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Abstract

High-Dimensional Inference and Uncertainty Quantification for Variable

Selection, Clustering and Object-oriented Analysis with Bayesian and

Approximate Bayesian Methods

by

Rene Gutierrez

Bayesian computation of High-Dimensional problems using Markov Chain Monte

Carlo (MCMC) or its variants can be extremely slow or completely prohibitive

since these methods perform costly computations at each iteration of the sampling

chain. While some non-Bayesian alternatives have been somewhat successful in

estimation, they struggle to provide uncertainty quantification. These problems

are aggravated if the data size is large. To address these problems, the first chap-

ter proposes a novel dynamic feature partitioned regression (DFP) for efficient

online inference for high dimensional linear regressions with large or streaming

data. DFP constructs a pseudo posterior density of the parameters at every time

point and quickly updates the pseudo posterior when a new block of data (data

shard) arrives. DFP updates the pseudo posterior at every time point suitably

and partitions the set of parameters to exploit parallelization for efficient poste-

rior computation. The proposed approach is applied to high dimensional linear

regression models with Gaussian scale mixture priors and spike and slab priors on

large parameter spaces, along with large data, and yields state-of-the-art inferen-

tial performance. Over time, the algorithm enjoys theoretical support, as pseudo

posterior densities get arbitrarily close to the full posterior as the data size grows,

as shown in the appendix.

While the first chapter advances methodology for ordinary high dimensional

xiii



regression, the second chapter focuses on regressions with multiple objects as pre-

dictors. Clinical researchers often collect multiple images from separate modalities

(sources) to investigate fundamental questions of human health that are inade-

quately explained by considering one image source at a time. Viewing the collec-

tion of images as multiple objects, the successful integration of multi-object data

produces a sum of information greater than the individual parts. This chapter

is motivated by a multi-modal imaging application where structural/anatomical

information from grey matter (GM) and brain connectivity information in the

form of a brain connectome network from functional magnetic resonance imaging

(fMRI) are available for multiple subjects. The primary goal in this chapter is to

develop a regression model to predict a scalar response from multiple objects, and

to identify regions significantly related to the response. Existing Bayesian regres-

sion literature with multi-object predictors either ignores the topology of some/all

of these objects or does not adequately make use of the information shared by mul-

tiple object predictors. In contrast, this chapter develops a flexible Bayesian re-

gression framework exploiting network information of the brain connectome while

leveraging linkages among connectome network and anatomical information from

GM to draw inference on significant ROIs and offer predictive inference on the re-

sponse. The principled Bayesian framework allows precise characterization of the

uncertainty in ascertaining a region as influential for predicting the response and

the quantification of predictive uncertainty for the response. The framework is

implemented using an efficient Markov Chain Monte Carlo algorithm. Empirical

results in simulation studies illustrate substantial inferential and predictive gains

of the proposed framework over its popular competitors.

While the first two chapters focus on high-dimensional and object-oriented re-

gressions, the third chapter offers a novel clustering technique for high-dimensional

xiv



tensors with limited sample size. Clustering of high-dimensional tensors with lim-

ited sample size has become prevalent in a variety of application areas. Existing

Bayesian model-based clustering of tensors yields less accurate clusters when the

tensor dimensions are sufficiently large, the sample size is small, and clusters of

tensors mainly reveal differences in their variability. This chapter develops a novel

clustering technique for high dimensional tensors with limited sample sizes when

the clusters show differences in their covariances rather than their means. The pro-

posed approach constructs several matrices from a tensor to adequately estimate

its variability along with different modes and implements a model-based approxi-

mate Bayesian clustering algorithm with the matrices, thus constructed with the

original tensor data. Although some information in the data is discarded, we gain

substantial computational efficiency and accuracy in clustering. The simulation

study assesses the proposed approach and its competitors in terms of estimating

the number of clusters, identifying the modal cluster membership, and the prob-

ability of misclassification in clustering (a measure of uncertainty in clustering).

