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ABSTRACT OF THE THESIS

Compressing Language Models using Low-Rank Decomposition and Characterizing the
Accuracy - Efficiency Trade-offs

By

Chakshu Moar

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2024

Assistant Professor Hyoukjun Kwon, Chair

Large language models (LLMs) have emerged and presented their general problem-solving

capabilities with one model. However, the model size has increased dramatically with billions

of parameters to enable such broad problem-solving capabilities. In addition, due to the

dominance of matrix-matrix and matrix-vector multiplications in LLMs, the compute-to-

model size ratio is significantly lower than that of convolutional neural networks (CNNs). This

shift pushes LLMs from a computation-bound regime to a memory-bound regime. Therefore,

optimizing the memory footprint and traffic is an important optimization direction for LLMs

today.

Model compression methods such as quantization and parameter pruning have been actively

explored for achieving the memory footprint and traffic optimization. However, the accuracy-

efficiency trade-off of rank pruning (i.e., low-rank decomposition) for LLMs is not well-

understood yet. Therefore, in this work, we characterize the accuracy-efficiency trade-off of a

low-rank decomposition method, Tucker decomposition, on recent language models including

an open-source LLM, Llama 2.

We formalize the low-rank decomposition design space and show that the decomposition

design space is huge (e.g., O(237) for Llama2-7B). To navigate such a huge design space,

ix



we characterize the design space and prune ineffective design space utilizing the learning

from our characterization results (e.g., we can reduce the pruned ranks to 1 without a

noticeable model accuracy drop). On the pruned design space, we perform thorough case

studies of accuracy-efficiency trade-offs using six widely used LLM benchmarks on BERT

and Llama 2 models. Our results show that we can achieve a 9% model size reduction with

minimal accuracy drops, which range from 4%p to 10%p, depending on the difficulty of the

benchmark, without any retraining to recover accuracy after decomposition. The results show

that low-rank decomposition can be a promising direction for LLM-based applications that

require real-time service in scale (e.g., AI agent assist and real-time coding assistant), where

the latency is as important as the model accuracy.
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Chapter 1

Introduction

Large language models (LLMs) such as GPT-4 [2] have opened a new era of artificial intelli-

gence (AI) technologies, based on broad problem-solving capabilities and even encompassing

generative tasks [3] interfaced with natural languages. Natural language-based interfaces

provide intuitive access for users to the latest AI technology and open a plethora of automation

opportunities (e.g., code generation [4], AI agent [5], etc.). Such a success was mainly driven

by a massive amount of training data [2], which leads to a large number of model parameters

to learn effectively. The number of parameters in the state-of-the-art models reaches up to

70 billion parameters on a popular open LLM, Llama 2 [1], which translates to 140 GB of

memory in FP16 data format just for model parameters (i.e., weights). Such a large memory

requirement is beyond typical on-board memory sizes in a single GPU (e.g., 80GB in NVIDIA

A100 and H100), which presents a major challenge for providing services like ChatGPT at

scale.

Although LLM variants in smaller scales (e.g., Llama2-7B [1]) exist, their memory requirements

are still high compared to those of previously popular convolutional neural networks (CNNs).

For example, Llama 2-7B has 268.5 × more parameters compared to ResNet50 [6]. As

an additional challenge, these rising footprints have actually been paired with decreased
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Figure 1.1: An illustration of Tucker Decomposition. A three-dimensional tensor T can be
decomposed into one core tensor and three factor matrices, U1, U2, and U3. the dimension of the
core tensor corresponds to the rank of the decomposition.

data reuse compared to CNNs. This is because state-of-the-art LLMs are based on the

Transformer [7] architecture, and its operators have a significantly low compute-to-model

size ratio, as summarized in Table 1.1. This low compute-to-model size ratio and large

memory footprint together indicate that optimizations for LLM inferences need to focus on

the memory side, rather than focusing on increasing peak throughput.

As a result, recent research has been exploring various methodologies for reducing memory

footprint and traffic, which includes sparsity [8] and quantization [9, 10, 11]. Among such

approaches, low-rank decomposition (or factorization) is an emerging approach that performs

a dimensionality analysis of a tensor and prunes minor components in the decomposed dimen-

sions (i.e., prunes the rank of a tensor). One of the low-rank decomposition methodologies,

Tucker decomposition, can be seen as a generalized approach of principal component analysis

(PCA) for high-dimensional tensors [12].

As illustrated in Figure 1.1, low-rank Tucker decomposition method decomposes a tensor

into a series of tensor contractions (or matrix multiplications if the base tensors are two-

dimensional). When performing the conversion, we prune the rank of the decomposed

tensors by removing unimportant dimensions similar to the dimension reduction methods

2



based on PCA. The pruned ranks lead to smaller memory requirements compared to the

non-decomposed tensor, but this also leads to approximate tensor reconstruction, which has

an impact on task performance 1 (e.g., accuracy).

The application of low-rank decomposition has been actively explored in the computer vision

domain [13, 14, 15, 16]. Based on such successful application cases, researchers are exploring

the case on large language models [17]. However, unlike weight pruning (sparsity) and

quantization (data precision), the trade off among task performance (e.g., model accuracy),

computational performance (e.g., latency), and energy efficiency of low-rank decomposition

targeting large language models is not yet well-understood. In addition, we demonstrate

that low-rank decomposition has a large design space originating from many possible choices

(e.g., the number of pruned ranks, the choice of decomposed layers and tensors, and so

on), so understanding the trade-off is a difficult task. For example, when we apply Tucker

decomposition on the Llama2-7B model, our design-space formulation ( Section 3.1) reveals

that there exist O(237) possible ways of applying Tucker decomposition, even if we apply the

same set of tensors with the same pruned ranks across all the layers.

