥
0 ≥ g1 (x1, Uk) for all k ∈ S implies Uj ≤ Uk. Note that P S

5new,2 does not depend on z1
and P S

5new,1 (v, x1, r) only depends on xj and zj via vj for j ̸= 1, so the remainder of the
argument in Appendix ?? applies with s1 replaced by s1|R. In practice, this means that,
when estimating the model, one needs to take R as the choice set faced by consumers
and drop those consumers that choose products outside R.

B.9.5 Identification of a model where consumers form expecta-
tions on zj based on xj

Here, we state and prove the results described in Section 2.3.5. Given γ1, we can identify
the ranking of goods in terms of z̃ and we label good 1 as the good with the largest value
of z̃. Then, an argument analogous to that in Lemma 3 yields identification of β

α+βγ1
. We

can also recover α+ βγ1 in a manner that parallels our usual identification of α (Lemma
3). When z̃j = z̃ for all j, consumers who search based on our visible utility assumption
always maximize utility, and thus we can directly estimate α+βγ1 as the coefficient on xj
for those consumers (we provide a formal proof of this in the next subsection). Therefore,
this gives separate identification of β and α given γ1.

When γ1 is unknown, we can identify β/α if we know its sign and make a further
support assumption. Suppose that the sign of γ1 is known (e.g. higher priced goods have
weakly higher quality). Without loss, we assume γ1 > 0. In addition, suppose that there
exist choice sets in which a good has both the highest value of z and the lowest value of
x. Even when γ1 is unknown, this good is known to maximize z̃; thus, we can label it by
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1. Note that we cannot differentiate with respect to z̃ as in the case above since γ1 and
thus z̃ is unknown. However, with good 1 defined appropriately, Corollary 3 shows that
cross-derivatives with respect to z1, zj, xj for j ̸= 1 identify β/α (specifically, consumers
who search the good with the highest value of z̃ will always maximize utility, and so their
sensitivity to xj and zj identifies their true preferences).

Identification of α + βγ1

Note that if z̃j = 0 for all j, then consumers always maximize utility. Thus, seeing
how choice probabilities change with x conditional on z̃j = 0 for all j should help identify
α+βγ1. Because the event z̃j = 0 involves xj, we need to differentiate choice probabilities
with respect to xj on the envelope satisfying the condition z̃j = 0 for all xj. Formally, fix
any j ∈ J and choose (xk, zk) so that zk = γ0+ γ1xk (which implies z̃k = 0) for all k ̸= j.
For every δ > 0, let ϵ(δ) ≡ γ0+(xj + δ) γ1−zj, so that zj+ϵ (δ)−E (zj|xj + δ) = 0. Note
that ϵ (δ) is known to the econometrician. Thus, evaluating the last display at x = 0
yields identification of (α + βγ1) under a parametric assumption on ϵi.

B.9.6 Unobservables revealed by search

Here, we show that the ratio of second derivatives in (2.3) robustly identifies β
α
in the

model where ϵij is revealed to consumer i only upon searching good j (Section 2.3.6).
Order goods in increasing order of x. Then, for j = 1, . . . , J ,

sj =

j∑
k=1

P
({

Uj ≥ Uj′ ∀ j′ ∈ {k, . . . , J}
}
∩ {search exactly k, . . . , J}

)
≡

j∑
k=1

P
(k)
j (ũ,x−J)

Thus,

∂2sj
∂zj∂zJ

=

j∑
k=1

∂2P
(k)
j

∂ũj∂ũJ
β2

∂2sj
∂zj∂xJ

=

j∑
k=1

∂2P
(k)
j

∂ũj∂ũJ
αβ

So the ratio of the latter two derivatives identifies β
α
. (Note that the ratio of

∂sj
∂zJ

to
∂sj
∂xJ

for any j would also work). On the other hand,

∂sj
∂zj

=

j∑
k=1

∂P
(k)
j

∂ũj
β

∂sj
∂xj

=

j∑
k=1

(
∂P

(k)
j

∂ũj
+

1

α

∂P
(k)
j

∂xj

)
α

(B.30)

Since 1
α

∂P
(k)
j

∂xj
≥ 0, (B.30) implies that the ratio of first derivatives suffers from attenuation
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bias, i.e.

∂sj
∂zj
∂sj
∂xj

≤ β
α
.

B.9.7 K−rank model

Consider the simultaneous search model in Honka et al. (2017) with J = 2 goods. In this
model, a consumer looks at the visible utilities and decides whether to search the good
with the highest visible utility or search both goods. Searching a second good entails a
cost c, constant across consumers. As usual, we denote by 1 the good with the highest
value of z.

Note that consumer i searches 2 but not 1 if and only if V Ui2 > V Ui1 and

Ez1,z2 [max {V Ui1 + βz1, V Ui2 + βz2}]− c < Ez2 [V Ui2 + βz2] (B.31)

i.e.

Ez1,z2 [max {V Ui1 − V Ui2 + β (z1 − z2) , 0}]− c < 0 (B.32)

or gsim (V Ui1 − V Ui2) < 0 for an increasing function gsim. Equation (2.4) then can be
written as

s1 = P (U1 > U2)− P ({U1 > U2} ∩ {V U2 > V U1} ∩ {gsim(V U1 − V U2) < 0})
= P1,sim − P2,sim (B.33)

We also have:

∂2s1
∂z1∂z2

= β2

(
∂2P1,sim

∂ũ1∂ũ2
− ∂2P2,sim

∂ũ1∂ũ2

)
(B.34)

and

∂2s1
∂z1∂x2

= αβ

(
∂2P1,sim

∂ũ1∂ũ2
− ∂2P2,sim

∂ũ1∂ũ2
− ∂2P2,sim

∂ũ1∂ṽu2

)
(B.35)

So, if
∂2P2,sim

∂ũ1∂ṽu2
= 0, then the ratio of (B.34) to (B.35) identifies β

α
. Note that the event

in P2,sim is equivalent to the following set of inequalities: (i) ϵi1 > ũ2 − ũ1 + ϵi2, (ii)
ϵi1 < ṽu2 − ṽu1 + ϵi2, (iii) ϵi1 < g−1

sim(0) + ṽu2 − ṽu1 + ϵi2, where V Uij = ṽuj + ϵij and
Uij = ũj + ϵij, as above. Then, letting ϵ̃ = ϵ1 − ϵ2, we have:

P2,sim =

∫ min(ṽu2−ṽu1,g
−1
sim(0)+ṽu2−ṽu1)

ũ2−ũ1

fϵ̃(ϵ̃)dϵ̃ =

∫ min(0,g−1
sim(0))

β(z2−z1)

fϵ̃(ϵ̃)dϵ̃

Thus,
∂2P2,sim

∂ũ1∂ṽu2
= 0.

Finally, we show that the ratio of first derivatives leads to attenuation bias. This
follows directly from

∂s1
∂z1

= β

(
∂P1,sim

∂ũ1
− ∂P2,sim

∂ũ1

)
∂s1
∂x1

= α

(
∂P1,sim

∂ũ1
− ∂P2,sim

∂ũ1
− ∂P2,sim

∂ṽu1

)
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and the fact that
∂P2,sim

∂ṽu1
< 0.

B.10 Testing for full information with heterogeneous

preferences

In Section 2.2.4, we considered the problem of testing the null hypothesis of full informa-
tion and showed that, in the case where the coefficients α and β are homogeneous across
consumers, a valid test rejects the null when the ratios of first derivatives are attenuated
relative to the ratio of second derivatives in (2.10). Here, we provide conditions under
which the same test is valid in the case where one of the two coefficients is allowed to
be heterogeneous.18 We focus on the case where β is heterogeneous and zj is a scalar;
the argument for the case where α is heterogeneous (and xj is a scalar) is analogous.
We also assume that the ϵij shocks are type-I extreme-value distributed and let sj(β̃)
be the market share of good j for consumers with β = β̃ under full information, i.e.

sj(x, z; β̃) ≡ exp(αxj+β̃zj)∑J
k=1 exp(αxk+β̃zk)

.