Clustering of tensors obtained from EEG data demonstrates an advantage of the

proposed approach vis-a-vis its competitors.
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Chapter 1

Introduction

With recent technological progress, complex data structures are ubiquitous in

scientific applications. For example, scientific applications often present scenarios

where there are many variables and a large sample size with complex interdepen-

dence between variables. Another such data structure is that of the tensor, also

known as a multidimensional array. This data structure expands on the notion of

a vector or matrix into higher dimensions, typically codifying information about

a datum and its position within the tensor.

Scenarios with high-dimensional variables and massive sample size are often

encountered in financial data. For example, real-time data on a large number of

stocks are easily available, and it may be of interest to predict the progression

of a stock based on the progression of many other stocks. On the other hand,

tensor-valued data are mainly encountered in medical imaging. Imaging scanners

use various methods to obtain information about different body parts, such as a

lung or a brain. These images are sometimes two-dimensional, showing a slice of

a three-dimensional structure. In other cases, the images are three-dimensional,

capturing information throughout an entire organ or body part. Accurate analyt-

ical techniques for these types of data are useful for quantifying medical diagnosis
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and treatment. Additionally, there are scenarios where multiple objects are pre-

sented in the analysis. These scenarios are mainly motivated by the multi-modal

imaging data.

In the following chapters, three different methods for analyzing high-dimensional

regressions and tensor objects are presented. The next section provides a brief

overview of the three chapters.

1.1 Thesis Outline

Chapter 2 will introduce a novel online approximate Bayesian algorithm, re-

ferred to as the dynamic feature partition (DFP), for drawing inference with high

dimensional regressions with large sample size and a large number of predictors.

The approach divides big data into shards and sequentially feeds the shards to

the regression model. At each time point with the arrival of a data shard, the

posterior distributions of the parameters are updated through a hybrid procedure

that includes point estimates and Markov chain Monte Carlo samples. Further,

while updating the posterior for parameters, conditional independence is assumed

between blocks of parameters that have relatively smaller correlations between

themselves. Unlike variational Bayes approaches, our framework refrains from

assuming marginal independence between blocks of parameters. Rather, we as-

sume conditional independence between blocks of parameters that are determined

by the model fitting process. The entire exercise gives rise to a highly efficient

approximate Bayesian approach. We evaluate the performance of this approach

with continuous and discrete Gaussian scale mixture priors. The method has also

been illustrated through a financial dataset. Appendix A provides a theoretical

result proving the algorithm asymptotically draws samples from the full posterior

distribution. To the best of our knowledge, the DFP approach is the first approach

2



to provide theoretically guaranteed and computationally efficient Bayesian infer-

ence in high dimensional regression with large sample size and a large number of

predictors.

While high dimensional regression has gained enormous attention from the

statistical community in the last decade, lately, there has been an increasing fo-

cus on regressions where either response or predictor is an object. We broadly

refer to such regression scenarios as Object data regression. Object data regression

approaches are primarily motivated by imaging data obtained from different imag-

ing modalities and develop inferential tools to arrive at scientifically meaningful

conclusions from such datasets by harnessing their inherent topological structure.

Some of the important advances in this area include regression of a scalar variable

on a tensor or a network predictor and regressions of tensor/network variables

on vector predictors. However, there is still a dearth of methodology in object

data regressions involving multi-object predictors obtained from multiple imaging

modalities. Chapter 3 introduces a novel multi-object regression approach where a

scalar response (a specific phenotype) is regressed on grey matter (GM) and brain

connectivity network. More specifically, we develop prior distributions which si-

multaneously achieve several objectives. First, it allows inference on influential

brain ROIs significantly related to the phenotype of interest from multi-object

predictors jointly. Second, the prior artifact respects structure of the brain net-

work and imposes the condition that if an ROI is unimportant in predicting the

response, all network edges related to the ROI are also unimportant in predicting

the response. Third, if an ROI is unimportant in predicting the response, all

voxels within an ROI are also un-influential in predicting the response. Fourth,

it satisfies the transitivity property of the brain network predictors introduced in

Chapter 3. Finally, the framework allows predictive inference for a phenotype with

3



multi-modal predictors. We demonstrate the importance of exploiting the topo-

logical structures of different predictors and the linkage of information between

them to draw superior inference to models that partially use such information.

