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ABSTRACT: The mechanical and dynamic properties of developing networks near
the gel point are susceptible to the distribution of clusters coexisting with percolating
networks. The distribution of cluster numbers follows a broad power law, wrapped by a
cutoff function that rapidly decays at a characteristic size. The form of the cutoff
function has been speculated based on known results from lattice percolation and, in
certain cases, solved. We obtained this cutoff function from simulated dynamic clusters
of polymeric precursor chains using a hybrid Monte Carlo algorithm. The results
obtained from three different precursor chain lengths are consistent with each other
and are consistent with the expectation from lattice percolation.
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■ INTRODUCTION
Much of the recent interest in dynamic networks was spurred
by the need to develop healable and reprocessable elastomers
and by the study of associative systems containing long-lived
ionic bonds such as ionomers.1−3 To design materials with
high mechanical strength, the cross-linking density needs to be
high, whereas to enhance stretchability, the cross-linking
density needs to be low (Figure 1). Materials with low
modulus are sometimes advantageous, for instance, in soft
electronics applications.4 As a result, a balance of strength and
stretchability is needed, which often places materials in the
gelation window, where the variation of these two properties is
the greatest. Elucidating the molecular design rules that
correlate backbone stiffness, monomer bulkiness, molecular
weight of the precursor chain, and the lifetime of physical
cross-links with the mechanical and physical properties of the
dynamic network is thus instructional to the design and
engineering of soft elastomers that are healable or reprocess-
able.5,6

Molecular theories for dynamic networks7−17 have been
developed within the same framework as for permanent
networks,18 which is rooted in percolation theory.19 The sticky
Rouse8,16,17 and sticky reptation9 models are commonly used
for studying the dynamic behaviors of these systems, and the
near-critical gels have been extensively studied.10,11,14,15 The
main results concerning the regime close to the gel point are
that the structural and dynamic properties can be captured by a
set of closely related scaling exponents for the degree of
gelation ϵ. Let the probability of a monomer forming a cross-
link be p, and the (mean-field) value of p at the gel point be

=p
Nc

1
1
, where N is the number of monomers per precursor

chain.18 The degree of gelation is defined as 1p
pc

. The

condition ϵ = −1 corresponds to a melt of precursor chains,
while ϵ = 1 corresponds to the completion of gelation.

Within the gelation window defined by −1 ≤ ϵ ≤ 1, which is
of primary interest for this work, the system contains a mix of
precursor chains, small clusters formed by linked precursor
chains and, when ϵ > 0, a fraction of chains belonging to the
percolating network. The density of clusters containing s
precursor chains obeys a two-parameter scaling ansatz:18,19

= *
*n s s f s

s
s( ) , 1/i

k
jjj y

{
zzz (1)

The cutoff function f is constant when s/s* is small and drops
to zero otherwise. The exponent τ captures the power-law
distribution for cluster numbers, and σ characterizes the typical
cluster size formed at a given ϵ. The cluster distribution is the
basis for understanding the structural and dynamic features18

in the vulcanization process studied by Flory21,22 and
Stockmayer.23 These concepts and analyses can be applied to
other associative systems, including colloidal particles,24

supramolecular clusters,25,26 and polymer-grafted nanopar-
ticles.27 Furthermore, as a particular example of a percolation
class, the detailed cluster distribution functions obtained from
polymeric systems allow generic features from percolation
theory to be tested.19,28

For gelation in three dimensions (d = 3), τ = 5/2 and σ = 1/
2 in the mean-field gelation regime (|ϵ| > N−1/3), and τ = 2.18
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and σ = 0.45 in the critical gelation regime (|ϵ| < N−1/3).18,20

The mean-field regime is obtained from the standard Flory−
Stockmayer theory,18 and the critical regime emerges because
the cluster size grows rapidly as the gel point is approached,
which eventually overfills space. Consequently, beyond a
threshold length, the clusters become space-filling, following
the critical exponents.18 The crossover N−1/3 between these
two regimes was first predicted by de Gennes.20

The exponents τ and σ determine all other static
exponents.18,19 For instance, the gel fraction is given by Pgel

= ϵβ (ϵ > 0), with = 2 . The size of clusters is described by
the fractal dimension D which, using the space-filling
argument,19 can be shown to be given by =D 2

3
in the

mean field regime, and by d
1

in the critical regime. The
correlation length ξ of the system is the size of the largest
cluster s*, which scales as = * =s( ) D1/ , with =

D
1 .

