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Abstract

The expansion of commercial building demand re-
sponse (DR) as a demand-side management resource
for the electric grid necessitates new decision support
resources for customers to rapidly assess the benefit-
risk tradeoffs of candidate load flexibility strategies.
This work develops surrogate models of load flexibil-
ity impacts on office building electricity demand and
indoor temperature. The surrogate models are fit to
a large synthetic database generated via whole build-
ing simulations of multiple flexibility strategies under
a variety of conditions; the models are translated to a
Bayesian framework to allow straightforward commu-
nication of uncertainty and parameter updating given
new evidence. The strong predictive performance of
the models underscores their potential utility in guid-
ing DR decision-making in office settings.

Key Innovations

• A comprehensive set of load flexibility strategies
are determined and applied in EnergyPlus simu-
lations as OpenStudio Measures.

• The simulated effects of the flexibility strategies
on building demand and indoor temperature are
compiled into a large synthetic database covering
medium offices across climates and vintages in
the summer season.

• Multiple regression surrogate models are fit to
the synthetic data to predict changes in elec-
tricity demand and indoor temperature based on
flexibility strategy characteristics and contextual
conditions.

• The surrogate regression models are translated
to a Bayesian framework to facilitate communi-
cation of prediction uncertainty and future up-
dating of model parameters.

• The fit and predictive performance of the surro-
gate regression models are evaluated using quan-
titative metrics and qualitative graphical checks.

Practical Implications

The surrogate models provide a simple and computa-
tionally tractable tool for commercial building oper-
ators to forecast the potential benefits (e.g, demand
reductions and associated economic incentives) and
risks (e.g., temperature increases) of participating in

DR events; the model implementation facilitates un-
derstanding of prediction uncertainties and updating
given new field data.

Introduction

Commercial demand response (DR), which encom-
passes a set of time-dependent utility program ac-
tivities and tariffs that seek to reduce electricity de-
mand or shift demand across time periods (Pinson
and Madsen (2014)), is likely to play an expanded
role in the coming years as a demand-side manage-
ment tool that facilitates grid reliability and resilience
in the face of day-to-day stresses, increased variable
renewable energy penetration, and emergency events
(Surampudy et al. (2019)). On the customer side, the
increasing role of commercial building DR as a grid
flexibility resource necessitates new decision making
resources that enable rapid, real-time assessments of
the benefit-risk tradeoffs across candidate load flexi-
bility strategies, in terms of potential economic gains
and changes to core building services (e.g., HVAC,
lighting, plug power) (Smith and Controls (2010)).

Previous reviews of load flexibility strategies for com-
mercial DR group strategies into four areas, namely
HVAC, lighting, miscellaneous equipment, and mea-
sures that work across components or end uses
(Motegi et al. (2007)). Adjustments to commercial
HVAC and lighting schedules are considered as par-
ticularly attractive strategies, due to the substan-
tial portion of total loads that these strategies can
affect and their comparatively lower risks to occu-
pant comfort than strategies that make centralized
adjustments to air distribution or cooling systems,
for example. Outside of HVAC and lighting, com-
mercial flexibility strategies may also target miscel-
laneous electric equipment (e.g., computers, fountain
pumps, industrial process loads etc.) to reduce de-
mand without influencing the basic activities of oc-
cupants. Non-component-specific measures, which
coordinate across the aforementioned types of DR
strategies based on conditions such as outdoor tem-
perature and electricity price, constitute more sophis-
ticated ways of managing a building’s demand dy-
namically, but also require a higher degree of pro-
gramming.