To the best of our knowledge, this is the first approach that develops a multi-

modal regression framework with a scalar response that simultaneously addresses

all these inferential questions.

Finally, Chapter 4 addresses an important problem of clustering high dimen-

sional tensors where clusters only differ in the variabilities rather than their means.

Clustering has been an extremely well-researched topic in the Bayesian paradigm.

However, most unsupervised clustering efforts are limited to scalar- or vector-

valued objects, and there is a relatively sparse Bayesian literature for clustering

tensor objects. While it is possible to vectorize a tensor and apply algorithmic

clustering approaches, they mainly cluster subjects based on the difference in their

means and are not applicable in our settings. Bayesian mixture model-based clus-

tering circumvents this problem, though they are computationally tedious when

the tensor dimensions are large. Moreover, they yield inaccurate inference when

both tensor dimensions are large, and the sample size is small. As a solution to

this problem, we develop an approximate Bayesian clustering approach based on

the estimated covariance structure of the tensor data. Our approach offers rapid

cluster identification along with clustering uncertainties. Theoretical results and

details of posterior computation corresponding to each chapter are included in

separate chapters in the Appendix.
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Chapter 2

Bayesian Dynamic Feature

Partitioning in High-Dimensional

Regression with Big Data

2.1 Introduction

With recent technological progress, data containing many predictors (a couple

of thousand or more) are ubiquitous. In such settings, it is commonly of interest

to consider the linear regression model

y = x′β + ϵ, ϵ ∼ N(0, σ2), (2.1)

where x is a p × 1 predictor, β is the corresponding p × 1 coefficient, y is the

continuous response and σ2 is the error variance. Bayesian methods for estimating

β provide a natural probabilistic characterization of uncertainty in the parameters

and predictions. Fitting Bayesian linear regression models in the presence of very

high dimensional predictors present onerous computational burdens either due to

5



decomposition of large matrices or due to poor convergence and inferential issues

caused by the high correlations among the parameters. This chapter develops a

dynamic approach, called Dynamic Feature Partitioning (DFP), for boosting the

scalability of high dimensional Bayesian linear models for large/streaming data.

Broadly, two classes of prior distributions on β are typically employed in high

dimensional regression literature. The traditional approach is to develop a discrete

mixture of prior distributions (George and McCulloch, 1997; Scott and Berger,

2010). These methods enjoy the advantage of inducing exact sparsity for a subset

of parameters and minimax rate of posterior contraction (Castillo et al., 2015) in

high dimensional regression, but face computational challenges when the number

of predictors is even moderately large. As an alternative to this approach, contin-

uous shrinkage priors (Armagan et al., 2013; Carvalho et al., 2010) have emerged

which induce approximate sparsity in high-dimensional parameters. Such prior

distributions can mostly be expressed as global-local scale mixtures of Gaussians

(Polson and Scott, 2010) and offer an approximation to the operating charac-

teristics of discrete mixture priors. Global-local priors allow parameters to be

updated in blocks via a fairly automatic Gibbs sampler, leading to rapid mixing

and convergence of the resulting Gibbs sampler. However, unless care is exer-

cised, sampling can be expensive for large values of p. In fact, existing algorithms

(Rue, 2001) to sample from the full conditional posterior of β require storing and

computing the Cholesky decomposition of a p × p matrix, which necessitates p3

floating-point operations, which can be severely prohibitive for large p. There are

available linear algebra artifacts such as the Sherman-Woodbury-Morrison matrix

identity (Hager, 1989) to enable efficient computations in high dimensional regres-

sions involving small n and large p. However, it is unclear how these approaches

can be adapted when the number of samples is massive, or data is observed in a
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stream. Besides, having a small sample size may limit the inferential accuracy for

large p.

In fact, when the number of observations is massive, data processing and

computational bottlenecks render all the above-mentioned methods for high di-

mensional regression infeasible as they demand likelihood evaluations for updating

model parameters at every sampling iteration, which can be costly. Matters are

more complicated in the case of streaming data, where the posterior distribution

changes once a new data shard arrives since the MCMC samples from the posterior

distribution up to the last time point become useless.