Therefore, in this work, we first formalize the design space of the low-rank decomposition

on recent language models based on Transformers, then characterize the trade-off space

among task performance, computational performance, and energy efficiency. We perform a

thorough profiling of the latency, energy, accuracy, and memory usage for running Llama2

and BERT after applying Tucker decomposition on 4× NVIDIA A100 GPUs with 80GB of

memory for each. We measure the metrics on five broadly adopted benchmarks for LLMs: AI2

Reasoning Challenge (ARC) [18], HellaSwag [19], Massive Multitask Language Understanding

(MMLU) [20], TruthfulQA [21], WinoGrande [22]. The benchmarks include a variety of

tasks oriented for LLMs, which includes reasoning, truthfulness check, sentence completion,

1Performance is an overloaded term by the ML algorithm and hardware/system communities. To distinguish
them, we refer to the quality of the outputs of the model as task performance, and the speed of the execution
to be the computational performance.
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Table 1.1: The model size and the number of computations (multiply-and-accumulate; MAC)
of Transformer-based language models and convolutional neural network-based computer
vision models. Language model data are based on the batch size of 1 and the sequence length
of 128.

Models Model Type Model Size (FP16) # Computations (MACs) Compute to model size ratio
ResNet50 [6] Computer Vision 51.1 MB 8.21 B 160.7

BERT-Base [25] Language Model 219.0 MB 11.2 B 51.1
Llama2-7B [1] Large Language Model 13.4 GB 850.0 B 63.4

commonsense reasoning, etc. In our case studies, we show that low-rank decomposition can

reduce the model size by 9% without losing considerable model accuracy (4.5% points to 10%

points). In addition to the model size reduction, we observe a considerable reduction in the

end-to-end latency by 4% and energy by 5%, which is related to the lower compute-to-model

size ratios as presented in Table 1.1. As part of this contribution, we study how to apply

low-rank decomposition to the language models, performing a thorough characterization on

the number of pruned ranks and decomposition location (layer and weight tensors within an

attention block), showing that we can aggressively reduce the rank to be one without losing

significant accuracy and should carefully select the decomposition location to minimize the

accuracy degradation. Finally, we present a trade-off study between the model size reduction

and resulting metrics (latency, energy, etc.). The results show that we can reduce the model

size by 9% without losing considerable accuracy (on average, 10% loss of accuracy), which

provides 4% latency and 5% energy savings. Our case study results show that low-rank

factorization is a promising option to enable low-cost LLM-based services, such as Virtual

Agent [5], real-time animation generation [3], real-time coding assistant [23], AI assistant [24],

and so on.

We summarize our contributions as follows:

• We thoroughly explore the accuracy/performance trade-off of low-rank decomposition

on recent language models including a large language model, Llama 2.

• We demystify the design space of low-rank decomposition on large language models by

4



formally defining its dimensions.

• Beyond the simple performance analysis, we also profile energy consumption and show

the low-rank decomposition is an effective approach to enhancing energy efficiency.

• We analyze the sensitivity of low-rank decomposition and provide insights on how to

best apply low-rank decomposition to language models.
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Chapter 2

Background and Motivation

2.1 Low-Rank Decomposition

Tensor Decomposition. We briefly introduce tensor decomposition, specifically, Tucker

Decomposition [26], and how we apply it to compress LLMs. Tucker Decomposition de-

composes a tensor into smaller core tensor and a set of matrices equal to the order of the

tensor. As shown in Figure 1.1, for a 3rd order tensor T ∈ Rn1×n2×n3 , Tucker Decomposition

is computed as

T ≈ Γ ×1 U
1 ×2 U

2 ×3 U
3 = K

where Γ ∈ Rr1×r2×r3 , and U1, U2, U3 belong to Rr1×n1 ,Rr2×n2 ,Rr3×n3 respectively. Here,

r1, r2, r3 represent the decomposition rank of tensor T . The i mode product, i = 1, 2, 3, of

the core tensor Γ and the factor matrices U1, 2, 3 is defined as:

(Γ ×1 U
1)(n1, r2, r3) =

r1∑
i1=1

Γ(i1, r2, r3)U
1(i1, n1)

6



(Γ ×1 U
2)(r1, n2, r3) =

r2∑
i2=1

Γ(r1, i2, r3)U
1(i2, n2)

(Γ ×1 U
2)(r1, r2, n3) =

r3∑
i3=1

Γ(r1, r2, i3)U
1(i3, n3)

Since tensor decomposition approximates the original tensor, the error between the original

tensor T and the reconstructed tensor K depends on the decomposition rank r1, r2, r3. For a

given set of decomposition ranks, the relative error between the original and the reconstructed

tensors satisfies ∥∥T − (Γ ×1 U
1 ×2 U

2 ×3 U
3)
∥∥ ≤ ϵ ∥T∥

where ∥T∥ is the norm of T . The goal of Tucker-decomposition is to minimize ϵ, and it can

be formulated as

arg min
Γ,U1,U2,U3

∥∥T − (Γ ×1 U
1 ×2 U

2 ×3 U
3)
∥∥

Algorithm 1: Tucker Decomposition via Higher Order Orthogonal Iteration (HOI)

