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ABSTRACT OF THE DISSERTATION

Hippocampal Neural Dynamics of Spatial Navigation in the Morris Water Maze

by

Mina Shahi

Doctor of Philosophy in Bioengineering

University of California, Los Angeles, 2024

Professor Peyman Golshani, Co-Chair

Professor Weizhe Hong, Co-Chair

This thesis investigates changes in neural dynamics during spatial learning by recording the activity

of large populations of CA1 hippocampal neurons during performance of the Morris water maze

(MWM) navigation task.

Employing a generalized linear model, we found significant enhancements in the sparsity of

both spatial and head-directional firing rates, indicating more refined neuronal representations after

learning. Artificial neural networks successfully decoded position, head direction, and distance-to-

platform from neural activity patterns, with decoding accuracy improving as animals mastered the

task.

To determine if long-term potentiation (LTP), a form of synaptic plasticity important for learn-

ing, was essential for learning associated changes in hippocampal representations, we recorded

CA1 hippocampal activity in GluA1C2KI mutant mice, which have impaired CA1 LTP and learning

deficits. We found that GluA1C2KI mice exhibited impaired spatial memory consolidation dur-

ing probe trials, suggesting a specific impairment in the retention of learned spatial information.

Single-cell and network analyses in GluA1C2KI mice revealed no significant increase in head-
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directional sparsity with learning, nor any notable reduction in decoding error for head-direction,

and distance-to-platform information. These findings suggest a potential role of LTP in fine-tuning

neural representations associated with task learning. These findings underscore the importance of

LTP mechanisms in spatial memory and highlight its implications for cognitive disorders involving

spatial navigation deficits.
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CHAPTER 1

Introduction

Learning and memory underpin the acquisition of new skills [CB10], adaptive behavior [PAF05],

decision-making [Eic17], ability to recall information [Squ92] and personal experience [Eic00],

cognitive development [Nel00], problem solving [And13], and ability to navigate [ON79, MKM08,

SB15], silently orchestrate behind the scenes.

Among various forms of learning, spatial learning stands out as critical for the animal. The skill

of navigating the physical world, grasping spatial relationships, and constructing mental maps isn’t

merely a cognitive luxury; it is a fundamental necessity for the survival of almost all vertebrates.

Animals rely on spatial memory to help them locate water and food, and evade predators and

physical hazards. This remarkable ability hinges on the development of a mental representation of

the external world, highlighting the intricate interplay between spatial learning, memory, and the

adaptive capacities vital for survival.

1.1 Hippocampus and spatial representation

Unraveling the neural basis for learning and memory has been an intense topic of investigation

for nearly a century. The foundational work that initially linked the hippocampus to learning and

memory was conducted by Brenda Milner and William Beecher Scoville in the 1950s [SM57]. The

famous case study involved patient H.M. (Henry Molaison), who had undergone bilateral removal

of the medial temporal lobes, including the hippocampus, to treat severe epilepsy.

The study revealed that H.M. experienced profound anterograde amnesia and was unable to

1



form new memories after the surgery. This groundbreaking research provided crucial insights into

the role of the hippocampus in memory formation. Brenda Milner’s extensive work with H.M.

significantly contributed to our understanding of the neural basis of memory and the importance of

the hippocampus in the process [Mil70, MCT68, SW11].

Figure 1.1: HIPPOCAMPUS
Left: Human hippocampus. Right: Seahore. Prepared by Laszlo Seress, 1980. Source:
Wikipedia (https://en.wikipedia.org/wiki/Hippocampus)

The primary regions within the hippocampus include:

1. Dentate Gyrus (DG)

The dentate gyrus, an essential component of the hippocampal formation, receives input from

the entorhinal cortex, a key region responsible for initial sensory information processing. This

input is conveyed through the perforant path, a major input pathway to the hippocampus. The

granule cells of the dentate gyrus project axons, known as mossy fibers, to the CA3 region

of the hippocampus. The dentate gyrus is believed to contribute significantly to pattern

separation [YLS11, SMM12, BSM16], the ability to discern and encode distinct memories

from similar experiences. Additionally, it plays a crucial role in spatial memory, participating

in the encoding and retrieval of information related to spatial contexts [NPJ99, KTW07,

SGN09]. Notably, the dentate gyrus stands out as one of the few brain regions where

neurogenesis, the generation of new neurons, persists throughout an individual’s lifespan

[EPB98, GRG99].

2

https://en.wikipedia.org/wiki/Hippocampus


2. Cornu Ammonis 1 (CA1)

The CA1 region, a subfield within the hippocampal formation receives input from the en-

torhinal cortex and the CA3 region and for extrahippocampal regions, it receives input from

pallidum, striatum, hypothalamus, and the nucleus reuniens of the thalamus [TWP21]. Fol-

lowing the processing of the information, CA1 serves as a critical output region, directing sig-

nals to the subiculum and entorhinal cortex. The principal neurons in CA1 are pyramidal cells.

Renowned for its pivotal role in memory formation and spatial navigation, CA1 is vital for

the integration and consolidation of information [ON79, MM98, THT96, MBM94, EPJ17].

Damage to CA1 can result in memory impairments, impacting both episodic and spatial

memory functions [SBH01, ZSA86]. Furthermore, disruptions in CA1 function have been

implicated in various neurological and psychiatric disorders. These may include conditions

such as Alzheimer’s disease [SPS07, GAC10], epilepsy [Wal15], and other cognitive or mood

disorders [MF11, BFW11, LSL07].

3. Cornu Ammonis 2 (CA2)

Nestled between CA1 and CA3 in the hippocampus, CA2 has historically received less

attention, but recent studies have unveiled its unique functions. Positioned as an intermediate

link, CA2 receives input from the entorhinal cortex and CA3, sending output to CA1. Notably,

CA2 is critical for social memory processing, contributing to the understanding of complex

cognitive functions in the hippocampus [HS14, SWC16, MLB18].

4. Cornu Ammonis 3 (CA3)

The CA3 region, situated within the hippocampus between CA2 and the DG, forms a densely

interconnected network of neurons. Its intricate neural circuitry involves receiving primary

input from the DG and collateral input from neighboring CA3 neurons. Through its output,

notably via the Schaffer collateral pathway, CA3 communicates with other hippocampal

regions, including CA1. A key feature of CA3 is its recurrent connectivity, facilitating

the formation of pattern completion—an ability to retrieve complete memories from partial

or incomplete cues [LL07, YLS11]. Beyond this, CA3 plays crucial roles in associative
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learning [GMD06], enabling connections between stimuli or events, as well as in spatial

[SSM02, GK06, GB09] and episodic memory, contributing to the encoding and retrieval of

specific personal experiences [KHW08, MCA20].

5. Subiculum

The subiculum, situated in the hippocampal formation near CA1 and the dentate gyrus,

receives inputs from various regions, including CA1 and the entorhinal cortex. It serves

as a major output pathway, projecting to several regions, including the entorhinal cortex

(with reciprocal connections), prefrontal cortex, and amygdala. In addition to its primary

functions in information integration [OM06], memory consolidation [GBD97, BWF09],

spatial navigation [SM85, MST90], decision-making [WMS17], and contextual memory

[OSB09], the subiculum may have other roles and contributions within the broader cognitive

processes of the brain.

1.2 Diverse response properties

Various studies in neuroscience have revealed a diverse array of neuronal responses which have

been hypothesized to be crucial for spatial navigation. Here are a few notable contributors:

1. Place cells

Place cells are a subset of neurons that exhibit activity specifically when an animal is in

a particular location within its environment, often referred to as the ‘place field’ [OD71].

Place cells have been hypothesized to play a pivotal role in spatial cognition. These neurons

showcase sensitivity to the geometry and distinctive features of the surrounding environment,

contributing to the formation of a mental map. (see section 1.6)

2. Head-direction cells

Head-direction cells are specialized neurons that respond specifically to the orientation

of an animal’s head in space. These neurons exhibit firing patterns independent of the
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animal’s location in space. They are commonly found in various brain regions, including

the postsubiculum [TMR90], thalamus [MW93, Tau95], CA1 region of the hippocampus

[LRM00, AAV16], and the entorhinal cortex [GSB14].

3. Gird cells

Grid cells, along with place cells, play a crucial role in creating spatial map of the environ-

ment. Located in the entorhinal cortex, these neurons exhibit a distinctive firing pattern—a

hexagonal grid-like arrangement—spanning the animal’s navigated space [HFM05]. This

unique firing pattern contributes significantly to the brain’s ability to create a comprehensive

cognitive map, allowing for precise and effective navigation through diverse surroundings.

4. Boundary-vector cells (BVCs)

BVC cells are a subset of cells within the subiculum that exhibit maximal firing when the

animal is positioned at a preferred distance and allocentric direction from the boundary of its

environment [BLH06, LBJ09].

5. Boarder cells

Border cells are particularly responsive to the proximity of environmental boundaries, and

they exhibit increased activity when an animal is closer to the border of the environment.

These specialized cells are found in the entorhinal cortex [SBK08, SYK08].

6. Speed cells

Speed cells, a type of neurons located in the entorhinal cortex, exhibit firing patterns that

intricately correspond to the speed at which an animal navigates through its environment

[KCM15].

7. Time cells

Time cells are neurons that exhibit a distinctive firing pattern during successive moments

within temporally organized period. These unique neural elements have been observed in

the CA1 region of the hippocampus [MLE11, TPD20].
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8. Object-vector cells (OVCs)

OVC cells are a distinct class of neurons found in the entorhinal cortex, exhibiting responses

when an animal occupies a preferred distance and direction relative to an object in its

environment [HSA19].

1.3 Different behavioral paradigms to study navigation

Researchers employ a variety of mazes to study navigation, selecting specific mazes based on the

questions they aim to answer. Different mazes and navigation tasks are chosen to unravel the

complexities of spatial cognition. Commonly used mazes include:

1. Linear track

A linear track is a confined, straight pathway where animals move from one end to the other,

enclosed by walls to maintain the animal within the designated area (Figure 1.2 (a)).

2. Radial arm maze

A radial arm maze features a central platform from which several arms extend outward. The

task for the animals is to discriminate between rewarded and non-rewarded arms, navigating

to the former while abstaining from the latter. Distal cues play a crucial role in aiding the

animals to navigate the radial arm maze and remember the locations of arms with rewards

(Figure 1.2 (b).

3. Morris water maze

The Morris water maze is a circular pool filled with opaque water. A hidden escape platform

is submerged below the water’s surface. The animal’s task is to navigate and locate the hidden

platform, relying on distal visual cues on the surrounding walls (Figure 1.2 (c)).

4. Barnes maze

The Barnes maze is a circular platform with a dry surface featuring several indistinguishable

holes, with only one serving as the target escape hole. The animal’s objective is to locate the
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specific escape hole amidst the others, utilizing distal visual cues on the surrounding walls

(Figure 1.2 (d)).

5. T-maze

The T-maze is shaped like the letter ’T’, and features a central stem with two arms extending

from it. Animals commence at the stem’s starting point and navigates towards one of the

arms containing a reward (Figure 1.2 (e)).

6. Y-maze

The Y-maze exhibits a distinctive Y-shaped configuration with three arms extending from a

central point. Notably, all three arms are similar, and the animal faces a trinary choice. In

contrast, the T-maze features a simpler design with two similar arms, presenting a binary

choice for the animal to navigate between (Figure 1.2 (f)).

Figure 1.2: SPATIAL LEARNING ASSESSMENT MAZES
A diverse array of mazes designed to study spatial navigation. (a) Linear track. (b) Radial arm
maze. (c) Morris water maze. (d) Barnes maze. (e) T-maze. (f) Y-maze.
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1.4 Neural learning mechanisms: synapses and beyond

The brain employs diverse learning rules to adapt and extract knowledge from its environment.

Among these, synaptic plasticity emerges as a prominent mechanism. Synapses, the intracellular

junctions where neurons communicate, undergo dynamic changes through synaptic plasticity.

These alterations shape how neurons respond to experiences and environmental changes, facilitating

the formation of memories. This intricate process involves the modification of synaptic strength and

efficacy such as, increased neurotransmitter release and changes in both the number and sensitivity

of neurotransmitter receptors.

Several well-established synaptic plasticity learning rules govern the adaptive capabilities of

neural networks. Donald Hebb’s seminal statement [Heb05], “cells that fire together wire together”,

encapsulates a foundational principle of synaptic plasticity. According to Hebbian learning, when

the activity of a presynaptic neuron is succeeded by the activation of a postsynaptic neuron, the

connection between them strengthens. A more refined and temporally specific variation of this

concept is embodied in the spike-timing-dependent plasticity (STDP) rule. STDP dictates that

the relative timing of spikes between presynaptic and postsynaptic neurons critically influences

synaptic modifications. Specifically, if the presynaptic spike precedes the postsynaptic spike, it

induces long-term potentiation (LTP), enhancing synaptic strength. Conversely, if the postsynaptic

spike precedes the presynaptic spike, long-term depression (LTD) occurs, leading to synaptic

weakening. The excitatory postsynaptic potential (EPSP), quantified in millivolts (mV), indicates

the degree of depolarization in the postsynaptic membrane resulting from excitatory synaptic input.

Multiple factors shape the EPSP, including the synaptic connection’s strength, the number of open

ion channels, and the inherent characteristics of the postsynaptic membrane. Figure 1.3 depicts how

the timing of pre and post-synaptic spikes can trigger either synaptic potentiation or depression.

Another notable form of synaptic plasticity that can lead to LTP or LTD is Burst-Time-Dependent

Plasticity (BTDP) [BKS07]. This rule takes into account the precise timing of burst firing—rapid

sequences of action potentials—the frequency of spikes, and the temporal organization of spikes
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Figure 1.3: SPIKE-TIMING-DEPENDENT PLASTICITY
In Spike-Timing-Dependent Plasticity (STDP), the precise timing of activation between the pre
and post neurons critically determines the induction of synaptic potentiation or depression. When
the presynaptic neuron fires before the postsynaptic neuron, it results in synaptic potentiation.
Conversely, if the postsynaptic neuron fires before the presynaptic neuron, this leads to synaptic
depression. Prepared by Bi and Poo, 1998 [BP98]. Copyright [1998] Society for Neuroscience.

within bursts to determine how synaptic connections are modified.

STDP and BTDP have been mainly studied in-vitro, and evidence for the induction of behav-

iorally specific forms of potentiation has been found in-vivo. The study conducted by Bittner et

al. unveiled a novel synaptic plasticity termed behavioral time scale synaptic plasticity (BTSP) in

hippocampal area CA1. This newly identified mechanism facilitates rapid formation of place fields

by potentiating inputs that were active up to several seconds before the occurrence of a large plateau

potential. Unlike Hebbian plasticity reliant on repetitive activations during milliseconds interval,

behavioral time scale synaptic plasticity operates on a seconds-long scale, efficiently encoding

entire behavioral sequences within synaptic weights [BMG17, MLB21].

Additionally, homeostatic plasticity operates maintains stability and balance in neural network

activity[TN04]. The primary objective of homeostatic plasticity is to adjust synaptic strength,

ensuring that neural circuits remain within a functional range of activity. For instance, if a neuron

is excessively active, homeostatic plasticity mechanisms act to decrease its activity, and conversely,
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if the neuron is insufficiently active, it strengthens synapses to enhance neural activity.