We let j = 2, k = k′ = 1 in equation (2.10), i.e. we consider the case where the test
compares the ratio of second derivatives taken with respect to good 1 and 2 to the ratio
of first derivatives taken with respect to good 1. Analogous sufficient conditions could be
obtained for different choices of j, k, k′. We take a pair (x, z) such that ∂s1(x,z)

∂x1
> 0 and

∂2s1(x,z)
∂z1∂x2

> 0 (both of which can be verified from the data), so that (B.13) holds if and
only if

− α

∫
s1(x, z; β)s2(x, z; β)(1− 2s1(x, z; β))βdFβ

∫
s1(x, z; β)(1− s1(x, z; β))βdFβ ≥

−
∫
s1(x, z; β)s2(x, z; β)(1− 2s1(x, z; β))β

2dFβα

∫
s1(x, z; β)(1− s1(x, z; β))dFβ

Then, by Theorem 2 of Wijsman (1985), the desired inequality holds if (i) β > 0, and (ii)
α
β
and −s1(x,z;β)s2(x,z;β)(1−2s1(x,z;β))β

s1(x,z;β)(1−s1(x,z;β))
= − s2(x,z;β)(1−2s1(x,z;β))β

1−s1(x,z;β)
are monotonic functions of β

in the same direction. Since we assumed throughout that α > 0, we want to show that
− s2(x,z;β)(1−2s1(x,z;β))β

1−s1(x,z;β)
decreases in β monotonically. After some algebra, we have that

∂
[
− s2(x,z;β)(1−2s1(x,z;β))β

1−s1(x,z;β)

]
∂β

< 0 ∀β

Under these conditions, at the chosen values of x, z, a valid test of the null of full infor-
mation rejects when the ratio of first derivatives is sufficiently attenuated relative to the
ratio of first derivatives. Note that the condition in (??) can be verified given the support
of the distribution of β. For example, if β takes values on a finite grid of points, then one
needs to check whether (??) holds for all values in the grid. Finally, we emphasize that
(??) is a sufficient, but in general not necessary condition, implying that the proposed
test could be valid even if the restriction is not satisfied.

18The reason why we let only one of the coefficients be heterogeneous is that we leverage a result from
the statistics literature that applies to ratios of one-dimensional integrals.
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B.11 Derivation of Flexible Logit Weights and Choice

Probabilities

In this section, we derive the relevant derivatives of choice probabilities for the flexible
logit model described in the text. In this model:

v1 = ṽ(x1, z1) + b1z1 +
∑
k ̸=1

(γkwz1kzk + γ2kwx1kxk + wz2kδkzkz1 + wx2kδ2kxkz1) (B.36)

and vk = ṽ(xk, zk) for k ̸= 1 where b1, γk, γ2k, δk and δ2k are coefficients to be estimated
which allow greater flexibility in how derivatives with respect to z1 vary with attributes
of rival goods. The weights wx1k, wz1k, wx2k and wz2k are chosen so that, given the
logit functional form, ∂2s1

∂z1∂zj
/ ∂2s1
∂z1∂xj

can be constant across goods as our structural model

implies when these weights are regarded as constant in derivatives. With these weights,
we have the following derivatives (where we use the notation ṽj to refer to the function
ṽ evaluated at (xj, zj):

∂v1
∂z1

=
∂ṽ1
∂z

+ b1 +
∑
k ̸=1

(wz2kδkzk + wx2kδ2kxk)

∂s1
∂x1

=
∂s1
∂v1

∂v1
∂x1

=
∂ṽ1
∂x

s1(1− s1)

∂s1
∂z1

=
∂s1
∂v1

∂v1
∂z1

=
∂v1
∂z1

s1(1− s1)

∂s1
∂xj′

=
∂s1
∂vij′

∂vij′

∂xj′
+
∂s1
∂vi1

∂vi1
∂xj′

= −∂ṽj
′

∂x
s1sj′ + [wx1j′γ2j′ + wx2j′δ2j′z1]s1(1− s1)

∂s1
∂zj′

=
∂s1
∂vij′

∂vij′

∂zj′
+
∂s1
∂vi1

∂vi1
∂zj′

= −∂ṽj
′

∂z
s1sj′ + [wz1j′γj′ + wz2j′δj′z1]s1(1− s1)

∂2s1
∂z1∂xj′

=
∂2s1

∂v1∂xj′

∂v1
∂z1

+
∂s1
∂v1

∂2v1
∂z1∂xj′

=
∂v1
∂z1

(1− 2s1)
∂s1
∂xj′

+ s1(1− s1)wx2j′δ2j′

∂2s1
∂z1∂zj′

=
∂2s1
∂v1∂zj′

∂v1
∂z1

+
∂s1
∂v1

∂2v1
∂z1∂zj′

=
∂v1
∂z1

(1− 2s1)
∂s1
∂zj′

+ s1(1− s1)wz2j′δj′

(B.37)

If we define the weights: wx1j′ = wz1j′ =
sj′

1−s1
and wx2j′ = wz2j′ = [ z1(1−s1)

sj′
+

(1−s1)
(∂v1/∂z1)(1−2s1)sj′

]−1 =
(1−2s1)sj′

1−s1

(
1

∂v1/∂z1
+ (1− 2s1)z1

)−1

, Thus, we have:

∂2s1
∂z1∂zj′

/
∂2s1

∂z1∂xj′
=

−∂ṽj′

∂z
+ γj′ + δj′

−∂ṽj′

∂x
+ γ2j′ + δ2j′

(B.38)

where wz1j′ = wx1j′ =
sj′

1−s1
and wx2j′ = wz2j′ . Given a linear specification of ṽ, ṽ(xj, zj) =
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xja1 + zja2, this implies that the above ratio is a constant for each j′.
Estimation of the model with these weights is infeasible since the levels of the choice

probabilities s1 and sk, as well as the derivatives ∂v1/∂z1 are unknown ex ante and thus
we do not know the weights. We estimate the model via a two-step process where s1
and sk are estimated using a naive logit model (where utility for each good is a linear
function of xj and zj), these estimates are used to construct weights, and then the model
in equation (2.14) is estimated treating these weights as constants.19

To recover estimates of β/α from the flexible logit model, we use the ratio in equation

(B.38). With the linear specification of ṽ, this ratio is given by β
α
=

−a2+γj′+δj′

−a1+γ2j′+δ2j′
. In cases

where the identity of goods is not meaningful (e.g. “good 2” does not refer to the same
good across different choice sets and there are no alternative-specific fixed effects), we
can further impose γk = γ, γ2k = γ2, δk = δ and δ2k = δ2, which gives a single estimate
of β

α
.

B.12 Recovery of Search Costs Given Preferences in

the Weitzman Model

Suppose that utility is given by Uij = xjα+ zjβ + ϵij and that consumers search sequen-
tially according to the model of Weitzman (1979).