The pervaded volume of a cluster of s* precursor chains is ξ3.
The transition from mean-field to critical scaling happens at

the Ginzburg number ϵG.18 Setting the number of clusters of s*
precursor chains that can cohabit its pervaded volume to one
gives = NG

1/3, where N Nb /6 2 is the invariant degree
of polymerization. The dependence on N is identical to de
Gennes’s original result20 (Figure 1). The dependence on the
monomer volume Ω and statistical segmental length b
determines how monomer bulkiness and chain stiffness affect
the crossover between the mean field (|ϵ| > ϵG) and the critical
(|ϵ| < ϵG) regimes. One way to see the effect of stiffness is by
replacing the Gaussian statistics with worm-like chain statistics.
Setting the number of overlapping strands to one gives

=
+

N
N eG

2
2 1 N

K
2/3

K
2 K

, where NK is the number of Kuhn strands

per precursor chain. This expression reduces to NK
1/3 for

flexible chains, whereas it becomes NK
4/3 for stiff chains.

Although much is known of the scaling exponents τ and σ
for the cluster distributions n(s), the understanding of the
cutoff function f(s/s*) remains limited.18 It is known to exhibit
a peak below the gel point, and to decay rapidly further away
from the gel point on both sides. Except in certain limiting
cases,18 only numerical results are reported for lattice
percolation. For gelation of linear precursor chains, the shape
of the cutoff function appears to be absent in the literature.

The aim of the current work is two-fold. First, we present
and benchmark a coarse-grained model for the gelation of
linear precursor chains. Second, based on the cluster number
distributions sampled for multiple precursor chain lengths and
multiple boxes, we obtain the cutoff function and examine
whether or not a single form applies to different chain lengths.
The next section explains the details of our simulation model,
including the cross-linking protocol. The following section
reports the main results, including the verification of
equilibration of the precursor chains, the calibration of the
cross-linking rate, the identification of the gel point and, finally,
the discussion of the cutoff function. The last section
summarizes our main findings.

■ MODEL
We use the bead−spring model for precursors.29 The
nonbonded beads interact via the truncated, purely repulsive
L e n n a r d - J o n e s ( L J ) p o t e n t i a l ,

= +( ) ( )U r( ) 4
r rLJ

12 6Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ , for 0 < r < 21/6σ. Here, the

strength of the interaction is set to ε = kBT, and σ is the range
of the LJ interaction, which is the default length unit. The
bonded beads first interact via the FENE bond potential,29

= [ ]U r KR r R( ) 0.5 ln 1 ( / )FENE 0
2

0
2 , where R0 = 1.5 is the

maximum bond length and K = 30 is the bonding strength, in
addition to an LJ potential. We used cubic simulation boxes
with periodic boundary conditions imposed along all three
directions. The number of beads per chain is N = 12, 25, or 50,
and the number of chains per simulation box is denoted M.
Various box volumes are simulated to investigate the finite size
effects. The box volume V is set to multiples of V0, with V0 =
14.313. The bead number density ρ = NM/V is set to 0.85 for
all systems.

Before the cross-linking steps, the precursor chains are
equilibrated following the approach outlined in the literature.30

The initial configurations are generated by randomly placing
the beads. A soft dissipative particle dynamics (DPD) potential
is applied for all bead pairs to allow for rapid relaxation. The
strength of the DPD potential is then gradually increased until
it is comparable to the LJ potential. Next, the DPD potential is
replaced with the LJ potential, and a long molecular dynamics
(MD) simulation is performed for an isothermal re-
equilibration under a Nose-́Hoover thermostat. Finally, the
distributions of the end-to-end distance and the radius of

Figure 1. Variation of modulus,16 cluster lifetime,12,13 and stretchability (following ref 2 while assuming that the backbones of the clusters are force-
bearing) in the gelation window and above the gel point, and schematics for tree-like clusters (s = 1, 2, 3) and a defective cluster (s = 7) containing
a self-loop. The stretchability is estimated as the end-to-end distance of a strand between two cross-links normalized by the unperturbed size.2 The
mean-field to critical regime crossover is ϵG ∝ N−1/3,20 and the effective breakup sets in for |ϵ| < ϵc.