Recent studies have attempted to represent commer-
cial load flexibility strategies in dynamic building en-



ergy simulations (Bossmann and Eser (2016); Chen
et al. (2018)). Such studies use physics-based en-
ergy modeling tools such as EnergyPlus, DOE-2, and
TRNSYS to investigate changes in building demand,
thermal dynamics, and changes to other building
services from flexible operations during DR events.
Since the underlying modeling tools are able to cap-
ture both whole building and sub-system/component
changes under DR at temporal increments that are
suitable for grid planners (e.g., 15 minute–to –hourly
changes in HVAC, lighting, and electric equipment
schedules), these tools are well-suited to represent
the various types of load flexibility strategies identi-
fied above. Accordingly, other tools such as Demand
Response Quick Assessment Tool (DRQAT) (Center
(2015)), and EnergyPLAN (Neves et al. (2015)) have
drawn from physics-based building simulation capa-
bilities specifically for the purpose of assessing trade-
offs across candidate flexibility strategies.

Data-driven models offer an alternative to physics-
based simulations for characterizing a building’s re-
sponse to dynamic load adjustments (Wang and Chen
(2019)). For example, Yin et al. (2016) developed a
surrogate modeling framework for estimating the the-
oretical demand flexibility in both commercial and
residential buildings, in which regression models were
trained to large EnergyPlus datasets on the simulated
demand impacts of thermostat adjustment strategies.
Kara et al. (2014) similarly used a data-driven surro-
gate modeling approach to quantify the flexibility of
residential thermostatically controlled loads for de-
mand response. Amara et al. (2015) conducted a
review comparison among different types of data-
driven models and approaches, identifying a hybrid
physics-statistical modeling framework as most effec-
tive for managing building energy use. Nevertheless,
surrogate models and other data-driven approaches
such as machine learning require substantial mea-
sured or simulated data for model training – includ-
ing building energy use, indoor and outdoor environ-
mental variables, and system control data (Korolija
et al. (2013)). Accordingly, data-driven approaches
remain a promising but uncommon basis for inform-
ing commercial load flexibility strategies in practice
(Kathirgamanathan et al. (2021)).

Overall, existing literature suggests the following key
challenges to quantitative assessment of commercial
building load flexibility strategies:

• existing models of load flexibility are not easily
adapted to specific building instances; given the
lack of modeling and computational resources, it
is not feasible for building owners, operators, or
consultants to build unique physics-based models
of the potential impacts of flexibility strategies in
specific building applications,

• few studies represent multiple load flexibility
strategies at once, despite the potential for such

flexibility packages to yield deeper demand re-
ductions while distributing risks across building
services, and

• few existing studies communicate the uncertain-
ties in their predictions, imparting false confi-
dence about flexibility impacts.

To address such limitations, this study develops sur-
rogate models of key load flexibility strategies for
office settings that are robust, comprehensive, and
adaptable to new information. Specifically, we use
EnergyPlus to generate synthetic data on the poten-
tial impacts of an array of commercial load flexibility
strategies and packages in a variety of operational
contexts; train a series of multiple regression models
of building demand and service changes under these
strategies; and translate the regression-based surro-
gate models to a Bayesian framework to facilitate
communication of model prediction uncertainty and
parameter updating given new evidence. The devel-
oped models are intended to serve as simple tools that
commercial DR participants can use to prospectively
assess the relative benefits and risks of candidate load
flexibility response strategies under a particular set of
conditions (e.g., weather, occupancy, incentives).

Methods

Surrogate models of commercial building demand and
services under load flexibility are developed as fol-
lows: 1) define commercial DR contexts (climate,
building type, building vintage) and develop candi-
date load flexibility Measures in OpenStudio/Ener-
gyPlus; 2) simulate load flexibility Measures across
climate zones, building types, and vintages of inter-
est; 3) compile results into synthetic database cover-
ing simulated electricity demand and indoor tempera-
ture outcomes under the various measure settings; 4)
fit a series of multiple regression models of building
demand and indoor temperature under load flexibility
using the synthetic database; translate the regression
models to a Bayesian inference framework to address
model uncertainty and new parameter updating; and
5) assess model fit and predictive performance using
quantitative metrics and qualitative graphical checks.
Figure 1 summarizes the methodological steps used in
this study, which are further enumerated below.