Input : input tensor T , decomposition rank (r1, r2, r3)
Output : core tensor Γ, factor matrices U1, U2, U3

Initialize U2, U3 with orthonormal columns
while convergence criteria not met do

P = T ×2 (U2)T ×3 (U3)T

U1 = SV D(r1, P(1))
Q = T ×1 (U1)T ×3 (U3)T

U2 = SV D(r2, Q(2))
R = T ×1 (U1)T ×2 (U2)T

U3 = SV D(r3, R(3))

end while
Γ = T ×1 (U1)T ×2 (U2)T ×3 (U3)T

Return Γ, U1, U2, U3

/* Here, SVD means Singular Value Decomposition, and A = SVD(k, B)

means compute kth-order truncated SVD of B and set A = [a1, a2, ..., ak],
where a1, a2, ..., ak are the k largest left singular vectors of B */

Algorithm 1 describes how we can compute the core tensor and the factor matrices using

Higher Order Orthogonal Iteration (HOI). HOI is an iterative algorithm to approximate the

7



factor matrices, while it can be shown [27] that the optimal core tensor Γ can be computed as

Γ = T ×1 (U1)T ×2 (U2)T ×3 (U3)T

Generally, a higher decomposition rank results in a better approximation. While the lower

bound of r1, r2, r3 is 1, the upper bound is usually taken as ri = ni, i = 1, 2, 3 for a

good approximation. In our experiments, we prune the decomposition rank r1 = r2 = r3 ∈

[1,min(n1, n2, n3)].

2.2 Challenges for LLMs

Low compute-to-model size ratio in LLMs. We analyze the BERT-Base model with

110 million parameters fine-tuned on SQuAD dataset [28], and Llama-2-7B model with 7

billion parameters fine-tuned for chat. Self-Attention is a key operator in Transformer-based

LLMs. The linear and batched matrix multiplication (BMM) are major operators in the

self-attention module, which accounts for the majority of the model’s memory footprint. The

multi-layer perceptron (MLP) layer in Llama and the intermediate/output layers in BERT

are also based on matrix multiplication. Overall, over 80% of the model parameters in BERT

and over 96% of the model parameters in Llama-2 are present in the encoder and decoder

layers respectively, and most of them are used for variants of matrix multiplications (e.g.,

linear and BMM). Because of the relatively low dimensionality of such operators compared to

convolutions, which reduces the data reuse across different dimensions and effectively lowers

the number of computations for each data, the overall computation-to-model size ratio of

language models is lower than that of convolutional neural networks, as shown in Table 1.1.

Therefore, Transformer-based language model workloads tend to be in the memory-bound

region in the roof-line model [29], which motivates optimizations focusing on the memory

footprint and traffic.

8



2.3 Understanding Tucker Decomposition in Language Models

Low-Rank Decomposition is a promising technique for compressing LLMs and increasing their

arithmetic intensity. Tucker Decomposition can be viewed as a generalized case of Singular

Value Decomposition (SVD) [12] with pruned low-rank factor matrices to approximate

the original matrix. Therefore, second-order Tucker Decomposition can be computed as

multiplication of core and factor matrices:

T (n1, n2) ≈ U1(n1, pr) × Γ(pr, pr) × U2(pr, n2) = K

where pr = pruned rank.

As shown in Figure 3.1(c), a 2D tensor T ∈ RH×W can be approximated by the product

of a core tensor and two factor tensors. The core tensor C ∈ RPR×PR, where PR is the

pruned rank, while the factor tensors A ∈ RH×PR and C ∈ RW×PR. If PR ≪ min(H, W ),

or PR < (

√
(H+W )2+4×H×W−(H+W )

2
) more specifically, the total number of parameters reduce

because of decomposition, and the compression ratio can be computed as:

Number of parameters before decomposition = H ×W

Number of parameters after decomposition = H × PR + PR× PR + PR×W

Compression Ratio =
H ×W

H × PR + PR× PR + PR×W

We apply tucker decomposition to the weights of a pre-trained LLM and decompose a fully-

connected layer into three smaller fully-connected layers. With a pruned rank much smaller

than the dimension of the weight tensor, we can significantly reduce the size of the model.

As we reduce the total number of parameters, the overall number of computations decreases

9



thereby improving the inference latency. However, the design space of low-rank decomposition

is huge, and therefore we need a formal methodology to perform low-rank decomposition.

10



Chapter 3

Decomposition Design Space Formalization and

Characterization

As discussed in Section 2.3, Tucker decomposition with rank pruning reduces the computa-

tional and memory overhead. However, when applying Tucker decomposition to a language

model, we need to consider the impact on the model’s accuracy. That is, the model accuracy

degradation needs to be confined within an acceptable range, while maximizing latency

and energy benefits. To summarize the optimization goal, we formalize the goal assuming

equal importance on latency and energy (i.e., targeting energy-delay-product as the objective

metric) as follows:

Definition 3.1. Design Goal of low-rank decomposition

Given an accuracy threshold τ , find a decomposition configuration γ such that

arg min
γ:max(AccuracyOriginal−Accuracy(γ),0)<τ

Latency(γ) × Energy(γ)

In Definition 3.1, τ refers to an accuracy drop tolerance (e.g., 3%). The accuracy condition

restricts the accuracy loss but allows potential accuracy gains. The optimized variable, γ,

11
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Figure 3.1: An illustration of three axes of the decomposition configurations discussed in Defi-
nition 3.4. (a): Choice of the layers to decompose, (b): Choice of tensors within each layer to
decompose, (c): The choice of pruned rank (PR) to be used for each decomposed tensor.

refers to how we decompose a language model, which consists of three choices illustrated

in Figure 3.1. (We discuss the formal definition of γ later in Definition 3.4.) γ enables us

to describe any partial decomposition configuration of a model, which helps to navigate the

12



accuracy-efficiency trade-off.