12,13

ACS Polymers Au pubs.acs.org/polymerau Article

https://doi.org/10.1021/acspolymersau.2c00020
ACS Polym. Au 2022, 2, 361−370

362

https://pubs.acs.org/doi/10.1021/acspolymersau.2c00020?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.2c00020?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.2c00020?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.2c00020?fig=fig1&ref=pdf
pubs.acs.org/polymerau?ref=pdf
https://doi.org/10.1021/acspolymersau.2c00020?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


gyration of precursor chains are monitored to confirm that the
expected random walk statistics is recovered.
Configuration-Biased Cross-Linking

Reversible cross-links or bonds are introduced to the
equilibrated melt as follows. Every bead in the system can
form a reversible bond with all other beads in its
neighborhood. The bond potential is the same as the FENE
potential for intramolecular bonds. The number of such bonds
is mediated by the chemical potential of the reversible bond μ.
At each MC step, the simulation chooses to create or remove a
bond with probabilities Pf and Pr = 1 − Pf, respectively. The
probability of bond creation or removal is designed according
to the Metropolis rule. To facilitate the discussion, we denote
the state with one bond removed as the configuration {o}, and
the state with one bond formed as the configuration {n}. The
MC algorithm moves from {o} → {n} or {n} → {o} are
designed by adapting the configuration-biased algorithm,31 in
order to enhance the success rate. The probability of
acceptance is designed to fulfill the detailed balance condition.

The bond-creation move begins with randomly selecting a
monomer among the monomers capable of forming cross-
links, which is denoted i (Figure 2). Then all nc neighboring
monomers within a cutoff distance Rc = 1.5 are identified, one
of which is selected for a bonding attempt. The selection is
based on the Boltzmann weight; thus the probability that the
bead j is selected is e W/u r

i
( )ij , where rij is the distance between

beads i and j, u(rij) is the bonding energy given by the FENE
potential, and =W ei k

n u r
1

( )ikc is the sum of Boltzmann
weights for all the neighbors, i.e., the Rosenbluth factor.31 The
combination of these steps gives the probability of selecting a
potential bond that l inks bead i to bead j as

=(o n)ij
P e

W

u rij

i

f
( )

.

The same bond could have been created by first selecting
bead j, then identifying bonding partner bead i from its close
neighbors (Figure 2), which leads to the probability

=(o n)ji
P e

W

u rij

j

f
( )

, with Wj defined from the close

neighbors of bead j, in full analogy with Wi.
To fix the acceptance rate of bond creation while satisfying

the detailed balance condition, we have to consider also bond

removal which, as mentioned above, is attempted with
probability Pr. Let the number of dynamic bonds in
configuration {o} be nb. Then the configuration {n} has nb +
1 dynamic bonds, among which the bond between beads i and
j is selected for removal with probability

+n
1

1b
. The probability

of selecting a given bond to remove during the reverse move is
= +(n o) P

n 1
r

b
.

Collecting the probabilities for the two bond creation paths
(Figure 2) and the bond removal step, we have the following
detailed balance condition:

[ + ]

=

P P

P P

(o) (o n) (o n) (o n)

(n) (n o) (n o)

ij jieq

eq (2)

in which Peq(o) and Peq(n) are the equilibrium probabilities for
configurations {o} and {n}, given by the respective Boltzmann
weights. Their ratio is solely governed by the bonding energy,
i.e., =P P ze(n)/ (o) u r

eq eq
( )ij , where z = eβμ is the activity of

the dynamic bond. Then the probability of the bond creation
move is given by

=
+

P
P
P

z
n

W(o n) min 1,
1 ij

r

f b

i
k
jjjjj

y
{
zzzzz (3)

and that for the bond elimination move can be written

= +P(n o) min 1, P
P

n
z W

1 1

ij

f

r

bi
k
jjj y

{
zzz, i n w h i c h

= +W Wij ji W W
1 1

1

i j

i
k
jjj y

{
zzz is an average of the Rosenbluth

factors along the two bond generation paths. For this study, we
set the attempt frequency ratio to Pf = Pr = 0.5.

