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Abstract

Personalized intervention strategies, in particular those that modify treatment based on a 

participant’s own response, are a core component of precision medicine approaches. Sequential 

multiple assignment randomized trials (SMARTs) are growing in popularity and are specifically 

designed to facilitate the evaluation of sequential adaptive strategies, in particular those embedded 

within the SMART. Advances in efficient estimation approaches that are able to incorporate 

machine learning while retaining valid inference can allow for more precise estimates of the 

effectiveness of these embedded regimes. However, to the best of our knowledge, such approaches 

have not yet been applied as the primary analysis in SMART trials. In this paper, we present 

a robust and efficient approach using targeted maximum likelihood estimation (TMLE) for 

estimating and contrasting expected outcomes under the dynamic regimes embedded in a SMART, 

together with generating simultaneous confidence intervals for the resulting estimates. We contrast 

this method with two alternatives (G-computation and inverse probability weighting estimators). 

The precision gains and robust inference achievable through the use of TMLE to evaluate the 

effects of embedded regimes are illustrated using both outcome-blind simulations and a real-data 
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analysis from the Adaptive Strategies for Preventing and Treating Lapses of Retention in Human 

Immunodeficiency Virus (HIV) Care (ADAPT-R) trial (NCT02338739), a SMART with a primary 

aim of identifying strategies to improve retention in HIV care among people living with HIV in 

sub-Saharan Africa.

Keywords

dynamic treatment regimes; precision medicine; sequential multiple assignment randomized trial; 
targeted maximum likelihood estimation

1 | INTRODUCTION

One question central to precision medicine and public health asks: “who should get which 

intervention, and in what sequence?” For example, a wide class of sequenced strategies start 

with an initial intervention, and then switch to a new, often higher intensity intervention 

based on participant response. These strategies are personalized because both the decision to 

switch interventions and the timing of the switch depend on an individual’s own response. 

Data generated from a sequential multiple assignment randomized trial (SMART) provide 

a straightforward way of evaluating the causal effects of such sequenced adaptive strategies 

(or dynamic treatment regimes). Often, participants are given treatment (either randomly 

or deterministically) at pre-specified decision points based on their measured information 

(e.g., past treatments and/or intermediate covariates) up to that point. Assigning treatment 

sequentially based on a participant’s measured past—including commonly, a patient’s 

own response to earlier treatment—defines a SMART’s embedded dynamic treatment 

regimes (or simply, embedded regimes). These embedded regimes correspond to adaptive 

personalized strategies for assigning treatment, thus contributing to the goals of precision 

health. Critically, by design, SMARTs allow the effects of these embedded regimes (and 

others, such as optimal dynamic treatment regimes based on covariates beyond those that 

define the trial design; Kosorok & Laber 2019) to be identified and estimated without risk of 

bias.

SMART designs are increasingly growing in popularity. For example, a recent review by 

Bigirumurame et al. (2022) cites 24 SMART protocol papers published since 2014. While 

primary analyses for SMARTs sometimes aim to examine the single timepoint static effects 

of the treatment options in the SMART’s nested trials, they increasingly (in either primary 

or secondary aims) aim to evaluate the effects of embedded regimes (e.g., Kasari et al. 

2014; Karp et al. 2019) or additionally tailored individual interventions (e.g., Sherwood 

et al. 2016). When evaluating the SMART’s embedded regimes, common approaches for 

estimating the expected counterfactual outcome (or “value”) of a given embedded regime 

use inverse probability weighting (IPW) estimators, including weighting and replicating 

approaches (introduced in Robins 2002; van der Laan & Petersen 2007; Bembom and 

van der Laan 2007; see also Nahum-Shani et al. 2012) and G-computation approaches 

(introduced in Robins 1986, 1987; Lavori & Dawson 2000, 2004). IPW estimators, and 

some G-computation estimators (depending on how the sequential regressions are estimated) 

will generally provide unbiased estimates of the value of the embedded regime; however, 
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they are inefficient in that they do not make full use of baseline and time-updated 

covariates to improve estimator precision. Advances in semiparametric efficient substitution 

estimators, such as longitudinal targeted maximum likelihood estimation (TMLE), allow 

for the integration of machine learning in the estimation process, enabling more precise 

estimates while retaining valid inference (see Petersen et al. 2015 for a review in the context 

of SMARTs). Recent work has documented the potential of flexible covariate adjustment 

using machine learning, and TMLE in particular, to improve precision in single timepoint 

individually randomized trials (e.g., Benkeser et al. 2021) and cluster randomized trials (e.g., 

Balzer et al. 2021). Simulations used to inform the design of SMARTs (see, e.g., Petersen et 

al. 2015; Benkeser et al. 2020) further support the potential benefits of longitudinal TMLE 

for the primary analysis of embedded regimes in SMART studies. However, to the best of 

our knowledge, neither longitudinal TMLE nor other semiparametric efficient estimators 

have been implemented or reported as the primary analysis method of a published SMART.

In this paper, we first review, using the “Causal Roadmap” (Petersen & van der Laan, 2014), 

how SMART designs can be used to identify the effects of embedded regimes, including 

the expected counterfactual outcome (or value) of each regime had all participants in the 

population followed it. We then describe an efficient and robust approach to estimating these 

counterfactual quantities without reliance on model assumptions, beyond the assumption 

of sequential randomization known by design. Specifically, we describe a longitudinal 

TMLE (Bang & Robins, 2005; van der Laan & Gruber, 2012) for estimating the values 

of these embedded regimes. TMLE is a double robust, semi-parametric, efficient, plug-in 

estimator that incorporates machine learning to improve efficiency without sacrificing 

reliable inference. We review the assumptions needed for valid statistical inference using this 

estimator, and we show how to construct individual and simultaneous confidence intervals to 

evaluate multiple embedded regimes within a SMART. Specifically, we illustrate the use of 

longitudinal TMLE as the primary pre-specified analysis in the recently completed adaptive 

strategies for preventing and treating lapses of retention in Human Immunodeficiency Virus 

(HIV) Care (ADAPT-R) trial (NCT02338739). We provide simulations to demonstrate the 

robustness of the approach, including an illustration of how outcome-blind simulations 

based on real trial data can be used to inform key decisions that must be pre-specified 

in a trial’s analysis plan, such as specification of the machine learning methods employed 

for nuisance parameter estimation. We further provide a comparison to the commonly used 

IPW estimator. Using simulations and analyses of the trial data, we illustrate how the 

pre-specified use of TMLE integrating machine learning, in the analysis of the ADAPT-R 

trial, resulted in substantial improvements in efficiency, and thereby trial power, and discuss 

the interpretation of trial results.