Definition of DR contexts and load flexibility
strategies

DR contexts for load flexibility strategies were de-
fined based on the prototypical building types and
vintages published for 19 representative weather lo-
cations by the U.S. DOE (2020). In this study, we
focus on the medium office (MediumOfficeDetailed)
prototype across the 1980-2004 and 2010 vintages,
which we use to represent older and newer buildings,
respectively. We simulate across a range of different
climate zones – 2A, 3C, 4A, and 6B – to capture the
influence of variation in weather as well as location-
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Figure 1: Summary of methodological steps.

specific building design codes. In all, we simulate 8
unique contexts (2 vintages * 4 climate zones).

Table 1 summarizes the load flexibility strategies rep-
resented, along with key characteristics. We repre-
sent four individual flexibility strategies, which are
applied during the DR event hours of 3–7 PM: 1)
lighting dimming, 2) plug load reduction through
low-priority device switching, 3) global temperature
adjustment (GTA), and 4) GTA + pre-cooling. In
the simulations, we apply each strategy to a baseline
daily schedule across summer days, excluding week-
ends. The adjusted schedule is written in .csv format
and used in the simulation using OpenStudio Soft-
ware Development Kit with EnergyPlus engine. For
both lighting and MELs strategies, the reductions
are generated using a continuous uniform distribu-
tion bounded from 0 to 100%. Adjustment settings
for GTA and pre-cooling are also generated using a
discrete uniform distribution; GTA cooling set point
increases during the DR period are sampled between
the range of 1°F and 6°F, while pre-cooling set point
decreases are sampled between the range of 1°F and
4°F. Pre-cooling is represented for half of the simu-
lated summer days to ensure a balance in the dataset
between days with and without pre-cooling applied;
pre-cooling application ranges between 1 and 8 hours
directly preceding the DR event period, with dura-
tions drawn from a discrete uniform distribution.

Whole building simulation of load flexibility
strategies

Load flexibility strategies and contexts are simulated
using the EnergyPlus engine (Strand et al. (2000))
and OpenStudio software development kit Gugliel-
metti et al. (2011). Flexibility strategies are devel-
oped as OpenStudio Measures, small programs that
adjust an EnergyPlus model across various dimen-
sions including the building and system characteris-
tics and operational and occupancy schedules. Mea-
sures developed to represent the aforementioned flex-
ibility strategies modify the fractional schedules for
lighting and office equipment power, as well as the
cooling temperature setpoint schedule during specific
times of day – in this case, before, during, and after

the 3–7 PM DR event window described in the pre-
vious section. These Measure definitions have been
published on a GitHub1 repository.

The full set of Measures and DR contexts were gen-
erated via batch simulations that leverage the Open-
Studio Workflow (OSW). Using the OSW, the Medi-
umOfficeDetailed prototype model was seeded as the
OpenStudio Model, to which flexibility Measures and
an additional set of Reporting Measures were applied.
Flexibility Measure arguments include the magni-
tudes and durations of each candidate strategy, while
Reporting Measure arguments contain the type of re-
porting variable desired and the time resolution with
which that variable should be reported. Given these
arguments, the OSW executes the EnergyPlus engine
and generates the required reporting files across the
various DR contexts. All simulations use an hourly
time step.

Development of synthetic database

After conducting the batch simulations, hourly re-
sults are compiled into a synthetic database, with
a particular focus on electricity demand and indoor
temperature outputs and the potential predictors of
these outputs. Regarding indoor temperature results,
the following adjustment to the raw temperature data
generated for each of the 28 MediumOfficeDetailed
prototype zones to yield a single indoor temperature
variable to use in the dataset:

Tave =

∑n
i=1(Ti ×Occi)∑n

i=1Occi
(1)

Where Tave represents the occupant-weighted aver-
aged indoor temperature; i represents the conditioned
zone number, while n represents the total number of
conditioned zones; Ti represents the indoor tempera-
ture within zone i; and Occi represents the occupant
numbers within zone i.