The Monte Carlo moves described above are incorporated
into an MC/MD algorithm, with each iteration of the
algorithm consisting of 1000 MD timesteps followed by 200
attempted MC moves. The MC/MD algorithm is imple-
mented in LAMMPS.32

Figure 2. Probability flow in the bond-generation algorithm. The number of beads that are capable of forming new bonds is . The distance cutoff
for selecting bonding partners is Rc = 1.5. The weighting factors Wi and Wj are the sums of the Boltzmann factors for the bonds that can be
potentially generated by starting from either bead i or bead j.
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■ RESULTS

Equilibration of Precursor Chains

To ensure that the melts of precursor chains have been
equilibrated, we examined the distributions of the end-to-end
vector R and the radius of gyration Rg

2. The results are shown
in Figure 3 and are compared to the predictions of random
walk statistics. The prediction for the end-to-end distance R ≡ |

R| is given by = ( )( )P R R( ) 4 exp
Nb

R
Nb

2 3
2

3/2 3
22

2

2 , in which b

is the statistical segmental length. The prediction for the radius
of gyration P R( )g

2 has been derived by Fixman.33 In both cases,

when the argument R or Rg
2 is normalized by N1/2b or Nb2/6,

the distributions are expected to be universal.
The simulated distributions P(R) and P R( )g

2 are not
identical to theoretical predictions, but the difference decreases
as N increases (N = 6, 12, 25), until eventually converging
toward the theoretical curves for N = 50, 100. This trend is
expected, as the shorter chains are more susceptible to liquid-
state packing, which is vividly shown in the spiky patterns of
the P(R) data for N = 6. However, these discreteness effects
are mild as, even for N = 12 and 25, the data trace the
theoretical expectation closely. The random walk scaling is
further confirmed in the inset of Figure 3, whereby the
anticipated linear-dependence of the averages R2 and R g

2 on
N is confirmed.

The statistical segmental length b is normally extracted from
the scaling of R2 or Rg

2 with N. Because of the modest
molecular weights used, we considered the correction to the
Gaussian statistics in our estimates. Recent work34−37 has
revisited the conformational statistics of polymers in dense
melts, and showed that the deviation from the random walk
statistics is dominated by the effects of the correlation hole.38

Because a polymer spans a finite range, its immediate
neighborhood of order Rg

3 always contains certain amount of
monomers on the same chain, whose concentration scales as
N R N/ g

3 1/2. As a result, the differences between the

simulated distributions P(R) and P R( )g
2 and the random walk

predictions are of order N−1/2. This is indeed confirmed by the
collapse of the difference normalized by (N − 1)1/2, shown in
Figure 4. These discrepancies modify the scaling of the
averages R2 and R g

2 as well. It has been shown that the N

dependence R2 fits to the form = 1R
N b b N( 1)

const.
1

2

2 3

. 3 4 − 3 6 I n f u l l a n a l o g y , R g
2 i s d e s c r i b ed by

= 1
R

N b b N

6

( 1)
const.

1
g
2

2 3 . The accuracy of these improved

forms is confirmed in the inset of Figure 4. From the intercept
of a straight line fitting, we inferred that the statistical
segmental length is b = 1.32. This value was used to normalize
the simulated R and Rg

2 in Figures 3 and 4.

Figure 3. Distributions of end-to-end distance P(R) and radius of gyration for N = 6, 12, 25, 50, 100. The red curves are predictions using the
random walk statistics. The Fixman expression was used for P R( )g

2 . With increasing N, the distributions converge to the theoretical predictions.

Insets: scaling of averages R2 and Rg
2 with molecular weights.

Figure 4. Normalized difference between the simulated distributions P(R) and P R( )g
2 , and the predictions from the random walk statistics for N =

12 (blue), 25 (green), 50 (yellow), and 100 (orange). Insets: R N/( 1)2 (left) and R N/( 1)g
2 (right) against N1/( 1 ) for N = 6, 12,

25, 50, 100.
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Cross-Linking Rate of Dynamic Bonds
The cross-linking probability of dynamic bonds controls the
degree of gelation. In our model, the number of dynamic
bonds is controlled by the chemical potential μ. For each μ
value, the probability p that a monomer forms a dynamic bond
is calculated from

p
number of cross linked monomers

total number of monomers (4)

where the total monomer number is the product NM.
Although our model allows monomers to form multiple
dynamic bonds, the average number of bonds formed by a
cross-linked monomer is close to one, so eq 4 accurately
describes the bonding rate (the distribution of cross-links along
the chain and the average number of cross-links per bead are
shown in Figure S1 in the Supporting Information). The
variation of the cross-linking probability with μ gives the
binding curve p(μ) shown in Figure 5. Over a wide range of

chemical potential, the binding curve is found to be
independent of the molecular weight and the system size,
indicating that the intrinsic local cross-linking equilibrium is
captured by the MC moves. The dashed line shows a simple
quadratic fitting that allows us to target the degree of gelation.