However, because recent language models are complex and large, the number of possible

ways of decomposition (i.e., decomposition design space) is massive (e.g., O(237) ways for

the smallest Llama 2 variant, Llama2 - 7B). Therefore, we first formalize the decomposition

design space and perform a characterization of the design space to identify effective and

ineffective decomposition configurations. Based on the characterization results, we prune

the ineffective decomposition configurations and reduce the decomposition design space to

a tractable size (e.g., for an LLM, Llama2-7B, the design space is reduced from O(237) to

O(32).

3.1 Decomposition Space

Because of the uniformity of the building blocks (i.e., the same block is repeated) in language

models, as illustrated in Figure 3.1 (a), we target homogeneous decomposition schemes for each

layer. That is, we prune the same number of ranks and select the same set of weight tensors

to be decomposed within each layer. Combined with those two choices (number of ranks after

pruning and tensors to be decomposed), describing the layers to be decomposed provides a

complete description of one decomposition configuration. We formalize the decomposition

configuration and design space next to provide a precise definition of them.

Definition 3.2. Decomposed Layers and Tensors

For a given model m, which has NLayers(m) layers and NTensors(m) of decomposable weight

tensors in each layer, the choices of decomposed layers DecompLayers(m)) and tensors

(DecompTensors(m)) are defined as follows:

DecompLayers(m) = {DL0, DL1, ...DLL}

DecompTensors(m) = {DT0, DT1, ...DTK}

13



where

(L,K ∈ Z) ∧ (0 ≤ L < NLayers(m)) ∧ (0 ≤ K < NTensors(m))□

In Definition 3.2, we describe the choice of decomposed layers and tensors as sets of cor-

responding layers and tensor IDs represented in integers. If the K and L are set to zeros,

corresponding DecompLayers and DecompTensors become empty sets, which allows to express

the original model without any decomposition.

Definition 3.3. Pruned ranks

For a given model m, the rank after pruning (or pruned ranks), PR(m) is defined as follows:

PR(m) = {(l, k, p) | (l, k, p ∈ Z) ∧ (0 ≤ k < NLayers(m))

∧(0 ≤ l < NTensors(m)) ∧ (0 < p ≤ rank(l, k))}

where rank(l, k) refers to the rank of a weight tensor k in layer l. □

The formulation in Definition 3.3 indicates that the pruned rank (the rank after pruning)

cannot exceed the original rank. Also, Definition 3.3 allows us to describe the decomposition

without rank pruning by setting the pruned rank (p) the same as the original rank. Using

Definition 3.2 and Definition 3.3, we define a complete low-rank decomposition configuration

as follows.

Definition 3.4. Low-rank Decomposition Configuration(γ)

For a given model m, which has NLayers(m) layers, NTensors(m) of decomposable weight tensors

in each layer, and Dim(m, IDLayer, IDTensor) dimensions, a decomposition configuration for

model m (γ(m)) is defined as follows:

γ(m) = (PR(m), DecompLayers(m), DecompTensors(m))□
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In Definition 3.4, we define the decomposition configuration as a tuple of NPR, DecompLayers,

and DecompTensors, which are defined in Definition 3.3 and Definition 3.2. The tuple captures

the three major decomposition axes illustrated in Figure 3.1. Before we define the low-rank

decomposition design space, we first define the validity of a decomposition configuration.

Proposition 3.1. Validity of a Decomposition Configuration(V al(γ))

For a given model m, which has NLayers(m) layers, NTensors(m) of decomposable weight ten-

sors in each layer, and DimMin(m) to be the smallest weight matrix dimension (i.e., number

of columns), a decomposition configuration for model m

(γ(m) = (PR(m), DecompLayers(m), DecompTensors(m))), γ(m) is valid if the following con-

ditions are met:

∀(l, k, p) ∈ PR(m), l ∈ DecompLayers(m) ∧ k ∈ DecompTensors(m)

∧|PR(m)| = (|DecompLayers| − 1) × (|DecompTensors| − 1) + 1□

Because the individual validity of PR, DecompLayers, and DecompTensors are checked in

their definitions in Definition 3.3 and Definition 3.2, we need to check the validity as their

combination. Note that DecompLayers and DecompTensors are independent, based on their

definition in Definition 3.2 (i.e., selection of the decomposed layers and tensors within each

decomposed layer is independent). However, the definition of the pruned ranks in Definition 3.3

contains the layer and tensor IDs within its definition. Therefore, we need to make sure the

pruned ranks cover all the decomposed (layer, tensor) combinations, and Proposition 3.1

states that condition.

Using the definitions and proposition, we can define the decomposition design space as follows.