As shown in Armstrong (2017),20 the optimal search strategy is for consumers to
behave as if they were choosing among options in a static model with utilities given by
Ũij = xjα+min {zj, rvi} β + ϵij, where rvi denotes i’s reservation value in units of z (see
Example 1). Thus, dropping i subscripts, ordering goods so that z1 ≥ z2 ≥ . . . ≥ zJ , we
can write

s1 = P (x1α +min {z1, rv} β + ϵ1 ≥ xkα +min {zk, rv} β + ϵk ∀k)
= P (ϵk − ϵ1 ≤ (x1 − xk)α ∀k)P (rv ≤ zJ)

+
J−2∑
t=0

∫
P ({ϵ ∈ Et} ∩ {zJ−t ≤ rv ≤ zJ−t−1}) dFrv (rv)

+ P (ϵk − ϵ1 ≤ (x1 − xk)α + (z1 − zk) β ∀k)P (rv ≥ z1)

where Frv denotes the cdf of rv and the second equality assumes that search costs (and
thus rv) are independent of ϵ. Therefore, we have

∂s1
∂z1

=

[
∂

∂z1
P (ϵk − ϵ1 ≤ (x1 − xk)α + (z1 − zk) β ∀k)

]
P (rv ≥ z1) (B.39)

Given identification of (α, β), the first term on the rhs of (B.39) is identified given para-
metric assumptions on the distribution of ϵ. Thus, P {rv ≥ z1} is identified. Repeating
the argument for all z1, one can trace out the entire distribution of rv. Since c, the
search cost for consumer i, is a known transformation of rv,21 the distribution of c is also

19Since ∂v1/∂z1 is estimated imprecisely from the naive logit, when 1 + (∂v1/∂z1)(1− 2s1)z1 is close
to 0 (leading to very large weights), we set ∂v1/∂z1 = 0 when the former term falls below 1 in absolute
value.

20See also Choi et al. (2018b).
21This assumes that the prior Fz used by consumers in forming expectations are known to the re-
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identified.
Equation (B.39) also lends itself to a different argument that does not require mak-

ing a parametric assumption on the distribution of ϵ, but instead relies on “at-infinity”
variation. Note that the first term on the rhs of (B.39) is invariant to increasing all zj’s
by the same amount. Thus, we can write

∂s1
∂z1

(z+∆)
∂s1
∂z1

(z)
=
P (rv ≥ z1 +∆)

P (rv ≥ z1)
(B.40)

where ∆ is a J−vector with all elements equal to some ∆. Letting ∆ → −∞, the
numerator on the rhs of (B.40) goes to 1, which yields identification of P (rv ≥ z1).
Repeating the argument for all z1, one can trace out the entire distribution of rv and
recover the distribution of c as above.

B.13 Welfare Benefits of Information

Appendix D of Abaluck and Gruber (2009) shows that dollar-equivalent consumer sur-
plus in logit models where positive preferences (i.e., preferences describing potentially
uninformed behavior) are given by βpos and normative preferences (i.e., those relevant for
welfare evaluations) are given by βnorm can be computed as:

E(CS0) = − 1

αp

[∑
k

(xkβnorm − xkβpos)sk(βpos) + ln
∑
k

exp(xikβpos)

]

where αp is the (normative) marginal utility of income, estimated as the coefficient on
price. Once consumers are informed and their preferences are βnorm, consumer surplus is
given by the conventional log-sum formula:

E(CS1) = − 1

αp

ln
∑
k

exp(xkβnorm)

The change in consumer surplus from providing consumers with information is thus:

∆CS = − 1

αp

[
ln
∑
k

exp(xkβnorm)− ln
∑
k

exp(xkβpos) +
∑
k

(xkβpos − xkβnorm)sk(βpos)

]

B.14 Application

B.14.1 Data Cleaning

The dataset from Kaggle.com contains 9,917,530 observations on a hotel-consumer level.
We filtered out the following categories of observations.

First, the data set contains some errors in the price information. We removed search
impressions that contain at least one observation for which the listed hotel price is below

searcher, as in the case where consumers have rational expectations and Fz coincides with the observed
distribution of z across goods and/or markets.
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$10 or above $1000 per night, or the implied tax paid per night either exceeds 30% of the
listed hotel price, or is less than $1.

Second, we removed the search impressions where the consumer observed a hotel on
position 5, 11, 17, 23, i.e., the consumer did not have opaque offers (Ursu (2018) provides
a detailed description of this feature in the data).

Third, the original data set contains observations on more than 20,000 destinations,
with a median of two search impressions per destination. We focused our attention on
destinations with at least 50 search impressions.

Fourth, we kept the search impressions where all clicks and transactions happened
within the top 10 positions excluding the opaque offer positions, and we only kept these
top 10 hotels in these choice sets.

The final dataset then contains 54,648 choice sets and 546,480 observations. Table
B.6 provides a detailed description of each variable.

Table B.6: Variable Description

Variable Description

Price Gross price in USD
Stars Number of hotel stars
Review Score User review score, mean over sample period
Chain Dummy whether hotel is part of a chain
Location Score Expedia’s score for desirability of hotel’s location
Promotion Dummy whether hotel is on promotion

B.14.2 Estimation Results

Table B.7 and B.8 shows the detailed results of flexible logit and naive logit estimations.

Table B.7: Estimation Results

z Variable Standard Estimate Standard CI Flexible Estimate Flexible CI

Location Score 0.298 (0.278, 0.317) 0.691 (0.591, 0.839)
Price -1.085 (-1.109, -1.061) -0.710 (-1.169, -0.503)

Review Score 0.172 (0.159, 0.185) 0.195 (0.082, 0.250)
Stars 0.386 (0.369, 0.403) 0.364 (0.258, 0.430)

Table B.8: Estimation Results

z Variable Point Estimate Confidence Interval

Location Score 0.393 (0.296, 0.544)
Price -0.375 (-0.566, 0.085)

Review Score 0.023 (-0.069, 0.038)
Stars -0.022 (-0.135, 0.038)
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Figure C.1.1: Food Delivery Market

(A) Market Structure of the Food
Delivery Market

(B) Buyer and Seller Geographic
Distribution

Note: Panel (A) shows the market share of the food delivery market in China, 2017. The platform we
are studying is a relatively niche platform. Panel (B) shows the geographic distribution of sellers and
buyers on the may. The orange dots are the sellers and the yellow dots are the buyers.

Appendix C

Appendix for Chapter 3

C.1 Platform Background Details

Market Structure Figure C.1.1 (A) shows the market share of the food delivery market
in China in 2017. The total market value is $28 billion.1 The platform we study has a
relatively small market share and is a niche platform. Homemade food in China is believed
to be cleaner and healthier than restaurants given the food security scandals. Figure C.1.1
(B) shows the buyer and seller distribution map in the city of Beijing. The orange dots
are the sellers and the yellow dots are the buyers. In terms of delivery service, sellers can
choose to deliver by themselves or use full-time third-party carriers. The delivery fees are
equally shared by kitchens and consumers.

Daily Order Trend Figure C.1.2 shows the order trend during the day. Most orders
are workday lunch orders. So we assume one consumption per period. We also observe the
utensils in each order, and in 90% of our orders requested one set of utensils. This is also
an advantage of our data since one major concern of using household level packaged good

1https://www.iimedia.cn/c400/60449.html
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Figure C.1.2: Order Trend

(A) Order Trend during the Day (B) Order Trend during the Week

Note: The figure shows the timeline of orders during the day and the week. Panel (A) shows the number
of orders per hour throughout the day. Panel (B) shows the number of orders per day on each day of
the week. 80 % of orders are workday orders.

Figure C.1.3: Kitchen Information

Note: The figure shows the kitchen information page and the information included.

scanner data is the confound of intrahousehold heterogeneity: multiple family members
could be using the same membership card to purchase grocery products.