As a preliminary step toward quantifying the degree of
gelation, we assume that the effect of loops is negligible, and
that the system reaches the sol−gel transition when each chain
has, on average, one outgoing cross-link. This gives the mean-
field estimate to the gel point, =p

N0
1

1
. The true gel point pc

will be estimated below. It is generally higher than p0 because
the formation of loops or other defects reduces the effective
cross-linking, requiring a higher value of p to produce a
percolating network. Without prior knowledge of pc, we use the
mean-field value p0 to define the degree of gelation

p
p

1
0 (5)

which quantifies the distance from the mean-field gel point.
Cluster Number Distribution
We ran the cluster number distribution simulations for
molecular weights N = 12, 25, 50, and system size V/V0 = 1,
8, 32, 64. For each N and V, we collected 11 sets of simulations
corresponding to ϵ values between 0 and 1.0 with an interval of
0.1. The sets of μ values are different for different N, because

p0 varies with N. Choosing nearly identical ϵ values ensures
that the systems have a similar degree of gelation.

For a given p or ϵ value, the cluster number distribution
function n(s) is calculated as the number of clusters containing
s precursor chains divided by the total number of chains. The
value of s ranges from 1 to the size of the largest cluster
observed. Clusters that traverse the simulation box are
unfolded according to the periodic boundary condition. The
infinite clusters found past the gel point are those percolating
the box along any dimension, whose s value is constrained by
the finite simulation box. To improve statistics, for the same N
and V, we have averaged n(s) over periodically sampled
configurations.

Figure 6 shows the distribution n(s) on a log−log scale for
different N and ϵ sampled from the largest system size (the
corresponding results in the smaller systems are included as
Figures S2−S4 in the Supporting Information and compared in
Figure S5). A remarkable agreement with the trend expected
from the scaling ansatz, eq 1, is found. For ϵ ≤ 0.4, the cluster
number decreases with s according to a power law, until
reaching a cutoff value s*, followed by a rapidly decaying tail.
The cutoff s* is the characteristic cluster number for the typical
cluster formed at a given ϵ.19 The physical dimension or the
radius of gyration for clusters containing s* precursor chains is
the correlation length of the system.18,19 For p < pc, the value
of s* increases with ϵ, suggesting that a greater number of large
clusters are formed as the degree of gelation increases.

At ϵ = 0.5, the cutoff is barely visible for all three N values.
The data nearly follow a single power-law decay, indicating the
absence of a characteristic length scale. The system is
extremely close to the gel point, and we may deduce that ϵc
is about 0.5. More detailed discussion of the slope and the
location of the gel point will be provided below.

For ϵ ≥ 0.6, the cutoff s* reappears, and its value decreases
with ϵ, fully compatible with the expectation that the
correlation length decreases further away from the gel point.
Moreover, a well-defined peak separated from the power-law/
cutoff regime emerges in the region of large s values. These
peaks represent the percolating clusters or networks formed
past the gel point. The location of these peaks increases with ϵ,
suggesting that more precursor chains have been connected to
the networks. For ϵ = 1.0, the number of precursor chains in
these networks become comparable to the total number of
precursor chains in the system (about 3000, 6000, 12000 for N
= 50, 25, 12), suggesting nearly complete gelation.

The above discussion implies that the actual gel points for all
three molecular weights are around ϵ = 0.5. The average
cluster size will be analyzed in the following section to estimate
the gel point pc. The data from the smaller boxes (Figures S1−
S5 in the Supporting Information) are entirely consistent with
those from V = 64V0, except that the cluster numbers for the
largest s values exhibit a hump due to finite size effects for the
data near the gel point. For the systems with degrees of
gelation further away from ϵ = 0.5, the cluster number
distributions in Figure 6 are not contaminated by the box size.
Gel Point

We estimate the gel point by examining the variation of the
second moment of the cluster number distribution, defined as

= =M n s s n s s( ) / ( )s s2 1
2

1 . By our convention, the denom-
inator gives the fraction of sol chains, which is identity below
the gel point, and which decreases with ϵ above the gel point.
The fraction of gel chains is complementary, given by

Figure 5. Cross-linking probability for different molecular weight,
system size, and chemical potential of dynamic bonds. The collapse
over N and V indicates that the binding equilibrium is local. The
dashed line shows the best fit, p(μ) = 9.57−1.11μ + 0.03μ2.
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= =P n s s1 ( )sgel 1 . The two summations in the expression

of M2 include contributions from all the clusters below the gel
point, but excludes those from the percolating clusters above
the gel point. Because the distribution peaks (Figures S2−S5 in
the Supporting Information) representing the percolating

clusters are well-separated from the finite clusters, for all
three molecular weights with V = 64V0, we choose convenient
thresholds, s = 2000, 1000, and 500 for N = 12, 25, and 50,
respectively. The percolating clusters are those above the
threshold values. The data around these thresholds are on the
order of 10−6 and are statistically insignificant. The data in