The paper is organized as follows. In Section 2, we provide background on the ADAPT-R 

trial. In Section 3, we describe the causal model, define the causal parameters corresponding 

to the value of each embedded regime, and identify statistical parameters. In Section 4, we 

discuss estimation and inference of the identified statistical parameters. In Section 5, we 

present two simulation studies, with the dual objectives of illustrating the performance of 

these estimators and demonstrating how outcome blind simulations can be used to fully 

pre-specify a machine learning-based primary trial analysis using TMLE. In Section 6, we 

apply these methods to the ADAPT-R study. We close with a discussion.
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2 | THE ADAPT-R TRIAL

The ADAPT-R trial was a SMART carried out to evaluate individualized sequenced 

behavioral interventions to optimize successful HIV care outcomes in Kenya. Up to 30% 

of persons receiving HIV care in this population experience at least one lapse in HIV 

care; these lapses in retention can result in loss of viral suppression. Importantly, patients 

that experience a retention lapse have a diversity of characteristics and needs (Geng et al., 

2015). As a result, there is no “one-size-fits-all” incentive or strategy to help patients stay 

in care and achieve virologic suppression, demonstrating the need for effective personalized 

treatment regimes to increase successful HIV care outcomes.

In ADAPT-R, 1,809 persons living with HIV and initiating antiretroviral treatment (ART) in 

the Nyanza region of Kenya were randomized to one of three initial interventions to prevent 

a lapse in care (short message service [SMS] text messages, conditional cash transfers 

[CCTs] in the form of transportation vouchers for on-time visits, or standard of care [SOC] 

education and counseling). Patients who had a lapse in care within the first year of follow-up 

were re-randomized to a more intensive intervention to facilitate return to care (SMS text 

messages paired with CCTs, peer navigation, or SOC outreach); patients who did not have a 

lapse in care during the first year and who received SMS or CCTs in the first randomization 

were re-randomized to either continue or discontinue that intervention (study design shown 

in Figure 1).

Thus, in ADAPT-R there were 15 embedded regimes (see Table 1 for the complete list) 

that would have initially administered either SMS, CCTs, or SOC to all patients starting 

ART, and then either (a) SMS with CCTs, peer navigators, or SOC in the second stage 

should a lapse occur, or (b) for those on active first line treatment, a decision to continue or 

discontinue first stage treatment should no lapse occur. This paper describes how to estimate 

the counterfactual probability of having suppressed viral replication (plasma HIV RNA level 

< 500 copies/ml) two years after initial randomization, if a given embedded regime had been 

used for the full study population.

3 | CAUSAL ROADMAP

3.1 | Causal models

The following structural causal model (SCM, denoted as MF) will be used to describe 

the longitudinal process that gives rise to variables that are observed (endogenous) and 

not observed (exogenous) (Pearl, 2000). The random variables in MF  follow the joint 

distribution PU, X,; the SCM describes the set of possible distributions for PU, X,. For a 

time t, the endogenous variables are (1) categorical interventions A(t) ∈ At (which could 

include right-censoring); (2) covariates X(t) ∈ Xt, which include baseline covariates and 

time-varying covariates between interventions at time t − 1 and t (which could include 

indicators of time-dependent processes, such as death), and; (3) an outcome Y ∈ ℝ. 

Overbars are used to denote a variable’s past history, for example, A(t) = (A(1), …, A(t))
and X(t) = (X(1), …, X(t)), and A(0) = X(0) = ∅. Let Z(t) ⊆ (A(t − 1), X(t)) denote the subset 

of endogenous tailoring variables used by design in the SMART to assign treatment at time 
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t. Then, for observation time t = 1, …, K, the following structural equations can describe a 

SMART’s longitudinal data-generating process:

X(t) = fX(t) UX(t), X(t − 1), A(t − 1)
A(t) = fA(t) UA(t), Z(t)

Y = fY UY , X(K), A(K) ,
(1)

where exogenous variables are denoted as U = UX(t), UA(t), UY  and represent the unmeasured 

random input to the data-generating system. Importantly, fA(t) represent known parametric 

functions (specifically, the randomization scheme used in the SMART). Further, UA(t) is 

known by design in a SMART to be independent of all other exogenous factors. We note that 

in a SMART, t need not be the observation time; here, t is the time of treatment assignment. 

Thus, in a K-stage SMART (without intervening on non-randomized intervention nodes, 

such as censoring), K corresponds to the number of randomization stages.

3.1.1 | Data and models: application to ADAPT-R study—The ADAPT-R study 

provides an illustration of a SMART, where t = 1 is time of first randomization and 

t = 2 is time of second randomization (either date of first retention lapse or one year 

after initial randomization, whichever occurs first). In ADAPT-R, baseline covariates 

X(1) included participant sex, age, WHO disease stage, CD4+ T cell count, an alcohol 

consumption measure, pregnancy status, and clinic site. The Stage 1 prevention intervention 

A(1) consisted of either SMS text messages, CCTs, or SOC, each assigned with equal 

probability. Covariates assessed between randomization to Stage 1 and Stage 2 interventions, 

X(2) = (L(2), S(2)), included L(2), an indicator of whether there was a lapse in care (≥ 14 

days late to a clinic visit) within the first year after enrollment, and S(2), which included 

death, transfer to another clinic, time from first randomization to second randomization, 

pregnancy status at second randomization, plasma HIV RNA level at second randomization, 

and whether a participant could be successfully contacted prior to randomization. The Stage 

2 retention intervention A(2) consisted of either (a) SOC outreach, SMS and CCT combined 

(SMS+CCT), or a peer navigator (Nav), each assigned with equal probability if there was 

a lapse in care (L(2) = 1); or, (b) continuing or discontinuing the Stage 1 intervention, each 

assigned with equal probability, if there was no lapse in care (L(2) = 0) and the initial 

intervention was either SMS or CCT; or, (c) continuing SOC if there was no lapse in 

care and the initial intervention was SOC. The outcome of interest Y  was an indicator of 

remaining alive and with viral suppression at year 2.