Beyond synaptic plasticity, the brain exhibits additional mechanisms of learning, including

structural plasticity [HS09] and intrinsic plasticity [ZL03]. Structural plasticity involves a multi-

faceted process that includes the formation of new synapses (synaptogenesis), the elimination of

existing ones (synaptic pruning), and changes in dendritic spine morphology. These dynamic al-

terations contribute to the continuous rewiring and adaptation of neural circuits, enabling the brain

to refine its connectivity based on experiences and environmental demands. Intrinsic plasticity, on

the other hand, encompasses modifications in the intrinsic properties of individual neurons, such

as ion channel properties and membrane potential. By adjusting these intrinsic features, neurons

can finely tune their excitability in response to varying input patterns and activity levels.

1.5 Role of NMDA and AMPA receptors in spatial learning

LTP stands as a critical mechanism in the processes governing learning and memory. NMDA (N-

methyl-D-aspartate), glutamate receptors, play a pivotal role in both the induction and expression

of LTP. Seminal studies by Morris and colleagues [MAL86, Mor89] demonstrated that the NMDA

receptor antagonist AP5 blocked LTP, and lead to impairments in spatial learning. Further inves-

tigations utilizing genetic knockout approaches targeting NMDA receptors provided compelling

evidence of deficits in LTP induction to impairments in spatial navigation [SPW92, GOK92]. Ad-

ditionally, research by McHugh et al. [MBT96] showed that mutant mice with the NMDAR1 gene

knocked out exclusively in the pyramidal cells of the CA1 subregion of the hippocampus exhibited

impaired LTP in the CA1 region and deficits in spatial selectivity. Disruption of genes encod-

ing Ca2+/calmodulin-dependent kinase II (CaMKII) similarly resulted in impaired hippocampal

LTP and spatial navigation in water maze tasks [SPW92]. Furthermore, Sakimura et al. [SKI95]

demonstrated that mice lacking the NMDA receptor 1 subunit exhibited reduced hippocampal LTP

and impaired spatial learning. These collective findings underscore the integral role of NMDA

receptors in LTP and emphasize their consequential impact on spatial memory and navigation.
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Additionally, AMPA (𝛼-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors, an-

other type of glutamate receptor, contribute to the early phase of LTP. The inhibition or blockade

of AMPA receptors leads to the prevention of fast excitatory postsynaptic potentials (EPSPs). In

their 2018 study, Zhou et al. investigated three novel mouse lines: GluA1C2KI mice, where the

C-terminal domains (CTDs) of GluA1 were replaced by CTDs of GluA2; GluA2C1KI mice, where

the CTDs of GluA2 were replaced by CTDs of GluA1; and GluA1C2KI;GluA2C1KI mice, obtained

by crossing the previous two strains, resulting in swapping the CTDs of GluA1 and GluA2.

The study found that GluA1C2KI mice exhibited impaired LTP and intact LTD, along with

deficits in spatial learning. Conversely, GluA2C1KI mice showed increased LTP and impaired LTD,

along with deficits in contextual fear memory. Interestingly, both LTP and LTD were restored

in GluA1C2KI;GluA2C1KI mice, indicating that the CTDs of GluA1 and GluA2 are necessary and

sufficient domains within the AMPA receptors for NMDAR-LTP and NMDAR-LTD[ZLX18].

1.6 Hippocampal dynamics in spatial navigation

Numerous studies have underscored the profound impact of visual cues—both proximal and dis-

tal—on hippocampal neurons. Müller et al. (1987) demonstrated that rotating cue cards on a

wall could elicit a corresponding rotation of place fields in hippocampal cells, while alterations in

environmental size could lead to remapping or scaling of place fields [MK87]. Similarly, Quirk et

al. (1990) highlighted how transitioning animals from light to dark environments could affect place

fields, emphasizing the pivotal role of visual cues in spatial representation [QMK90]. Markus

et al. (1995) further illustrated that remapping occurred in response to changes in behavioral

context, such as random foraging versus systematic movement between goal locations, despite

environmental consistency [MQL95].

Moreover, research into head direction selectivity in hippocampal neurons has unveiled direc-

tional preferences across various spatial environments. Battaglia et al. (2004) identified directional

selectivity in hippocampal neurons within a one-dimensional real world (RW) setting, while Ravas-
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sard et al. (2013) observed similar selectivity in a virtual reality (VR) setting where animals

navigated along a linear track [BSM04, RKW13]. Acharya et al. (2016) expanded on these

findings, showing that visual cues in VR could directly influence directional selectivity during

two-dimensional random foraging tasks, emphasizing the dispensability of vestibular cues for this

directional selectivity in hippocampus [AAV16].

However, questions remain regarding how place cells and head direction cells adapt as animals

learn spatial navigation tasks. Sarel et al. (2017) conducted experiments with Egyptian fruit bats,

tasking them with flying from place A to place B, designated as their goal. Their research revealed

a distinct subpopulation of neurons exhibiting directional selectivity toward the goal, persisting

even when the goal was concealed. Additionally, these neurons displayed selectivity based on the

distance to the goal, with heightened activity observed when the bat approached the goal vicinity

[SFL17]. In a separate study, Hollup et al. (2001) investigated place cell activity in an annular water

maze. They observed a pronounced accumulation of firing near the platform, suggesting a spatially

specific response in hippocampal neurons [HMD01]. This suggests that enhanced stabilization of

place fields near a ‘reward zone’ could form the basis for spatial learning. Similarly, Kentros et al.

(2004) revealed a significant enhancement in the long-term stability of place field representations in

animals performing spatial learning in their study. Their study involved animals engaged in random

foraging behaviors, which were unexpectedly exposed to loud noises and bright lights, prompting

them to seek refuge in unmarked areas—analogous to the hidden platform scenario in the Morris

water maze task, aimed at terminating the auditory and visual stimuli. Remarkably, Kentros and

colleagues found that the stability of the place fields was significantly higher in this task compared

to animals solely engaged in random foraging [KAS04]. These results suggest stability of a single

map for the environment between different sessions only when goal navigation was performed.

Further insights into hippocampal function come from studies employing virtual reality Mor-

ris water maze (VR MWM) tasks [MCA21]. Moore et al. (2021) investigated spatial learning

within VR MWM environments, where animals relied exclusively on distal visual cues for navi-

gation [MCA21]. Their research revealed the existence of distinct neural subpopulations encoding
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parameters such as path distance traveled from the starting point. Additionally, they observed

head-direction cells with peak angles clustered towards the platform. Notably, Moore and col-

leagues found a significant positive correlation between the selectivity of these cells and animal

performance. Their results also show degraded place coding due to the VR setting. Thus, their

model claims for the use of path integration to solve the 2-D goal navigation, the combination of

coding for path distance and head direction.

1.7 Imaging large-scale neural activity in the MWM: a new approach for

understanding changes in neural dynamics driving learning

Despite the progress made in understanding hippocampal dynamics through spatial navigation,

existing studies often face limitations, such as the reliance on simplified 1D tasks or VR setups

lacking vestibular cues. The first is a very degraded form of navigation and the second does not

model navigation as it is implemented in nature. To overcome these shortcomings, we implemented

a MWM task conducted in the real world, thereby incorporating both vestibular and visual distal cues

while eliminating proximal cues. Furthermore, we employed miniscope calcium imaging to capture

neural activity over extended periods, enabling a comprehensive examination of hippocampal

responses during spatial learning. Additionally, we utilized AMPA knockout mice to utilized

GluA1C2KI to disrupt LTP, allowing us to explore how neural responses evolve during spatial

navigation tasks under altered synaptic plasticity conditions.

1.8 Calcium imaging as a tool for studying population neural dynamics

during navigation

Calcium imaging offers a powerful and widely embraced microscopy technique to monitor neuronal

activity in vivo [THM09, NSL16, KMS20, RDR20, SAC20]. This method capitalizes on the

intrinsic relationship between neural activity and the influx of calcium ions into active neurons
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through voltage-gated calcium channels, ultimately leading to the emission of fluorescence. Here’s

a breakdown of the key steps in how calcium imaging works:

1. Calcium Indicators

When a neuron fires action potentials, there is activation of voltage-gated calcium channels

resulting in a rise in intracellular calcium concentration. Researchers detect this activity

by employing calcium-sensitive fluorescent indicators. Two main types exist: genetically

encoded calcium indicators (GECIs) and synthetic calcium-sensitive dyes. GECIs [GPT85],

like GCAMPs [NOI01], are often introduced using viral vectors such as adeno-associated

viruses (AAVs).

2. Tissue Excitation

After the introduction of GCAMP into neurons, the tissue undergoes illumination with a light

source [SY06] to excite the calcium indicator molecule. This step is crucial since an excited

state is necessary for the calcium indicator to emit fluorescence upon binding with calcium.

3. Fluorescence Emission

Once the calcium indicator molecule is in its excited state, it stands ready to emits fluorescence

upon binding with calcium ions. When a neuron becomes active, there’s an influx of calcium

ions that bind with the already excited calcium indicator molecules, leading to the emission

of fluorescence.

4. Imaging

The emitted fluorescence from the calcium indicator molecules is captured by a camera,

recording the neuronal activity [GBC11, CAS16, SAC20]. Higher fluorescence intensity

correlates with a higher number of neuronal spikes, providing insights into the intensity of

neural activity.
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1.9 Artificial neural network decoders

Artificial neural networks have emerged as an invaluable tool in neuroscience for several reasons.

The utility of these networks arises due to multiple key features: 1. Neural networks adeptly capture

intricate and nonlinear relationships in dynamic brain activity, overcoming challenges traditional

decoding methods face. 2. They learn from data through training, associating neural patterns with

desired outputs for predictions on new, unseen data. 3. Neural networks automatically extract

crucial features during training, vital for identifying meaningful signals and understanding brain

function. 4. Their efficiency in real-time processing makes them indispensable for applications

like brain-machine interfaces, ensuring prompt decoding for responsive control. 5. the versatility

of neural networks allows customization for diverse decoding tasks, accommodating both simple

linear models and complex deep networks tailored to the intricacies of neural signals and decoding

requirements. Examples of such models include the Kalman filter, Support Vector Regression,

Extreme Gradient Boosting, Feedforward Neural Network, Gated Recurrent Unit, Simple Recurrent

Neural Network, Long Short-Term Memory Network, and Naive Bayes. Moreover, the nature of

the output determines whether the model functions as a regressor or a classifier. If the output is

a continuous variable, such as position, the decoder operates as a regression model. On the other

hand, if the output is discrete, like binary decisions, the model functions as a classifier.
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CHAPTER 2

General Methods

This section will outline the methods utilized in this study1.

2.1 Animals

Ethical Approval: All experimental protocols received approval from the Chancellor’s Animal

Research Committee of the University of California, Los Angeles (UCLA), and were conducted in

adherence to the US National Institutes of Health (NIH) guidelines.

Animal Subjects: For the MWM experiments, a total of 10, 10-week-old hybrid male

B6129SF1/J1 (Jackson Laboratories, 10143) or B6129SF2 mice were utilized. These mice were

group-housed (2–5 per cage) on a 12-hour light–dark cycle. Hybrid mice were chosen for their

improved learning abilities in the Morris water maze task [SFM97]. Male mice were preferred due

to their larger size at the appropriate age, facilitating better performance in the swimming tasks

with the miniscope.

Strain and Genetic Background: A total of 5 GluA1C2KI LTP deficient mice, provided by

the Zhenping Jia lab on a C57/BL6 background [ZLX18], were crossed with S129 mice (Jackson

Laboratories, 002448)) to obtain second-generation hybrids homozygous for the mutation and their

littermate controls (B6129SF2).

1The research and experiments described in Chapters 2 and 3 were collaboratively conducted by Ronen Reshef,
Thomas J. O’Dell, and myself. Ronen Reshef conducted the experiments, performed the surgeries, and collected the
data. Thomas J. O’Dell specifically conducted the Long-Term Potentiation experiment, as detailed in Section 3.8. My
contribution involved analyzing the collected data
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Group Assignment and Blinding: Mice were randomly assigned to either control or LTP

deficient groups. Blinding procedures were implemented during both data collection and analysis

stages, ensuring unbiased interpretation of results.

2.2 Calcium imaging surgeries

For all surgeries, mice were anesthetized with 1.5–2.0% isoflurane and placed into a stereotactic

frame (David Kopf Instruments). Lidocaine (2%, Akorn) was applied to the sterilized incision site

as an analgesic, and subcutaneous saline injections were administered throughout each surgical

procedure to prevent dehydration.

For calcium imaging experiments, all mice underwent two stereotaxic surgeries. First, mice

were unilaterally injected with 500 nl of AAV1.Syn.jGCaMP7f.WPRE virus at 1 nl per second in

the dorsal CA1 (-2 mm anteroposterior relative to bregma, +2.0 mmm mediolateral from bregma,

and 1.6 mm ventral from the skull surface) using a Nanoject microinjector (Drummond Scientific).

Then, mice underwent a GRIN lens implantation surgery. A craniotomy 2 mm in diameter was

performed above the viral injection site. The cortical tissue above the targeted implant site was

carefully aspirated using 27-gauge and 30-gauge blunt needles. Buffered ACSF was constantly

applied throughout the aspiration to prevent desiccation of the tissue. The aspiration ceased after

partial removal of the corpus callosum and full termination of bleeding, at which point a GRIN

lens (1.8 mm diameter, 4.31 mm length, 0.25 pitch, 0.50 numerical aperture, Edmund Optics) was

stereotaxically lowered to the targeted implant site (-1.3 mm dorsoventral from the skull surface

relative to the most posterior point of the craniotomy). Cyanoacrylate glue and dental cement were

used to seal and cover the exposed skull, and Kwik-Sil covered the exposed GRIN lens. Carprofen

(5 mg kg−1) and dexamethasone (0.2 mg kg−1) were administered [SAC20] during surgery and for

7 days after surgery together with amoxicillin (0.25 mg ml−1) in the drinking water. Animals were

anesthetized again 3 weeks later, and a miniature microscope locked onto an aluminum baseplate

was placed on top of the GRIN lens. After searching the field of view for in-focus blood vessels
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and cells, the baseplate was cemented into place and the miniscope was unlocked and detached

from the baseplate. A plastic cap was locked into the baseplate to prevent debris build-up.

2.3 Wire-free miniscope

The wire-free miniscope is a modified version of the wired miniscope described previously

[CAS16, SAC20], with the additional features of being battery-powered and logging imaging

data onto onboard removable memory. The optics, Delrin housing, and excitation light source of

the wired and wire-free miniscope are identical but the complementary metal oxide semiconductor

(CMOS) imaging sensor electronics and data acquisition electronics were redesigned and packaged

onto a single printed circuit board (PCB) to enable wire-free operation. All electrical components

were chosen to minimize power consumption and weight. The main components of the wire-free

PCB were a low-power CMOS imaging sensor (Teledyne E2V, JADE EV76C454), ARM Cortex

M7 microcontroller (Atmel, ATSAME70N21A), and microSD card mount (Molex, 0475710001).