Figure 6. Cluster number distributions n(s) for different simulations with ϵ ∈ [0, 1] are plotted here on a log−log scale. The characteristic power
law scaling of n(s) is cut off at a characteristic cluster size s*, above which the cluster numbers decay to zero. This is most apparent for ϵ near 0 and
1. For ϵ ≈ 0.5, the cutoff size appears to diverge, and the distribution follows an almost perfect power law, indicating that the system is near pc. For
ϵ > 0.5, the presence of a percolating cluster is indicated by a sharp peak at large s.

Figure 7. Scaling of the second moment and the gel fraction. (a) Variation of the second moment M2 with ϵ, below and above the gel point. Inset:
same data on a linear scale. (b) Variation of the gel fraction Pgel with ϵ. Inset: same data on a linear scale.
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Figure S6 show that varying these threshold values does not
affect the scaling of the second moment.

The variation of M2 with ϵ is shown in the inset of Figure 7a
for all three N values. The data around ϵ = 0.5, a crude
estimate to the gel point, are excluded because the division
between finite and percolating clusters is blurred. The value of
M2 increases from both sides as the gelation transition is
approached, and appears to diverge. This divergence is
expected in the neighborhood of the gel point, and a power-
law behavior M2 ∝ |p − pc|−γ holds on both sides with a
common exponent γ.18 For convenience, in place of pc, we
shall use ϵc to denote the gel point; the scaling behaviors are
not affected because p and ϵ are linearly related. Following
literature,19,39 we adjust the value of ϵc so that the identical
power-law behaviors are found both below and above the gel
point. Choosing ϵc = 0.53, 0.66, and 0.69 for N = 12, 25, and
50 results in the collapse of data over all N values shown in
Figure 7. The common slopes give an estimate to the exponent
γ = 1.62, which compares favorably to the tabulated value 1.80
for critical percolation.19 Furthermore, the ratio of the
amplitudes to the two power laws below and above the gel
point is 1.8, consistent with recent results.40 Finally, the
apparent increment of ϵc with N does not imply that greater
degree of cross-linking is needed. Once the normalization
factor p0 in eq 5 is restored, the probability pc decreases with N
(Figure 11b).

The gel fraction follows a similar scaling pattern near the gel
point. The inset of Figure 7b shows Pgel against the difference ϵ
− ϵc for the three N values, using the ϵc values estimated from
M2 (results from alternative threshold values, shown as Figure
S7 in the Supporting Information, are entirely consistent). The
sharp transition is rounded near the gel point due to the finite
size effects, which are more severe for the cases with N = 25
and 50. Percolation models expect that P ( )gel c near
the gel point.18,19 Figure 7 shows that the data are consistent
with this scaling, giving an exponent β = 0.6 for N = 25 and 50,
and β = 0.44 for N = 12. Comparing these exponents to the
tabulated value β = 0.41,19 we conclude that our systems are
more aligned with critical percolation. The greater discrepancy
in systems with N = 25 and 50 is a result of more severe finite
size effects.

The scaling of the characteristic cluster number s* can be
examined as follows. Below the gel point, the value of s* may
be obtained by scaling the cluster size s with s*, whose value is
chosen to yield a collapse of the function n(s)sτ. The quality of
such a collapse is shown in the inset of Figure 8. The mean-

field exponent τ = 2.5 was used. However, given the small
difference between this value and the critical exponent τ =
2.18, the same scaling behavior to s* was obtained. The
variation of s* with ϵ from the three N values fits to the same
power-law relation, *s ( )c

1/ , with 1/σ = 2.8 and σ =
0.36, which compares favorably to the critical exponent σ =
0.45.19

In short, the above results demonstrate that the same set of
ϵc values gives consistent scaling behaviors for the second
moment, the gel fraction, and the characteristic cluster number
for three different precursor chain lengths, and that the
exponents are more compatible with critical than mean-field
scaling.
Cutoff Function

The scaling ansatz states that the power-law behavior in the
cluster number is followed up to s = s*, beyond which a rapid
decay is captured by a cutoff function f(s/s*). A general
argument based on mass conservation19 suggests that the
cutoff function has a peak below the gel point and decays
above the gel point. In this section, we try to extract the shape
of the cutoff function.

