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Original Article

Accuracy of Rod Contouring to Desired Angles
With and Without a Template: Implications
for Achieving Desired Spinal Alignment
and Outcomes

Juan Pablo Sardi, MD1, Christopher P. Ames, MD2, Skye Coffey, BSC3,
Christopher Good, MD4, Benny Dahl, MD5, Paul Kraemer, MD6,
Jeffrey Gum, MD7, Dennis Devito, MD8, Marco Brayda-Bruno, MD9,
Robert Lee, FRCS, MBBS10, Christopher P. Bell, MSc11, Shay Bess, MD12,
and Justin S. Smith, MD, PhD1

Abstract

Study Design: Biomechanical Study.

Objective: The search for optimal spinal alignment has led to the development of sophisticated formulas and software for
preoperative planning. However, preoperative plans are not always appropriately executed since rod contouring during surgery is
often subjective and estimated by the surgeon. We aimed to assess whether rods contoured to specific angles with a French rod
bender using a template guide will be more accurate than rods contoured without a template.

Methods: Ten experienced spine surgeons were requested to contour two 125� 5.5mm Ti64 rods to 40�, 60� and 80� without
templates and then 2 more rods using 2D metallic templates with the same angles. Rod angles were then measured for accuracy
and compared.

Results: Average angles for rods bent without a template to 40�, 60� and 80� were 60.2�, 78.9� and 97.5�, respectively. Without a
template, rods were overbent by a mean of 18.9�. When using templates of 40�, 60� and 80�, mean bend angles were 41.5�, 59.1�

and 78.7�, respectively, with an average underbend of 0.2�. Differences between the template and non-template groups for each
target angle were all significant (p < 0.001).

Conclusions: Without the template, surgeons tend to overbend rods compared to the desired angle, while surgeons improved
markedly with a template guide. This tendency to overbend could have significant impact on patient outcomes and risk of
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proximal junctional failure and warrants further research to better enable surgeons to more accurately execute preoperative
alignment plans.
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biomechanics, proximal junctional kyphosis, rod bending, sagittal alignment, spinal alignment, spinal instrumentation, spine surgery

Introduction

Achieving appropriate sagittal alignment is considered one of

the most important objectives in spinal deformity surgery in

order to help optimize patient-reported outcomes and to reduce

the risks of junctional failure and need for revision surgery.1-6

This has led surgeons to pursue defined spino-pelvic targets in

order to achieve the desired postoperative alignment for each

patient. Restoration of known parameters such as pelvic tilt

(PT), sagittal vertical axis (SVA), T1-pelvic angle (TPA) and

pelvic incidence to lumbar lordosis mismatch (PI-LL) has been

associated with improved functional status and walking toler-

ance, as well as reduced risk of requiring revision surgery.2,5,7-9

Hence, sophisticated planning tools and software have been

developed to simplify preoperative assessment of alignment

and enable surgeons to create specific alignment plans for each

patient.10-12

Spinal rod contouring and biomechanical properties are

key components of posterior instrumentation outcomes.13

Achieving target overall realignment and desired regional

sagittal angles is dependent on adequate contouring of the

rods, reflecting the critical importance of the intraoperative

rod bending step. However, despite the available sophisti-

cated planning tools and alignment objectives, surgeons often

lack the means of ensuring their plans are appropriately exe-

cuted in the operating room and end up estimating rod angles

by subjectively contouring rods intraoperatively. This can

lead to both over and under-bending the rods once in the

operating room, despite knowing in advance the desired align-

ment measures.

Numerous studies have reported that both under- and over-

correcting lumbar lordosis can have a deleterious impact on

spino-pelvic alignment and patient-reported outcomes.1,5,10

Identifying significant differences between desired angles and

the actual rod curvature estimated by the surgeon could carry

significant implications for in vivo spinal deformity correction.

The purpose of this study was to assess how accurately sur-

geons can bend rods to specified angles. We then assessed

whether providing surgeons with a rod template reflecting the

desired angle would improve their ability to achieve the

requested angular bend.

Materials and Methods

Ten experienced spine surgeons were requested to contour two

125 � 5.5mm Ti64 rods using a French rod bender to 40�, 60�

and 80� without templates. The same surgeons were then asked

to bend 2 additional rods using 2D metallic templates that had

been bent to the corresponding requested angles. Rods were

photographed overhead next to an object of known size (coin)

to calibrate measurements, and photos were imported into

Surgimap (Nemaris, New York, NY, USA) for measurements

(Figure 1).14 The arc length of the rods was measured using the

multi-line tool in Surgimap. The circle tool was used to overlay

a circle of best fit to the center line of the bent rod and measure

its radius. The angle of the bent rod was calculated using the

Figure 1. Rod photographed next to a coin for size calibration to facilitate angle measurement.
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formula s¼rO�, where s is the arc length, r is the radius and O� is

the angle in radians converted to degrees. Rod angles were

compared for average and absolute differences as well as error

percentage between both groups. Descriptive statistics were

performed using Minitab 17 (Minitab, State College, PA,

USA), data was presented as mean value+ standard deviation,

p-values were calculated using a 2-sample t-tests and p < 0.05

was considered to indicate statistical significance. Since this

study was confined to biomechanical analyses without involve-

ment of patients, patient material, or animals, Internal Review

Board approval was not required and patient consent was not

indicated.