We propose a novel online Bayesian sampling algorithm, referred to as Dy-

namic Feature Partitioning (DFP) that enables efficient computation of high di-

mensional regression in the presence of a large number of parameters and a large

sample size. DFP works with data shards that are sequentially fed to the model.

The DFP framework dynamically partitions the set of parameters into disjoint

subsets with the onset of a new data shard and obtains posterior samples for

each subset of the parameters by sampling from a distribution that conditions on

functions of the point estimates of the remaining parameters and sufficient statis-

tics from the data observed so far, instead of sampling from the full conditional

distribution. While the ordinary un-approximated full conditional posterior distri-

butions of these parameter subsets would have been updated sequentially at each

iteration of the Markov Chain, DFP constructs approximations of the conditional

posterior distributions of each parameter subset, allowing posterior updates of

these parameter subsets at different processors in parallel. This leads to a signif-

icant gain in computational efficiency over the sequential updating of parameter

subsets in the ordinary MCMC. Additionally, the algorithm needs storing and

propagating only a few lower-dimensional sufficient statistics of the data over
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time, implying storage efficiency in the model fitting procedure. Moreover, we

show that the DFP algorithm approximates the conditional distributions produc-

ing samples from the correct target posterior asymptotically. The DFP algorithm

is demonstrated to be highly versatile and efficient across a variety of high di-

mensional linear regression settings, enabling online sampling of parameters with

dramatic reductions in the per-iteration computational requirement.

We now offer a brief description of some of the important approaches in online

Bayesian learning and highlight the contribution of the DFP algorithm to the liter-

ature. To this end, online variational Bayes algorithms perform an approximation

of the full data posterior with a product of block independent marginal poste-

riors (Hoffman et al., 2010; Campbell et al., 2015) and are popular for efficient

online Bayesian learning for streaming data. Although the DFP framework pro-

poses approximating the full posterior distribution, the approximation technique

is fundamentally different from variational approximations. While variational

Bayes approximates the full posterior distribution by a distribution with block

independent marginals, the DFP framework invokes approximation of posterior

conditional distributions for subsets of parameters. More importantly, variational

approximations often pre-decide parameter blocks considered independent in the

posterior inference, while DFP dynamically adapts to ensure the efficient con-

struction of mutually exhaustive and exclusive subsets of parameters. As a result,

variational approximation may underestimate uncertainty from the variationally

approximated posterior distribution of β, while DFP is demonstrated to have

close to nominal coverage in almost all high-dimensional simulation examples.

In the general Bayesian literature of streaming data, Sequential Monte Carlo

(SMC) (Lopes and Tsay, 2011; Doucet et al., 2001; Moral et al., 2017) is one of

the most popular online methods. SMC relies on resampling particles sequentially
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as data shards arrive over time. A naive implementation of SMC might be less

efficient and less accurate involving large n and p due to the need to employ

vast numbers of particles to obtain adequate approximations and prevent particle

degeneracy. The latter is addressed through rejuvenation steps using all the data

(or sufficient statistics), which may become expensive in an online setting (Snyder

et al., 2008). There are approaches in recent years to overcome the dimensionality

issues in the SMC algorithm, mainly in the context of fitting state-space models.

To this end, carefully constructed SMC algorithms (Chopin et al., 2004; Beskos

et al., 2014; Carvalho et al., 2010) show promise in terms of scaling in a polynomial

complexity with the number of parameters. However, the complexity as a function

of the size of the dataset is growing with time (e.g., to Chopin et al. (2004))

or is not apparent from the context. Rebeschini and Handel (2015) develop a

blocking strategy for high dimensional particle learning (PL) where the error of

approximation is free of the dimension of the parameter space). Unfortunately,

the numerical examples for high dimensions provided by Rebeschini and Handel

(2015) do not demonstrate satisfactory performance with large state-space models.