Having estimated the gel point, we examine the departure
from the power-law scaling in three regimes separately: well
below the gel point (Figure 9a), well above the gel point
(Figure 9b), and near the gel point (Figure 9c). Although the
results from N = 12 are discussed because they are less
susceptible to the finite size effects, the trends from N = 25 and
N = 50 are entirely consistent.

Figure 9a shows the variation of ns5/2 with s for ϵ = 0 and
0.1, where 5/2 is the mean-field value for the exponent τ. The
peak expected for the cutoff function below the gel point is
clearly seen. The peak position is around s = 6 for ϵ = 0 and s =
12 for ϵ = 0.1. The shift in the peak position is expected since
the characteristic cluster number, i.e., the onset of the
departure from the power-law scaling, increases with increasing
ϵ. The inset of Figure 9a shows the log−linear plot for the
same data, indicating that ns5/2 behaves as an exponential decay
with s. The difference in the decay rate again reflects the
difference in the characteristic cluster number s*.

Figure 9b shows ns5/2 for ϵ = 0.9 and ϵ = 1, two values well
above the gel point. A monotonic decay is observed, with
greater decay rates for the larger ϵ value. The inset shows again
that the product ns5/2 in this regime fits to an exponential
decay.

Figure 9c shows ns2.18 for ϵ = 0.4 and ϵ = 0.5, two values
close to the gel point ϵc = 0.53. Note that, unlike the above two
cases, the critical exponent τ = 2.18 is used for these two sets of
data. The plateauing behavior around 0.2 implies that, for these
two ϵ values, the cluster number n follows the critical scaling n
≃ 0.2s−2.18. Therefore, the values ϵ = 0.4 and ϵ = 0.5 fall within
the critical regime.

One implication of the above analyses is that the data for 0.2
≤ ϵ ≤ 0.3 and 0.6 ≤ ϵ ≤ 0.8 will be in the transition regime
from the mean-field to critical scalings. The value of n(s) scales
as s−5/2 for small s, scales as s−2.18 for intermediate s, and decays
rapidly for large s. The transition between the first two regimes
is at the Ginzburg point,18 NG

1/3. The transition
between the last two regimes is at s* ∝|ϵ − ϵc|−1/σ, with σ =
0.45.19 Because the prefactor for these two transition points is
unknown, and because the transition is broad (Figure 6), it is
difficult to identity these two transition points unambiguously.

Figure 8. Characteristic cluster number for different ϵ values.
Common scaling behaviors are obtained for different N values.
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We therefore only use the data from the mean-field regimes to
construct the crossover function.

For N = 12, we take the data in Figure 9a,b and define the
cutoff function f(z) as follows.19 First, we introduce the ratio

± *z s s( / ) , which is negative below the gel point and
positive above the gel point. The value s* is chosen such that it
leads to the collapse of the data in Figure 9a,b. The choice of
exponent σ only affects the continuity at z = 0 but does not
change the shape of the cutoff function. For convenience, we
choose the mean-field value σ = 0.5 (see discussion below on
how this choice affects the z-dependence). Second, the
function value f(z) is given by the product ns5/2 for the
corresponding s value. The cutoff function as defined is plotted
against z in Figure 9d, which has exactly the same shape found
from simulations for lattice percolation.19

The literature has postulated a Gaussian form for the cutoff
function.41 The attempted Gaussian fit in Figure 10a suggests
that this form, although capturing the primary feature around
the peak, fails to capture the slower decay further away from
the peak. Finally, we repeated the above analyses for N = 25

and 50 and found that, surprisingly, the same shape of the
cutoff function is obtained, as shown in Figure 10b. The inset
further indicates that, in the regime above the gel point, the
cutoff function decays exponentially with s/s*. The decay rate
with z would depend on which exponent σ is used to convert
s/s* to z.
Peak in Cutoff Function

The salient feature of the cutoff function is the presence of a
peak below the gel point, which is essential for resolving the
apparent inconsistency among several scaling relations,19 and
can be attributed to mass conservation. The origin of the peak
has been addressed19 and was shown to derive from the
algebraic property of the condition == n s s( ) 1s 1 . Here we
show, alternatively, that the two-parameter scaling ansatz eq 1
inevitably implies a single peak in the cutoff function. Since the
argument to the cutoff function can be explicitly written as z =
sσ(p − pc)/pc, one way to reveal the shape of f(z) is to vary p
while holding s fixed. For p < pc, increasing the value of p
effectively moves the value of z toward the origin.