App Display More information about the kitchen can be found in the app as in
figure C.1.3. There are seller’s demographic information like hometown and age, time to
join the platform, kitchen’s address, certificate, and consumer reviews. The homepage of
the platform for the consumer side is shown in Figure C.1.4. On the homepage, there is a
kitchen list showing information about monthly sales, ratings, delivery radiance, distance,
address, seller’s hometown (which is correlated with kitchen’s cuisine type), and pictures
of the dishes where the users can swipe left and right to browse the menu without clicking
on the kitchen. After clicking into the detailed kitchen page, there is a dish list showing
more detailed information, including dish prices, availability, sales, and reviews.

Cuisine Distribution We divide all kitchens into eleven different cuisines, where the
distribution of each cuisine is in Figure C.1.5. The cuisine variable is constructed based
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Figure C.1.4: Homepage

Note: The figure shows the app display details. On the homepage there is a kitchen list. After clicking
on the kitchen, consumers can see more detailed dish lists.

Figure C.1.5: Motivating Evidence

(A) Distribution of Cuisine (B) Distribution of HHI

Note: Panel (A) pie chart shows the distribution of cuisines among kitchens in our data. The cuisine
variable is constructed based on kitchen features, dish features, and hometown information of the kitchen
owners. Panel (B) shows the distribution of HHI constructed seeing each consumer as a market. HHIi =∑

j ms2ij ·10000, where msij is the market share of order from kitchen j among all of consumer i’s orders.

on kitchen features, dish features, and hometown information of the kitchen owners.
HHI DistributionWe compute the Herfindahl-Hirschman Index (HHI) as a measure

of the dispersion level of consumers’ chosen sets aggregated over time. Each consumer
is seen as a market, and we define the index as HHIi =

∑
j ms

2
ij · 10000, where msij is

the market share of orders from kitchen j among all consumer i’s orders on the platform
over time. The distribution of HHIi in our data is shown in panel (B) of Figure C.1.5.
The figure shows that most consumers’ chosen sets are rather dispersed.
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C.2 Permutation Test

C.2.1 Technical Proof

In this section we provides the detailed construction of permutation test.2 The null hy-
pothesis for the permutation test is that consumers have no state dependent preferences,
and has an i.i.d fixed (unknown) probability of choosing each option from the choice
set. The first step is to test for variety-seeking preferences in consumer i is to observe
his/her order sequence and compute the switching probability from a kitchen on plat-
form, P̂ i(yt ̸= j|st = j ̸= 0), where st represents previous period choice and yt is the
current period choice. The second step is to compute this switching probability for each
permutation of the observed order sequence: each of these permutations is equally likely
because consumer i’s probability of choosing each option is fixed under the null hypothe-
sis. Note that the implicit assumption here is a stochastic choice model: for each period
the probability of choosing each option is i.i.d across different periods. The set of switch-
ing probabilities and their respective relative frequencies computed in the second step
constitutes the sampling distribution of switching probabilities under the null hypothesis
conditional on the observed number of orders for each option. We use this distribution
for statistical testing.

Let Y be an order sequence from consumer i, and Ni denote the numbers of or-
ders for all chosen kitchens by consumer i. The null hypothesis is that the choice
probabilities are i.i.d across periods with P (Yt = j) = pji . This implies that, con-
ditional on the number of orders for each kitchen, Ni(Y) = ni, each permutation is
equally likely. Variety-seeking hypothesis predicts that the switching probability P̂ i(yt ̸=
st|st ̸= 0) will be significantly larger than what one would expect by chance. Let P̂ (Y)
denote this switching probability for sequence Y. For an observed sequence y, with
Ni(y) = ni orders for each chosen kitchen on the platform, to test the null hypoth-
esis at the α level, we check if P̂ (y) ≥ cα,ni

, where the critical value cα,ni
is defined

as the smallest c such that P(P (Y) ≥ c|H0,Ni(y) = ni) ≤ α, and the distribution
P(P (Y) ≥ c|H0,Ni(y) = ni) is generated from the sampling distribution from permu-
tations. For the quantity P(P (Y) ≥ cα,ni

|H0,Ni(Y) = ni), it may be the case that,
for some c∗, it is strictly greater than α for c ≤ c∗. In this case, for any sequence
with Ni(y) = ni, one cannot reject H0 at an α level of significance.3 From the ex ante
perspective, a test of variety seeking at the α level of significance consists of a family
of such critical values {cα,ni

}. It follows immediately that P(reject|H0) ≤ α because
P(reject|H0) =

∑
{ni} P(P (Y) ≥ cα,ni

|H0, N
j
i (Y) = ni)P(Ni(Y) = ni|H0) ≤ α. Last, for

2Miller and Sanjurjo (2018) perform a similar permutation test as a nonparametric robustness test
that is by construction invulnerable to conditional probability bias from small samples. Miller et al.
(2014) showed that the runs and serial correlation tests, along with the conditional probability test all
amount roughly to the same test, and moreover, that they are not sufficiently powered. Traditional
research on state dependence use the runs tests to test for state dependence, such as the binomial runs
test and multinomial runs test discussed in Bass et al. (1984). The permutation test is equivalent to
the runs test in binomial choices. In multinomial choices, the multinomial runs test need an extra
assumption that the probability of choosing a brand on each choice occasion is equal to the observed
empirical frequency of choosing the brand, where as in the permutation test we do not need to make the
extra assumption and only need the choice probabilities to be i.i.d across periods.

3Examples of such choice sequences are AAAA and ABCD, where P(P (Y) ≥ cα,ni
|H0,Ni(Y) = ni)

always equal to zero and one, respectively. In such cases we are not able to reject the null hypothesis
that there is no state dependence and switching is simply due to randomness in choices.

115



Figure C.2.1: Motivating Evidence

(A) Switching Probability Distribution (B) Switching Probability CDF

Note: Panel (A) shows the switching frequency observed in the data relative to that in the randomly
reshuffled benchmark, where the order of choices does not matter given the observed market share. One
dot represents one consumer. The 45-degree line represents the cases when consumers switch as frequently
as the randomly reshuffled benchmark. The consumers above the 45-degree line switch more frequently
in the data than the random reshuffle benchmark and exhibit variety-seeking preferences, whereas the
consumers below the 45-degree line switch less frequently than the randomly shuffled benchmark and
exhibit inertia. Panel (B) presents the cumulative distribution function of the switching probability in
data, in the random reshuffled benchmark, and the 95% confidence bands of the reshuffled sequences.

arbitrary test statistic T (Y), the fact that the distribution of Y is exchangable condi-
tional on Ni(Y) = ni means that P(P (Y) ≥ cα,ni

|H0,Ni(Y) = ni) can be approximated
to arbitrary precision with Monte Carlo permutations of the sequence y (Ernst, 2004;
Good, 2013).

C.2.2 Permutation Test for Cuisines

In this section we present the results of permutation test for cuisines. Figure C.2.1
presents the distributions of cuisine type switching probability observed in data and in
permutations. In Panel (A) 64.5% of consumers are below the 45 degree line, which
implies that a majority of consumers switch cuisines less frequently than in the ran-
domization test. In Panel (B) the CDF of cuisine switching probabilities lies within
the 95 percent confidence interval of the random permutations distributions, suggesting
that they are not significantly different. This result is consistent with the positive and
insignificant estimates of cuisine level state dependence. This result implies that hetero-
geneous preferences explain consumers’ cuisine level choices better than state-dependent
preferences.

C.3 More Robustness Checks

C.3.1 Initial Conditions Bias

For each consumer choice panel, we drop the first observation of purchase and keep the
choice as the state variable for the next purchase occasion. The implicit assumption
behind this practice is that the initial state is exogenous and independent of preference.
Simonov et al. (2020) discuss the potential initial conditions bias in demand estimation
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with state dependence and show that this assumption could overestimate loyalty in small
samples. On the one hand, our panel is relatively long with 40 choices per consumer
on average, which reduces the small-sample bias. On the other hand, in the case that
consumers are more likely to order the product that they prefer more in the initial period,
treating the initial state as exogenous will attribute preference to loyalty and generate a
conservative estimate of the variety-seeking preferences.