The SCM for ADAPT-R can be written as follows, where Z(2) = (A(1), L(2)):

X(1) = fX(1) UX(1)
A(1) = fA(1) UA(1), Z(1)
X(2) = fX(2) UX(2), X(1), A(1)
A(2) = fA(2) UA(2), Z(2)

Y = fY UY , X(2), A(2) ,

(2)

where A(1) is drawn from a multinomial distribution with n = 1, k = 3, pSMS = pCCT = pSOC = 1/3
and A(2) is drawn from a Bernoulli distribution with pdiscont. = pcont. = 0.5 if L(2) = 0 and 

Montoya et al. Page 5

Biometrics. Author manuscript; available in PMC 2023 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A(1) ∈ SMS, CCT , deterministically equal to SOC if L(2) = 0 and A(1) = SOC, and drawn 

from a multinomial distribution with n = 1, k = 3 and pSMS+CCT = pNav. = pSOC = 1/3 if L(2) = 1. 

Additionally, here UA(1), UA(2)  are independent of each other and all other Us.

3.2 | Causal questions and parameters

The focus of this paper is on evaluating outcomes under the dynamic treatment regimes 

embedded in a SMART. In other words, our causal questions take the form: what are the 

expected outcomes at the end of follow up if all members of the target population had 

followed each of the dynamic regimes embedded in the SMART design?

Let ϕt(A(t − 1), X(t)) ⊆ At denote the set of allowable treatments for a participant presenting 

with (A(t − 1 , X(t)) = (a(t − 1), x(t)) at time t. Then, let a decision rule dt be a function 

that takes as input the information accrued on a participant up to time t and outputs 

a single treatment level from among the set of possible treatment levels to which a 

participant could be randomly assigned, for all covariate and treatment histories, that 

is, dt: X1 × ⋯ × Xt, A1 × ⋯ × At − 1 ϕt(A(t − 1), X(t)). Denote Dt as the set of all such 

decision rules at time t. Let d = d1, d2, …, dK  be a dynamic treatment regime (i.e., a 

sequence of rules for assigning a treatment level at each randomization stage), and let 

dt: X1 × ⋯ × Xt, A1 × ⋯ × At − 1 ϕ1(X(1)) × ⋯ × ϕt(A(t − 1), X(t)) denote a regime sequence 

until time t. Let D be the set of all such dynamic treatment regimes.

We focus here on the embedded dynamic treatment regimes in a SMART, which are 

particular sequences of rules with input Z(t), the tailoring variables used for assigning 

treatment at time t in the actual randomization scheme employed by the trial, and 

output in ϕt(A(t − 1 , X(t)), for all t. The set of embedded regimes D are subset of 

the entire set of dynamic regimes, and we denote dt(Z(t)) as an element of D, where 

dt(Z(t)) = d1(Z(1)), d2(Z(2)), …, dt(Z(t))  is a SMART’s embedded regime until time t.

A counterfactual outcome under an embedded dynamic treatment regime d is an individual’s 

outcome if, possibly contrary to fact, the individual had been assigned treatment according 

to the embedded regime d. This counterfactual outcome, denoted as Y d, can be derived under 

an intervention on the above SCM, in which at each randomization stage in the SMART, 

the randomized treatment assignment mechanism used in the SMART is replaced with a 

deterministic assignment of a single treatment level based on observed history; that is, for 

t = 1, …, K:

X(t) = fX(t) UX(t), X(t − 1), A(t − 1)
A(t) = dt(Z(t))

Y d = fY UY , X(K) .
(3)

The target causal parameters that answer our aforementioned causal queries are summary 

measures of the post-intervention distribution contained within the SCM. Here, the relevant 

causal parameters are the expected counterfactual outcomes had all participants received 

each of the SMART’s embedded dynamic regimes; that is, for one d ∈ D:
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Ψd
F PU, X = EPU, X Y d , (4)

and the vector of the counterfactual values of the D embedded regimes is denoted 

ΨF PU, X = Ψd(1)
F PU, X , …, Ψd(D)

F PU, X .

Of note, although in the current paper we focus on evaluating the particular regimes 

embedded within a SMART, we are not limited to asking the above causal questions when 

analyzing a SMART; by design, SMARTs easily allow for answering many causal questions 

corresponding to alternative aims of the study, such as:

1. Point treatment static regimes for the embedded nested trials. For example, in 

ADAPT-R: what is the counterfactual probability of either experiencing a lapse 

in retention by one year or viral non-suppression at one year (an interim outcome 

not affected by the second line intervention assignment) had everyone received 

each of the initial interventions (SMS, CCT, and SOC)?

2. Point treatment optimal dynamic treatment rule. For example, in ADAPT-R: 

what is the optimal way to assign initial SMS, CCT, or SOC to participants 

based on their measured baseline characteristics to minimize the probability of a 

retention lapse by year one or viral non-suppression at year one?

3. Longitudinal optimal dynamic treatment regime. For example, in ADAPT-R: 

what is the optimal way to assign Stage 1 and Stage 2 treatments, in sequence, 

based on the observed baseline and time-varying covariates to minimize viral 

suppression at year two?

We refer the reader to Kosorok and Laber (2019) for an overview of possible methods for 

answering these questions, particularly those that estimate optimal dynamic treatment rules.

Further, it could also be of interest to contrast pairs of embedded regimes; for example, for a 

pair of embedded regimes numbered i, j ∈ 1, …, D , i ≠ j, one possible causal parameter that 

contrasts the efficacy between the two strategies is EPU, X Y d(i) − Y d(j) . Such contrasts follow 

naturally from the approach described in the paper to estimate the regime-specific mean 

outcomes. These contrasts could be specified a priori, or omnibus tests could be employed, 

such as comparing the best embedded regime versus the worst (without knowing in advance 

which is which) or whether there are any significant differences in any of the regime values.