Raw simulation results are further filtered in the fol-
lowing ways:

1https://github.com/jtlangevin/flex-bldgs/tree/

master/measures

https://github.com/jtlangevin/flex-bldgs/tree/master/measures
https://github.com/jtlangevin/flex-bldgs/tree/master/measures


Table 1: Load flexibility strategy assumptions.

Category Measure
Magnitude of adjustment

Duration of adjustment
Low (Uniformly distributed) High

HVAC Global cooling temp. adjustment (GTA) +1°F to +6°F 3-7 PM
GTA +1°F to +6°F 3-7PM

+ pre-cooling -1°F to -4°F 1 to 8-hour ahead
(Uniformly distributed)

Lighting Dimming
-0% to -100% 3-7 PM

Plug Loads Low-priority device switching

• we restrict to summer data only (Jun–Sep) given
the focus on cooling adjustments in the set of
flexibility strategies examined,

• we restrict the data to weekdays only, given sig-
nificant building demand during weekday hours
and high variability in weekday occupancy sched-
ules during the chosen DR event window (3–
7PM), and

• within each day, we restrict hourly data points to
those that fall in the DR event window, as well
as any hours preceding the window in which pre-
cooling was simulated and one hour following the
event, to capture potential rebounds in demand
as the HVAC system recovers from adjustments
to the cooling set point.

As mentioned, the synthetic database also reflects
potential predictors of changes to building demand
and indoor temperature under load flexibility, includ-
ing: outdoor environmental conditions (e.g., outdoor
temperature and humidity), changes in operational
schedules consistent with the various flexibility strate-
gies, and time lags of these variables. The synthetic
data are published on the aforementioned GitHub2.

Surrogate model development

To develop the surrogate models of building electric-
ity demand and indoor temperature under load flex-
ibility strategies, we fit multiple linear regressions to
the synthetic data, prioritizing model simplicity and
interpretability. Model predictors are specified based
on domain expertise about the variables that are
likely to have a real-world relationship to the building
demand and indoor temperature outputs of interest.
Interaction terms are included under the expectation
that the influence of certain model predictors on the
output is conditioned on the values of other predic-
tors in the model, such as the moderating effect of
weather and occupancy on the impacts of changing a
zone cooling setpoint.

To predict changes to building demand, we fit sep-
arate surrogate models for strategies that drive
changes in demand through changes in thermal loads
(e.g., global temperature adjustment and pre-cooling)
and strategies that do not primarily influence demand
through changing thermal loads (e.g., dimming lights

2https://github.com/jtlangevin/flex-bldgs/tree/

master/data

and reducing plug load power). We also fit a sepa-
rate demand model for changes to demand during the
pre-cooling period, given the different thermal load
dynamics of this period compared to the DR event
window (e.g., pre-cooling increases in thermal load
vs. the decreases during the DR event window).

To predict changes to indoor temperature, we fur-
ther restricted the synthetic training dataset to ex-
clude data points that reflect only lighting or plug
load changes, as such changes were observed to have
only small effects on zone temperature. Furthermore,
the temperature model is trained on synthetic data
with the one hour rebound period removed, as the in-
door temperature tends to move quickly back to the
thermostat set point during this period, leaving no
temperature changes for the model to predict.

Table 2 summarizes the ultimate set of surrogate
models that was developed, and further shows the
outputs and set of predictor variables chosen for each
model. The surrogate models for demand yield de-
mand shed intensity (W/ft2), while the surrogate
model for indoor temperature yields the change in
indoor temperature relative to the baseline setpoint
(ºF). Predictor variables are generally of four types:
1) outdoor environmental conditions and occupancy,
2) load flexibility strategy characteristics and their
single time step lags (e.g., changes in cooling setpoint,
lighting and plug load schedules), 3) time duration
indicators (e.g., hours since flexible operations have
started and ended), and 4) interactive terms that cap-
ture the moderating effect of one predictor variable on
another. Note that in the models of thermally-driven
changes in demand and indoor temperature during
the DR event window, inputs concerning the magni-
tude and duration of any pre-cooling before the event
are included to account for the effects of pre-cooling
during the DR event window.