The PCB also includes necessary voltage regulators, an SD card voltage translation transceiver

(Texas Instruments, TXS0206AYFPR), a custom excitation LED current-driving circuitry, a bat-

tery connector, and a 12 MHz oscillator. A single-cell lithium-polymer battery (Power Stream,

GM041215, 45 mAH, 1.1 g) was attached to the side of the miniscope and connected to the wire-

free PCB during operation. The upper limit on the length of recording sessions was determined

by the size and efficiency of the battery. Storage space was not a limiting factor as microSD cards

can now store up to 1 TB of data (147 h of continuous recording). Using 45 mAh batteries we

reliably recorded for at least 30 min. Overall, the wire-free miniscope weighs 4–5 g, depending

on the imaging sensor and battery used. Following power-up, the microcontroller (MCU) accessed

configuration information, programmed by custom PC software, in a specific memory block of the

microSD card that held recording parameters such as recording length, frame rate, excitation LED

intensity, imaging resolution, and imaging exposure length. Once the configuration was complete,

the MCU waited 5 seconds before beginning recording, at which time the excitation LED and
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onboard status LED turned on. At the end of the configurable recording duration, the excitation

LED and onboard status LED turned off and the MCU terminated data logging onto the microSD

card. Offline synchronization of the miniscope recording with a behavioral camera was achieved

by detecting the on-and-off event of the status LED of the miniscope. Pixel values from the CMOS

imaging sensor were clocked into a three-frame circular buffer in the MCU using its parallel capture

interface and direct memory access (DMA) controller to minimize processor overhead. Once an

imaging frame was received by the MCU, it was written in raw format into incremental memory

blocks of the microSD card together with a footer containing timing and error flag information.

Wire-free miniscope data were recorded at 20 frames per second at a resolution of 320 pixels by

320 pixels using × 2-pixel subsampling. Running at this data rate, the entire system consumed

approximately 300 mW of power during recording.

2.4 Custom imaging in water maze

Wire-free scope was coated with a polymer (Key Polimer, Tough-Sealtm 21) that insulated its

printed electrical boards (PCBs). The compound was applied with an applicator gun on electrically

exposed parts of the PCB. The polymer was viscous at first and then cured into a rubbery form for

long-term durability. 3 Mylar Helium balloons (round 18” in diameter) were used to reduce the

weight load on the animal’s head to avoid sinking. The balloons were filled with Helium (2HE)

gas. Then the balloons were attached to the wire-free scope using cords onto a custom metal holder

attached to the body of the scope. During each day of imaging the miniscope was kept on the

head of the animal until the completion of the training or probe sessions. This was done to avoid

movements in the imaged field of view. The miniscope was removed at the end of each day.
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2.5 Morris water maze

Imaging sessions in the MWM were conducted within a circular maze (120 cm in diameter) filled

with water mixed with nontoxic white paint. The maze featured a submerged platform (10 cm in

diameter) located in the northeast quadrant, with 8 fixed starting points randomly chosen for each

trial.

13-week-old animals underwent imaging sessions every other day, amounting to a total of six

training sessions. Each day comprised of 3 blocks, separated by 90 minutes, with 4 consecutive

trials in each block. In each trial, the animals were allotted 60 seconds to locate the submerged

platform. If unsuccessful, the trial was terminated at 60 seconds, and the animals were placed on

the platform for 10 seconds between trials to facilitate learning. Animals started each trial with

their backs turned to the maze to prevent observation of their previous location.

Two probe trials were conducted at the end of training on both day 3 and day 6, with each probe

occurring one hour after the conclusion of the last block on the respective day. During probes, the

platform was removed, allowing animals to search freely for 60 seconds.

Following the day 6 probe, up to two additional blocks of 12 trials were added to extend the

recording time, making it comparable to the length of day 1. These blocks were separated by

90-minute intervals to allow for rest.

2.6 Behavioral tracking

We designed a stereo camera system for recording maze behavior from diagonal angles using

monochrome CMOS cameras (Chameleon 3, Flir) equipped with magnifying lenses (Computar).

An Arduino, generating a 20 Hz TTL signal, facilitated camera synchronization and frame rate

alignment with the wire-free miniscope. SpinView 1.13.0.33 software controlled the cameras and

saved videos in .AVI format.

Video processing was conducted in MATLAB (Mathworks, Natick, MA), employing custom-
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written code. The code identified dark pixels representing the mouse in the white water of the

maze, allowing us to determine each joint’s mouse position from each camera view. Combining

these views enabled the derivation of 3D positions. We used a 4 × 6 checkerboard with a 4.5 × 4.5

mm square size for mouse tracking video camera calibration. We then used a rotation matrix (Euler

quaternions) to make the 3D positions flat on the Z-axis, as the 3D coordinates calculated by the

calibration algorithm are perpendicular to the diagonal axis of the cameras. Hence, we generated

the trajectory of the animal as though it were recorded from an overhead perspective. Subsequently,

we normalized the x and y axes to precisely match the 60 cm radius of the maze.

The head-direction was calculated by determining the absolute values of distance traveled in

the x and y axes at time points t and t+1. The calculated angles of the head-direction (Θ𝑡) were

obtained using the following formulas:

Θ𝑡 = 𝑡𝑎𝑛

(
𝑦𝑡+1 − 𝑦𝑡

𝑥𝑡+1 − 𝑥𝑡

)
, 𝑥 ≥ 0, 𝑦 ≥ 0; (2.1)

Θ𝑡 = 𝑡𝑎𝑛

(
𝑦𝑡+1 − 𝑦𝑡

𝑥𝑡+1 − 𝑥𝑡

)
+ 𝜋, 𝑥 > 0, 𝑦 < 0; (2.2)

Θ𝑡 = 𝑡𝑎𝑛

(
𝑦𝑡+1 − 𝑦𝑡

𝑥𝑡+1 − 𝑥𝑡

)
+ 𝜋, 𝑥 < 0, 𝑦 > 0; (2.3)

Θ𝑡 = 𝑡𝑎𝑛

(
𝑦𝑡+1 − 𝑦𝑡

𝑥𝑡+1 − 𝑥𝑡

)
+ 2𝜋, 𝑥 < 0, 𝑦 < 0. (2.4)

The animal’s head-direction corresponds to its heading direction while swimming in water, as the

head remains consistently parallel to the swimming direction.

2.7 Calcium imaging analysis

The wire-free miniscope data were retrieved from microSD cards and stored as uncompressed 8-bit

AVI video files for subsequent processing and analysis. Each day’s imaging data from the MWM

training blocks were aligned and concatenated into a single video file. The NoRMCorre algorithm,

incorporating non-rigid registration, corrected for frame-to-frame translational shifts in the brain

caused by animal movement [PG17].
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For the identification and extraction of spatial shapes and fluorescent calcium activity of in-

dividual neurons, the Constrained Non-negative Matrix Factorization for endoscopic recordings

(CNMF-E) method was employed [ZRR18]. Fast online deconvolution for calcium imaging using

the OASIS toolbox was applied to deconvolve the fluorescent activity from each neuron with an

AR1-constrained model [FZP17].

The resulting measure represents the probability of a neuron being active at each frame, scaled

by a constant. To address the scaling factor that varies across cells, each frame was binarized,

considering it as active (1) if the number was above zero and inactive (0) otherwise. This binarization

step was specifically employed for Generalized Linear Model (GLM) analysis. For neural network

decoding, raw calcium traces were utilized.

2.8 Tracking the same cells across days

To consistently track the same neurons across multiple days of calcium imaging, we utilized the

CellReg package developed by Sheintuch et al. (2017) [SRB17] (https://github.com/zivlab/

CellReg). The spatial footprints of neurons recorded on each day were input into the CellReg GUI.

The package computed a probabilistic model based on spatial correlations and centroid distances

of the spatial footprints, estimating the likelihood that these footprints originated from the same

cell across days.

For each animal, the CellReg GUI generated a probability distribution of the nearest neighbors

suspected to be the same cells across days. This distribution was plotted according to centroid

distance and spatial correlation grade. Similarly, another distribution was created for the second

nearest neighbors, representing cells not suspected to be the same across days. The cutoff values

for the maximal centroid distance and the lowest spatial correlation grade to consider cells as the

same was set at the intersection of these two distributions. This approach aimed to minimize false

positives. Although these cutoff values varied slightly between animals, animals with significant

overlap between the two distributions were excluded from the analysis.
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CellReg provided a mapping of all registered cells to their indices on each day, organized in a

matrix of size N (registered cells) x M (imaging days). This matrix facilitated the tracking of the

activity of the same cells across different recording days.

2.9 Slice preparation

Hippocampal slices were obtained from the dorsal third of the hippocampus of 2- to 3-month-old

male GluA1C2KI B6129SF2 hybrid mice and their respective littermate controls. Mice were deeply

anesthetized with isoflurane, and following cervical dislocation, the brain was promptly removed

and placed in cold (4°C), oxygenated (95% O2/5% CO2) artificial cerebrospinal fluid (ACSF). The

ACSF composition included 124 mM NaCl, 4 mM KCl, 25 mM NaHCO3, 1 mM NaH2PO4, 2 mM

CaCl2, 1.2 mM MgSO4, and 10 mM glucose (all obtained from Sigma-Aldrich).

Subsequently, both hippocampi were dissected from the brain, and a manual tissue slicer

was employed to create 400-µm-thick slices. The CA3 region was removed, and the slices were

transferred to interface-type chambers with continuous perfusion of ACSF (2-3 ml/min). The slices

were allowed to recover at 30°C for a minimum of 2 hours before commencing recordings.

2.10 Electrophysiological slice recordings

Extracellular recordings were done using slices maintained in interface-type recording chambers

perfused (2-3 ml/min) with ACSF. Two bipolar, stimulating electrodes fabricated from twisted

strands of Formvar-insulated nichrome wire (A-M Systems) were placed in stratum radiatum to

activate Schaffer collateral/commissural fiber synapses onto CA1 pyramidal cells (basal stimulation

rate = 0.02 Hz). Field EPSPs (fEPSPs) were recorded in stratum radiatum using low-resistance

(5-10 MW) glass microelectrodes filled with ACSF and a Multi-clamp 700B amplifier (Molecular

Devices). Signals were low pass filtered with a cutoff frequency of 2 kHz and digitized at 10

kHz. After determining the maximal amplitude of fEPSPs evoked by presynaptic fiber stimulation,
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the stimulation intensity was adjusted to evoke fEPSPs with an amplitude 50% of the maximal

amplitude. Independence of the presynaptic axons activated by the two stimulating electrodes

(hereafter referred to as S1 and S2) was confirmed by the absence of paired-pulse facilitation when

pulses of presynaptic fiber stimulation were delivered to S1 and then S2 (and vice-versa) with an

inter-pulse interval of 50 ms.

2.11 Slice recording experimental design and statistical analyses

CS burst-dependent LTP was induced using trains of theta-pulse stimulation (TPS) that consisted

of single pulses of presynaptic fiber stimulation delivered at 5 Hz. Average slopes of fEPSPs

(normalized to baseline) recorded 40-45 min after TPS were used for statistical comparisons. Data

were collected and analyzed using pClamp10 software (Molecular Devices).

2.12 Exploring spatial and head-directional modulations: GLM approach

We modeled the time-varying calcium event activities as an inhomogeneous Poisson process with

a time-varying rate 𝑟 (𝑡). For an inhomogeneous Poisson process, the number of events in any

interval is a Poisson random variable. We defined time-varying rate function, denoted as 𝑟 (𝑡) as

follows:

𝑟 (𝑡) = 𝑟𝑆 (𝑡)𝑟𝐻𝐷 (𝑡)𝑟𝑏𝑎𝑠𝑒
𝜏

, (2.5)

where 𝜏 is the time bin size (we chose 100 ms) and 𝑟𝑏𝑎𝑠𝑒 is a constant term and related to the

baseline activity of a neuron. 𝑟𝑆 (𝑡) and 𝑟𝐻𝐷 (𝑡) are intensity functions for space and head-direction,
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respectively, and are defined as follows:

𝑟𝑆 (𝑡) = 𝑒𝐴𝑆𝛼𝑆 = exp

(
𝑄∑︁
𝑖=1

𝑞∑︁
𝑚=−𝑞

𝑐𝑞,𝑚𝑧
𝑚
𝑞 (𝜌(𝑡), 𝜓(𝑡))

)
(2.6)

𝑟𝐻𝐷 (𝑡) = 𝑒𝐴𝐻𝐷𝛼𝐻𝐷 = exp ©­«
𝐽∑︁
𝑗=1

𝑐 𝑗 𝑠𝑖𝑛( 𝑗𝜙(𝑡)) + 𝑐′𝑗𝑐𝑜𝑠( 𝑗𝜙(𝑡))
ª®¬ (2.7)

𝑟𝑏𝑎𝑠𝑒 = 𝑒𝛼0 . (2.8)

𝐴𝑆 and 𝐴𝐻𝐷 are design matrices for space and head-direction, respectively. Following Acharya’s

approach [AAV16], we modeled the spatial and head-directional intensity function by initially

employing a linear function on the expanded behavioral covariates. Subsequently, this linear model

underwent further processing through a nonlinear exponential function. In other words, we initially

expanded the behavioral covariates using a set of defined functions. Specifically, we expanded space

using a set of orthogonal two-dimensional Zernike polynomials (Figure 2.1), and head-direction

was expanded using a set of sine and cosine functions (Figure 2.2). Next, we subjected them to a

linear function, followed by a nonlinear link function, namely an exponential function, denoted as

𝑒𝑥 .
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Figure 2.1: EXAMPLE REPRESENTATION OF ZERNIKE POLYNOMIALS
Display the first 15 Zernike functions: 𝑧𝑚

𝑙
, 𝑙 = [0, 1, 2, 3, 4], 𝑚 = [−𝑙, ..., 𝑙].

In Equation 2.6 and 2.7, 𝛼𝑆 and 𝛼𝐻𝐷 are the parameters associated with the design matrices

𝐴𝑆 and 𝐴𝐻𝐷 , respectively and in Equation 2.8, 𝛼0 is a constant term. The notation 𝑧𝑚𝑞 in Equation

2.6 signifies the m-th component of the q-th order Zernike polynomial function. The radial and

angular components of position in polar coordinates at time 𝑡 are represented by 𝜌(𝑡) and 𝜓(𝑡),

respectively. Hence, 𝐴𝑆 is [𝑛, 𝑠] matrix, where 𝑛 = number of time bins and 𝑠 = number of Zernike

polynomials. In Figure 2.1 we have shown the first 15 two-dimensional Zernike functions. The

first Zernike function 𝑧0
0 is constant. In Equation 2.7, 𝜙(𝑡) is the head-direction of the animal at

time 𝑡 and 𝑠𝑖𝑛( 𝑗𝜙(𝑡)) and 𝑐𝑜𝑠( 𝑗𝜙(𝑡)) are orthogonal basis functions to expand the head-direction

covariate. Hence, 𝐴𝐻𝐷 is [𝑛, ℎ] matrix, where 𝑛 = number of time bins and ℎ = number of 𝑠𝑖𝑛 and

𝑐𝑜𝑠 functions. In Figure 2.2 5 examples of 𝑠𝑖𝑛(𝑘𝜃) and 𝑐𝑜𝑠(𝑘𝜃) functions are illustrated, where

various frequencies are represented by 𝑘 values in the range of 1 to 5.
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Figure 2.2: EXAMPLE REPRESENTATION OF SIN(𝜃) AND COS(𝜃)
Display of sin(𝑘𝜃) and cos(𝑘𝜃) functions, 𝑘 = [1, 2, 3, 4, 5].

To estimate the parameters in Equations 2.6–2.8, specifically 𝛼𝑆, 𝛼𝐻𝐷 , and 𝛼0, we employed

the glmfit function in MATLAB. This function utilizes maximum likelihood estimation through

the standard iteratively reweighted least squares (IRLS) algorithm. Moreover, we used the Akaike

Information Criterion (AIC) for model selection to determine the best number of basis functions

for both space and head-direction. The AIC quantifies the trade-off between the goodness of fit of

a statistical model and the complexity of the model by using the following equation:

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛( 𝐿̂), (2.9)
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where 𝐿̂ is the maximum likelihood for the model, and 𝑘 is the number of parameters in the model.