3.2.1 Causal parameters—application to ADAPT-R study—Within ADAPT-R, the 

set of allowable treatments at each timepoint given past participant information is as follows: 

ϕ1(X(1)) = SMS, CCT, SOC , ϕ2(X(1), A(1), S(2), L(2) = 1) = SMS + CCT, Nav . , SOC , 

ϕ2(X(1), A(1) ∈ SMS, CCT , S(2), L(2) = 0) = continue, discontinue , and 

ϕ2(X(1), A(1) = SOC , S(2), L(2) = 0) = continue .

Then, let d = d1, d2  be a dynamic treatment regime that uses participant information to 

assign the allowed treatments ϕ1(X(1)) and ϕ2(A(1), X(2)) at Stages 1 and 2, respectively; that 
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is, d assigns A(1) and A(2) based on baseline covariates X(1) and time-varying covariates and 

initial treatment X(2), A(1) , respectively.

Specifically, we are interested in evaluating the particular sequence of rules that were 

used for assigning treatment within the SMART, d ∈ D, that is, the embedded regimes 

within ADAPT-R. The decision rules within the embedded regimes are characterized 

as follows: (1) at time 1, treat with either SMS, CCT, or SOC, regardless of baseline 

covariates, that is, d1:Z(1) ϕ1(X(1)), where Z(1) = Ø and, (2) at time 2, treat with either 

SMS+CCT, Nav., SOC outreach, continue, or discontinue, depending on the initial treatment 

decision and whether there is a lapse in care in year 1, that is, d2:Z(2) ϕ2(X(2), A(1)), 
where Z(2) = A(1), L(2) . For example, one embedded dynamic treatment regime d assigns 

treatment via the following strategy: (1) d1 = assign SMS to everyone; (2) d2 = assign
SMS+CCT if L(2) = 1 (lapse in care), continue SMS otherwise (succeed in care).

For one embedded regime, Ψd
F answers the causal question: what is the probability of 

viral suppression at two years of follow-up had everyone been assigned the same Stage 1 

intervention, then each person assigned a Stage 2 intervention based on the participant’s 

Stage 1 intervention and whether or not that person had a lapse in care? Further, we are 

interested in the vector ΨF , which contains the counterfactual probabilities of 2 year viral 

suppression had everyone received each of the 15 strategies listed in Table 1.

Finally, one may be interested in contrasting two adaptive strategies for preventing lapses in 

HIV care. For example, to compare the efficacy of the first two regimes in Table 1, let d(1) be 

regime #1 from Table 1 (SOC, then SOC outreach if lapse and continue if no lapse), and d(2)

be regime #2 (SMS, then SOC outreach if lapse and continue if no lapse). Then, the causal 

parameter that contrasts these two strategies is EPU, X Y d(1) − Y d(2) .

3.3 | Statistical model, identification, and statistical target parameter

We assume that the observed data Oi ≡ X(K)i, A(K)i, Y i ∼ P0 ∈ M, i = 1, …, n were generated 

by sampling n independent and identically distributed copies from a data-generating system 

contained in MF  above. Here, P0 is the observed data distribution, an element of M, the 

statistical model.

Two conditions are necessary for identification; that is, for determining that the causal 

parameter (i.e., Equation (4), a function of the counterfactual distribution, PU, X) is 

equivalent to a statistical parameter (a function of the observed data distribution P0) for all 

distributions PU, X contained in MF . For t = 1, …, K and d ∈ D, we consider the (1) sequential 

randomization assumption (SRA): Y dt ⊥ A(t) ∣ X(t), A(t − 1) = dt − 1(Z(t − 1)); and, (2) 

sequential positivity assumption: g0 A(t) = dt(Z(t)) ∣ X(t), A(t − 1) = dt − 1(Z(t − 1)) > 0 − a . e ., 

where gA(t), 0(A(t) ∣ X(t), A(t − 1)) = P0(A(t) ∣ X(t), A(t − 1)) is the true conditional probability 

of the treatment at time t given measured time-varying variables used in the study 

design. Informally, the SRA states that there are no unmeasured common causes between 

assignment of A(t) and Y , given that the individual has followed the regime up to t and 
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information accrued up to t. The sequential positivity assumption states that among subjects 

who have followed the regime up to t, there must be a positive probability of continuing to 

follow that regime at t, regardless of a participant’s past information.

A SMART, by design, ensures that both conditions are met. For example, in ADAPT-R, 

individuals are completely randomized to A(1) and are randomized based on measured, 

accrued information (i.e., Z(2)) to A(2). The probability of receiving any of the embedded 

decision rule treatments at Stage 1 given baseline covariates X(1) is 1/3; the probability of 

receiving any of the possible embedded decision rule treatments at Stage 2 is 1/3 among 

people who had a lapse, 1/2 among people who succeeded in care and were initially 

given SMS or CCT, and 1 among people who succeeded in care and were initially given 

SOC. The general statistical parameter corresponding to Ψd
F PU, X  for one embedded regime 

d = dK(Z(K)) is the G-computation formula (Robins, 1986):

Ψd P0 = ∑
x(1), …, x(K)

E0 Y ∣ X(K) = x(K), A(K) = dK(Z(K))

× ∏
t = 1

K
P0(X(t) = x(t) ∣ X(t − 1) = x(t − 1), A(t − 1)

= dt − 1(Z(t − 1)) ,

(5)

where the summation generalizes to an integral for continuous X(t). Equation (5) can also 

be re-written as a series of iterated conditional expectations (ICEs; or sequential regressions) 

(Bang & Robins, 2005):

Ψd P0 = E0 E0 ⋯E0 E0 Y ∣ X(K), A(K) = dK(Z(K)) ∣
X(K − 1), A(K − 1) = dK − 1(Z(K − 1)) ⋯ ∣ X(1), A(1) = d1(Z(1)) ,

(6)

or as the following IPW estimand: Ψd P0 = E0
I A(K) = dK(Z(K))

∏t = 1
K g0(A(t) ∣ X(t), A(t − 1))

Y .