Translation of models to Bayesian framework

In practice, the input/output relationships that are
mapped by the surrogate models may differ between
prototypical and real offices. To mitigate this issue,
uncertainty in surrogate model predictions should
be represented in a straightforward manner and the
models must be flexible to updating given new evi-
dence collected in real building environments. Both
of these criteria are well supported by translation of
the surrogate models to a Bayesian inference frame-

https://github.com/jtlangevin/flex-bldgs/tree/master/data
https://github.com/jtlangevin/flex-bldgs/tree/master/data


Table 2: Summary of demand and temperature surrogate model inputs and outputs. Shown are model types,
outputs, and predictors, with interactive predictor variables highlighted in red.

Whole Building Demand Whole Building Demand Whole Building Demand Indoor Temperature
(DR, Non-thermal related) (DR, Thermal related) (Pre-cool) (DR)

Output Demand shed intensity (W/ft2) Demand shed intensity (W/ft2)) Demand shed intensity (W/ft2) Indoor temperature change (ºF)
Input Lighting dimming (%) Outdoor temperature (ºF) Outdoor temperature (ºF) Outdoor temperature (ºF)

Plug loads reduction (%) Outdoor humidity Outdoor humidity Outdoor humidity
Occupancy fraction Occupancy fraction Occupancy fraction
Cooling set pt. change (ºF) Cooling set pt. change (ºF) Cooling set pt. change (ºF)
Lighting dimming (%) Hours since pre-cool started Cooling set pt. lag (ºF)
Plug loads reduction (%) Cooling change * Outdoor temp. Hours since DR started
Cooling set pt. lag (ºF) Cooling change * Occ. fraction Pre-cool set pt. change (ºF)
Hours since DR started Cooling change * Since Precool started Pre-cool duration
Hours since DR ended Cooling change * Outdoor temp.
Pre-cool set pt. change (ºF) Cooling change * Occ. fraction
Cooling change * Outdoor temp. Cooling change * Since DR started
Cooling change * Occ. fraction Pre-cool change * Pre-cool duration
Cooling change * Since DR started

work.

Bayesian inference treats model parameters as ran-
dom variables, deriving the posterior probability of
model parameter values as a function of the likeli-
hood of observed data given the parameters and prior
parameter probabilities:

p(θ|X,α) ∝ p(X|θ)p(θ|α) (2)

Where θ is a vector of model parameters, X is the
observed data, and α is a vector of hyperparameters;
p(θ|X,α) is the posterior parameter probability given
the observed data and hyperparameter values; p(X|θ)
is the likelihood of observed data given the parameter
values; and p(θ) is the prior parameter probability
given the hyperparameter values.

Following from equation 2, the posterior predictive
distribution of new data points x̂ is generated by
marginalizing over the posterior parameter distribu-
tions:

p(x̂|X, a) =

∫
p(x̂|θ)p(θ|X,α) dθ (3)

The range of model predictions generated by equation
3 satisfies the requirement of communicating uncer-
tainty in model outcomes, while the ability to weigh
prior expectations about model parameters against
new evidence as in equation 2 supports model up-
dating with data collected in the field. To imple-
ment the models in this framework, we use PyMC3
(Salvatier et al. (2016)), a Python package for prob-
abilistic programming. Models are initialized using
the previously described synthetic data to populate
the likelihood function and assuming diffuse param-
eter prior distributions (θ ∼ N(0, 10)) to reflect our
lack of a priori beliefs about parameter values. The
posterior parameter distributions estimated through
this process are stored on GitHub3 and may serve as
informative prior distributions in subsequent rounds
of model updating.