Figure 9. Cutoff function for N = 12 at a range of ϵ values: (a) ϵ = 0 (circle) and 0.1 (triangle); (b) ϵ = 0.9 (circle) and 1.0 (triangle); (c) ϵ = 0.4
(circle) and 0.5 (triangle). (d) Cutoff function combining data below (z < 0) and above (z > 0) the gel point.

Figure 10. Shape of the cutoff function. (a) Comparison of data for N = 12 and a Gaussian fit. (b) Collapse of data from different N values. N = 12:
ϵ = 0, 0.1, 0.9, 1.0; N = 25: ϵ = 0, 0.1; N = 50: ϵ = 0, 0.1, 0.2.
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Figure 11a illustrates the evolution of n(s) for a range of p
values below pc on a log−log scale. The limiting behavior at pc
is shown as a dashed line, and is can be referred to as nc(s).
Since f(z) is proportional to the ratio n(s)/nc(s), we may focus
on the shape of n(s) for arbitrary p. For all three p values in the
schematic, the cluster numbers in the small s regime follow a
similar slope as nc(s), whereas they all decay to zero beyond
certain finite value s*. The value of s* increases with p,
indicating the broadening of the power-law scaling.

The broadening requires that the amplitude of n(s) curves
decreases with increasing p. Because of mass conservation

== n s s( ) 1s 1 , when s* increases, the value of n(s) in the
small s regime has to decrease monotonically with p. Then
following the vertical line representing a constant s and tracing
the intersection with the n(s) curves, we find that, the value of
n(s) at p2 is greater than that at both p1 and p3. Therefore, n(s)
exhibits a peak in this range of p values, which translates to the
peak in the cutoff function f(z). We emphasize that this is a
combined result of the two parameter scaling for n(s) and mass
conservation. The algebraic argument in ref.19 shows
convincingly that the nonmonotonic behavior in f(z) is
unavoidable, while not excluding the possibility of multiple
peaks. Here we note that, by monitoring the crossover between
the power-law scaling and the cutoff regimes closely, the peak
is unique: for either p < p1 or p > p3 below the gel point, the
value of f(z) decreases.

The above analysis does not rely on the specific value of the
exponents τ and σ, thus the conclusion that a peak is present
holds irrespective of whether the cluster number is dominated
by mean-field or critical scaling. We obtained the cutoff
function from simulation data falling inside the mean-field
regime. The data sufficiently near the gel point are needed to
access the shape of the cutoff function in the critical regime,
which is challenging because of severe finite size effects. The
collapsed data of Figure 10b from different N values is
encouraging. However, to fully demonstrate the independence
of the cutoff function on molecular weight (in the mean-field
regime), simulations of higher molecular weight may be
needed. Increasing the molecular weight widens the mean-field
scaling ranges in both p and s. One piece of evidence for this
scaling is shown in Figure 11b for the variation of the gel point
with N. The departure of the gel point from the mean-field
estimate decreases with N, consistent with the expectation that
the mean-field (Flory−Stockmayer) theory becomes asymp-
totically accurate as molecular weight increases, due to the
enhanced overlap of clusters for large N.40

■ SUMMARY
This work focuses on the distribution of dynamic clusters near
the gel point. Our main result is the cutoff function, obtained
from data for three N values, falling within the mean-field
scaling regimes, both below and above the gel point. The gel
points were estimated by studying the scaling of the second
moment, the gel fraction, and the characteristic cluster number.
The shape of the cutoff function is similar to that obtained
from the simulation of the site percolation problem on a 2D
lattice. A Gaussian fit to the cutoff function works well below
the gel point but overestimates the decay rate above the gel
point. Although the precise dependence of f(z) on z would
depend on which σ value is used to relate z to s/s*, our data
suggest that the dependence on s/s* is exponential on both
sides of the gel point. We stress, however, that the cutoff
function was constructed from data following mean-field
scaling. Systems extremely close to the gel point have diverging
correlation lengths and suffer more severe finite size effects.
Although not able to identify the shape of the cutoff function
when the cluster number distributions are dominated by the
critical scaling, we speculate that the shape of the cutoff
function is analogous. In future work, we will present the
results on the cluster size, degree of overlap, loops or defect
statistics, and lifetime of dynamic clusters.
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