The observed data for an ADAPT-R participant are O = X(2), A(2), Y ; the observed 

dataset consists of 1,809 i.i.d. observations of O generated by a process described by the 

aforementioned causal model. The statistical target parameter corresponding to the value 

of (i.e., the expectation of the counterfactual outcome under) an embedded regime within 

ADAPT-R is:

Ψd P0 = ∑
x(1), x(2)

E0 Y ∣ X(2) = x(2), A(2) = d2(Z(2))

× P0 X(2) = x(2) ∣ x(1), A(1) = d1(Z(1)) P0(X(1) = x(1)) .
(7)

The vector of all embedded regime values is identified as Ψ P0 = Ψd(1) P0 , …, Ψd(D) P0 ; in 

ADAPT-R, D = 15. Finally, if one were interested in comparing the value of two embedded 

regimes d(i) and d(j), the statistical parameter corresponding to this contrast would be 

Ψd(i) P0 − Ψd(j) P0 .
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4 | ESTIMATION AND INFERENCE FOR THE VALUES OF EMBEDDED 

REGIMES

We are interested in estimators for the statistical parameter identified in Section 3.3—that 

is, estimators for evaluating a SMART’s embedded dynamic regimes. We focus on a 

longitudinal TMLE, and compare this with the IPW and G-computation estimator based 

on ICEs. All of these estimators can be implemented with the ltmle package (Lendle et al., 

2017; Petersen et al., 2014). We briefly describe the longitudinal TMLE employed in the 

ADAPT-R analysis here, and we refer the reader to the Web Appendix A for a detailed 

description of the steps for implementing the three estimators.

The longitudinal TMLE employed here is a flexible and robust approach that estimates the 

value of a sequential regime by fitting initial estimates of the series of ICEs (Equation 

(6)) and updating these using either the known or estimated treatment mechanisms 

(Bang&Robins, 2005; van der Laan & Gruber, 2012). Critically, TMLE allows for the use 

of flexible machine learning methods, such as SuperLearner (van der Laan et al., 2007), to 

generate the initial estimates of the ICEs. Once updated using the treatment mechanisms, 

these estimates are then used to implement a plug-in estimator of the target parameter, as 

defined in Equation (6). In contrast, the G-computation estimators exclusively rely on initial 

(untargeted) estimates of the ICEs, while the IPW estimator relies on either the estimated or 

true (and known, in a SMART) treatment mechanisms to estimate the value of an embedded 

regime.

Inference for the TMLE estimates of the embedded regime values can be based on 

estimates of the efficient influence curve for the target statistical parameter (Bang &Robins, 

2005), which can be used to construct Wald-type 95% confidence intervals that, under 

assumptions, provide nominal to conservative coverage for the value of the one embedded 

regime. Further, because one goal is to evaluate the multiple dynamic regimes embedded 

in a SMART at the same time, one can also use an estimate of the efficient influence 

curve to construct simultaneous confidence intervals (Cai & van der Laan, 2020). For 

example, in ADAPT-R, one goal might be to evaluate 15 embedded regimes simultaneously; 

simultaneous confidence intervals aim to ensure that all estimated confidence intervals 

contain the true values of the embedded regimes at the nominal level, thus providing one 

approach to account for multiplicity. The same approach can be easily extended to handle 

multiple comparisons of these regimes. We refer the reader to Web Appendix B for technical 

details on how to construct these confidence intervals.

If implemented carefully, longitudinal TMLE has the potential to substantially improve 

efficiency (both asymptotically and in finite samples), and thereby increase study power. 

In a SMART, the treatment mechanism is known; thus, if there is no censoring, one 

could use the true conditional treatment probabilities g0(A(t) ∣ X(t), A(t − 1)) ≡ g0(A(t) ∣ Z(t))
in either the IPW or TMLE estimators. Estimator precision can be improved, however, 

by estimating the treatment mechanism using a maximum likelihood estimate of the 

parameters of a correctly specified parametric model (such as a generalized linear model 

including either Z(t) alone, or including additional covariates in X(t)) (van der Laan & 

Robins, 2003). Either of these estimator specifications (either usage of the true treatment 
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mechanism probabilities or estimates via correctly specified parametric models) will result 

in IPW and TMLE estimators that are consistent; however, the use of TMLE allows for 

further efficiency gains through additional estimation of the ICEs. Informally, the resulting 

TMLE will be efficient as long as: (1) either the ICE initial estimates are not overfit, or 

sample splitting is incorporated in the estimator such that the targeted update is fit on 

data independent of that used in the initial fit (Zheng & van der Laan, 2010); and, (2) the 

ICEs are estimated consistently. Importantly, when using TMLE (or other double robust 

semiparametric efficient estimators), the iterated conditional expectations can be estimated 

using machine learning, increasing the chance that they are estimated consistently and 

potentially further improving finite sample variance.

We contrast these efficiency properties of TMLE with those of the G-computation and 

IPW estimators. In particular, there is no valid theory for inference on the G-computation 

estimator if the ICEs are estimated using either flexible machine learning algorithms or 

with mis-specified parametric models. IPW estimators do allow for conservative or nominal 

inference with either consistently estimated or true values of the treatment mechanisms, but 

they are not efficient.

5 | SIMULATIONS

Using simulations, we evaluated the performance of various estimators for the values of 

a SMART’s embedded regimes. We did this for two data generating processes (DGPs) 

corresponding to SMART designs (i.e., in which the true treatment mechanism g0(A(t) ∣ Z(t))
is assumed known): (1) a simple, hypothetical DGP in which re-randomization is based only 

on intermediate covariates (and not initial treatment; DGP 1); and (2) an outcome-blind 

simulation based on data from ADAPT-R in which the actual ADAPT-R empirical covariate 

distribution and known treatment mechanism was used, but for which the outcomes 

themselves were simulated (DGP 2). Importantly, the latter represents a powerful tool for 

fine-tuning choices for pre-specification of an estimator.