Furthermore, the results rely on the decay of correlations for state-space varying

parameters in the fitted model, which is suitable in the context of state-space

models but less satisfactory for our problem of interest. Wigren et al. (2018)

propose another approach for high-dimensional particle learning in state-space

models, though the numerical illustration of the approach may struggle to scale

beyond a few dozen dimensional state-space models comfortably. Lindsten et al.

(2017) propose a new SMC algorithm based on parameter partitioning in the high-

dimensional space, though difficulties may arise when joining the partitions, which

requires careful resampling. In the same vein, Gunawan et al. (2018) propose an

approach that employs a sub-sampling technique to combat the problem of large
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data in the realm of high-dimensional problems. Arguably, there is a general lack

of extensive empirical investigations of SMC or PL algorithms proposed for high-

dimensional problems, and most of them do not come with any open source code

for implementation.

On a separate note, Hamiltonian Monte Carlo (HMC) methods with stochastic

gradient descent can also leverage the online nature of the data (Betancourt,

2018) while exploring the distribution efficiently. However, HMC may not be

suitable for computing high dimensional regressions with a discrete mixture of

prior distributions involving a large number of binary variables, which can be

easily accommodated by the DFP algorithm (see Section 2.2.3).

In the context of distributed model fitting in high dimensional regression,

Christidis et al. (2020) have recently developed a compelling method to build an

ensemble of models by splitting the set of covariates into different but possible

overlapping groups. A penalty term is introduced to encourage diversity between

groups, and model stacking is used to generate accurate predictions. Our approach

is fundamentally different from their approach in a number of ways. While “split-

ting" in the context of DFP algorithm refers to partitioning of the parameters

to update their conditional posterior distributions separately for computational

advantages, splitting generates different models that try to achieve more accuracy

when stacked in Christidis et al. (2020). Importantly, Christidis et al. (2020) is

not designed to draw online inference in streaming data which is the goal of our

approach. Thus, our approach allows the number and constitution of parameter

partitions to evolve over time, while their approach fixes the number of partitions.

Nevertheless, incorporating some overlapping in our partitioning of parameters

similar to Christidis et al. (2020) might help improving inference further over the

current implementation of DFP, which we plan to explore elsewhere.
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The rest of the chapter is organized as follows. Section 2.2 introduces a num-

ber of shrinkage priors and variable selection priors in high dimensional regression

and describes the computational challenges with big n and p. Section 2.3 intro-

duces the assumptions, notations and then the description of the DFP algorithm.

Section 2.4 demonstrates the performance of DFP for high dimensional linear

regression with (1) the Bayesian Lasso and (2) the Horseshoe shrinkage prior

distributions and (3) the Spike and Lasso discrete mixture prior distribution for

variable selection (described in Section 2.2.3). Further evidence on the empirical

performance of DFP is provided in the analysis of a financial dataset consisting

of the minute-by-minute average log-prices of the NASDAQ stock exchange from

September 10 2018 to November 13 2018 during trading hours in Section 2.5.

Finally, Section 2.6 concludes the chapter with discussions. Theoretical insights

into the convergence behavior of the DFP algorithm are provided in appendix A.

2.2 Computational Challenges in

High-Dimensional Regression Models

This section motivates the need for the dynamic feature partitioning algorithm by

highlighting the issues of performing online inference in Bayesian high-dimensional

linear models with big or streaming data. Let Dt = {X t, yt} be the data (re-

sponses and predictors) shard observed at time t and D(t) = {Ds, s = 1, . . . , t}

denote the data observed through time t, t = 1, ..., T . We assume that shards

are of equal size, with each shard containing n samples, i.e., X t is of dimension

n× p and yt is of dimension n× 1. We emphasize that such an assumption is not

required for the algorithmic development in the next section and is kept merely

to simplify notations.
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In the context of the linear regression model in (2.1), without the focus being

on regularization or variable selection, a Bayesian hierarchical model is set up

by assigning a prior β|σ2 ∼ N(µβ, σ2Σβ) and σ2 ∼ IG(a, b). With data D(t)