For orders put through channels other than the homepage listing, such as discover
channel or favorite kitchen folder. We drop the specific period’s choice situation from
the consumer panel and use the observed choice to update the state variable for the next
period. Following similar arguments as in the initial conditions bias discussion above,
if we assume that in these orders put through channels other than the search listing,
consumers are more likely to order the product that they prefer more, by treating the
state from these periods as exogenous will generate a conservative estimate of variety-
seeking preferences. The same is true for orders put on the pages other than the first
page, for which we drop the choice situations and update the state variable for the next
period. When consumers search and order beyond the first page, it is very likely that
consumers are looking for a specific niche kitchen that they like. The same analysis of
the direction of bias by treating states from these periods as exogenous applies. Orders of
kitchens beyond the first page and through other channels take 17% of the total number
of orders.

C.3.2 Dish-Level Variety Seeking

In the baseline model we do not consider the dish-level variety-seeking preferences, while
in reality consumers could be switching across different dishes within the same kitchen.
To test for this possibility we add an interaction term of the last kitchen choice with the
menu size of the kitchen. Specifically, the indirect utility that consumer i derives from
kitchen j on platform in period t is

uijt = βij −αipjt + ηrijt + γi1(sit = j) + γM1(sit = j)Mjt + γC1(scit = cj) +ψ ·Xijt + ϵijt,
(C.1)

whereMjt denotes the menu size of kitchen j in period t. The utility from choosing the
outside option is ui0t = γO1(sit = 0) + ϵi0t. If consumers are switching across different
dishes within the same kitchen, we should expect consumers to switch less away from
kitchens with a larger menu size, i.e., γM < 0. Column (2) of Table C.3.1 presents the
result of this alternative specification. We find that γM is not significantly different from
zero, which implies consumers do not switch less away from kitchens with larger menu
sizes.4 This could happen when consumers have one or two favorite dishes that they
always ordered from a specific kitchen.

C.3.3 Interpurchase Time Span

When constructing the choice panel, we drop the days when consumers did not use the
platform, which makes the interpurchase time spans different across different periods in
term of calendar days. Intuitively, calendar day should be a natural period of satiation

4We do not model variety seeking on the dish level mainly for tractability reason. Future research
could study state dependence on a finer level including dishes, ingredients, recipe, cooking methods.
Natural language processing and graph classification could be helpful methods for such analysis.
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Table C.3.1: Robustness Check

(1) Baseline (2) Menu Size (3) Interpurchase (4) Nonlinear (5) Negative
Time Span Position Effect Autocorrelation

State Dependence µγ -0.1981∗∗∗ -0.1876∗∗∗ -0.2014∗∗∗ -0.1873∗∗∗ -0.2143∗∗∗

–Kitchen level (γi) (0.0503) (0.0323) (0.0605) (0.0529) (0.0637)

σγ 0.4450∗∗∗ 0.6754∗∗∗ 0.5062∗∗∗ 0.4614∗∗∗ 0.7544∗∗∗

(0.0635) (0.0510) (0.0687) (0.0413) (0.0698)

Price (αi) µα -0.0219∗∗∗ -0.0248∗∗∗ -0.0267∗∗∗ -0.0201∗∗∗ -0.0197∗∗∗

(0.0036) (0.0037) (0.0061) (0.0033) (0.0021)

σα 0.0107∗∗∗ 0.0121∗∗∗ 0.0118∗∗∗ 0.0193∗∗∗ 0.0171∗∗∗

(0.0011) (0.0017) (0.0034) (0.0028) (0.0019)

Rank η -0.0391∗∗∗ -0.0417∗∗∗ -0.0302∗∗∗ – -0.0314∗∗∗

(0.0041) (0.0063) (0.0059) – (0.0052)

State Dependence γO 0.0705 0.0621 0.0749 0.0928 0.0717
-Outside option (0.0430) (0.0516) (0.0712) (0.0801) (0.0641)

State Dependence γC 0.0616 0.0492 0.0751 0.0824 0.0752
–Cuisine (0.0531) (0.0407) (0.0506) (0.0917) (0.0514)

Menu Size γM -0.0039
(0.0027)

Interpurchase Time Span γT 0.0196∗

(0.0112)

Favorite Seller Unavailable γF 0.0081
in Previous Period (0.0063)

Note: The table shows estimation results after controlling for cuisine, day of week, week of month,
holiday, menu size, distance, rating, monthly sales, and kitchen fixed effects. * p < 0.1, ** p < 0.05, ***
p < 0.01. Column (1) is the baseline model. Column (2)-(3) are robustness checks. Column (2) tests for
dish-level variety seeking. Column (3) tests for the effect of inter-purchase time span on variety-seeking
level. Column (4) tests for robustness to the linear position effect problem.

over tastes and the variety-seeking preferences could decrease with the interpurchase
time span across platform usage. To test this interpurchase time span effect, we add an
interaction term of the last kitchen choice with the number of calendar days from the
last consumption. Specifically, the indirect utility that consumer i derives from kitchen
j on platform in period t is

uijt = βij−αipjt+ηrijt+γi1(sit = j)+γT1(sit = j)Tijt+γ
C
1(scit = cj)+ψ·Xijt+ϵijt, (C.2)

where Tijt denotes the interpurchase time span of consumer i with kitchen j until
period t. The utility from choosing the outside option is ui0t = γO1(sit = 0) + ϵi0t. If
the state dependent preferences decrease with interpurchase time span, we should have
γT > 0. Column (3) of Table C.3.1 presents the result of this alternative specification.
We find that γT is positive but insignificant at the 5% level, which implies consumers do
not switch less away from kitchens with longer interpurchase span. This can result from
the fact that our sample is mainly composed of the frequent users who ordered at least
once a week, which limits the variation in interpurchase time span of consumptions.
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Figure C.3.1: Nonlinear Position Effects

Note: The figure shows the estimation results from nonlinear position effects specification.

C.3.4 Nonlinear Position Effects

In the baseline model we specify the ranking position effect as linear, which can be
restrictive. To check the robustness of position effect with respect to this functional form
restriction, we estimate a model with ranking position dummies. Specifically, the indirect
utility that consumer i derives from kitchen j on platform in period t is

uijt = βij −αipjt+
10∑
n=1

ηn1(rijt = n)+ γi1(sit = j)+ γC1(scit = cj)+ψ ·Xijt+ ϵijt, (C.3)

where ηn denotes the position effect of the nth position in the kitchen list. The utility
from choosing the outside option is ui0t = γO1(sit = 0) + ϵi0t. Column (3) of Table
C.3.1 presents the result of this alternative specification. We find that nonlinear position
effects do not alter other estimates substantially. Figure C.3.1 presents the position effect
estimates. The first position do have a larger effect than the other estimates, which could
be an effect from the mobile display design.5 However, the overall functional form does
not deviate from linear effect too much, which suggests that the linear specification we
adopt in the baseline model does not deviate from the reality substantially.

C.3.5 Negative Autocorrelation

One potential source of spurious state dependence is from negative autocorrelation in
the unobserved taste shocks. If the choice model errors are negatively autocorrelated, a
past purchase will proxy for a large past and hence a small current random utility draw.6

The policy implications for the two models will be different, since in the autocorrelated

5The mobile display design is shown in Figure C.1.4. Consumers can see the top two positions and
half of the third position on the homepage.