For both DGPs, we first implemented the IPW estimator using the true treatment 

mechanisms, the g0(A(t) ∣ Z(t)) factors, which are known in a SMART (denoted as “Min. 

adj. IPW w/g0”). Second, we implemented an IPW estimator, where g0(A(t) ∣ Z(t)) was 

estimated using the empirical proportions of each covariate and treatment history strata 

(i.e., a saturated model, denoted as “Min. adj. IPW w/gn”). We note that the G-computation 

estimator and TMLE will generate equivalent estimates to this IPW estimator if the ICE 

factors are also estimated with saturated regression models. Third, we implemented an IPW 

estimator, where g0(A(t) ∣ Z(t)) was estimated using main-terms logistic regression models 

of treatment on all past treatments and covariates (including covariates not used in the 

randomization scheme, but predictive of the outcome). In subsequent results, this is denoted 

as “Full adj. IPW.” Fourth, we implemented the G-computation estimator that adjusted 

for all covariates through ICE factors estimated with SuperLearner (see Web Appendix 

C for specifications including the library of algorithms used). Finally, we implemented 

a TMLE in which ICEs were estimated adjusting for all covariates using SuperLearner, 

and g was estimated using a correctly specified logistic regression model noting that this 
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parametric model specification was known to contain the true treatment mechanism. For 

TMLE, in DGP 1 all baseline and time-varying covariates were used in the estimation of the 

g factors, while in DGP 2 estimates of g used the minimal adjustment set (i.e., Z(2)) to avoid 

overfitting.

We evaluated estimator performance in terms of absolute bias, variance, confidence 

interval width, and 95% confidence interval coverage (for both individual and simultaneous 

confidence intervals). Inference was based on the influence-curve procedures described in 

Section 4. If IPW was employed, the estimated IPW influence curve was used for inference; 

if TMLE was employed, the estimated efficient influence curve was used for inference. As 

noted in Section 4, we do not provide inference results for the G-computation estimator.

We refer the reader to Web Appendix C for details on how the simulations were 

implemented, including specific DGPs and algorithm configurations. We used the ltmle 
R package for estimation and inference (Lendle et al., 2017; Petersen & van der Laan, 

2014). Each simulation consisted of 1,000 iterations of n = 1,692 observations (the sample 

size for the ADAPT-R’s analysis dataset after excluding 117 persons for a missing outcome 

measure). We additionally implemented these simulations for DGP 1 with a reduced sample 

size of n = 750 and various different SuperLearner library configurations for comparison.

5.1 | Simulation results

The results described below are shown in Figures 2 and 3, tables in Web Appendix C, and 

additional figures in Web Appendix D.

The untargeted G-computation estimator, in which the ICEs were fit using machine learning, 

exhibited the highest bias among the estimators across the embedded regimes evaluated. 

Specifically, for DGP 1, the hypothetical SMART with minimal covariates, the mean 

absolute difference between the G-computation estimate and the truth ranged from 0.09% 

to 0.69% (1.70–91.01 times that of the bias of any IPW or TMLE estimator). For DGP 2, 

which incorporated covariates re-sampled from the empirical distribution of ADAPT-R data, 

the absolute mean difference between the G-computation estimate and the truth ranged from 

0.20% to 1.41%; across all embedded regimes except for 2 and 6, bias of the G-computation 

estimator was 1.62–138.64 times that of the bias of IPW or TMLE. For the remaining 

embedded regimes 2 and 6, bias of the G-computation estimator was minimal and similar to 

the IPW estimator and TMLE, likely because the SuperLearner consistently chose saturated 

regression models to estimate the ICEs, thus generating equivalent estimates to TMLE and 

IPW.

As expected, the IPW that used the known treatment mechanism (“Min. adj. IPW w/g0”) 

was unbiased with close to nominal coverage (93.1%–95.8% range across both DGPs and 

both confidence interval types), but exhibited a higher variance than other estimators. For 

example, the relative variance of the IPW estimator that used the known, true probabilities 

of treatment versus the IPW estimator that used empirical proportions given the minimal 

adjustment set Z(2) to estimate the g factors (i.e., “Min. adj. IPW w/g0” vs “Min. adj. IPW 

w/gn”) was 2.10–6.14 for DGP 1 and 2.87–3.37 for DGP 2. Finally, the IPW estimator 

in which the g factors were estimated adjusting for additional baseline and time-varying 
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covariates (i.e., “Full adj. IPW”) resulted in some variance reduction compared to the IPW 

in which g was estimated using only the minimal adjustment set Z(2) (i.e., the “Min. adj. 

w/gn” variance was up to 1.14 that of the “Full adj. IPW” variance). Although estimation of 

the treatment mechanism reduced the variance of the point estimator, reductions in the 95% 

confidence interval widths (and by implication, power for contrasting regimes) were limited 

by the fact that influence curve-based inference for IPW estimators in which g was estimated 

yielded conservative inference (i.e., 99.3%–100.0% confidence interval coverage across all 

DGPs and confidence interval types).

The TMLE with the estimated treatment mechanisms and ICEs estimated using machine 

learning (SuperLearner) were unbiased with close to nominal confidence interval coverage 

(93.4%–96.0% across both DGPs and both confidence interval types). In addition, TMLE 

showed variance gains relative to IPW, particularly for DGP 2 (e.g., the relative variance of 

the fully adjusted IPW versus TMLE was 1.01–1.12 for DGP 1 and 1.36–1.58 for DGP 2), 

through its ICE estimation using machine learning (i.e., beyond estimation of the g factors, 

as in IPW estimation). TMLE resulted in substantially narrower mean 95% confidence 

intervals across both DGPs (1.57–2.62 times that of fully adjusted IPW confidence interval 

widths), due both to a slightly lower variance of the estimator, and the less conservative 

influence curve-based variance estimation compared to IPW.

In further simulations (see results in Web Appendix D), a reduction in sample size to n = 750 

resulted in similar comparative performance across the estimators. Inclusion of a tree-based 

method in the SuperLearner library (namely, recursive partitioning and regression trees; 

Breiman et al. 1984) or highly adaptive lasso (HAL; Benkeser & van der Laan 2016) yielded 

similar patterns; though, notably, when including a tree-based method the bias increased 

significantly for the G-computation estimator.