observed through time t, the marginal posterior density of parameters σ2 and β

at time t appear in closed form and are given by IG(a∗
t , b∗

t ) and Multivariate −

t2a∗
t
(µ∗

t , (b∗
t /a∗

t )V ∗
t ) respectively, where µ∗

t = (Σ−1
β + ∑t

s=1 X ′
sXs)−1(Σ−1

β µβ +∑t
s=1 X ′

sys), V ∗
t = (Σ−1

β +∑t
s=1 X ′

sXs)−1, a∗
t = a + nt/2, b∗

t = b + (µ′
βΣ−1

β µβ +∑t
s=1 y′

sys − µ∗′
t V ∗−1

t µ∗
t )/2. Notably, posterior distributions depend on the data

only through the three sufficient statistics∑t
s=1 X ′

sXs,
∑t

s=1 X ′
sys and∑t

s=1 y′
sys.

Hence, the posterior distribution at time t with the onset of data Dt can readily

be constructed by storing and updating the sufficient statistics without having

the need to store the entire data D(t) through time t. When p is large, the major

challenge in computing posterior distributions at time t comes from evaluating

V ∗
t which involves taking the inverse of a p × p matrix. However, the marginal

posterior distribution of β being in closed form, operating characteristics of the

posteriors are available analytically, bypassing the need to follow an iterative

sampling scheme to estimate these operating characteristics.

Such closed form expressions for the marginal posterior distributions of pa-

rameters are hard to come by when the focus is on Bayesian high dimensional

regularization (shrinkage) or variable selection priors. This chapter considers the

Bayesian Lasso and Horseshoe priors as two representative priors from the class of

shrinkage priors and the Spike and Lasso prior from the class of variable selection

priors. Below we briefly introduce online posterior computation with these priors

with large or streaming data and describe computational challenges with large p.

The computational challenges are similar in other Bayesian shrinkage or variable

selection priors.
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2.2.1 Bayesian Lasso Shrinkage Prior

The Bayesian Lasso shrinkage prior stands as an important example of the

global-local (GL) scale mixtures (Polson and Scott, 2010) of normal prior distribu-

tions. The prior takes the specific form p(βj|σ2, λ) = λ
2σ

exp(−λ|βj|/σ), j = 1, .., p,

λ2 ∼ G (r, d), with the conditional posterior distribution of β given other param-

eters not available in closed form. However, conditional distributions can be

obtained in closed form using a data augmentation approach. In fact, the hier-

archical data augmented model with the Bayesian Lasso prior on β with data

D(t) = {(ys, Xs) : s = 1, ..., t} up to time t is given by

ys|Xs, β, σ2 ∼ Nn

(
Xsβ, σ2In

)
, s = 1, ..., t

β|τ 2, σ2 ∼ Np

(
0, σ2M τ

)
, π

(
σ2
)
∝ 1

σ2 ,

λ2 ∼ G (r, d) , τ 2
j ∼ Exp

(
λ2

2

)
, j = 1, ..., p

where τ 2
1 , ..., τ 2

p are predictor specific latent variables employed for data augmen-

tation, τ 2 = (τ 2
1 , ..., τ 2

p )′ and M τ = diag(τ 2). The batch MCMC implemented

using the customary Gibbs sampler alternates between the full conditional distri-

butions of (i) β|σ2, λ2, τ 2, D(t); (ii) σ2|β, λ2, τ 2, D(t); (iii) λ2|β, σ2, τ 2, D(t) and

(iv) τ 2
j |σ2, λ2, β, D(t), j = 1, ..., p, given by

β|σ2, τ 2, λ2, D(t) ∼ Np

((
S

(t)
1 + M−1

τ

)−1
S

(t)
2 , σ2

(
S

(t)
1 + M−1

τ

)−1
)