6Unlike the positive autocorrelation case, which could capture the seasonality or temporal cravings
in preference for food, this is more of a mathematical possibility than an intuitive preference possibility.
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error case sellers can not use marketing instruments to influence future demand.7 We test
this by interacting the lagged choice with a dummy variable of whether the consumer’s
favorite kitchen was available in the previous period, where favorite kitchen is defined by
the one that is ordered most during the time window we study. Specifically, the indirect
utility that consumer i derives from kitchen j on platform in period t is

uijt = βij − αipjt + ηrijt + γi1(sit = j) + γF1(sit = j)1(ki /∈ Ji(t−1))

+γC1(scit = cj) + ψ ·Xijt + ϵijt,

where ki denotes consumer i’s favorite kitchen.8 Under variety seeking, whether the
previous period choice was ordered when the consumer’s favorite kitchen was available
should not affect the state-dependent preferences. However, when ϵijt are negatively au-
tocorrelated, kitchens ordered when favorite kitchen was not available will have a lower
ϵij(t−1), which implies a higher ϵijt. This should decrease the switching probability in the
current period, i.e., consumers should switch less away from kitchens that are ordered
when the favorite kitchen was not available.(γF > 0) Column (5) of Table C.3.1 presents
the result of this alternative specification. We find that γF is positive but insignificant,
which implies consumers do not switch less away from kitchens ordered when favorite
kitchen was not available. This could result from the fact that our sample is mainly com-
posed of the frequent users who ordered at least once a week, which limits the variation
in interpurchase time span of consumptions. Figure C.3.1 presents the position effect
estimates. The first position do have a larger effect than the other estimates, which could
be an effect from the mobile display design.9 However, the overall functional form does
not deviate from linear effect too much, which suggests that the linear specification we
adopt in the baseline model does not deviate from the reality substantially.

C.3.6 Model Fit

We examine model fit by comparing several key predictions to their empirical counter-
parts. We split the sample of 6,629 consumers randomly into a 80% training sample (5303
consumers) and a 20% holdout sample (1326 consumers). We estimate the baseline model
on the training sample and use the estimated model to predict several key moments in
the holdout sample. Table C.3.2 presents the simulated predictions and the empirical
counterparts from the holdout sample. We evaluate model out-of-sample fit in terms of
purchase probability, switching probability, purchase position, and purchase probabilities
by position. We find that the model predicts the holdout sample data reasonably well in
terms of the key moments.

7From the firm’s point of view, autocorrelation is equivalent to a more dispersed distribution of
unobserved heterogeneity, whereas in the variety-seeking case, prices affect both current period demand
and future distribution of consumer states, which gives rise to a nontrivial dynamic pricing problem. If
sellers lower their current price, own consumer share will increase and sellers will face lower and more
elastic demand in the next period.

8The favorite kitchen is defined as the kitchen with highest choice probability conditional on avail-
ability.

9The mobile display design is shown in Figure C.1.4. Consumers can see the top two positions and
half of the third position on the homepage.
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Table C.3.2: Model Out-of-Sample Fit

I. Key Moments
Data Predicted

Purchase Probability 0.473 0.485
Purchase Position 3.464 3.445

Switching Probability 0.814 0.804
II. Purchase Probabilities by Position

Position Data Predicted
1 0.145 0.154
2 0.118 0.117
3 0.0471 0.0465
4 0.0335 0.0356
5 0.0313 0.0332
6 0.0265 0.0291
7 0.0250 0.0237
8 0.0224 0.0223
9 0.0193 0.0190
10 0.0174 0.0170

Note: The table reports results from an out-of-sample validation exercise. We split the sample of 6,629
consumers randomly into a 80% training sample (5303 consumers) and a 20% holdout sample (1326
consumers). We estimate the baseline model on the training sample and use the estimated model to
predict several key moments in the holdout sample.

C.3.7 Match Values Estimates

In this section we present the estimates for grouped match value distribution. Table
C.3.3 presents the moments and estimates of mean and standard deviation of match
value distribution (µj, σj).
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Table C.3.3: Group Estimates

market share mean std market share mean std
Group1 0.1713 1.6214*** 1.7180*** Group9 0.0375 0.9768*** 1.7599***

(0.0513) (0.1248) (0.0488) (0.1318)

Group2 0.2366 1.6456*** 1.6146*** Group10 0.0132 0.8294*** 0.9891***
(0.0560) (0.1272) (0.0500) (0.1118)

Group3 0.0023 1.2295*** 1.4480*** Group11 0.0032 0.7903*** 0.6244***
(0.0664) (0.1265) (0.0441) (0.0801)

Group4 0.0014 1.4634*** 1.3761*** Group12 0.1231 1.3608*** 0.5332***
(0.0569) (0.1192) (0.0445) (0.0890)

Group5 0.0002 0.6513*** 0.9674*** Group13 0.0198 0.5240*** 0.3640***
(0.0644) (0.1289) (0.0438) (0.0817)

Group6 0.0322 0.4334*** 1.1564*** Group14 0.1163 1.2758*** 0.3465***
(0.0526) (0.1041) (0.0424) (0.0746)

Group7 0.1382 1.5843*** 0.9602*** Group15 0.1041 1.0952*** 0.2085***
(0.0527) (0.0892) (0.0428) (0.0785)

Group8 0.0005 0.2783*** 0.9479*** Group16 0.0001 0.1155*** 1.0085
(0.0483) (0.0973) (0.0407) (0.7846)

Note: The table reports grouping moments and match value distribution parameter estimates.

C.4 Counterfactual Details

C.4.1 Optimality of Utility-based Ranking

We prove the optimality of ranking kitchens in decreasing order of expected utility in this
section. The ex ante consumer welfare is

E[CS] = − 1

α

[
ln
∑
j∈J

exp(vj − cj)

]

where α is the price coefficient, vj represents the deterministic part of utility excluding
the position cost, and cj = η · rj, rj = 1, 2, ..., J represents the position cost. Then the
optimal ranking should maximize E[CS] by assigning c1, c2, ..., cJ to kitchens in the choice
set, represented by v1, v2, ..., vJ . Without loss of generality, we assume that v1 > v2 >
... > vJ , c1 < c2 < ... < cJ .

Lemma 11. Ranking kitchens in the decreasing order of expected utility vj optimize ex
ante consumer welfare, given v1, v2, ..., vJ , c1, c2, ..., cJ .

Proof. Consider the two product case where v1 > v2, c1 < c2, we want to prove that
the expected welfare from {v1 − c1, v2 − c2} is greater than {v1 − c2, v2 − c1}. Denote
x1 = v1 − c1, x2 = v2 − c2, x̃1 = min{v1 − c2, v2 − c1}, x̃2 = max{v1 − c2, v2 − c1}, then
x1 + x2 = x̃1 + x̃2, x1 < x̃1 < x̃2 < x2. Because the exponential function is increasing and
convex, we have

exp(x2)− exp(x̃2) > exp(x̃2) · (x2 − x̃2)

> exp(x̃1) · (x̃1 − x1)

> exp(x̃1)− exp(x1)
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Table C.4.1: Decomposition of Optimal Ranking Effect

Choice under Choice under Market Outcome
Supoptimal Ranking Optimal Ranking Consumer Welfare Revenue Purchase Prob.

Utility Position Cost
Outside Option Different seller ↑ ↑ ↑ ↑

Last period choice Different seller ↑ – Uncertain –
Different seller Different seller – ↓ Uncertain –

Note: The table shows the different scenarios where considering variety-seeking effects in ranking algo-
rithms could affect consumer welfare (through position cost and utility), platform revenue, and purchase
probability.