Definition 3.5. Low-rank Decomposition Design Space (SLR)

15



For a given model m, the decomposition design space(SLR(m)) is defined as follows:

SLR(m) = {γi | V al(γi) ∧ i ∈ Z ∧ i ≥ 0}□

Definition 3.5 states that the decomposition design space is a set of all valid decomposition

configurations. One useful property of the design space for understanding the complexity is

the scale of the design space. We discuss how we can obtain a little-o illustration.

Theorem 3.1. The size of the Decomposition Design Space (|SLR|)

For a given model m and its decomposition design space(SLR(m)),

|SLR(m)| = (2NTensors(m) − 1) × (2NLayers(m) − 1) × rank(l, k) + 1

Proof. The size of the decomposition design space |SLR(m)| is the number of elements within

SLR(m). Because SLR(m) is a set of valid decomposition configurations γ, we count all the

possible γ = (PR,DecompLayers, DecompTensors).

(1) The number of possible choices for pruned ranks (|PR|)

Based on Definition 3.3, ∀(l, k, p) ∈ PR(m), p ≤ rank(l, k). That is, the number of available

choices for p is rank(l, k).

(2) The number of possible choices for decomposed layers

We can select to decompose 0 to NLayers(m) layers. However, in addition to the total number

of decomposed layers, we need to specify which layers are decomposed (e.g., decomposing

two layers, we can select layers 0 and 1, 1 and 2, 0 and 3, etc.), which can be represented

using combinations. Therefore, the number of possible choices is as follows:

Σ
NLayers(m)
l=0

(
NLayers(m)

l

)
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(3) The number of possible choices for decomposed tensors

Following the same method as (2), the number of possible choices is represented as follows:

Σ
NTensors(m)
k=0

(
NTensors(m)

k

)

(4) The number of valid combinations of decomposed layers and tensors

All possible combinations of decomposed layers and tensors can be counted as (2) × (3):

All Combinations = Σ
NLayers(m)
l=0

(
NLayers(m)

l

)
Σ

NTensors(m)
k=0

(
NTensors(m)

k

)

However, the above equation counts the cases where the model is not decomposed (l = 0

or k = 0) multiple times, while they should only be counted once. Therefore, all the valid

combinations of decomposed layers and tensors are counted as:

V alid Combinations = Σ
NLayers(m)
l=1

(
NLayers(m)

l

)
Σ

NTensors(m)
k=1

(
NTensors(m)

k

)
+ 1

Because we count all the possible and valid γ = (PR,DecompLayers, DecompTensors) (i.e., all

the possible combinations of (1) and (4) ),

|SLR(m)| = (4) × (1)

=

(
Σ

NLayers(m)
l=1

(
NLayers(m)

l

)
Σ

NTensors(m)
k=1

(
NTensors(m)

k

)
+ 1

)
rank(l, k)

= (2NLayers(m) − 1) × (2NTensors(m) − 1) × rank(l, k) + 1

where, rank(l, k) is the pruned target rank for a uniform decomposition of all tensors.
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Table 3.1: A summary of the model parameters and corresponding design space size of recent
language models.

Model # of layers
# of decomposable
Tensors

Decomposition
Design Space Scale

BERT-Base 12 6 O(218)
BERT-Large 24 6 O(230)
Llama 2 - 7B 32 5 O(237)

Llama 2 - 70B 80 5 O(285)

Based on Theorem 3.1, we can estimate the size of the decomposition space as O(2NLayers(m)+NTensors(m)),

even if we apply uniform decomposition as assumed in this subsection. Using the complexity

we can analyze the design space of recent language models in Table 3.1. With the data, we

observe the decomposition design space size for large language models such as Llama2 [1] is

intractably huge. Therefore, we perform design space characterization to identify ineffective

decomposition configurations and prune the space.

3.2 Decomposition Space Characterization

To explore decomposition design space pruning opportunities, we investigate the impact of

each decomposition axis: (1) pruned rank, (2) tensors, and (3) layers.

3.2.1 Characterization Methodology

We use LLama2-7B [1] for the characterization studies. We run six benchmarks listed

in Table 4.1 and track how the accuracy changes when we change each axis of the design space

individually. We run the workloads on a system with AMC EPYC 7763 processor, 1TB of main

memory, and four NVIDIA A100 GPUs with 80GB HBM2e memory for each. To measure the

latency of the multi-GPU system, we measure GPU runtime utilizing torch.cuda.event APIs.

We also utilize NVIDIA’s System Management Interface (nvidia-smi) to measure the power

consumption and the memory usage. We calculate the area under the power-time graph using

nvidia-smi -reported average power information to estimate the GPU energy consumption.
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Figure 3.2: Impact of Rank on Accuracy. We prune ranks from the original (4096) to 500, 250, and
1. By pruned rank (PR), we refer to the remaining rank after rank pruning. The accuracy with no
decomposition is based on the reported accuracy in the original Llama2 publication [1].

3.2.2 Characterizing the Impact of Pruned Rank Choices

We decompose all the tensors illustrated in Figure 3.1 (b) in each layer varying the pruned ranks

to observe the impact of pruned rank choices on accuracy. We select different combinations

of layers as shown in Table 4.2 to observe the trend on different parameter reduction rates.

We choose three values of pruned ranks for our characterization: 1, 250, and 500. We do not

increase the rank above 500 to ensure a meaningful model size reduction rate.