3https://github.com/jtlangevin/flex-bldgs

Model evaluation

Model fit and predictive performance were assessed
via the following:

1. R-squared (R2) is a goodness–of–fit metric; R2

indicates the proportion of the variability in the
response data about its mean that is explained by
the modeled independent variable(s).

2. Absolute Relative Error (ARE) is a predictive ac-
curacy metric; ARE subtracts observed from pre-
dicted values and normalizes each difference by
the observed values (Yin et al. (2016)).

3. Mean Absolute Deviation Percentage (MADP) is
a second measure of accuracy; MADP is the ratio
of the sum of deviations between observed and
model-predicted values to the sum of observed
values (Lucas Segarra et al. (2019)).

4. Variance inflation factor (VIF) is a measure of
variable multicollinearity; VIF is the ratio of over-
all model variance to the variance of model includ-
ing only a given predictor variable (Craney and
Surles (2002)). VIF values higher than 10 are as-
sumed to suggest the need for model adjustments
to improve the stability of variable coefficient es-
timates.

5. Posterior predictive checks (PPCs), which are rel-
evant specifically to the Bayesian model imple-
mentation, graphically compare real and simu-
lated data for systematic discrepancies (Gelman
et al. (2004)).

Results

Electricity demand models

Figure 2 shows the cumulative distribution of the
absolute relative error (ARE) of predictions from the
model of non-thermally-driven changes in building
demand during the DR event window, for new and
old office vintages, respectively. The red dashed line
establishes a threshold for predictions that fall within
20% of the ground truth values from the synthetic
database. In this case, 91% and 89% of the predic-

https://github.com/jtlangevin/flex-bldgs


tions meet this accuracy threshold for the new and old
office vintages, respectively, while MADP values are
9–10% and R2 values are 0.93 and 0.94, respectively.

Figure 2: Histogram of the absolute relative error
in model of non-thermally-driven changes in demand
during the DR event window for newer (a) and older
(b) medium office vintages.

Figure 3 shows the same results as Figure 2 for
the model of thermally-driven changes in building de-
mand during the DR event window. Here, 90% of the
predictions meet the accuracy threshold for both new
and old office vintages, while MADP values for both
vintages are 8% and R2 values are 0.96 and 0.97, re-
spectively.

Figure 3: Histogram of the absolute relative error in
model of thermally-driven changes in demand during
the DR event window for newer (a) and older (b)
medium office vintages.

Finally, Figure 4 shows the same results as Figures
2–3 for the model of changes in demand from imple-
menting pre-cooling. For this model, 86% and 87% of
the predictions meet the accuracy threshold for new
and old office vintages, respectively, while MADP val-
ues are 13% and 12%, respectively, and R2 values are
0.86 and 0.90, respectively.

Figure 4: Histogram of the absolute relative error
in the model of changes in demand during the pre-
cooling period for newer (a) and older (b) medium
office vintages.

Indoor temperature model

Figure 5 shows the same information as Figures 2–4
for the model of changes in indoor temperature during
the DR event window. 77% and 79% of predictions
fall within 20% of ground truth values in new and
old buildings respectively, MADP values are 16% and
15%, respectively, and R2 values are 0.78 and 0.82,
respectively.

Figure 5: Histogram of the absolute relative error in
the model of changes to indoor temperature during the
DR event window for newer (a) and older (b) medium
office vintages.

Bayesian model implementation

All models were successfully re-estimated in a
Bayesian framework and subjected to a series of pos-
terior predictive checks (PPCs) as described in the
Methods. Figures 6a–c and 6d–f demonstrate PPC
results for the model of thermally-driven demand
changes during the DR event window in new and
old office vintages, respectively. Checks of parame-
ter posterior distributions (6a, 6d) demonstrate that
under the absence of informative prior expectations
about parameter values, parameter posterior distri-
butions are centered on the frequentist point esti-
mates that underpin model results in the previous
sections. Furthermore, checks on the posterior dis-
tribution of model outputs (6b–c, 6e–f) reveal no
systematic discrepancies between simulated and ob-
served data (this finding holds for the models not
shown in Figure 6 as well).