Thus E[CS{v1−c1,v2−c2}] > E[CS{v1−c2,v2−c1}].
Then given a general number of products J , we want to prove that the optimal

ranking is {v1 − c1, v2 − c2, ..., vJ − cJ}. Starting from any ranking position assignment
R1 = {..., vj − cj, ..., vk − ck, ...} where ∃j, k, s.t., vk > vj, ck > cj, we show that this
assignment is dominated by reversing the position of the two kitchens while keeping the
other positions fixed R2{..., vj − ck, ..., vk − cj, ...}.

E[CSR1 ] = − 1
α
[ln(exp(vj − cj) + exp(vk − ck) + C)]

E[CSR2 ] = − 1
α
[ln(exp(vj − ck) + exp(vk − cj) + C)]

where C denotes the sum of exponential funtions for the other positions. Then from the
proof in the case when J = 2, we have E[CSR1 ] < E[CSR2 ]. We can continue this process
until there is no higher expected utility assigned to lower ranking positions, and thus we
prove the optimality of expected utility based ranking.

Note that the utility based ranking need not optimize the platform revenue, since the
platform could promote lower utility but higher price kitchens to increase revenue. There
is not a simple index like in the utility case, and the ranking will face a tradeoff between
price and choice probability. Appendix 6 in Compiani et al. (2021) provides more details
on the intuition of relevant tradeoffs of revenue-maximizing ranking algorithms. The
crucial value in the optimality of ranking algorithms in this case is the difference between
option j’s revenue, and the choice-probability weighted average revenue from all other
options.10

C.4.2 Decomposition of Optimal Ranking Effect

Optimal ranking only generates different market outcomes from suboptimal ranking when
the variety-seeking effects are high enough to either change the position of options or
change the choice of consumers. Table C.4.1 summarizes different scenarios when consid-
ering variety-seeking effects in ranking algorithms generates different market outcomes,
and shows how consumer welfare (through position cost and utility), platform revenue,
and purchase probability are affected in each scenario.

10The industry ranking algorithm usually use the multi-objective optimization model. Food
Discovery with Uber Eats: Recommending for the Marketplace https://eng.uber.com/

uber-eats-recommending-marketplace/ In this project, we focus on documenting, measuring vari-
ety seeking, and showing its importance through counterfactual analysis, instead of providing the exact
engineering algorithms.
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C.4.3 Heterogeneous State-Based Targeted Ranking

In this section we study the ranking effects allowing consumers to have heterogeneous
state-dependent preferences, and platform presents personalized rankings to them ac-
counting for it. We study this by taking 1000 draws from the estimated distribution of
state-dependent preferences. For each draw of random coefficients, we simulate consumer
choices 50 times to get the market outcome. For each market outcome, we calculate the
ratio ∆S = Optimal−Suboptimal

Optimal−Random
, S ∈ {W,Π, q} to measure the state-based targeted ranking

effect on consumer welfare, platform revenue, and purchase probability. For each con-
sumer i, ∆S̃ is a function of the state-dependent preference γi, and the choice set effect
Ci.

11 Equations C.4, C.5, and C.6 present the average ranking effect on the platform.

∆W =

∫
∆
∑
i

W (γi, Ci)dF (γi), (C.4)

∆Π =

∫
∆
∑
i

Π(γi, Ci)dF (γi), (C.5)

∆q =

∫
1

N
∆
∑
i

q(γi, Ci)dF (γi). (C.6)

Figure C.4.1 presents the average ranking effects on consumer welfare, platform rev-
enue, and purchase probability. We find that optimizing the ranking algorithm with
variety-seeking preferences takes up 13.0% of the revenue improvement, 16.4% of the
consumer welfare improvement, and 17.3% of the purchase probability improvement, out
of the total ranking effect. Figure C.4.2 presents the detailed distribution of state-based
targeted ranking effect on the platform level across simulations.

C.4.4 Numerical Solution for Price Competition

We use numerical methods to solve for the equilibrium of the pricing game. We first
discretize each axis of the state space using a finite number of points. We then form
a grid representing the whole state space from the Cartesian product of these points,
excluding the support where the sum of market shares exceeds one. For each point in the
grid, we store the value and policy functions of each competitor in the computer memory.
For states outside the grid, we calculate the value and policy function using polynomial
interpolation.

To solve for the equilibrium, we employ the following algorithm, which is an adaptation
of policy iteration applied to the case of the games: start with some initial guess of the
strategy profile, σ0 = (σ0

1, σ
0
2), and then proceed along with the following steps:

1. For the strategy profile σn, calculate the corresponding value functions for each of
the J kitchens. These value functions are defined by the Bellman equation, where the
right hand side of the Bellman equation is maximized, given the current strategy profile
of other kitchens. Update each kitchen’s strategy using the Bellman equation. Denote
the resulting new policies and value functions by σn+1

j and V n+1
j .

2. If n > 0, check whether the value functions and policy functions satisfy the
convergence criteria, ||V n

j − V n−1
j || < ϵV and ||σn

j − σn−1
j || < ϵσ for all kitchens j. If so,

11To understand the intuition why ∆S is a function of individual choice set Ci, consider an extreme
example where there is no overlapping options of a consumer’s choice set across different periods, then
we the state-based targeted ranking will have no effect on this consumer’s choices.
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Figure C.4.1: Ranking Effects with Heterogeneous State-Based Targeting

Note: The figure shows the percentage change in average platform-level welfare, revenue and purchase
probability of platform ranking, suboptimal ranking, and optimal ranking relative to the random ranking
benchmark. We simulate choices under each given ranking algorithms for 50 times to get the mean and
standard deviation of corresponding variables.

Figure C.4.2: Distribution of Ranking Effects with Heterogeneous State-Based Targeting

(A) Welfare (B) Revenue (C) Purchase Probability

Note: The figure shows the detailed distribution of state-based targeted ranking effect on the platform
level. Panel(A)-(C) presents the distribution of platform-level consume welfare, revenue, and purchase
probability across 1000 simulations.

stop. If not, return to step 1.

C.4.5 Intuition for Variety Seeking Effect on Price Competition

In this section we provide more intuition on variety seeking effect on price competition.
Seetharaman and Che (2009) find that variety seeking softens price competition and
Sajeesh and Raju (2010) find that variety seeking intensifies price competition. Zeitham-
mer and Thomadsen (2013) shows that when products are similar and variety seeking is
strong, variety seeking softens price competition, whereas when products are dissimlar
and variety seeking is weak, variety seeking intensifies price competition. This seems
in conflict with the traditional wisdom from industrial organization that differentiation
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Table C.4.2: Product Differentiation without Variety-Seeking Effect

Similar, strong VS Dissimilar, weak VS
Seller 1’s consumer:

β1β2

γ

β1 β2

γ

Seller 2’s consumer:

β1β2

γ

β1 β2

γ

Note: The table shows product differentiation level without variety seeking effect. The columns corre-
sponds two cases when product are similar and variety seeking is relatively strong, and when product
are dissimilar and variety seeking is relatively weak. The rows are products’ values from consumers who
purchased product 1, and 2 in the previous period, respectively.

softens price competition. Here we discuss how we can understand this result intuitively
and how it connects with our empirical finding. Table C.4.2 shows product differentiation
level without variety seeking effect. The columns corresponds two cases when product
are similar and variety seeking is relatively strong, and when product are dissimilar and
variety seeking is relatively weak. The rows are products’ values from consumers who
purchased product 1, and 2 in the previous period, respectively.

Table C.4.3 shows product differentiation level with variety seeking effect. For con-
sumers who purchased the inferior product in the last period, variety seeking decrease the
product value further and increase the differentiation level. For consumers who purchased
the superior product in the last period, variety seeking decrease the product value of the
superior product, and the effect on differentiation level depends on the relative magnitude
of static differentiation from product value, and the dynamic differentiation from state
dependence. When products are similar and variety seeking is strong, variety seeking in-
creases overall differentiation and softens price competition, whereas when products are
dissimlar and variety seeking is weak, variety seeking decreases overall differentiation and
intensifies price competition.12 13 Our demand estimates suggest that we are in the case
when the top two popular groups are relatively similar and consumers’ variety-seeking
preferences are relatively strong, so variety seeking softens price competition within a
range around our demand estimate level.