In our model

𝑘 = 𝑁𝑍𝑒𝑟𝑛𝑖𝑘𝑒 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑁𝑠𝑖𝑛 𝑓 𝑢𝑛𝑡𝑖𝑜𝑛𝑠 + 𝑁𝑐𝑜𝑠 𝑓 𝑢𝑛𝑡𝑖𝑜𝑛𝑠 + 1. (2.10)

To reconstruct the spatial and head-directional rate maps as a function of the position and head

angle of an animal we used the following equations:

𝜆𝑆 (𝑥𝑖, 𝑦𝑖) = exp

(
𝑄∑︁
𝑖=1

𝑞∑︁
𝑚=−𝑞

𝑐𝑞,𝑚𝑧
𝑚
𝑞 (𝑥𝑖, 𝑦𝑖)

)
(2.11)

𝜆𝐻𝐷 (𝜙𝑝) = exp ©­«
𝐽∑︁
𝑗=1

𝑐 𝑗 𝑠𝑖𝑛( 𝑗𝜙𝑝) + 𝑐′𝑗𝑐𝑜𝑠( 𝑗𝜙𝑝)ª®¬ , (2.12)

where 𝑥𝑖 and 𝑦𝑖 represent the position of the i-th spatial bin and 𝜙𝑝 denotes the p-th head-direction

bin. We used 4 × 4 cm2 spatial bins and 3◦ angular bins. Furthermore, to obtain an unbiased rate

map that is compatible with the mean firing activity of the neuron, we employed the following

equation to predict the spatial and angular modulations:

𝜅𝑆 = 𝜆 × 𝜆𝑆 (𝑥, 𝑦)
𝜆𝑆

(2.13)

𝜅𝐻𝐷 = 𝜆 × 𝜆𝐻𝐷 (𝜙)
𝜆𝐻𝐷

(2.14)

𝜆 = mean firing rate of the neuron, (2.15)

where 𝜆𝑆 and 𝜆𝐻𝐷 are the mean values of 𝜆𝑆 (𝑥, 𝑦) and 𝜆𝐻𝐷 (𝜙), respectively.

2.13 Validation of GLM with synthetic data

To demonstrate the effectiveness of GLM in accurately estimating spatial and head-directional

modulation in our data, we generated a synthetic cell with surrogate spike trains (Figure 2.3). The

generation of surrogate spikes involved the following steps:
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1- Define a synthetic spatial rate map, 𝜆𝑠𝑦𝑛𝑡ℎ𝑆 (𝑥, 𝑦), as a 2D Gaussian function (Equation 2.16).

The peak of the spatial rate map is located at (𝑥0, 𝑦0), and 𝜎𝑋 and 𝜎𝑌 represent the spatial variances.

2- Define a synthetic angular rate map, 𝜆𝑠𝑦𝑛𝑡ℎ𝐻𝐷 (𝜃), as a 1D Gaussian function (Equation 2.17).

The peak of the angular rate map is at (𝜃0), and 𝜎𝜃 is the angular variance.

3- Define the rate function of the neuron with the mean firing activity 𝜇 as Equations 2.18 and

2.19. It’s important to emphasize that we modeled the influences of spatial and head-directional

covariates as independent variables.

4- Generate a time-varying rate function (Equation 2.20) by incorporating the empirical behavior

of an animal and the rate map defined in Equation 2.18.

5- Generate synthetic spike trains (Equation 2.21) by employing a nonhomogeneous Poisson process

with the rate function defined in Equation 2.20.

𝜆𝑠𝑦𝑛𝑡ℎ𝑆 (𝑥, 𝑦) = 𝐴 exp

(
−

(
(𝑥 − 𝑥0)2

2𝜎2
𝑋

+ (𝑦 − 𝑦0)2

2𝜎2
𝑌

))
+ 𝐴0 (2.16)

𝜆𝑠𝑦𝑛𝑡ℎ𝐻𝐷 (𝜃) = 𝐵 exp

(
− (𝜃 − 𝜃0)2

2𝜎2
𝜃

)
+ 𝐵0 (2.17)

𝜆𝑠𝑦𝑛𝑡ℎ (𝑥, 𝑦, 𝜃) = 𝑐 × 𝜆𝑠𝑦𝑛𝑡ℎ𝑆 (𝑥, 𝑦) × 𝜆𝑠𝑦𝑛𝑡ℎ𝐻𝐷 (𝜃) (2.18)

𝑐 =
𝜇

< 𝜆𝑠𝑦𝑛𝑡ℎ𝑆 (𝑥, 𝑦) × 𝜆𝑠𝑦𝑛𝑡ℎ𝐻𝐷 (𝜃) >
(2.19)

𝑟 (𝑡) = 𝜆𝑠𝑦𝑛𝑡ℎ (𝑥(𝑡), 𝑦(𝑡), 𝜃 (𝑡)) (2.20)

𝑃(𝑁𝑠𝑝𝑖𝑘𝑒 (𝑡 + Δ𝑡) − 𝑁𝑠𝑝𝑖𝑘𝑒 (𝑡) = 𝑛) = (𝑟 (𝑡)Δ𝑡)𝑛
𝑛!

𝑒−
∫ 𝑡+Δ𝑡
𝑡

𝑟 (𝑠) 𝑑𝑠 . (2.21)

Figure 2.3 illustrates the synthetic cell and its predicted spatial and head-directional rate maps

using GLM. We employed a pre-defined 2D and 1D Gaussian functions for the spatial and head-

directional modulations, respectively (Figure 2.3 (a and b)). To acquire synthetic behavioral data,

we utilized the empirical behavior that we recorded in one of our sessions. Utilizing the synthetic

behavior and synthetic rate maps, we derived the time-varying rate function. This function was

then employed as the rate parameter in the nonhomogeneous Poisson process, allowing us to
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Figure 2.3: VALIDATION OF GENERALIZED LINEAR MODELS THROUGH
SYNTHETIC CELLS
(a,b) We utilized synthetic spatial and head-directional rate maps to generate the spike trains. (c)
Synthetic spike trains were generated using the spatial and head-directional rate maps from (a)
and (b), combined with empirical behavior and a non-homogeneous Poisson process. Each dot
represents a spike, with the color indicating the head-direction of the animal at the time of the
spike. (d) Schematic of the GLM framework. To predict the spatial and head-directional rate
maps, we utilized the spike trains and behavioral covariates, namely position and head-direction.
(e,f) The predicted spatial and head-directional rate maps align closely with their synthetic
counterparts.

generate the synthetic spike train (Figure 2.3 (c)). Next, we employed the GLM (Figure 2.3 (d))

to predict the spatial and head-directional rate maps shown in Figure 2.3 (e,f). The synthetic

spatial and head-directional rate maps demonstrate a distinct similarity to their respective predicted

counterparts.

2.14 Measure of selectivity for the spatial and head-directional rate map

One commonly used metric for quantifying the degree of selectivity in a rate map is the sparsity

(𝑆) which is defined as follows:

𝑆 = 1 − 1
𝑁

(∑𝑁
𝑛 𝑟𝑛)2∑𝑁
𝑛 𝑟2

𝑛

, (2.22)

where 𝑁 represents the total number of bins, such as spatial or angular bins, and, 𝑟𝑛 denotes

the firing rate in the 𝑖-th bin. The sparsity is a dimensionless metric, providing insight into the

selectivity of a neuron’s firing across various conditions, such as positions. The sparsity ranges

from 0 to 1, with a higher value indicating greater selectivity.
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2.15 Shuffling method

To facilitate data shuffling for the GLM analysis, we individually performed circular shuffling for

each variable while maintaining the other variable unchanged. For instance, in computing the

shuffled sparsity for the position, we circularly flipped the position signal and then applied circular

shifts with random numbers 50 times, keeping the head-direction signal unchanged. Subsequently,

we computed the spatial sparsity for each set of shuffled data. For the decoding analysis, we

performed separate shuffling of the neural signal (Δf
f ) for each neuron. The process involved

flipping the neural signal and then applying circular shifts with a random number 50 times.

2.16 Shuffle subtraction

To mitigate potential bias in behavior on day 6 compared to day 1 and its potential impact on sparsity

and decoding error values, we subtracted the 95th percentile of the shuffled sparsity (decoding error)

from the original sparsity (decoding error), as follows:

𝑆shuffle-subtracted sparsity = 𝑆 − 𝑝(𝑆shuffled, 95) (2.23)

𝐸shuffle-subtracted decoding error = 𝐸 − 𝑝(𝐸shuffled, 95) (2.24)

2.17 Feedforward neural networks

To decode position, head-direction, and the distance from the platform, we implemented three

feedforward neural networks with different structures, First, we needed to preprocess the data.

Figure 2.4 (a,b) illustrates the schematic for preprocessing the data, involving the following steps:

1. Divide the calcium fluorescence signal (Δf
f ) for each neuron into 100 ms bins.

2. Take the average of the signal in each bin.

3. Divide the behavioral variable, such as position, into 100 ms bins.
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4. Take the average of the behavioral variable in each bin.

5. To decode the 𝑖-th output, utilize 2k+1 bins of neural signal for each neuron, including 𝑘 bins

preceding the 𝑖-th bin, the concurrent 𝑖-th bin, and 𝑘 bins following the 𝑖-th bin.

6. Generate the feature matrix from the neural signal and utilize it as input for the feedforward

neural network (FFN). The matrix comprises M rows, representing the number of training

data, and 𝑁 × (2𝑘 + 1) columns. Here, 𝑁 is the number of neurons, 𝑘 is the number of

preceding and following bins, and 1 is for the concurrent bin. For each neuron, extract the

calcium fluorescence signal and gather information from the 𝑘 bins preceding, the 𝑘 bins

following, and the concurrent bin (representing the current time step). This results in a

set of 2𝑘 + 1 bins associated with each neuron. This process is repeated for all neurons,

concatenating these sets successively. This is shown in Figure 2.4 (b), and the entries are

denoted by 𝑠𝑖
𝑗
, where 𝑠 represents the value of the calcium fluorescence signal for the 𝑖-th

neuron at the 𝑗-th bin.

2.18 FFN’s architectures for decoding position, head-direction, and distance

to the platform

The input layer consisted of 𝑁 × (2𝑘 +1) nodes, where 𝑁 represents the number of neurons, 𝑘 = 10

was the number of preceding and following bins, and 1 corresponded to the concurrent 𝑖-th bin.

To decode the position, we employed a feedforward neural network with a dropout rate of 0.2 and

15 epochs. The architecture included two hidden layers, with the number of nodes in each hidden

layer matching the number of nodes in the input layer. The output layer was composed of two

nodes representing the x and y coordinates of the animal’s position at the 𝑖-th bin (Figure 2.5).

For head-direction decoding, a dropout rate of 0.2 and 10 epochs were applied, utilizing a single

hidden layer with node count equal to that of the input layer. The output layer comprised two nodes

representing 𝑠𝑖𝑛(𝜃) and 𝑐𝑜𝑠(𝜃), where 𝜃 denotes the animal’s head-direction at the 𝑖-th bin (Figure
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2.6). To decode the distance to the platform, we employed a dropout rate of 0.2 over 15 epochs,

using a single hidden layer with a node count matching that of the input layer. The output layer

consisted of two nodes representing the distance to the platform. (Figure 2.7).

Figure 2.4: SCHEMATIC FOR PREPROCESSING DATA IN PREPARATION FOR
FEEDFORWARD NEURAL NETWORK
(a) The calcium fluorescence signal of each neuron was segmented into bins of 100 ms.
Simultaneously, the output variable, such as the position of the animal, was also binned into 100
ms intervals. To decode an output at the 𝑖-th bin, we employed information from 𝑘 bins preceding
the output, the concurrent 𝑖-th bin, and 𝑘 bins following the 𝑖-th output. (b) The input (features)
and output matrices were provided to the feedforward neural network (FFN) for training. Once the
network was trained, and its parameters were estimated, for model evaluation, an input was given
to predict the corresponding output.
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Figure 2.5: SCHEMATIC OF A FEEDFORWARD NEURAL NETWORK FOR
DECODING POSITION
The input layer had 𝑁 × (2𝑘 + 1) nodes, where 𝑁 represented the number of neurons, 𝑘 = 10
indicated the number of preceding and following bins, and 1 corresponded to the concurrent 𝑖-th
bin. It also had two hidden layers with the number of nodes in each hidden layer equal to the
number of nodes in the input layer. Additionally, parameters such as drop-out rate=0.2 and the
number of epochs=15 were employed in the model. The output layer consisted of two nodes
representing the x and y coordinates of the animal’s position at the 𝑖-th bin.

Figure 2.7: SCHEMATIC OF A FEEDFORWARD NEURAL NETWORK FOR
DECODING DISTANCE TO THE PLATFORM
The input layer had 𝑁 × (2𝑘 + 1) nodes, where 𝑁 represented the number of neurons, 𝑘 = 10
indicated the number of preceding and following bins, and 1 corresponded to the concurrent 𝑖-th
bin. It also had one hidden layer with the number of nodes in the hidden layer equal to the number
of nodes in the input layer. Additionally, parameters such as drop-out rate=0.2 and the number of
epochs=15 were employed in the model. The output layer consisted of one node representing the
animal’s distance to the platform at the 𝑖-th bin.
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Figure 2.6: SCHEMATIC OF A FEEDFORWARD NEURAL NETWORK FOR
DECODING HEAD-DIRECTION
The input layer had 𝑁 × (2𝑘 + 1) nodes, where 𝑁 represented the number of neurons, 𝑘 = 10
indicated the number of preceding and following bins, and 1 corresponded to the concurrent 𝑖-th
bin. It also had one hidden layer with the number of nodes in the hidden layer equal to the number
of nodes in the input layer. Additionally, parameters such as drop-out rate=0.2 and the number of
epochs=10 were employed in the model. The output layer consisted of two nodes representing the
𝑠𝑖𝑛(𝜃) and 𝑐𝑜𝑠(𝜃), where 𝜃 is the animal’s head-direction at the 𝑖-th bin.

2.19 Decoding performance metrics

To quantify the improvement in the decoder’s performance attributable to the animals’ learning

in the MWM task, and consequently, the increased information in the recorded neural signals, we

computed the position decoding error using the following formula:

𝐸𝑆 =

∑𝐿
𝑖=1

√︁
(𝑥𝑖 − 𝑥𝑖)2 + (𝑦𝑖 − 𝑦̂𝑖)2

𝐿
, (2.25)

where 𝑥𝑖 and 𝑥𝑖 are the original and decoded 𝑥 coordinates at the 𝑖-th bin, respectively. Similarly,

𝑦𝑖 and 𝑦̂𝑖 are the original and decoded 𝑦 coordinates at the 𝑖-th bin, respectively. 𝐿 is the size of the

testing data set.