6 | ADAPT-R STUDY RESULTS

Of the 1,809 ADAPT-R participants, 117 did not have a viral load outcome; these patients 

were excluded from the analytic dataset (n = 1,692; noting that if an outcome variable has 

substantial missingness, one could incorporate this into the causal model and thus adjust for 

it). Using this sample, we conducted two analyses for the paper, described below. A full 

report and interpretation of ADAPT-R’s main results, including the clinical and public health 

implications, will be published in a separate manuscript.

First, we estimated (using TMLE, as described for the “Full adj. TMLE” estimator in 

simulations for DGP 2) and obtained inference on (using influence curve-based single and 

simultaneous confidence intervals) the value of each of ADAPT-R’s 15 HIV care retention 

strategies (embedded regimes). The results of this analysis are shown in Figure 4 and Web 

Appendix E (Web Table 5, which includes the number of patients who contributed to each 

of the regimes). A point estimate reflects the estimated probability of viral suppression had 

the study population followed one of ADAPT-R’s embedded regimes. For example, for the 

second embedded regime, we estimate that an intervention to deliver SMS to the full target 

population at a time of ART initiation, followed by a transition from SMS to SOC outreach 

if a lapse in retention occurred, or the continuation of SMS if a lapse did not occur, would 
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have resulted in 78.34% (95% simultaneous CI: [70.84%, 85.83%]) of the population alive 

and with a suppressed viral load after two years.

Second, we evaluated five pre-specified contrasts (i.e., differences in values of pre-specified 

pairs of rules) between the regimes, shown in Figure 5 and Web Appendix E (Web Table 6). 

The first four regime pairs were chosen to compare the “fully active” regime arms versus 

SOC throughout; a fifth pre-specified contrast evaluated the effectiveness of a strategy of 

time-limited CCT (initial CCT, with SOC outreach if a lapse occurred and discontinuation 

if no lapse occurred) versus SOC throughout. We implemented all three IPW estimators 

and the fully adjusted TMLE, described in the above simulations. Due to the small number 

of pre-specified hypotheses tested, multiplicity correction was not employed in these tests. 

TMLE estimates suggest that an active first line therapy (such as SMS or CCT) followed 

by a tailored peer-navigator was effective in improving viral suppression compared to the 

current HIV care standard throughout. In contrast, a single time limited CCTs did not result 

in significantly different viral suppression compared to receiving SOC throughout.

We note the important variance reduction in the TMLE that used the full adjustment set 

versus all other candidate estimators. In particular, confidence interval widths for non-TMLE 

estimates were wider (i.e., 1.92 to 2.40 times wider) than the full adjustment set. Critically, 

had we used an IPW estimator using either the known treatment mechanism or an estimated 

treatment mechanism—a version of weighting and replicating—instead of the presented 

TMLE, the results would not have detected any statistically significant contrasts.

7 | DISCUSSION

The purpose of this paper was to illustrate implementation of longitudinal TMLE, 

integrating machine learning, for the evaluation of the embedded dynamic regimes in a 

SMART study. While previously described, to the best of our knowledge, this approach 

has not yet been applied in the primary published analysis of a SMART. We additionally 

illustrated how to obtain simultaneous confidence intervals on the values of multiple 

dynamic treatment regimes embedded in a SMART. In simulations and real data, we found 

substantial precision benefits from using this double robust, efficient estimator, especially in 

conjunction with adjustment for time-varying and baseline covariates using flexible machine 

learning approaches.

Specifically, in simulations, TMLE and IPW showed reduced bias compared to a G-

computation estimator that utilized non-targeted machine learning-based iterated outcome 

regressions. Estimation of the treatment mechanism (compared to using the known, true 

probabilities of treatment), reduced the variance of the IPW estimator, with some further 

reduction in variance achieved through adjustment for covariates in addition to the minimal 

set needed for satisfying the SRA. However, the width of the IPW confidence intervals 

remained higher than that of TMLE using the corresponding adjustment set. Precision 

gains in the TMLE were driven both by reduced variance of the point estimator and 

by less conservative influence curved-based variances’ estimates. When estimating both 

its treatment mechanism (via a correctly specified, baseline and time-varying covariate 

adjusted logistic regression) and iterated outcome regressions (via SuperLearner, adjusting 
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for all covariates) TMLE maintained close to nominal confidence interval coverage. This 

is analogous to the efficiency gains seen when adjusting for baseline covariates predictive 

of the outcome in a standard, single time-point randomized trials (Moore & van der Laan, 

2009).

In addition, we showed how to evaluate the embedded regimes of ADAPT-R, a SMART 

carried out in Kenya to prevent lapses in HIV care. ADAPT-R’s embedded regimes 

consisted of a menu of strategies that adapted to patients’ responses to HIV care. The 

purpose of evaluating these regimes was to see the effect of each of these tailored strategies 

on viral suppression among this population. Using TMLE (with and without simultaneous 

confidence intervals), we obtained estimates of the probability of viral suppression for each 

of ADAPT’s 15 embedded regimes. Further, with all IPW and TMLE estimators presented 

in this paper, we contrasted the efficacy between pre-specified strategies. Notably, results 

of these analyses illustrated the precision benefits associated with the longitudinal TMLE. 

In particular, had we used any of a set of common IPW estimators—estimators that do not 

fully leverage covariate data, machine learning, and semi-parametric efficiency theory—we 

would not have been able to learn that active sequence strategies tailored to having a lapse in 

care improve viral suppression, compared to the current HIV care standard throughout. This 

emphasizes the importance of the described efficiency gains within our HIV care research, 

and also given the recent increase in “small n SMARTs” (e.g., Chao et al. 2020).