Results

A total of 120 rods were bent, one-half using 2D metallic

templates of 40�, 60� and 80� as models and the other one-

half were bent without a template. Mean angle values of the

rods bent without a template to 40�, 60� and 80� were as fol-

lows: 60.2 + 13.9� (range: 82.6�-37.8�), 78.9 + 12.8� (range:
98.4�-56.8�), and 97.5 + 18.6� (range: 134.2�-73�), respec-
tively. Mean angle values of the rods bent using templates of

40�, 60� and 80� were as follows: 41.5 + 2.5� (range: 47.2�-
38.7�), 59.1 + 2.3� (range: 65.1�-54.7�), and 78.7 + 2.7�

(range: 82.2�-72.5�), respectively (Table 1). For each of the

desired angular bends, the differences between the achieved

angular bends with and without a template were statistically

significant (p < 0.001 for each, Figure 2).

The average overbend without a template was 18.9+ 15.1�,
which is an average error of 30% (Table 1). In contrast, when

using the templates there was a relatively small underbend that

averaged �0.2 + 2.5�, with an average error of only 2.3%
(Figure 3). The angular bends achieved without the use of a

Table 1. Angular Measurements of Bent Rods With and Without a Template.

Target
Angle Template use

Average Bend
Angle (�)

Standard
Deviation (�)

Max Angle
(�)

Min Angle
(�)

Average Difference
from Target Angle (�) Error (%)

40� With a Template 41.5 2.5 47.2 38.7 1.5 3.7
Without a template 60.2 13.9 82.6 37.8 20.2 36.7

60� With a Template 59.1 2.3 65.1 54.7 -0.9 1.4
Without a template 78.9 12.8 98.4 56.8 18.9 31.4

80� With a Template 78.7 2.7 82.2 72.5 -1.3 1.6
Without a template 97.5 18.6 134.2 73.0 17.5 21.9

Figure 2. Average bend angle results. Comparison of achieved angular bends with and without a template for the 40�, 60�, 80� and overall
groups.

Figure 3. Average difference from target angle. Shown are mean
differences from the target angle when surgeons were asked to bend
rods to 40�, 60� or 80� with or without a template guide.
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template guide by surgeon are illustrated in Figure 4, and the

average differences from the target angular bends achieved

without and with the use of a template guide for each surgeon

are graphically depicted in Figure 5.

Discussion

Adult spinal deformity (ASD) is a common disease that has

progressively increased over recent decades, partly due to a rise

in the elderly population.15 Increasing prevalence of ASD has

led to an upsurge in the number of spinal instrumentation

procedures performed globally; and with them, greater atten-

tion has been directed at surgical outcome measures and goals.

There is now substantial evidence that patient-reported out-

comes measures correlate with sagittal alignment. Regardless

of its etiology, sagittal malalignment implies alteration of

spino-pelvic parameters that can compromise the ability to

maintain an upright posture within the cone of economy, with-

out significantly greater energy expenditure.16,17 In particular,

PI-LL mismatch, PT, and SVA are among the strongest radio-

graphic predictors currently available that correlate with surgi-

cal outcomes, disability and quality of life.1,3,18

Figure 4. Angular bends achieved without the use of a template guide for each surgeon. Data is grouped by the requested angular bend (40�, 60�

or 80�), 2 points are shown for each surgeon for each angle, since each bend was performed in duplicate.

Figure 5. Average differences from target angular bends achieved without (upper panel) and with (lower panel) the use of a template guide for
each surgeon.
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Operative treatment goals for ASD include restoration of

appropriate spino-pelvic alignment. Correction of lumbar lor-

dosis is especially critical, since it has direct impact on SVA

and mismatch reduction, as well as an indirect effect on PT,

which serves as a compensatory measure for sagittal malalign-

ment. To directly address the mismatch between PI and LL,

patients often require osteotomies, soft tissue releases, inter-

body implants and instrumentation to gain sufficient lordosis.

To accurately plan desired corrections, sagittal alignment anal-

ysis is of vital importance and many digital tools have been

designed to aid surgeons when making preoperative decisions.

Computer-based measurements have been shown to be faster,

more precise and most surgeons at least recognize their impor-

tance when determining the degree of correction required to

restore sagittal alignment.10,12,19,20 Nonetheless, despite opti-

mal preoperative planning, surgeons often lack the means of

ensuring that the desired plan is appropriately executed in the

operating room.