We employed 2D correlation as an additional metric to assess the performance of position

decoding. We calculated the 2D correlation between the original coordinates 𝐴 = [𝑋,𝑌 ] and the

decoded coordinates 𝐵 = [𝑋̂,𝑌 ] using the following formula:

𝑅𝑆 =

∑𝑚
𝑖=1

∑𝑛
𝑗=1(𝐴(𝑖, 𝑗) − 𝐴̄) (𝐵(𝑖, 𝑗) − 𝐵̄)√︃∑𝑚

𝑖=1
∑𝑛

𝑗=1(𝐴(𝑖, 𝑗) − 𝐴̄)2 ∑𝑚
𝑖=1

∑𝑛
𝑗=1(𝐵(𝑖, 𝑗) − 𝐵̄)2

, (2.26)
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where 𝑚 represents the number of rows, 𝑛 is the number of columns, 𝐴(𝑖, 𝑗) and 𝐵(𝑖, 𝑗) denote the

elements at the 𝑖-th and 𝑗-th columns of matrices 𝐴 and 𝐵, respectively. The terms 𝐴 and 𝐵 are the

means of matrices 𝐴 and 𝐵, respectively.

The decoded errors for head-direction and distance to the goal were computed as follows:

𝐸𝐻𝐷 =

∑𝐿
𝑖=1(𝜃𝑖 − 𝜃𝑖)

𝐿
, (2.27)

where 𝜃𝑖 and 𝜃𝑖 are the original and decoded head-direction at the 𝑖-th bin, respectively.

𝐸𝐷 =

∑𝐿
𝑖=1(𝑑𝑖 − 𝑑𝑖)

𝐿
, (2.28)

where 𝑑𝑖 and 𝑑𝑖 are the original and decoded distance to the platform at the 𝑖-th bin, respectively.
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CHAPTER 3

Results

This section will comprehensively present and delve into the detailed results obtained from this

study, offering a thorough analysis and discussion of the findings.

3.1 Behavioral changes during learning the Morris water maze task

We recorded ten 13-week-old mice while they performed the MWM spatial navigation task. In

preparation for calcium imaging, all mice underwent a stereotaxic surgery. Initially, mice received

a unilateral injection of AAV1.Syn.jGCaMP7f.WPRE virus. Subsequently, they underwent GRIN

lens implantation surgery. After a 20-day recovery period, the mice were anesthetized once

again to facilitate the placement of a miniature microscope on an aluminum baseplate, positioned

atop the GRIN lens. The procedure involved guiding the baseplate onto the skull surface using the

miniscope, ensuring optimal field of view identification for the mice. Following a two-day recovery,

we initiated training sessions for the MWM task, simultaneously imaging neural activities in the

CA1 region (Figure 3.1 (a-c)).

The MWM task is a behavioral test designed to assess spatial memory in animals. The task

consists of a circular pool, measuring 120 cm in diameter, filled with opaque water, and featuring a

concealed platform just beneath the water’s surface. The goal of the task is to assess the animal’s

ability to learn and remember the location of the hidden platform, utilizing distal cues positioned

on the surrounding walls (Figure 3.2). Experiments took place over six recording days, with data

collection occurring every other day for each animal. Each recording day was divided into 3 blocks,
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Figure 3.1: OVERVIEW OF EXPERIMENTAL PROCEDURES
(a) Chronology of surgical procedures and MWM training. (b) Miniscope schematic positioned
on a mouse head. (c) Hippocampus slice with GRINLens placement, indicating recorded neuron
positions. (d) Calcium transient signals for selected sample cells.

each consisting of 4 consecutive trials. The duration of each trial was limited to a maximum of 60

seconds or until the animal successfully located the hidden platform. If a trial was unsuccessful

within the allotted 60 seconds, the session was concluded, and the animal was positioned on

the platform for a 10-second interval between trials to enhance learning. To ensure unbiased

navigation and eliminate the influence of prior knowledge regarding the platform’s location, each

trial commenced with the animal facing away from the maze. This strategic starting position aimed

to prevent them from observing their prior locations, discouraging the use of the fastest trajectory

based on familiarity with the platform’s position.

During the trials in the MWM, we simultaneously measured the calcium transient activity of

CA1 neurons (Figure 3.1 (d)), along with tracking the position and head-direction of the animals

as they navigated through the water maze. As the animals acquired proficiency in the task, the
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time required to reach the platform decreased in each trial, leading to shorter recorded times in

subsequent sessions. Acknowledging the potential impact of recording duration on the analysis and

results, we incorporated additional trials on day 6 to maintain comparable recording durations for

both day 1 and day 6. Hence, after completing the probe trials on day 6, we conducted extra trials,

involving 0–2 blocks, with each block consisting of 12 trials.

Figure 3.2: SCHEMATIC OF MORRIS WATER MAZE
MWM is a circular pool with a diameter of 120 cm, filled with opaque water. The hidden platform
is depicted in grey within the northeast quadrant. Distal geometric shapes on the surrounding
walls serve as distal visual cues for navigation.

Throughout the training process, animals learned to locate a hidden platform submerged just

beneath the water’s surface, utilizing distal visual cues on the walls as their navigational guides. On

the first day of the training, the subjects were unfamiliar with the location of the hidden platform,

indicated by the grey circle in Figure 3.3 (a1–a6), and its positioning in relation to the distal visual

cues on the wall. This led them to explore various areas within the pool, often taking longer paths

in their attempts to locate the platform (Figure 3.3 (a1–a6) and Figure 3.4 (a)). Throughout training,

as the animals utilized the distal cues in the surrounding environment to navigate and learn the

platform’s location, they began to take shorter paths (Figure 3.3 (a1–a6)), resulting in reduced time

to complete the task (Figure 3.4 (a)) and spending more time in vicinity of the hidden platform

(Figure 3.3 (a6)). As it is also shown in Figure 3.3 (b1–b6) the animal’s preferred head angle tended
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to shift towards the northeast, aligning with the location of the hidden platform.

Figure 3.3: SPACE AND HEAD-DIRECTION OCCUPANCY
(a1) On day 1 the animal explored various locations due to its unfamiliarity with the hidden
platform’s location. (a5–a6) As the animal acquired proficiency in the task, it adopted a more
direct route to the platform and dedicated more time to its vicinity. (b1–b6) With growing
expertise in the task, its preferred head-direction gradually oriented towards the northeast,
indicating they learned where the hidden platform was located. The numerical values at the
bottom of each polar plot indicate the range of head-direction occupancy in each day.

3.2 Neural firing activity changes during learning the Morris water maze

task

The escape latency in the Morris Water Maze (MWM) signifies the duration it takes for an animal

to locate and reach a hidden platform within the maze, serving as a metric for evaluating spatial

learning and memory in rodents. In line with expectations, our findings demonstrated a consistent

reduction in escape latency as animals progressed in learning the MWM task. During the initial

trials, particularly on the first day, the animals exhibited a prolonged escape latency, reflecting

their unfamiliarity with the maze. However, as the animals gained experience with the task, they

progressively acquired the ability to learn and retain spatial cues guiding them to the platform’s

location. This acquired knowledge subsequently led to a significant decrease in escape latency
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Figure 3.4: REDUCTION IN ESCAPE LATENCY AND AVERAGE FIRING ACTIVITY
As the animal learned the task, two notable changes were observed: (a) Significant reduction in
escape latency (day 1: 47.6 ± 2.2 s, day 6: 18.0 ± 2.6 s, paired sample t-test, 𝑛 = 10, p=
9.96× 10−7) and (b) slight but significant reduction in mean firing activity (day 1: 1.36± 0.10 Hz,
day 6: 1.13 ± 0.06 Hz, paired sample t-test, p= 0.0203). (c) The speed of the animal on day 1 is
not significantly different than the speed on day 6 (day 1: 14.89 ± 0.65 cm/s, day 6: 14.58 ± 0.53
cm/s, paired sample t-test, p= 0.6527). ‘*’ p< 0.05, ‘**’ p< 0.005, ‘***’ p< 0.0005.

over subsequent trials (Figure 3.4 (a), day 1: 47.6 ± 2.2 s, day 6: 18.0 ± 2.6 s, p= 9.96 × 10−7).

As the animals learned the task, mean calcium event frequency also decreased (Figure 3.4 (b), day

1: 1.4±0.10 Hz, day 6: 1.1±0.06 Hz, p= 0.0203). There was no statistically significant difference

in the average speed of animals on both day 1 and day 6 of the experiment (Figure 3.4 (c), day 1:

14.9 ± 0.65 cm/s, day 6: 14.6 ± 0.53 cm/s, p= 0.6527).

3.3 Probe analysis

We conducted two probe trials as part of our study: the first occurred one hour after the conclusion of

training in day 3, and the second took place one hour following the conclusion of day 6. Throughout

the probe trial, the platform was removed, and the animals were allowed to swim freely in the pool

for 60 seconds.
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Figure 3.5: IMPROVED PERFORMANCE IN PROBE TRIALS
(a1, a2) Animal’s trajectory during the first and second probe after day 3 and day 6. respectively.
(b1, b2) During the probe trial after day 6, animals exhibited a prolonged presence in the vicinity
where the hidden platform was located during training, in contrast to the probe after day 3 (day 1:
repeated measures ANOVA, n=10, F(3,27)= 3.48, p= 0.0294. Planned comparisons paired t-test
(Q1, Q2): = 0101, (Q1, Q3): = 0.0889, (Q1, Q4): = 0.1155; day 6: repeated measures ANOVA,
F(3,27)= 165.82, p= 1.68 × 10−7. Planned comparisons paired t-test (Q1, Q2)= 1.12 × 10−9, (Q1,
Q3)= 1.36 × 10−9, (Q1, Q4)= 1.14 × 10−6). (c1, c2) The number of target crossing is significantly
higher in quadrant Q1 in contrast to the remaining quadrant (day 1: repeated measures ANOVA,
F(3,27)= 1.87, p= 0.1577. Planned comparisons paired t-test (Q1, Q2)= 0.0642, (Q1, Q3)= 0.2819,
(Q1, Q4)= 0.1678, day 6: repeated measures ANOVA, F(3,27)= 16.71, p= 2.45 × 10−6. Planned
comparisons paired t-test (Q1, Q2)= 0.0018, (Q1, Q3)= 0.0014, (Q1, Q4)= 0.0041). Bonferroni
correction is applied. ‘*’ p< 0.0167, ‘**’ p< 0.0017, ‘***’ p< 1.67 × 10−4.

The primary objective of the probe trial was to evaluate the spatial memory of the animals and

their capacity to recall the location of the hidden platform. This assessment was conducted by

observing their preference for the target quadrant (northeast, Q1), where the platform was initially

positioned. We assessed two parameters: (1) the duration spent in the target quadrant (Q1) in

comparison to other quadrants (Q3–Q4), and (2) the number of platform crossings. The term

“platform crossing” refers to instances where the animal swims over the location where the hidden
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platform used to be during the training phase. A greater frequency of platform crossings typically

indicates enhanced retention of spatial memory, as the animal demonstrates a preference for the area

where it previously found the platform. As it is shown in (Figure 3.5 (a1 and a2) during the probe

trial on day 6, the animals tended to stay in closer proximity to the target quadrant, where the hidden

platform was initially located. Figure 3.5 (b1 and b2) indicate that the animal spent a statistically

significant amount of time more in quadrant Q1 compared to the other quadrants (day 1: F(3,27)=

3.48, p= 0.0294, day 6: F(3,27)= 165.82, p= 1.68 × 10−7). Moreover, there was a statistically

significant increase in the number of target crossings in quadrant Q1 in contrast to the remaining

quadrants (Figure 3.5 (c1 and c2), day 1: F(3,27)= 1.87, p= 0.1577, day 6: F(3,27)= 16.71, p=

2.45 × 10−6). Therefore, both escape latency and probe trials demonstrated robust learning in the

MWM in animals implanted with the miniscope.

3.4 Elevated spatial and head-directional selectivity through learning the

MWM task

In the preceding section, we demonstrated the proficiency of our control subjects in performing

the MWM task through behavioral analysis. Next, we explored the alterations in neural selectivity

as the animal acquired proficiency in the task. Our aim was to investigate the impact of spatial

and head-directional covariates on the firing activity of hippocampal neurons. It is crucial to

acknowledge that the behavior of animals in MWM task introduced certain biases, which, when not

properly accounted for, could contribute to spurious results. Moreover, we had a particular interest

in concurrently estimating the spatial and head-directional modulation.

The binning method has been one of the most commonly employed techniques in neuroscience

for estimating neural firing rates about various covariates. This method entails dividing the stream

of neural activity into discrete intervals, or “bins”, and quantifying the number of spikes within

each bin. These intervals can represent time, space, head-direction, or any other relevant covariates.

To compute the neural firing rate, one would then divide the number of spikes in each bin by the
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corresponding time the animal spent in that bin. Notably, behavioral biases can heavily affect

the firing rate of neurons predicted by the binning method. To simultaneously and independently

predict space and head-directional modulation while also accounting for behavioral biases (refer

to [AAV16] for insights into how behavioral biases impact the prediction of space and head-

direction modulation), we employed established Generalized Linear Models (GLM) framework

([MLE11, LME12, TEF05, AAV16]). Truccolo et al. in their seminal paper proposed a statistical

framework based on a point process likelihood function, to relate a neuron’s spiking probability

to extrinsic covariates such as behavior ([TEF05]). Moreover, they showed that the discrete time

point process likelihood function can be analyzed in the GLM framework which uses parametric

models.

GLM proves to be a fitting statistical framework for our data due to several key reasons:

Flexibility: GLM is a flexible statistical framework that accommodates various types of response

variables, making it suitable for modeling complex neural activity patterns observed in the hip-

pocampus.

Nonlinearity: The hippocampal neurons often exhibit nonlinear responses to space and head-

direction. GLM can capture such nonlinear relationships, allowing for a more accurate representa-

tion of the underlying neural processes.

Multiple predictors: GLM offers the advantage of simultaneously including multiple predictors.

This capability allows for the integration of both spatial and head-directional variables within a

unified model, providing a more comprehensive understanding of the neural activity.

Non-normality: Neural responses may not always follow a normal distribution. GLM is well-

suited for situations where the response variable is not normally distributed, making it more robust

for modeling neural data.
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Figure 3.6: AIC-GUIDED MODEL SELECTION
The AIC values for various combinations of the number of spatial and angular basis functions for
one animal. The AIC criteria is used for selecting the optimal models. the model’s parameter
count is determined by the summation of angular and spatial basis functions, alongside a constant
function. The model with the minimum AIC is chosen as the most suitable. In this example, the
optimal model consists of 15 spatial basis functions and 10 angular basis functions.

In our investigation of how neural selectivity changes with the acquisition of the MWM spatial

navigation task, we recorded the activity of hundreds of hippocampal pyramidal cells (day 1:

nneurons= 171 ± 25, day 6: nneurons= 197 ± 22, nanimals= 10) while recording the position and head-

direction of the animals. To address the potential influence of varying total trial durations for day 1

and day 6 on the estimation of rate maps, we standardized the recording duration by increasing the

number of trials recorded on day 6 and then randomly selecting trials for each day, ensuring that the

sum of trial durations became equal for both days. Subsequently, we applied GLM to predict the

spatial and head-direction modulation of these neurons (see section 2.12). To determine the best

model, we tested different numbers of basis functions and utilized the Akaike Information Criterion

(AIC) to identify the most suitable model. For the majority of animals, the preferred model featured

8–10 angular basis functions and 10–15 Zernike basis functions. Figure 3.6 illustrates the AIC

values for various combinations of the number of spatial and angular basis functions for one animal.

The optimal model was determined by the lowest AIC value. In this example, the optimal model
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consisted of 15 spatial basis functions and 10 angular basis functions. To maintain a consistent

model across all animals, we employed 15 spatial basis functions for position covariate and 10

angular basis functions for head-direction covariate.