σ2|β, τ 2, λ2, D(t) ∼ IG

nt + p

2 ,

(
S

(t)
3 + β′S

(t)
1 β − 2β′S

(t)
2

)
+ β′M−1

τ β

2


1
τ 2

j

|β, σ2, λ2, D(t) ∼ Inv −Gaussian

√√√√λ2σ2

β2
j

, λ2


λ2|β, σ2, τ 2, D(t) ∼ IG

(
p + r,

∑p
j=1 τ 2

j

2 + d

)
. (2.2)
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The full conditional posterior distributions at time t depend on the data D(t)

only through a few sufficient statistics S
(t)
1 = S

(t−1)
1 +X ′

tX t, S
(t)
2 = S

(t−1)
2 +X ′

tyt

and S
(t)
3 = S

(t−1)
3 + y′

tyt, which are updated at the onset of a new data shard. At

each time t = 1, ..., T , the main computational issue lies in the Gibbs sampling

step of β that requires decomposing a p×p covariance matrix costing ∼ p3 floating

point operations (flops) and ∼ p2 storage units, and is rendered infeasible.

2.2.2 Horseshoe Shrinkage Prior

We also consider the popularly used Horseshoe (Carvalho et al., 2010) shrink-

age prior on high dimensional predictor coefficients, which is well recognized in

the Bayesian shrinkage literature for its ability to artfully shrink unimportant pre-

dictor coefficients while applying minimum shrinkage on important coefficients.

Several recent articles theoretically prove its ability to estimate true predictor co-

efficients a-posteriori in presence of both high and low sparsity (Armagan et al.,

2013).

Similar to the Bayesian Lasso, the Horseshoe shrinkage prior also does not

admit a closed form full posterior of β. Thus, Gibbs sampling is implemented

by invoking a data augmentation approach similar to the Bayesian Lasso. The

hierarchical data augmented model with the Horseshoe shrinkage prior is given

by

ys|Xs, β, σ2 ∼ Nn

(
Xsβ, σ2In

)
, s = 1, .., t,

β|σ2, τ 2, λ ∼ Np

(
0, τ 2σ2Mλ

)
, π(σ2) ∝ 1

σ2 , τ 2 | ξ ∼ IG
(

1
2 ,

1
ξ

)
,

ξ ∼ IG
(1

2 , 1
)

, λ2
j | νj ∼ IG

(
1
2 ,

1
νj

)
, νj ∼ IG

(1
2 , 1

)
, j = 1, .., p,

where β = (β1, . . . , βp)′, Mλ = diag
(
λ2

1, . . . , λ2
p

)
, λ =

(
λ2

1, . . . , λ2
p

)′
and ν =
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(ν1, . . . , νp)′. The data augmentation allows the batch MCMC procedure to draw

MCMC samples at time t from the following full conditional distributions,

β|σ2, τ 2, λ2, D(t) ∼ Np

(S
(t)
1 + M−1

λ

τ 2

)−1

S
(t)
2 , σ2

(
S

(t)
1 + M−1

λ

τ 2

)−1
σ2|β, τ 2, λ2, D(t) ∼ IG

nt + p

2 ,
S

(t)
3 + β′S

(t)
1 β − 2β′S

(t)
2

2 + β′M−1
λ β

2τ 2


λ2

j |βj, νj, τ 2, σ2, D(t) ∼ IG

(
1,

[
1
νj

+
β2

j

2τ 2σ2

])
, νj|λ2

j , D(t) ∼ IG

(
1,

(
1 + 1

λ2
j

))

ξ|β, σ2, τ 2, D(t) ∼ IG
(

1, 1 + 1
τ 2

)
, τ 2|β, λ, σ2, D(t) ∼ IG

(
p + 1

2 ,
1
ξ

+ β′M−1
λ β

2σ2

)
.

(2.3)

The conditional distributions are dependent on the data D(t) only through

sufficient statistics S(t) = {S(t)
1 , S

(t)
2 , S

(t)
3 } which are updated using S

(t)
1 = S

(t−1)
1 +

X ′
tX t, S

(t)
2 = S

(t−1)
2 + X ′

tyt and S
(t)
3 = S

(t−1)
3 + y′

tyt. Similar to the Bayesian

Lasso, the Gibbs sampling step of β involves decomposing and storing a p × p

matrix per iteration that becomes costly with big p.