Observation. As small differences across orange, yellow, and purple data points in Figure 3.2

show, we observe that the rank of decomposition has minimal effect on the accuracy score,

compared to that of the parameter reduction. We observe similar trends in all of the six

benchmarks, which show the average variation in accuracy of 1.5%. With that observation, we

select rank-1 decomposition for the main case study because rank-1 decomposition provides

the most model size (parameter) reduction.
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Figure 3.3: The layer architectures of BERT and Llama 2. We highlight decomposable weight
tensors using yellow boxes.

3.2.3 Characterizing the Impact of Decomposed Tensor Choices

Figure 3.3 shows six and seven weight tensors in BERT and Llama 2 layers, respectively. In

BERT, there are six weight tensors that are used to calculate the output of each layer, the

Query (WQ), Key (WK), Value (WV ), self-attention output projection (WSO), intermediate

fully-connected layer (WInt), and output fully connected layer (WO). In Llama-2-7B, there

are seven weight tensors used to calculate the output of each layer, the Query (WQ), Key

(WK), Value (WV ), self-attention output projection (WSO), Multi-Layer Perceptron (MLP)

Gate projection (WG), MLP Up projection (WU) and MLP Down projection (WD). We
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Figure 3.4: The impact of decomposed tensor choices on the accuracy on Llama2-7B.

decompose each tensor separately to analyze its impact on the overall model’s accuracy.

We also decompose these tensors in groups to investigate the accuracy impact of various

combinations. We present the results in figures 3.4 and 3.5, and observe the following:

Observation 1) All the tensors in self-attention and MLP modules are equally sen-

sitive to decomposition when compared within their same group. The sensitivity

varies between different groups. We decompose the tensors using the pruned rank of 1

in self-attention and MLP modules of Llama-2-7B individually in one or all the decoder layers.

From Figure 3.4 we observe no specific trend in the sensitivity among the decomposed tensors

for Llama2-7B, which shows a weak sensitivity on the choice of decomposed tensors within

the same overall decomposition rate. However, for BERT, we observe that the weight tensor

of the intermediate fully-connected layer (WInt) is the most sensitive under decomposition.

Observation 2) For same parameter reduction, decomposing all the tensors in

a decoder layer is better than decomposing tensors in multiple layers. When
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we decompose the Query tensor in all the 32 decoder layers of Llama-2-7B, we achieve a

parameter reduction of 8% compared to the full model. However, that approach led to more

than 50%p of accuracy loss while it only provided 8% parameter reduction. In contrast, if we

decompose all the tensors and reduce the number of decomposed layers to keep the overall

parameter reduction ratio identical, we observe much smaller accuracy drop (3%p). The

results are shown in Figure 3.5 in two cases (a) when we target 8% parameter reduction

and (2) 21% parameter reduction. We observe similar trends across those two cases, and

for BERT as well. The results indicate that we should decompose more tensors rather than

decomposing more layers with the same parameter reduction rate.

3.2.4 Characterizing the Impact of Decomposed Layer Choices

We decomposed each encoder layer in BERT and each decoder layer in Llama-2-7B and

found out that the first few and the last few layers are more sensitive to decomposition

compared to the layers in the middle. In the case of Llama-2-7B, for example, the first two

layers and the last layer are more sensitive to decomposition, as shown in Figure 3.6.

We also analyzed the effect of decomposing encoder/decoder layers that are closer to

each other versus layers that are far apart. We observed that the impact on accuracy is

less when the distance between decomposed layers is more. In other words, it is better to

perform decomposition in layers that are far apart compared to layers that are closer to

each other. From Figure 3.7, for example, we note that the accuracy score is much better if

decomposition is performed in every sixth layer as compared to in the consecutive layers for

all the benchmarks except TruthfulQA.

3.3 Insights from the Characterization

Based on the analysis presented in this section, we can draw the following conclusions:
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• Rank-1 decomposition seems to be producing similar results compared to higher-rank

decomposition. Therefore, it is better to use rank-1 decomposition as it results in higher

parameter reduction with the same loss of accuracy as other higher-rank decomposition.

• Decomposing all the tensors inside an encoder/decoder layer or inside a single self-

attention/MLP module is better compared to decomposing the same number of tensors

in different layers or modules.

• It is best to avoid decomposition in the first few layers and the last few layers as these

layers are more sensitive to decomposition.

• It is best to decompose layers uniformly spread apart, as far as possible, as compared

to consecutive layers or layers closer to each other.

Based on these observations, we decomposed the Llama-2-7B model with varying decomposi-

tion percentages to observe the model’s performance and the hardware gains because of the

model compression. We present our case study in the next section.
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Figure 3.5: To understand the impact of decomposed tensor choices, we compare two different
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Chapter 4

Case Study

4.1 Experimental Setup

We use the same methodology and hardware platform as the initial characterization study,

which is discussed in Subsection 3.2.1. Beyond the initial characterization, we perform a more

thorough exploration of the accuracy-efficiency trade-off in this section with the reduced

design space pruned by insights from characterization in Section 3.2.

Table 4.1: Six benchmarks used for our characterization and case studies.