Figure 3.7: SAME CELLS CALCIUM IMAGING ACROSS DAYS
Calcium imaging of identical population of cells across day 1 and day 6

Leveraging the capabilities of the miniscope, we were able to consistently record from the

identical set of cells across multiple days (Figure 3.7). This longitudinal approach provided us

the opportunity to conduct a comprehensive analysis of individual cell activity, enabling a more

refined understanding of how neural selectivity evolves throughout the learning process. Miniscope

recordings followed by GLM analysis allowed us to track the spatial and HD selectivity of neurons

throughout learning (Figure 3.8).
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Figure 3.8: CELLS DISPLAYING VARYING DEGREES OF SPATIAL AND
HEAD-DIRECTIONAL SELECTIVITY
Three representative cells are depicted with their spiking activities, spatial and head-directional
selectivity, and the changes in the degree of selectivity observed between day 1 and day 6, after
the animals successfully learned the task. (a1,b1,c1) depict animal trajectories using light grey
lines. Each dot represents the neuron’s activity, with the color corresponding to the animal’s
head-direction. The grey circle located in the northeast quadrants depicts the position of the
hidden platform. (a4,b4,c4) and (a1,b1,c1) represent the same three cells measured on day 1 and
day 6, respectively. (a2,b2,c2) and (a5,b5,c5) illustrate the spatial firing rate map of the three
neurons overlaid by the position of the animal when the firing activity occurred. The lighter color
on the spatial firing rate map corresponds to the higher firing rate. The number in the bottom right
corner indicates the sparsity of the spatial map. (a3,b3,c3) and (a6,b6,c6) show the angular rate
map of the three cells. The number in the bottom right corner indicates the sparsity of the angular
map and the two numbers in the top right corner of the polar plot show the range of firing rate of
the angular rate map.

As the animals become more proficient in the MWM task, there was a significant increase in

spatial sparsity (day 1: 0.19±0.01, day 6: 0.28±0.01, p= 6.63×10−4). Similarly, head-directional

sparsity increased, although the change was not statistically significant (day 1: 0.10 ± 0.01, day 6:

0.12 ± 0.01, p= 0.0568).
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As we delved into potential factors that could influence the results obtained by GLM, we

observed a notable shift in the animals’ behavior, indicating increased bias on day 6. As the

animals learned the task, they adopted more direct paths from the starting point toward the hidden

platform (Figure 3.3). Consequently, this behavior led to a fewer visits to distinct locations within

the pool. Moreover, the animals sampled fewer head-directions, particularly when taking a straight

path, where the head-direction remained relatively stable. To address this concern, we calculated

the sparsity for the shuffled data (see section 2.15). As illustrated in Figure 3.9 (a, b) the shuffled

data also exhibited a significant increase in spatial sparsity (day 1: 0.16±0.02, day 6: 0.21±0.01, p=

0.0027) and a trend toward increased head-direction sparsity (day 1: 0.07±0.01, day 6: 0.09±0.01,

p= 0.1331), respectively. To mitigate the impact of behavioral biases on the predicted sparsity of

the rate maps by GLM and its potential influence on the observed increase in sparsity on day 6,we

subtracted the sparsity of the shuffled data from the sparsity of the empirical data (see section

2.16). The results demonstrated a significant increase in spatial sparsity (day 1: 0.01± 0.01, day 6:

0.04±0.01, p= 6.56×10−4) and a significant increase in head-direction sparsity (day 1: 0.01±0.01,

day 6: 0.03 ± 0.01, p= 0.0226); Figure 3.9 (c) and (d), respectively.

Next, in our exploration of changes in neural responses associated with learning, we utilized

the miniscope’s capability to track neurons across multiple days. This approach enabled us to

confine our analysis to the identical set of cells recorded on both day 1 and day 6, ensuring a direct

and consistent comparison (nneurons= 68 ± 10, nanimals= 10). As depicted in Figure 3.10 (a,b), the

results were consistent with the findings obtained when comparing the spatial and head-directional

sparsity of day 1 and day 6 using all recorded cells. The spatial sparsity showed a significant

increase (day 1: 0.19 ± 0.02, day 6: 0.30 ± 0.01, p= 2.84 × 10−5), and similarly, head-directional

sparsity also significantly increased (day 1: 0.10±0.01, day 6: 0.13±0.01, p= 0.0133). Consistent

with the previous results using all cells, the spatial and head-directional sparsity for the shuffled

data exhibited a similar trend as the spatial and head-directional sparsity for the empirical data.

For shuffled spatial sparsity: (day 1: 0.16 ± 0.02, day 6: 0.24 ± 0.02, p= 6.56 × 10−5), and

for shuffled head-directional sparsity (day 1: 0.08 ± 0.02, day 6: 0.1 ± 0.01, p= 0.0365). After
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subtracting shuffled values from the sparsity measurements, the subtracted spatial sparsity exhibited

a significant increase from day 1 to day 6 (day 1: 0.01 ± 0.01, day 6: 0.04 ± 0.01, p= 0.0014),

and similarly, the subtracted head-directional sparsity showed a significant increase from day 1 to

day 6 (day 1: 0.01 ± 0.01, day 6: 0.03 ± 0.01, p= 0.0289). Therefore, single cell GLM analysis

demonstrates that spatial and HD sparsity increase with learning on the MWM task.

Figure 3.9: CHANGES OF SPATIAL AND HEAD-DIRECTIONAL SELECTIVITY
THROUGH LEARNING ACROSS ALL RECORDED PYRAMIDAL NEURONS
(a) Significant increase in the control space sparsity (day 1: 0.19 ± 0.01, day 6: 0.28 ± 0.01,
paired sample t-test, 𝑛 = 10, p= 6.63 × 10−4), and significant increase in shuffled space sparsity
(day 1: 0.16 ± 0.02, day 6: 0.21 ± 0.01, paired sample t-test, p= 0.0027).(b) Non-significant
increase in the control HD sparsity (day 1: 0.10 ± 0.01, day 6: 0.12 ± 0.01, paired sample t-test,
p= 0.0568), and non-significant increase in the shuffled HD sparsity (day 1: 0.07 ± 0.01, day 6:
0.09 ± 0.01, paired sample t-test, p= 0.1331). (c) Significant increase in the shuffle-subtracted
space sparsity (day 1: 0.01 ± 0.01, day 6: 0.04 ± 0.01, paired sample t-test, p= 6.56 × 10−4), and
(d) significant increase in shuffle-subtracted HD sparsity (day 1: 0.01 ± 0.01, day 6: 0.03 ± 0.01,
paired sample t-test, p= 0.0226). ‘*’ p< 0.05, ‘**’ p< 0.005, ‘***’ p< 0.0005.
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Figure 3.10: CHANGES OF SPATIAL AND HEAD-DIRECTIONAL SELECTIVITY
THROUGH LEARNING ACROSS SAME PYRAMIDAL NEURONS RECORDED IN DAY
1 AND DAY 6
(a) Significant increase in the control space sparsity (day 1: 0.19 ± 0.02, day 6: 0.30 ± 0.01,
paired sample t-test, 𝑛 = 10, p= 2.84 × 10−5), and significant increase in the shuffled space
sparsity (day 1: 0.16 ± 0.02, day 6: 0.24 ± 0.02, paired sample t-test, p= 6.56 × 10−5). (b)
Significant increase in the control HD sparsity (day 1: 0.10 ± 0.01, day 6: 0.13 ± 0.01, paired
sample t-test, p= 0.0133), and significant increase in the shuffled HD sparsity (day 1: 0.08 ± 0.01,
day 6: 0.1 ± 0.01, paired sample t-test, p= 0.0365). (c) Significant increase in the
shuffle-subtracted space sparsity (day 1: 0.01 ± 0.01, day 6: 0.04 ± 0.01, paired sample t-test, p=
0.0014), and (d) significant increase in shuffle-subtracted HD sparsity (day 1: 0.01 ± 0.01, day 6:
0.03 ± 0.01, paired sample t-test, p= 0.0289). ‘*’ p< 0.05, ‘**’ p< 0.005, ‘***’ p< 0.0005.

3.5 Decoding neural signals with artificial neural networks

In the previous section, we explored how the sparsity of individual neurons’ spatial and head-

directional rate maps changes over time. We found a significant increase in the sparsity of these

rate maps, and this change was statistically linked to the learning experience. Next, we explored

the extent of information encoded by a neural population regarding different covariates. To assess

this, we utilized feedforward artificial neural networks for decoding neural signals. Our hypothesis

posits that as the neural activities encode more information about position and head direction,

the performance of the feedforward neural network in decoding improves, consequently reducing

decoding errors.

Glaser et al. demonstrated that for the data recorded from hippocampus, among the various
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networks tested, feedforward neural networks (FFNs) achieved decoding accuracy comparable to or

better than the other 10 models (e.g., recurrent neural networks, long short-term memory networks,

gated recurrent unit, Wiener Filter, naive Bayes) they examined ([GBC20]). Considering their

computational efficiency, with feedforward neural networks running faster than some other methods,

and achieving either superior or comparable accuracy on our data, we made the decision to opt

for FFNs. We employed three feedforward neural networks with different structures, incorporating

multiple hidden layers and varying numbers of neurons in each layer to decode three variables:

position, head-direction, and distance from the platform (see section 2.18). Our approach focused on

using data exclusively from days 1 and 6, ensuring comparable data duration for a fair comparison.

To achieve this, we randomly selected trials from day 1 and day 6, ensuring that the cumulative length

of the trials was equal. Subsequently, we allocated 80% of the data for training the feedforward

neural networks and reserved the remaining 20% for evaluating the prediction performance.
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3.6 Decoding position, head-direction, and distance to the platform

Figure 3.11: EXAMPLE DECODER RESULT FOR POSITION
Example of a decoding performance in predicting the position of an animal. The grey line shows
the original position trace and the yellow line represents the decoded position by FNN. The
decoder’s performance increased on day 6 compared to day 1.

Feedforward neural decoders could predict spatial position, HD, and distance on both day 1 and day

6. (see Figure 3.11 for example position decoding). As the animals learned the task, the decoded

position error decreased on day 6 compared to day 1 (day 1: 37.3 ± 2.4 cm, day 6: 25.6 ± 1.4

cm, p= 8.67 × 10−5). Moreover, the position decoding error for shuffled data displayed a similar

trend (day 1: 41.1 ± 2.3 cm, day 6: 35.9 ± 1.1 cm, p= 0.0338). Of note, as the animals learned the

task, they visited fewer locations and took more direct paths to reach the platform. Consequently,

this biased behavior could potentially result in smaller decoding error. To address this issue, we

subtracted the 95-th percentile of the error for the shuffled data from the error of the decoded

original position. The shuffle-subtracted error also significantly decreased in day 6 compared to

day 1 (day 1: 1.8 ± 2.0, day 6: −4.9 ± 1.4, p= 0.0084). Therefore, population decoding of spatial

position improves with learning.
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Figure 3.12: REDUCTION IN POSITION DECODING ERROR
The decoded position exhibited a notable decrease in error on day 6 compared to day 1. (a) The
error for the empirical data demonstrated a significant drop (day 1: 37.3 ± 2.4 cm, day 6:
25.6 ± 1.4 cm, paired sample t-test, 𝑛 = 10, p= 8.67 × 10−5). Likewise, the error for the shuffled
data revealed a significant decrease (day 1: 41.1 ± 2.3 cm, day 6: 35.9 ± 1.1 cm, paired sample
t-test, p= 0.0338). (b) The error for the shuffle-subtracted exhibited a significant reduction (day 1:
1.8 ± 2.0, day 6: −4.9 ± 1.4, paired sample t-test, p= 0.0084).

While there was no significant change in correlation between empirical and decoded positions

from day 1 to day 6 (day 1: 0.42 ± 0.08, day 6: 0.52 ± 0.06, p= 0.3015), the correlation for the

shuffled data exhibited a significant decrease (day 1: 0.33 ± 0.09, day 6: 0.01 ± 0.04, p= 0.0071).

Therefore, the correlation for the shuffle-subtracted data demonstrated a statistically significant

increase (day 1: −0.07 ± 0.06, day 6: 0.24 ± 0.06, p= 0.0045). This reinforces the previous

decoding results that showed improved decoding of spatial position after learning.
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Figure 3.13: IMPROVEMENT IN POSITION DECODING CORRELATION
(a) Empirical-decoded position correlation showed no significant change in empirical data (day 1:
0.42 ± 0.08, day 6: 0.52 ± 0.06, paired sample t-test, 𝑛 = 10, p= 0.3015), and the shuffled position
showed a significant decrease (day 1: 0.33 ± 0.09, day 6: 0.01 ± 0.04, paired sample t-test, p=
0.0071). (b) The shuffle-subtracted data exhibited a significant increase (day 1: −0.07 ± 0.06, day
6: 0.24 ± 0.06, paired sample t-test, p= 0.0045).

Similarly, we decoded head-direction and distance to the platform using FNN. (Figure 3.14 and

Figure 3.15).

Figure 3.14: EXAMPLE DECODER RESULT FOR HEAD-DIRECTION
Example of a decoding performance in predicting the head-direction of an animal. The grey line
shows the original head-direction trace and the magenta line represents the decoded
head-direction by FNN. The decoder’s performance increased on day 6 compared to day 1.
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Figure 3.15: EXAMPLE DECODER RESULT FOR DISTANCE TO THE GOAL
Example of a decoding performance in predicting the distance to the platform of an animal. The
grey line shows the original distance to the platform trace and the green line represents the
decoded distance to the platform by FNN. The decoder’s performance increased on day 6
compared to day 1.

There was a significant reduction in the error for the decoded head-direction (day 1: 71.9± 4.1,

day 6: 54.6 ± 4.0, p= 8.19 × 10−4), while the shuffled data didn’t show any significant changes

from day 1 to day 6 (day 1: 84.1 ± 5.1, day 6: 85.4 ± 4.3, p= 0.832; Figure 3.16). Moreover, the

shuffle-subtracted data also showed a significant reduction (day 1: 0.7 ± 3.9, day 6: −11.3 ± 3.2,

p= 0.002).

Figure 3.16: IMPROVEMENT IN HEAD-DIRECTION DECODING THROUGH
LEARNING
The decoded head-direction exhibited a significant decrease in error on day 6 compared to day 1.
(a) The error for the empirical data demonstrated a significant drop (day 1: 71.9 ± 4.1, day 6:
54.6 ± 4.0, paired sample t-test, 𝑛 = 10, p= 8.19 × 10−4). However, the error for the shuffled data
revealed any significant changes (day 1: 84.1 ± 5.1, day 6: 85.4 ± 4.3, paired sample t-test, p=
0.832). (b) The error for the shuffle-subtracted exhibited a significant reduction (day 1: 0.7 ± 3.9,
day 6: −11.3 ± 3.2, paired sample t-test, p= 0.002).
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There was also a significant reduction in the decoded error for the distance to the platform (day

1: 24.6 ± 1.8 cm, day 6: 15.5 ± 0.6 cm, p= 0.0029; Figure 3.17). Conversely, the shuffled data

exhibited no significant alterations from day 1 to day 6 (day 1: 27.9±2.1 cm, day 6: 24.3±1.1 cm,

p= 0.1455). Therefore, the shuffle-subtracted data demonstrated a substantial reduction in error

(day 1: 5.2±1.7, day 6: −2.9±0.4, p= 0.0022). Therefore, decoding of head direction and distance

to the platform also improved with learning. These findings are in agreement with single neuron

GLM analysis.