12Variety seeking intensifies price competition when products are dissimilar and there is one big
popular seller maintaining own consumers who are choosing between consuming the superior product
consecutively and switching towards the inferior product.

13This decomposition is also helpful for understanding the nonmonotonic relationship between state
dependence level and price competition level. Holding fixed the static product values, there is a range
where state dependence first decrease and then increase product differentiation level.
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Table C.4.3: Product Differentiation with Variety Seeking Effect

Similar, strong VS Dissimilar, weak VS
Seller 1’s consumer:

β1β2β′
1

γ

β1 β2β′
1

γ

Differentiation ↑ Differentiation ↑
Seller 2’s consumer:

β1β2β′
2

γ

β1 β2β′
2

γ

Differentiation ↑ Differentiation ↓

Note: The table shows product differentiation level with variety seeking effect. The columns corresponds
two cases when product are similar and variety seeking is relatively strong, and when product are
dissimilar and variety seeking is relatively weak. The rows are products’ values from consumers who
purchased product 1, and 2 in the previous period, respectively. Arrows shows the differentiation level
change in each cases.

C.5 Industry Practice

In this section, we discuss the current targeted marketing practice in the industry, and the
potential improvement by taking into account consumer variety-seeking preferences. We
find that consumers’ variety-seeking preferences are not accounted for in current industry
targeted pricing and are likely not emphasized enough in ranking and recommendation
systems on several common food delivery platforms.

C.5.1 Targeted Pricing

Current industry practice in pricing is more observable than ranking and recommenda-
tion systems on food delivery platforms. We find several common platforms’ promotion
activities facing merchants on their websites. Uber Eats allows merchants to targeted
promotions to either all customers in their delivery zone or new customers that have not
ordered from their restaurant. DoorDash’s ‘Order Again and Save’ promotion is for cus-
tomer retention and allows merchants to pay $0.99 fee per order to target their existing
DoorDash consumers who haven’t ordered from them in over 45 days. Similarly, Grub-
hub’s promotion for past customers is also focused on past customer retention, and it only
allows merchants to target consumers who have not ordered in the last 90 days to order
again. No popular food delivery platforms allow targeted pricing to old customers with
recent orders. Table C.5.1 provides a summary of the current merchant-level promotions
allowed on popular food delivery platforms.

C.5.2 Personalized Recommendation

Besides ranking and pricing, our findings also have important implications for the design
of personalized recommendation. We do not have data on personalized recommenda-
tion for our platform, so we can not do counterfactual analysis about it using our data.
However, Figure C.5.1 shows the current common practice of personalized recommen-
dation on several popular food delivery platforms. The recommendation sections such
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Table C.5.1: Current Targeted Pricing Available for Merchants on Popular Food Delivery
Platforms

Platform Current Consumer Types for Merchant Targeted Promotions

Uber Eats New consumers
All consumers in the restaurant’s delivery zone

DoorDash New consumers
Consumers who haven’t ordered from the restaurant in over 45 days
All consumers

Grubhub New consumers
Consumers who haven’t ordered in the last 90 days
All consumers

Note: The table summarizes the current promotions allowed on popular food delivery platforms. In-
formation comes from the platforms’ websites for merchants. None of the popular platforms allow for
promotions targeting existing consumers who ordered recently.

as UberEats’s ‘Order Again’, Grubhub’s ‘Reorder your favorites’, and DoorDash’s ‘Your
Favorites’ all understand and emphasize the importance of consumer’s persistent hetero-
geneous preferences, but it does not seem like they consider consumer variety-seeking
preferences by avoiding recent orders.

Koren et al. (2009) discuss several techniques for recommendation systems in the
context of Netflix movie recommendation. Such systems are particularly useful for enter-
tainment products such as movies, music, and TV shows. Among the models discussed,
the only model that captures dynamics in demand is the temporal dynamics model, which
account for the time-drifting nature of user preference by allowing preference parameters
as a function of time. But the specific model captures the changes in persistent preference
over time,14 which is different from the high-frequency dynamics driven by variety-seeking
preferences.

Uber Eats posts research results on Uber Engineering blogs, and based on the recent
reports, variety-seeking dynamics are not captured in their recommendation or ranking
algorithm. Jain et al. (2019) 15 discuss that Uber Eats use the graph learning method
GraphSAGE developed by Hamilton et al. (2017) to power their recommendation system.
In this method the aggregators are symmetric(permutation invariant),16 and a random
permutation of the users’ orders does not affect the graph and thus recommendation,
thus the high frequency dynamics induced by variety-seeking preferences are not included

14Koren et al. (2009) describe this with an example:“..., a fan of the psychological thrillers genre might
become a fan of crime dramas a year later. Similarly, humans change their perception of certain actors
and directors.”

15Food Discovery with Uber Eats: Using Graph Learning to Power Recommendations https://eng.
uber.com/uber-eats-graph-learning/

16The method is based on a graph where nodes are users and sellers, and edges are weighted by
historical number of orders. For example, consumer 1 who ordered CBAAA and consumer 2 who ordered
ABACA will generate the same graph and the method will predict that they will have similar order
patterns.
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Figure C.5.1: Recommendations on Popular Food Delivery Platforms

Note: The graph shows screenshots of the homepage recommendation from popular platforms including
Uber Eats, Grubhub, and DoorDash. The frequently ordered kitchens are recommended as ‘Order Again’
and ‘Your Favorites’ without punishment on the recency of orders from the recommended kitchens.

in this method or widely used matrix factorization and collaborative filtering methods
for recommendation systems. Meanwhile, methods that process inputs in a sequential
manner such as LSTM have limitations in scalability.

C.6 Upper Confidence Bound Algorithm

Currently one of the most commonly used optimal solutions for multi-armed bandit prob-
lems is the upper confidence bound (UCB) algorithm.17 One general form of the method
is to choose the option with the optimal UCB index, UCBi, which is defined as follows:

UCBi = µ̂i + f(Ti) (C.7)

where µ̂i is the empirical mean of former experience. f(Ti) is a decreasing function of
the sample times the learner has observed for arm i. This index illustrates the explore
vs exploit tradeoff, where the first term µ̂i captures the exploit part and the second
term f(Ti) represents potential reward from exploration. The explore vs exploit tradeoff

17This method is currently used by Uber Eats. “..., we applied the upper confidence bound (UCB, one
of the methodologies of MAB) approach to facilitate the exploration of new restaurants or restaurants
with low impressions. We calculate a UCB score for each restaurants based on metrics such as its
historic impression number, total click number, and boosting factor. The UCB score, along with other
objectives discussed above, decides the ranking order among restaurants. A new restaurant will have a
relatively high UCB score initially and hence rank highly, increasing its exposure. As the new restaurant
gathers other impressions, the UCB score will smoothly decrease and gradually traster ranking weight
back to other objective scores such as relevance.” Wang et al. (2018): Food Discovery with Uber Eats:
Recommending for the Marketplace https://eng.uber.com/uber-eats-recommending-marketplace/
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implied by this solution suggests less switching among familiar arms and more switching
towards new arms, which corresponds to the two tests we perform in Section 3.6.1 and
Section 3.6.2.

Note that the explore part is different from variety seeking in the sense that it is based
on cumulative experience with the arm, and the recency of experience does not matter,
whereas in variety seeking the recency of an order is crucial.
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