In the present study, when surgeons were asked to bend rods

without a reference template, not only was there considerable

variation in the angles, but nearly all of them tended to over-

bend the rods, especially as the target angles decreased. When

aiming for 40�, 60� and 80� without the template there were

mean differences from the target angles of 20.2�, 18.9� and

17.5�, respectively. These discrepancies between planned cur-

vatures and the actual achieved angles might be a major con-

tributing factor to reports in the literature in which in vivo

correction not uncommonly differs from the preoperative

alignment plans. In a study that included 161 patients with

ASD, Moal and colleagues found that 48% of patients had

inadequate lumbar lordosis improvement after surgery and only

23% of patients had complete global radiographic correction of

the deformity.21 The arduous challenge to achieve desired

angles could be explained, in part, by the difficulty in estimat-

ing rod curvatures intraoperatively, that when inadequate, can

cause postoperative malalignment. Furthermore, accurate rod

bending is not just critical for achieving appropriate lumbar

lordosis, in procedures including the thoracic spine, there is

also the need to contour the rod to facilitate achievement of

appropriate thoracic kyphosis.

Proximal junctional kyphosis (PJK) is among the most com-

mon complications in patients who undergo long-segment

spinal arthrodesis for ASD and arguably remains the biggest

unsolved challenge with these procedures. PJK is associated

with high rates of postoperative loss of sagittal alignment, pain,

neurological deficit, instability and need for reintervention.22-

26 Although it is a complex, multi-factorial process not yet

completely understood, there is evidence supporting a higher

incidence of PJK in patients with significantly greater correc-

tions in lumbar lordosis and sagittal vertical axis.6,22 In a retro-

spective analysis of 679 ASD patients with fusions to the pelvis

stratified by age group, Lafage et al assessed postoperative

offsets from age-specific alignment norms and found that

patients who developed PJK were significantly over-

corrected when compared to age-adjusted sagittal alignment

goals.6 If one extrapolates to a surgical scenario the degree of

overcorrection seen when the rods were bent without a tem-

plate in the present study, this could mean patients are often

receiving rods with more lordosis than they may actually need.

Since theoretically, achieving the correct regional sagittal con-

tour is dependent on the correct angle of the rod, this means

patients could end up with more postoperative lordosis than

expected and therefore worse postoperative outcomes and

higher rates of revision surgery. This is particularly relevant

to the elderly population, who are more prone to overcorrection

associated complications due to poorer bone quality, weaker

soft-tissue support, and overall increased frailty.6 In contrast,

when surgeons in our study were asked to bend the rods with

the aid of templates, there was an average mean difference of

just �0.2� from the target angle, which is only a 2.3% error.

Unless patient-specific rods are used, implanted rods are not

in their originally straight manufactured form after in situ or

French rod benders are used to contour them into the desired

shape; causing defects or notches that may ultimately lower

their fatigue life.21,27,28 In fact, this “notch sensitivity” may

help to explain why rod failure typically occurs at the screw-

rod junction or at the apex of the curve where greater con-

touring has been done.28,29 Our study revealed that nearly all

participating surgeons overbent the rods when they did not use

a template. In fact, there was an overall 18.9� overbend for all

angles, which translates into a 30% angular error. This means

rods were potentially subject to an unnecessary greater number

of notches by the French bender to deliver the curvature defor-

mation. When translating this to an in vivo environment, the

more notching caused by overbending could affect the fatigue

life of the rods and contribute to implant failure. In addition, a

previous biomechanical study from Tang and colleagues30

demonstrated that rods bent to greater angles had lower fatigue

life, suggesting that rods bent to angles greater than necessary

may needlessly decrease the fatigue life of the rod and increase

the risk of rod fracture.

The importance of appropriate rod contouring is not con-

fined to ASD corrective surgeries or to long-segment instru-

mentation. As with long-segment fusions, the alignment

achieved with shorter-segment fusions is impacted by rod con-

touring in addition to the bony, disc, and soft tissue releases.

Achieving adequate lumbar lordosis for shorter-segment

fusions has been shown to have significant impact on the occur-

rence of adjacent segment disease. Rothenfluh and col-

leagues31 assessed 84 patients who had been treated with a

short-segment (between 1 and 3 levels) posterior lumbar

fusion. Patients with a postoperative PI-LL mismatch had a

10-fold greater risk of requiring revision surgery for adjacent

segment disease.

Some limitations of this study should be noted. Rods were

only bent in a single angular direction, however ASD patients

often need rods to have both lordosis and kyphosis which could

entail further discrepancies between desired contours and the

actual rod curvature. Furthermore, surgeons were only asked to

achieve a specific angle, but no information was given regard-

ing the location of the rod or other specific visual cues that may

be available intraoperatively; if surgeons were asked to bend
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rods to a certain degree of kyphosis versus lordosis, contouring

estimates could change. However, this requires a larger sample

and further research.

Conclusion

Obtaining adequate postoperative spinal alignment that

matches preoperative planned alignment remains a challenge

for surgeons. Analysis of angle difference between rods bent

without a template versus rods bent with a template revealed

significant improvement in accuracy when using the latter.

Without the template, surgeons tended to overbend rods com-

pared to the desired angle, while nearly all surgeons improved

markedly with use of one. This overbending could have signif-

icant implications for patient outcomes and PJK risk and war-

rants further research to help enable surgeons to better execute

preoperative alignment plans into the operative setting.
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