Figure 3.17: IMPROVEMENT IN DISTANCE TO THE PLATFORM DECODING
THROUGH LEARNING
The decoded distance to the platform exhibited a significant decrease in error on day 6 compared
to day 1. (a) The error for the empirical data demonstrated a significant drop (day 1: 24.6 ± 1.8
cm, day 6: 15.5 ± 0.6 cm, paired sample t-test, 𝑛 = 10, p= 0.0029). However, the error for the
shuffled data revealed no significant changes (day 1: 27.9 ± 2.1 cm, day 6: 24.3 ± 1.1 cm, paired
sample t-test, p= 0.1455). (b) The error for the shuffle-subtracted exhibited a significant reduction
(day 1: 5.2 ± 1.7, day 6: −2.9 ± 0.4, paired sample t-test, p= 0.0022).

3.7 Position and head-direction conjunctive analysis

In the previous sections, we examined changes in neural responses at both the single-cell and

population levels. To further refine our analysis and ensure an unbiased comparison, we performed

conjunctive coding analysis where we directly compared the firing rates of neurons when the

animals were in the same position and headed in the same direction.
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Figure 3.18: SCHEMATIC OF POSITION AND HEAD-DIRECTION CONJUNCTIVE
ANALYSIS
Comparing neural responses by aligning position and head-direction bins on day 1 and day 6. The
analysis focused on time bins with matched positions, head-direction, and speeds between 10–25
cm/s on both days. Averaged neural signals in 𝑚 time bins of day 1 (a) are compared with 𝑛 time
bins of day 6 (b), aligning position and head-direction shown as in the figure. Similarly, for
another example, averaged neural signals in 𝑝 time bins of day 1 (c) are compared with 𝑞 time
bins of day 6 (d).

For the conjunctive analysis, we segmented the position and head-direction of an animal

into bins, using 4x4 bins for space and 3 degrees for head-directions on both day 1 and day 6.

Subsequently, we identified time bins on day 1 and day 6 that shared the same head-direction and

position (schematic for approach shown in Figure 3.18).

Hence, we compared the neural signals of those time bins that had similar positions and head-

-directions on day 1 and day 6. Additionally, to further refine our analysis we focused exclusively

on intervals when the animal’s speed fell within the range of 10–25 cm/s on both days (Figure 3.19

(c)). Moreover, we only included cells recorded on both day 1 and day 6.
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Figure 3.19: REDUCTION IN THE PERCENTAGE OF ACTIVE CELLS AND
INCREASE IN FLUORESCENCE INTENSITY CHANGES AFTER LEARNING
Exploring neural activity within similar positions and head directions on both day 1 and day 6. (a)
The percentage of active cells experienced a significant drop from day 1 to day 6 (day 1:
5.9% ± 1.9% (𝜇 ± 𝜎), day 6: 5.2% ± 1.6%, paired sample t-test, nanimals= 10, p= 6.35 × 10−9). (b)
There was a simultaneous significant increase in fluorescence intensity changes (day 1:
0.14 ± 0.05, day 6: 0.16 ± 0.05, paired sample t-test, p= 3.55 × 10−9). (c) There were no
significant differences in speed from day 1 to day 6 (day 1: 15.6 ± 2.4 (cm/sec), day 6: 15.8 ± 2.6
(cm/sec), paired sample t-test, p= 0.2452). (d) Summarizes the conjunctive analysis. Inactive
cells, depicted by gray circles, contrast with active cells highlighted in color. A visible reduction
in the percentage of active cells from day 1 to day 6 is reflected in fewer colored circles on day 6.
Larger circle sizes on day 6 denote increased fluorescence intensity.

Our conjunctive analysis revealed a significant reduction in the percentage of active cells in

each place/HD conjunction from day 1 to day 6 as the animals learned the task (Figure 3.19 (a), p=

6.35 × 10−9). In addition, there was a significant increase in the average intensity of the calcium

signals for activated neurons during the same learning period (Figure 3.19 (b), p= 3.55 × 10−9).

Notably, when considering data only within the speed range of 10–25 cm/s, no significant difference

in speed was observed between day 1 and day 6 (Figure 3.19 (c), p= 0.2452).

In our subsequent analysis, we explored potential changes in neural response in each conjunctive

field depending on their distance from the hidden platform (Figure 3.20). We found that there was

no significant difference in the percentage of active cells and the mean amplitude of calcium

transients for fields located at short distances (5–15 cm) and long distances (60–70 cm) from the

platform on day 1 (p= 0.3397 and p= 0.2473 and, respectively). However, on day 6, there was a

significant increase in the percentage of active cells (p= 1.80 × 10−21), and a significant reduction
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in the amplitude of the mean calcium transient with increasing distance from the platform (p=

5.43 × 10−55). Therefore, when comparing activity of the neurons firing when animals were in the

same spatial location and headed in the same direction, fewer neurons were active after learning,

though the intensity of neural signal increased.

Figure 3.20: IMPACT OF LEARNING ON NEURAL RESPONSES AS A FUNCTION OF
DISTANCE TO THE GOAL
(a) The percentage of active cells decreased from day 1 to day 6 across varying distances to the
platform. Significant reductions in the percentage of active cells are denoted by ‘*’. There was no
significant difference between the percentage of active cells for short distances (5–15 cm)
compared to long distances (60–70 cm) from the goal on day 1 (day 1: close distance:
6.06 ± 4.22, far distance: 6.17 ± 3.62, two-sided Wilcoxon rank-sum test, p= 0.3397). However, a
significant increase in the percentage of active cells for long distances compared to short distances
from the goal was observed on day 6 (day 6: close distance: 4.65 ± 2.89, far distance:
5.45 ± 4.49, two-sided Wilcoxon rank-sum test, p= 1.80 × 10−21). (b) Fluorescence intensity
changes exhibited a notable increase from day 1 to day 6 across diverse distances to the platform,
with significant enhancements marked by ‘*’. On day 1, no statistically significant distinction
emerged in fluorescence intensity changes between short distances and long distances from the
goal (close distance: 0.13 ± 0.06, far distance: 0.13 ± 0.06, two-sided Wilcoxon rank-sum test, p=
0.2473). However, on day 6, a significant reduction in fluorescence intensity changes for long
distances compared to short distances from the goal was evident (close distance: 0.19 ± 0.09, far
distance: 0.16 ± 0.09, two-sided Wilcoxon rank-sum test, p= 5.43 × 10−55).

59



3.8 Link between LTP and learning spatial navigation

Long term potentiation in CA1 has been shown to be critical for learning [MAL86, SPW92, THT96,

ZLX18]. To determine whether the improvements in spatial and HD coding measured after learning

were driven by LTP, we conducted similar experiments in GluA1C2KI mice. These mice have been

previously characterized by normal synaptic transmission but exhibit reduced Schafer Collateral

LTP and impaired performance in learning tasks such as the Morris water maze [ZLX18].

Figure 3.21: LTP DEFICIENCY IN GLUA1C2KI ANIMALS
2 stimulating electrodes were used to activate independent groups of excitatory synapses (S1 and
S2). After time = 0, a 15 second long train of 5 Hz stimulation was delivered to S1 synapses. (a)
Results from wild type mice. (b) Results from GluA1C2KI mutants. (c) Results from individual
experiments showing changes in synaptic strength at S1 and S2 synapses. At 45 minutes post-TPS,
S1 synapses potentiated to 172 ± 5% of baseline in slices from wild type mice (nwild type =4) and
were 126 ± 4% of baseline in slices from GluA1C2KI mutants (nGluA1C2KI= 5, two-sided Wilcoxon
rank-sum test, p= 0.032). S2 synapses potentiated to 101 ± 1% of baseline in slices from wild type
mice and were 101 ± 1% of baseline in slices from wildtGluA1C2KI mutants (p= 0.905).

We first confirmed whether GluA1C2KI animals indeed had reduced LTP. Two stimulating

electrodes (S1 and S2) were used to activate independent groups of Schaffer collateral fiber synapses.

15 seconds of theta pulse stimulation (TPS, single stimulation pulses delivered at 5 Hz) was delivered

to S1 synapses. At 45 minutes post-TPS, S1 synapses potentiated to 172% of baseline in slices

from the wild type mice and were 126% of baseline in slices from GluA1C2KI mutants. Therefore
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significant LTP reduction was observed in GluA1C2KI mutants (Figure 3.21).

In another experiment, we assessed a different paradigm for LTP induction based on behavioral

time-scale cooperativity which may be similar to plasticity obsvered in in-vivo. 10 seconds of

TPS was delivered to S1 synapses and, following a 2-second delay, a 5-second-long train of TPS

was delivered to S2 synapses. Normally, 5 seconds of TPS alone has no lasting effect on synaptic

strength but can induce LTP if delivered following trains of TPS delivered to S1 synapses. The

result showed significant reduction in LTP in GluA1C2KI animals compared to the wild type animals

(Figure 3.22).

Figure 3.22: DISRUPTED BEHAVIORAL TIMESCALE SYNAPTIC COOPERATIVITY
IN GLUA1C2KI ANIMALS
Two stimulating electrode were used to activate 2 independent groups of synapses. At time = 0, 10
seconds of 5 Hz stimulation was delivered to S1 synapses followed by a 5 second long train of 5
Hz stimulation delivered to S2 synapses (inter-train interval = 2 seconds). (a) Wild type results.
(b) Results from mutants. (c) Summary showing changes in synaptic strength at S1 and S2
synapses in slices from wild type and mutant mice. At 45 minutes post-TPS, S1 synapses
potentiated to 159 ± 4% of baseline in slices from wild type mice (nwild type= 5), and were
117 ± 4% of baseline in slices from GluA1C2KI mutants (nGluA1C2KI= 5, two-sided Wilcoxon
rank-sum test, p= 0.032). S2 synapses potentiated to 158 ± 2% of baseline in slices from wild type
mice and were 121 ± 2% of baseline in slices from GluA1C2KI mutants (p= 0.008)
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3.9 Performance of the GluA1C2KI mice in MWM

To determine if reduction of LTP results in altered spatial, HD and distance coding, we performed

MWM experiments in GluA1c2K1 animals and controls. GluA1C2KI and control animals showed a

significant and similar decrease in escape latencies in the MWM with training (Figure 3.23 (a1–a6),

Figure 3.24 (a), day 1: 51.4 ± 1.7 s, day 6: 23.9 ± 9.1 s, p= 0.0351). Moreover, similar to the

controls, the head-direction occupancy of GluA1C2KI animals exhibited a gradual shift towards the

north, slightly offset from the northeast, indicating a directional preference aligned more towards

the hidden platform (Figure 3.23 (b1–b6)). Therefore GluA1C2KI animals do not show impairments

in escape latency.

Figure 3.23: SPACE AND HEAD-DIRECTION OCCUPANCY IN GLUA1C2KI ANIMALS
Example of space and head-direction occupancy for a GluA1C2KI animal. (a1–a6) As the animal
gained proficiency in the task, it started taking a more direct route to the platform and spent
increased time in the vicinity of the hidden platform. (b1–b6) The head-direction gradually
oriented towards the north, with a slight offset from the northeast, corresponding to the location of
the hidden platform.
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Figure 3.24: REDUCTION IN ESCAPE LATENCY AND AVERAGE FIRING ACTIVITY
IN GLUA1C2KI ANIMALS
As the animal gained proficiency in the task: (a) Experienced a significant reduction in escape
latency (day 1: 51.4 ± 1.7 s, day 6: 23.9 ± 9.1 s, paired sample t-test, 𝑛 = 5, p= 0.0351). (b)
Demonstrated no significant change in mean firing activity (day 1: 1.48 ± 0.16 Hz, day 6:
1.53 ± 0.21 Hz, paired sample t-test, p= 0.7886). (c) The speed of the animal on day 1 was not
significantly different from the speed on day 6 (day 1: 13.61 ± 0.66 cm/s, day 6: 13.50 ± 1.26
cm/s, paired sample t-test, p= 0.9358). ‘*’ p< 0.05, ‘**’ p< 0.005, ‘***’ p< 0.0005.

To maintain consistency with the control group, we selectively included data from GluA1C2KI

animals when their speed exceeded 3 cm/s. As depicted in Figure 3.24 (c), there were no significant

differences in speed between day 1 and day 6 for GluA1C2KI animals (day 1: 13.61±0.66 cm/s, day

6: 13.50± 1.26 cm/s, p= 0.9358). However, unlike the control group, which exhibited a significant

drop in mean firing events, the GluA1C2KI animals did not show any significant reduction in the

mean firing events (3.24 (b), day 1: 1.48 ± 0.16 Hz, day 6: 1.53 ± 0.21 Hz, p= 0.7886).

3.10 Probe analysis of GluA1C2KI mice in MWM

As stated previously, the control group demonstrated a significant increase in the time spent in the

first quadrant during the probe trial after day 6 (Figure 3.25 (b)) demonstrating successful spatial

learning. Similarly, the number of target crossings was significantly higher in the first quadrant than

in the other quadrants (Figure 3.25 (c)). Yet, GluA1C2KI animals did not demonstrate significant
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difference in the quadrant occupancy in day 6 (Figure 3.25(b), F(3,12)= 1.29, p= 0.3215), and the

mutant and control showed significantly different in the time spent on different quadrants on day 6

(Figure 3.25(b), F(3,39)= 3.38, p= 0.0276). The number of target crossings was not significantly

different in the first quadrant compared to the other quadrants on day 6 in mutant animals (Figure

3.25(c), F(3,12)= 1.37, p= 0.2981). Therefore, while mutants showed no difference in escape

latencies, probe trials which are a more sensitive assay for learning deficits demonstrated learning

deficits in GluA1C2KI mice.

Figure 3.25: PROBE TRIAL DIFFERENCES IN GLUA1C2KI MICE VS. CONTROLS
(a) Animal’s trajectory during the second probe after the training on day 6. (b) During the probe
trial after day 6, animals did not display a significant extended presence in the vicinity of the
hidden platform’s training location however, there is a significant difference between the control
and the GluA1C2KI groups in the time spent in different quadrants on day 6 (see Figure 3.5 for the
control group statistics. GluA1C2KI day 6: repeated measures ANOVA, F(3,12)= 1.29, p= 0.3215.
Planned comparisons paired t-test (Q1, Q2)= 0.0787, (Q1, Q3)= 0.0682, (Q1, Q4)= 0.5963,
repeated two-way measures ANOVA, F(3,39)= 3.38, p= 0.0276). (c) The number of target
crossings is not significantly different in the first quadrant compared to the other quadrants, and
there is no significant difference between the control and the GluA1C2KI group on day 6 (day 6:
repeated measures ANOVA, F(3,12)= 1.37, p= 0.2981. Planned comparisons paired t-test (Q1,
Q2)= 0.1642, (Q1, Q3)= 0.0623, (Q1, Q4)= 0.4585, repeated two-way measures ANOVA, F(3,39)=
0.54, p= 0.6602). Bonferroni correction is applied. ‘*’ p< 0.0167, ‘**’ p< 0.0017, ‘***’
p< 1.67 × 10−4.

64



3.11 Significant impairment in spatial and head-directional selectivity in

GluA1C2KI knock-in mice

When performing analysis including all recorded neurons, the GluA1C2KI group exhibited a signif-

icant increase in the shuffle-subtracted spatial sparsity (Figure 3.27(b), day 1: 0.01 ± 0.01; day 6:

0.02 ± 0.01, p= 0.0117), and no significant changes in the shuffle-subtracted HD sparsity (Figure

3.27(d), day 1: 0.01 ± 0.01; day 6: 0.01 ± 0.01, p= 0.5454, see Figure 3.26 for sample cells). This

is in contrast to recordings in control animals which demonstrated significant improvements in both

spatial and HD shuffle-subtracted sparsity measurements across all cells recorded in both day 1 and

day 6.