Discussion

Model assessment results generally show strong pre-
dictive performance for the developed surrogate mod-
els, which yield MADP values of less than 16% and R2

values above 0.78 across the various model types and
DR contexts explored. Demand models display par-
ticularly high accuracy, yielding MADP values less
than 10% and R2 values above 0.93 across newer
and older vintages. This level of predictive accuracy
compares favorably with previous studies (Yin et al.
(2016)) and suggests the models would be practically
useful in guiding decision-making regarding load flex-
ibility strategies for offices under a wide variety of
conditions.

While these preliminary findings are encouraging, we
note the following important limitations at this stage
of the work:
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Figure 6: Bayesian estimation and assessment of thermally-driven demand change model for newer (a–c) and
older (d–f) medium office vintages. (a, d) Example kernel density distribution of cooling set point change
parameter coefficent compared to frequentist estimate. (b, c, e, f) Posterior predictive checks against observed
mean demand change and the distribution of observed demand change, including histogram (b, c) and kernel
density estimation (e, f) of demand reduction output as observed in the underlying synthetic dataset and predicted
by the Bayesian models.

• we investigate a limited set of load flexibil-
ity strategies and contexts, focusing on strate-
gies that adjust control schedules rather than
more fundamental modifications of equipment
settings, in medium offices in summer only; DR
programs are likely to target a wider variety of
commercial building types – particularly larger
ones, where DR participation may be more cost-
effective for customers – potentially across both
cooling and heating seasons,

• our models are limited to producing decision-
making insights at the hourly temporal resolu-
tion, in line with the resolution that outcomes
are assessed for many traditional DR programs
and in wholesale energy markets; the models do
not provide insights regarding faster DR services
such as frequency regulation or load modulation,
for which sub-hourly predictions are required,

• while we predict the likely magnitude of impacts
from load flexibility strategies on demand and in-
door temperature, we do not assign operator val-
uations of these impacts; in practice, operators
may weigh changes to demand (and associated
economic benefits) more heavily than changes to
temperature, or vice versa, and

• we do not extend our modeling to other building
services such as control of humidity, illuminance,
and CO2, which are not as readily measured or
modeled by the physics-based simulations that
underpin our synthetic database of load flexibil-
ity impacts.

Future work will address some of these limitations by
investigating commercial load flexibility strategies in
the winter; expanding synthetic data to cover addi-
tional building types – retail and large offices, and in-
corporating operator load adjustment preference data
generated from discrete choice experiments to attach
valuations to predicted changes in building demand
and services.

Conclusion

In this study, we used a surrogate modeling approach
to predict changes in office building electricity de-
mand and indoor temperature under candidate load
flexibility strategies, including adjustments to HVAC,
lighting, and plug load schedules. The surrogate mod-
els were fit to a large synthetic database generated
via whole building simulations of the strategies un-
der a variety of conditions; models were translated to



a Bayesian framework to allow straightforward com-
munication of uncertainty and parameter updating
given new evidence. The surrogate models showed
strong predictive performance, yielding overall pre-
diction errors of less than 16% and R2 values above
0.83, underscoring their potential utility in guiding
DR decision-making in office settings.

Acknowledgment

This work was supported by Building Technologies
Office of the U.S. Department of Energy under Con-
tract No.DE-LC-000L048. We appreciate technical
input and feedback from Mary Ann Piette, Tianzhen
Hong, Margaret Taylor, and Jeff Deason of Lawrence
Berkeley National Laboratory.

References
Amara, F., K. Agbossou, A. Cardenas, Y. Dubé, and
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