Benchmark Task # of Samples
ARC Easy Commonsense Reasoning (Q&A) - Easy 5.2K
ARC Challenge Commonsense Reasoning(Q&A) - Challenging 2.59K
HellaSwag Commonsense Reasoning(Sentence Completion) - Challenging 10K
MMLU Multitask Language Understanding 15.9K
TruthfulQA Truthfulness 1634
WinoGrande Commonsense Reasoning (Q&A) - Moderate 44K
GSM8K Mathematical Reasoning 8.5K
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4.1.1 Benchmarks and Evaluation Methodology

To measure the pure inference time, energy, and memory usage on GPUs, we run each

benchmark multiple times for more than two minutes. This approach ensures that we measure

the statistics at the GPUs’ steady state, which is aligned with the cloud that services LLM

inferences. Following the common practice that exploits throughput-optimized GPUs, we

use the maximum batch size for each GPU for each inference and utilize all of four NVIDIA

A100 GPUs in parallel. We use EluetherAI’s [30] lm-evaluation-harness framework to get

the accuracy of Llama-2-7B on the benchmarks.

We evaluate our low-rank decomposition scheme on all the standard benchmarks used by the

HuggingFace Open LLM Leaderboard, which includes ARC (Easy and Challenge), HellaSwag,

MMLU, TruthfulQA, WinoGrande, and GSM8K. These benchmarks span a variety of domains

where LLMs are often used and provide a good basis for testing the performance of our

low-rank decomposition scheme on LLMs comprehensively. We discuss how we utilize each

benchmark for four LLM tasks as follows:

• Commonsense Reasoning: We report the zero-shot accuracy of ARC Easy and

Challenge, HellaSwag, and WinoGrande. While the ARC and WinoGrande datasets

use question-answering format to test common sense reasoning, HellaSwag tests the

sentence completion ability of a model.

• Multitask Accuracy: We report 0-shot accuracy of MMLU dataset which tests a

model’s accuracy on multiple tasks like world knowledge and problem solving.

• Truthfulness (safety benchmark): We report the accuracy on TruthfulQA bench-

mark which tests if a model can generate reliable outputs which agree with factuality

and common sense.

• Mathematical Reasoning: We report 8-shot exact match scores of GSM8K (Grade
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Figure 4.1: The correlation between the model size (parameter) reduction ratio by low-rank
decomposition and resulting model accuracy.

School Math 8K) benchmark which tests a model’s performance on linguistically diverse

grade school math word problems that require multi-step reasoning.

4.2 Decomposition Methodology

As baselines without decomposition, we collect publicly available models on HuggingFace [31]

and profile them by logging the inference accuracy, time, power consumption, energy con-

sumption, and memory usage. We decompose those models using the layer configurations

listed in Table 4.2. Note that the layer configuration in Table 4.2 is driven by the learning

in Subsection 3.2.4, which motivates us to avoid decomposing the first two layers and nearby

layers to prevent severe accuracy drop. We use the pruned rank of 1 and decompose all
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Figure 4.2: The correlation between the model size (parameter) reduction ratio by low-rank
decomposition and speedup.

the tensors within selected layers based on the learning from our characterization study

in Section 3.2.

4.3 Results and Discussion

4.3.1 Accuracy-efficiency trade-off

Accuracy. Figure 4.1 shows the accuracy impact of tensor decomposition at various levels of

model compression. As the compression increases–that is, as the parameters are reduced–the

accuracy starts to drop while inference time, energy consumption, and memory usage decrease

as well. If we classify common-sense reasoning benchmarks based on the inference accuracy, we
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Figure 4.3: The correlation between the model size (parameter) reduction ratio by low-rank
decomposition and energy reduction.

can consider benchmarks like ARC Easy and WinoGrande as simpler benchmarks compared

to ARC Challenge, HellaSwag, MMLU, and GSM8K, as they have a higher inference accuracy.

For such relatively easy benchmarks, the decline in accuracy is smaller as the decomposition

percentage increases compared to more challenging benchmarks.

For ARC Easy, parameter reduction via decomposition resulted in considerable accuracy

drop, which led to 7.4%p accuracy drop per 1% reduction in parameter. In the case of

WinoGrande, we observe the least degradation of accuracy. In the case of TruthfulQA, the

results are interesting because the accuracy drops from 35 to 29 with a 6% reduction in

parameters. However, as we further reduce the number of parameters by 96%, we observe

the accuracy is improves to 32%. Therefore, TruthfulQA shows a reverse trend as compared
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Figure 4.4: The correlation between the model size (parameter) reduction ratio by low-rank
decomposition and memory footprint.

to other benchmarks. In case of difficult benchmarks like ARC Challenge, HellaSwag, and

MMLU, the accuracy drops between 4 to 11 %p for up to a 9% reduction in parameters, and

the accuracy drop increases for a higher reduction in parameters, as shown in Figure 4.1.

Efficiency. As we reduce the size of the model by low-rank decomposition, the memory usage

decreases. This results in faster inference time and consequently less energy consumption. In

terms of inference time, we observe a steady reduction in inference time as model size reduces.

For every 1% reduction in model size, we see an average of 0.5% reduction in inference time.

Since the LLMs utilize the GPU at 100% utilization, the power consumption of the GPU

is always the maximum (300W in the case of NVIDIA A100 80GB). Therefore, savings in

inference latency result in a proportional saving in energy consumption. We observe a similar
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Table 4.2: Decomposed layer choices used in our case studies and corresponding parameter
reduction rates.