Figure 3.26: NO IMPROVEMENTS IN HEAD-DIRECTION SELECTIVITY IN
GLUA1C2KI

Three representative cells, recorded on both day 1 and day 6, are illustrated with their spiking
activities, spatial, and head-directional rate maps. The examples highlight increased spatial
selectivity with minimal changes in head-direction selectivity.
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Figure 3.27: IMPAIRMENT IN HD SELECTIVITY AND INTACT SPATIAL
SELECTIVITY ACROSS ALL CELLS BY LEARNING
See Figure 3.9 for the control group statistics. (a) No significant increase in the space sparsity
(0.14 ± 0.02, day 6: 0.19 ± 0.03, paired sample t-test, 𝑛 = 5, p= 0.1061), and no significant
increase in the shuffled space sparsity (day 1: 0.12± 0.01; day 6: 0.16± 0.02, paired sample t-test,
p= 0.0924). (b) Significant increase in the shuffle-subtracted space sparsity (day 1: 0.01 ± 0.01;
day 6: 0.02 ± 0.01, paired sample t-test, p= 0.0117). (c) No significant increase in the HD sparsity
(day 1: 0.07 ± 0.02; day 6: 0.07 ± 0.02, paired sample t-test, p= 0.7287), and no significant
increase in the shuffled HD sparsity (day 1: 0.06 ± 0.01; day 6: 0.05 ± 0.01, paired sample t-test,
p= 0.4829). (d) No significant increase in shuffle-subtracted HD sparsity (day 1: 0.01 ± 0.01; day
6: 0.01 ± 0.01, paired sample t-test, p= 0.5454). ‘*’ p< 0.05, ‘**’ p< 0.005, ‘***’ p< 0.0005.

However, when considering only cells recorded on both day 1 and day 6, there was no significant

increase in the shuffle-subtracted spatial sparsity (Figure 3.28(b), day 1: 0.01 ± 0.01; day 6:

0.02 ± 0.01, p= 0.3366), and no significant increase in the shuffle-subtracted HD sparsity (Figure

3.28(d), day 1: 0.01±0.01; day 6: 0.01±0.01, p= 0.4439). Therefore, animals with decreased CA1

LTP demonstrate a lack of improvement in spatial and HD sparsity, especially when comparing the

same neurons across learning.
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Figure 3.28: IMPAIRMENT IN HD AND SPATIAL SELECTIVITY ACROSS SHARED
CELLS BY LEARNING
See Figure 3.10 for the control group statistics. (a) No significant increase in the space sparsity
(day 1: 0.16 ± 0.03; day 6: 0.22 ± 0.04, paired sample t-test, 𝑛 = 5, p= 0.0799), and no significant
increase in shuffled space sparsity (day 1: 0.13 ± 0.03; day 6: 0.18 ± 0.03, paired sample t-test, p=
0.0688). (b) No significant increase in the shuffle-subtracted space sparsity (day 1: 0.01 ± 0.01;
day 6: 0.02 ± 0.01, paired sample t-test, p= 0.3366). (c) No significant increase in the HD sparsity
(day 1: 0.08 ± 0.02; day 6: 0.08 ± 0.02, paired sample t-test, p= 0.8668), and a no significant
increase in the shuffled HD sparsity (day 1: 0.07 ± 0.02; day 6: 0.06 ± 0.02, paired sample t-test,
p= 0.6014). (d) No significant increase in shuffle-subtracted HD sparsity (day 1: 0.01 ± 0.01; day
6: 0.01 ± 0.01, paired sample t-test, p= 0.4439). ‘*’ p< 0.05, ‘**’ p< 0.005, ‘***’ p< 0.0005.

3.12 Decoding neural signals for the GluA1C2KI animals

We conducted a comparative analysis of spatial, HD, and distance to goal decoding between the

GluA1C2KI animals and the control animals, employing identical neural networks and parameters

as those used for the control group (see section 2.18, and Figures 3.29, 3.30, and 3.31).
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Figure 3.29: EXAMPLE DECODER RESULT FOR POSITION
Example of a decoding performance in predicting the position of a GluA1C2KI animal. The grey
line shows the original position trace and the yellow line represents the decoded position by FNN.
The decoder’s performance increased on day 6 compared to day 1.

Figure 3.30: EXAMPLE DECODER RESULT FOR HEAD-DIRECTION
Example of a decoding performance in predicting the head-direction of a GluA1C2KI animal. The
grey line shows the original head-direction trace and the magenta line represents the decoded
head-direction by FNN. The decoder’s performance increased on day 6 compared to day 1.
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Figure 3.31: EXAMPLE DECODER RESULT FOR DISTANCE TO THE GOAL
Example of a decoding performance in predicting the distance to the platform of a GluA1C2KI

animal. The grey line shows the original distance to the platform trace and the green line
represents the decoded distance to the platform by FNN. The decoder’s performance increased on
day 6 compared to day 1.

Figure 3.32: STRONG TREND FOR REDUCTION IN POSITION DECODING ERROR
IN GLUA1C2KI ANIMALS
The decoded position exhibited a significant decrease in error on day 6 compared to day 1. (a)
The error for the empirical data demonstrated a significant drop (day 1: 45.9 ± 4.2, day 6:
25.8 ± 1.6 cm, paired sample t-test, 𝑛 = 5, p= 0.0069). Likewise, the error for the shuffled data
revealed a significant decrease (day 1: 49.1 ± 5.0, day 6: 31.8 ± 1.8 cm, paired sample t-test, p=
0.0254). (b) The reduction in the error for the shuffle-subtracted was no significant (day 1:
6.5 ± 2.6, day 6: −0.6 ± 1.2 cm, paired sample t-test, p= 0.0961).

While, the control group exhibited a significant reduction in both position error and shuffle-

subtracted error, the GluA1C2KI group only demonstrated a significant drop in position error (Figure

3.32(a), day 1: 45.9 ± 4.2, day 6: 25.8 ± 1.6 cm, p= 0.0069), while the shuffle-subtracted position

error showed a similar trend without reaching statistical significance (Figure 3.32(b), day 1: 6.5±2.6,

day 6: −0.6 ± 1.2 cm, p= 0.0961). Interestingly, both the control and GluA1C2KI groups exhibited
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a significant increase in the shuffle-subtracted position correlation coefficient (Figure 3.33(b), day

1: −0.20 ± 0.06, day 6: 0.07 ± 0.08, p= 0.0090).

Figure 3.33: IMPROVEMENT IN POSITION DECODING CORRELATION
(a) There was no significant increase in the correlation between the empirical and decoded
position (day 1: 0.19 ± 0.05, day 6: 0.45 ± 0.14, paired sample t-test, 𝑛 = 5, p= 0.1644), and
shuffled data also showed no significant increase (day 1: 0.16 ± 0.13, day 6: 0.19 ± 0.18, paired
sample t-test, p= 0.90169). (b) The shuffle-subtracted data exhibits a significant increase (day 1:
−0.20 ± 0.06, day 6: 0.07 ± 0.08, paired sample t-test, p= 0.0090).

On the other hand, there were dramatic differences in HD decoding between controls and mutant

animals (Figure 3.34). Contrary to the control group, where there was a significant decrease in

both HD decoding error and shuffle-subtracted HD error, the GluA1C2KI animals did not exhibit

a significant decrease in HD decoding error or subtracted HD error, instead showing a trend to

increasing error (Figure 3.34(b), day 1: 0.6 ± 1.5, day 6: 9.4 ± 4.2, p= 0.0921). These findings are

consistent with the single cell analysis showing no increase in HD sparsity in mutants.

Last, in contrast to improvements in distance to goal decoding that we observed in controls,

there was no improvement in distance to the goal decoding error for the GluA1C2KI group (Figure

3.35(a), day 1: 24.2 ± 3.3, day 6: 16.3 ± 1.0, p= 0.1078), and its shuffle-subtracted decoding error

(Figure 3.35(b), day 1: 7.0 ± 4.1, day 6: 0.8 ± 1.5, p= 0.3023). Therefore, LTP impairment in

CA1 resulted in failures to improve decoding of HD and distance to goal from CA1 activity that

occur with learning in controls, suggesting that these changes depend on LTP and may be causally

driving learning.
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Figure 3.34: LACK OF IMPROVEMENT IN HEAD-DIRECTION DECODING
THROUGH LEARNING
(a) The decoded head-direction error exhibited no significant increase on day 6 compared to day 1
(day 1: 74.7 ± 1.3, day 6: 81.1 ± 41.0, paired sample t-test, 𝑛 = 5, p= 0.1885). Moreover, the
error for the shuffled data revealed no significant decrease (day 1: 94.3 ± 5.9, day 6: 79.8 ± 4.1,
paired sample t-test, p= 0.1557). (b) The error for the shuffle-subtracted also exhibited no
significant increase on day 6 compared to day 1 (day 1: 0.6 ± 1.5, day 6: 9.4 ± 4.2, paired sample
t-test, p= 0.0921).

Figure 3.35: LACK OF SIGNIFICANT IMPROVEMENT IN DISTANCE TO THE
PLATFORM DECODING THROUGH LEARNING
(a) The decoded distance to the platform exhibited no significant decrease in error on day 6
compared to day 1(day 1: 24.2 ± 3.3, day 6: 16.3 ± 1.0, paired sample t-test, 𝑛 = 5, p= 0.1078).
Additionally, the error for the shuffled data revealed no significant decrease (day 1: 27.2± 3.8, day
6: 20.4 ± 1.0, paired sample t-test, p= 0.0979). (b) The error for the shuffle-subtracted exhibited
no significant reduction (day 1: 7.0 ± 4.1, day 6: 0.8 ± 1.5, paired sample t-test, p= 0.3023).
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3.13 Position and head-direction conjunctive analysis for GluA1C2KI animals

Our analysis of place/HD conjunctions revealed a significant increase in the percentage of active

cells from day 1 to day 6 as the animals acquired the task, as depicted in Figure 3.36 (a) (p=

0.0021). However, there were no significant changes in the average amplitude of calcium signals

for the activated neurons during this learning period (Figure 3.36 (b), p= 0.4956). Notably, when

restricting the analysis to data within the speed range of 10–25 cm/s, there was no significant

difference in speed observed between day 1 and day 6 (Figure 3.36 (c), p= 0.7554).

Figure 3.36: INCREASE IN THE PERCENTAGE OF ACTIVE CELLS AFTER
LEARNING FOR GLUA1C2KI ANIMALS
Exploring neural activity within similar positions and head directions on both day 1 and day 6. (a)
The percentage of active cells experienced a significant increase from day 1 to day 6 (day 1:
6.7%± 2.1% (𝜇 ±𝜎), day 6: 7.4%± 3.0%, paired sample t-test, nanimals= 5, p= 0.0021). (b) There
were no significant changes in fluorescence intensity changes (day 1: 0.12 ± 0.04, day 6:
0.12 ± 0.06, paired sample t-test, p= 0.4956). (c) There were no significant differences in speed
from day 1 to day 6 (day 1: 15.5 ± 2.4 (cm/sec), day 6: 15.4 ± 2.9 (cm/sec), paired sample t-test,
p= 0.7554) S. (d) Summarizes the conjunctive analysis. Inactive cells, depicted by gray circles,
contrast with active cells highlighted in color. A visible increase in the percentage of active cells
from day 1 to day 6 is reflected by the increased number of colored circles observed on day 6.

3.14 Discussion

The present study marks a significant advancement in our understanding of neural activity during

spatial learning tasks, particularly through the innovative use of miniscope technology to observe
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calcium transient activity in hundreds of neurons simultaneously. By employing this technique

during the MWM navigation task, we were able to longitudinally track neural responses and

correlate them with behavioral changes as animals acquired the task.

Initially, wild-type animals exhibited longer and less direct paths to locate the hidden platform,

indicative of a lack of familiarity with the task. However, as learning progressed, we observed

significant shorter, more efficient paths, accompanied by a reduction in trial escape latency, a

classical marker of task proficiency. Additionally, during probe trials where the platform was

removed, animals displayed a preference for the quadrant where the platform was previously

located, as evidenced by increased time spent and higher frequency of target crossings in that area.

To decipher the neural mechanisms underlying this learning process, we employed a generalized

linear model to analyze single-cell responses, considering spatial and head directional tuning. Given

the inherent biases in animal behavior within the MWM task, this statistical framework was essential

for accurately disentangling the effects of head direction and position on neuronal firing rates. Our

results revealed a significant enhancement in sparsity of both spatial and head-directional firing

rate over the learning period, indicating a refinement of neuronal representations associated with

task performance.

Furthermore, employing artificial neural networks, we successfully decoded positional, direc-

tional, and distance to platform information from neural activity patterns, with decoding errors

markedly decreasing as animals became proficient in the task. Additionally, correlations between

decoded and actual positions strengthened with learning, further supporting the accuracy of neural

representations.

Subsequent investigations into the role of LTP in task learning involved experiments with

GluA1C2KI mutant mice, known to exhibit impaired LTP and learning deficits. While these mice

displayed a learning-related reduction in trial escape latencies similar to controls, probe trial analysis

failed to reveal significant differences in quadrant preferences, suggesting learning impairment.

Single-cell and network analyses in GluA1C2KI mice did not demonstrate improvements in HD
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and distance coding observed in wild-type mice, indicating a potential role of LTP in refining neural

representations associated with task learning.

Our findings were built upon previous studies examining hippocampal involvement in goal-

directed navigation. For instance, Hollup et al. demonstrated an accumulation of place fields near

the goal during probe trials, indicative of memory encoding for goal location [HMD01]. Similarly,

Dupret et al. observed reorganization of place fields near the goal in a 2D maze, both during

learning and probe trials [DOP10]. However, these studies did not elucidate the neural changes

underlying the actual navigation to goal locations. Our study addressed this gap by revealing

improved place and head direction coding during navigation learning. This fills a crucial void by

exploring neural changes directly tied to goal navigation.

Kentros et al. (2004) made a significant discovery regarding the stability of single place cells

across sessions where mice navigated towards a goal using distal cues, compared to sessions without

goal navigation amidst noise and flashing lights in a 2D arena. They found that place cell responses

were stable in goal-directed sessions but unstable otherwise, highlighting the role of attention to

cues in creating stable place cell maps correlated with successful navigation [KAS04].

These findings did not elucidate the neural changes crucial for goal-directed navigation, as

the stability analysis mostly pertains to periods when animals are random foraging rather than

navigating towards the goal from different starting points. Kentros et al.’s results implied that

attention to cues generates a stable place cell map correlated with successful goal navigation. Our

study, in contrast, revealed enhanced place coding during the learning of 2D navigation towards

the goal, providing deeper insights into the neural processes involved in successful goal-oriented

navigation.

Our findings also provide additional insights into a study by Moore et al. (2021), which

investigated neural responses during 2D navigation in virtual reality towards a hidden goal and their

changes with learning. Aligning with our day-to-day learning results, Moore et al. demonstrated

enhanced decoding of the CA1 population for head direction within the same learning session

[MCA21].
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Furthermore, our study with LTP-deficient mice revealed that the absence of improvement in

head direction coding during learning correlated with reduced accuracy in goal navigation during

probe trials. These combined results further support the significance of CA1 head direction coding

in 2D goal navigation, reinforcing the importance of these neural mechanisms in spatial orientation

tasks.
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