The results of the analysis of ADAPT-R’s embedded regimes present a menu of 

individualized strategies to help patients remain in HIV care. In particular, these results 

demonstrate the necessity for following HIV patients longitudinally in their treatment 

program, in order to escalate their treatment when needed, and shed light on effective 

escalation strategies. Critically, this kind of insight is not one we could have gleaned without 

a SMART. The current work aims to contribute to help uncover the potential of SMART 

designs so that—with more precision and certainty—we are more equipped to learn which 

treatments work better for whom, and when.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
The Adaptive Strategies for Preventing and Treating Lapses of Retention in HIV Care 

(ADAPT-R) study design, a sequential multiple assignment randomized trial (SMART). The 

circles with an “R” denote points of randomization
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FIGURE 2. 
DGP 1. Performance (top left panel is absolute bias, top right panel is Monte Carlo variance 

over simulation repetitions, bottom left panel is mean confidence interval [CI] width across 

simulation repetitions, and bottom right panel is 95% CI coverage) of candidate estimators 

of the value of each of the 8 embedded regimes within the simple Sequential Multiple 

Assignment Randomized Trial (SMART) generated from DGP 1. The five estimators 

evaluated are: (1) an inverse probability weighted (IPW) estimator with weights based 

on the true, known probability of receiving treatment given the initial treatment and lapse 

response (“Min. adj IPW w/g0”); (2) an IPW estimator with estimated weights based on the 

empirical proportion of receiving treatment given the initial treatment and lapse response, 

which is equivalent to a TMLE or G-computation estimator where iterated ICE factors are 

estimated with saturated regression models (“Min. adj IPW w/gn”); (3) an IPW estimator 

with estimated weights that adjust for all covariates (“Full adj. IPW”); (4) a G-computation 

estimator based on ICEs estimated with machine learning that adjust for all covariates (“Full 

adj. G-comp.”); and (5) a targeted maximum likelihood estimator (TMLE) that adjusts for 

all covariates (“Full adj. TMLE”). Both individual and simultaneous CI coverage is shown 

under the regime numbers 1–8 and “Simult.,” respectively
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FIGURE 3. 
DGP 2. Performance (top left panel is absolute bias, top right panel is Monte Carlo variance 

over simulation repetitions, bottom left panel is mean confidence interval [CI] width across 

simulation repetitions, and bottom right panel is 95% CI coverage) of candidate estimators 

of the value of each of the 15 embedded regimes within the outcome-blind simulation of the 

Adaptive Strategies for Preventing and Treating Lapses of Retention in HIV Care (ADAPT-

R) trial (DGP 2). The five estimators evaluated are: (1) an inverse probability weighted 

(IPW) estimator with weights based on the true, known probability of receiving treatment 

given the initial treatment and lapse response (“Min. adj IPW w/g0”); (2) an IPW estimator 

with estimated weights based on the empirical proportion of receiving treatment given the 

initial treatment and lapse response, which is equivalent to a TMLE or G-computation 

estimator where iterated conditional expectation (ICE) factors are estimated with saturated 

regression models (“Min. adj IPW w/gn”); (3) an IPW estimator with estimated weights that 

adjust for all covariates (“Full adj. IPW”); (4) a G-computation estimator based on ICEs 

estimated with machine learning that adjust for all covariates (“Full adj. G-comp.”); and (5) 

a targeted maximum likelihood estimator (TMLE) that adjusts for all covariates (“Full adj. 
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TMLE”). Both individual and simultaneous CI coverage is shown under the regime numbers 

1–15 and “Simult.,” respectively
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FIGURE 4. 
Analysis of the Adaptive Strategies for Preventing and Treating Lapses of Retention in HIV 

Care (ADAPT-R) study. Estimates of the probability of viral suppression under each of 

ADAPT-R’s 15 embedded regimes are listed in Table 1. The squares are targeted maximum 

likelihood estimator (TMLE) point estimates and the error bars are 95% confidence intervals 

on these point estimates (simultaneous and single confidence intervals in panels A and B, 

respectively). We note that these point estimates vary slightly from pre-specified analyses in 

ADAPT-R in that the latter used SuperLearner rather than logistic regressions for estimation 

of the treatment mechanism
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FIGURE 5. 
Pre-specified contrast analysis of the Adaptive Strategies for Preventing and Treating Lapses 

of Retention in HIV Care (ADAPT-R) study. Estimates of the difference in probability of 

viral suppression for the following pre-specified rules compared to standard of care (SOC) 

throughout: (1) short message service (SMS) with continuation if no lapse and addition of 

conditional cash transfer (CCT) if a lapse occurred (embedded regime number 5); (2) CCT 

with continuation if no lapse and addition of SMS if lapse occurred (embedded regime 

number 6); (3) SMS with continuation if no lapse and replacement with navigator if lapse 

occurred (regime number 8); (4) CCT with continuation of no lapse and replacement of 

navigator if lapse occurred (regime number 9); and (5) initial CCT, with SOC outreach if 

a lapse occurred and discontinuation if no lapse occurred (regime number 11). Shapes are 

point estimates (and error-bars are influence curve-based individual confidence intervals), 

which were generated with: (1) an inverse probability weighted (IPW) estimator with 

weights based on the true, known probability of receiving treatment given the initial 

treatment and lapse response (“Min. adj IPW w/g0”); (2) an IPW estimator with estimated 

weights based on the empirical proportion of receiving treatment given the initial treatment 

and lapse response (“Min. adj IPW w/gn”); (3) an IPW estimator with estimated weights that 
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adjust for all covariates (“Full adj. IPW”); and (4) a targeted maximum likelihood estimator 

(TMLE) that adjusts for all covariates (“Full adj. TMLE”)
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TABLE 1

List of 15 dynamic treatment regimes embedded within the Adaptive Strategies for Preventing and Treating 

Lapses of Retention in HIV Care (ADAPT-R) study (i.e., ADAPT-R’s 15 embedded regimes)

Embedded regime (d) Stage 1 Stage 2 if lapse Stage 2 if no lapse

1 SOC SOC outreach Continue

2 SMS SOC outreach Continue

3 CCT SOC outreach Continue

4 SOC SMS + CCT Continue

5 SMS SMS + CCT Continue

6 CCT SMS + CCT Continue

7 SOC Navigator Continue

8 SMS Navigator Continue

9 CCT Navigator Continue

10 SMS SOC outreach Discontinue

11 CCT SOC outreach Discontinue

12 SMS SMS + CCT Discontinue

13 CCT SMS + CCT Discontinue

14 SMS Navigator Discontinue

15 CCT Navigator Discontinue
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