Parameter Reduction (%) Decomposed Layers
6% 3, 30
9% 3, 18, 32
15% 3, 9, 15, 21, 27
21% 5, 9, 13, 17, 21, 25, 29
33% 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 32

48%
1, 3, 5, 7, 9, 11, 13, 15, 17,
19, 21, 23, 25, 27, 29, 31

60%
2, 4, 6, 8, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 21, 23, 25, 27, 29, 31

75%
2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

84%
1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32

96%
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32

ratio in energy savings where for every percentage reduction in parameters results in an

approximate 0.5% reduction in energy consumption. Across all the benchmarks we evaluate,

the relative standard deviation of inference time and energy consumption is 2.6% and 2.9%,

respectively. The absolute numbers are shown in Figure 4.2 and Figure 4.3 for inference

latency and energy consumption, respectively. A similar trend is observed in the total memory

usage of the GPU, where a 1% reduction in model parameters results in approximately 0.4%

reduction in total memory usage of the GPU. The exact memory usage reduction is for each

benchmark is presented in Figure 4.4.

4.3.2 Insights from the Results

Based on the results obtained in our case study, the main insights of this work are as follows:

• We explored the accuracy-efficiency trade-off of low-rank decomposition in LLMs.

• We show that it is possible to compress LLMs by reducing the number of parameters
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by up to 9% with minimal accuracy loss of 4%p to 10%p depending on the benchmark,

without retraining or fine-tuning the model after decomposition.

• We also show that for every 1% reduction in model’s parameters, there is a proportional

decrease of 0.5% in inference latency and the energy consumption. The memory usage

also decreases by 0.4% for the same amount of reduction in parameters.

• We observe that the loss of accuracy tapers-off when more than 48% of the parameters

are reduced.Therefore, using techniques like knowledge-distillation and fine-tuning, it

might be possible to recover the accuracy and further compress the model reducing its

size significantly with an acceptable accuracy loss.

• We also note that a decomposed model with fewer parameters than the original model

consumes less energy and has lower inference latency. The inference latency and the

energy consumption scale linearly with the decomposed model size, and this holds true

across all the benchmarks we examined.
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Chapter 5

Related Works

Low-Rank Decomposition in Deep Learning. Although low-rank decomposition has

been actively explored as a model compression technique, there are few studies about their

implication on recent large language models. In [32] the authors decompose the BERT model

using SVD and perform feature distillation to recover accuracy. However, the authors use the

BERT model and GLUE benchmark which are not representative of bigger language models

with diverse sets of tasks. Further, the paper does not present a decomposition methodology

in case fine-tuning on training datasets is not possible. In [33], authors proposed a way

to decompose the input embedding layers using Tensor Train decomposition. The authors

in [34] present low-rank decomposition for compressing Convolutional Neural Networks

(CNNs) using Canonical Polyadic (CP) decomposition. They also show that a combination

of Tucker and CP decomposition might be better for convolutional layers of CNNs. In [35]

however, the authors present a methodology to decompose both the fully-connected layers

and the convolutional layers and recover accuracy by retaining the decomposed model using

knowledge transfer from the original model. In GroupReduce [36] the authors present how

language models with big vocabulary sizes which have more than 90% of the parameters in

the embedding layer can be compressed using low-rank decomposition of the embedding layer.

However, common models that do not use exceptionally large vocabulary still have a majority
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of their parameters in the encoder/decoder layers, therefore we do not decompose embedding

layers. In TIE [37] the authors developed a computation-efficient inference scheme for DNNs

decomposed using Tensor Train decomposition.

Fine-tuning for LLMs. LoRA [38] proposed a low-rank adapter for fine-tuning LLMs.

LoRA freezes all the pre-trained weights and trains small low-rank decomposed weights using

extra training data prepared for fine-tuning. After completing the fine-tuning, the low-rank

decomposed weights are contracted to generate a tensor with the same size as the original

weight. As the contracted tensor (i.e., fine-tuned weight) has the same shape as the original

weights, the contracted tensor can be added to the original weight to eliminate inference time

overhead.

Performance Characterization of LLMs. Because the large language model emerged

recently, the computational performance characterization on LLM inference is not well-

explored. Megatron-LM analyzed the computational performance of LLM training targeting

data centers [39]. However, the work focused on the training workload without model

compression techniques like low-rank decomposition.
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Chapter 6

Conclusion and Future Work

In this work, we explored the accuracy-efficiency trade-off of low-rank decomposition, which

was not well understood previously. By formalizing the decomposition design space, we

showed that the space is huge, which makes it intractable to navigate. To address the

challenge, we perform characterization focusing on three axes (number of pruned ranks, the

choice of decomposed layers, and decomposed tensors) identified based on our formulation

and extract useful insights helpful for reducing the design space: we can prune the rank down

to 1 with minimal accuracy impact, we should not decompose early layers, and we should not

decompose adjacent layers. Such insights can be adopted to future algorithm-level research

for developing high-accuracy and -efficiency low-rank decomposition methods for LLMs. In

particular, recovering accuracy using fine-tuning after low-rank decomposition is a promising

direction. Our early investigation shows that we can recover the accuracy of 15% compressed

model to that of a 9% model within a single epoch of fine-tuning, which motivates future

studies in this domain.

Our characterization code base will be open-sourced to facilitate such future studies. In

particular, unlike many other works, we include energy profiling, which will enable a more

thorough consideration of the accuracy-efficiency trade-off in future LLM algorithm research.
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