2.2.3 Spike and Lasso Variable Selection Prior

Although shrinkage priors are designed to shrink the posterior distributions

of unimportant predictor coefficients close to zero, the shrinkage frameworks do

not allow detection of unimportant predictors. In contrast, the spike and slab

discrete mixture of distributions are specifically designed for variable selection in

high dimensional regressions (George and McCulloch, 1997). In this section, a
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variant of the spike and slab mixture prior is introduced as,

βj|σ2, τ 2
j , γj ∼ γjN

(
0, σ2τ 2

j

)
+ (1− γj)N

(
0, σ2c2

)
τ 2

j ∼ Exp(λ2/2), γj ∼ Ber(θ), λ2 ∼ Ga(r, d), θ ∼ Beta(a, b).

Integrating over the latent variables τ 2
j , we obtain βj|σ2, λ2, γj ∼ γjDE(λ/σ) +

(1−γj)N(0, σ2c2), for j = 1, ..., p, as a mixture of a double exponential and normal

densities. We refer to this mixture distribution as the Spike and Lasso distribu-

tion. Choosing c2 small, the prior performs simultaneous variable selection and

parameter estimation, adaptively thresholding small effects with the concentrated

normal spike while minimally shrinking the large effects with the heavy-tailed dou-

ble exponential (DE) slab distribution. Allowing the prior inclusion probability θ

to be random enables us to automatically adjust for multiple comparisons (Scott

and Berger, 2010). Spike and slab discrete mixture priors enjoy attractive the-

oretical properties (Castillo et al., 2015) and a transformed spike and slab prior

has recently been added as a penalty to the frequentist penalized optimization

literature (Ročková and George, 2018).

With data up to time t, D(t) and sufficient statistics S
(t)
1 , S

(t)
2 and S

(t)
3 , the

prior formulation and data model lead to the following closed form full conditional
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posteriors facilitating implementation with a Gibbs sampler:

β|σ2, τ 2, γ, D(t) ∼ Np

((
S

(t)
1 + M−1

)−1
S

(t)
2 , σ2

(
S

(t)
1 + M−1

)−1
)

σ2|β, τ 2, λ2, D(t) ∼ IG

nt + p

2 ,

(
S

(t)
3 + β′S

(t)
1 β − 2β′S

(t)
2

)
+ β′M−1β

2


λ2|β, σ2, τ 2, D(t) ∼ IG

(
p + r,

∑p
j=1 γjτ

2
j

2 + d

)
,

θ ∼ Beta

a +
p∑

j=1
γj, b + p−

p∑
j=1

γj


1
τ 2

j

|γj = 1, β, σ2, λ2, D(t) ∼ Inv −Gaussian

√√√√λ2σ2

β2
j

, λ2


τ 2

j |γj = 0, β, σ2, λ2, D(t) ∼ Exp(λ2/2), γj|β, σ2, τ 2, θ, D(t) ∼ Ber(ηj)

ηj =
θ
(
σ2τ 2

j

)− 1
2 exp

(
− β2

j

2σ2τ2
j

)
θ
(
σ2τ 2

j

)− 1
2 exp

(
− β2

j

2σ2τ2
j

)
+ (1− θ) (c2)− 1

2 exp
(
− β2

j

2c2

) . (2.4)

where M = diag(w1, . . . , wp) with wj = τ 2
j if γj = 1; wj = c2 otherwise.

The computational issue arises from the Gibbs sampling step of β that incurs

a complexity of O(p3), as well as due to updating γj’s, j = 1, ..., p resulting in

high auto-correlation. Updating subsets of β parameters in smaller blocks may

be an option. However, shrinkage or variable selection priors generally do not

allow closed form marginal distributions for such blocks of regression parameters.

Again, the sequential nature of Gibbs sampling prohibits updating blocks of pa-

rameter β in parallel. The dynamic feature partitioning strategy developed in the

next section will provide a solution to this computational challenge by paralleliz-

ing the approximate Bayesian computation of blocks of parameters into different

processors.
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2.3 Dynamic Feature Partition in

High-Dimensional Regression

The dynamic feature partitioning (DFP) is a general online algorithm for stream-

ing data that partitions the large parameter set into mutually exclusive and ex-

haustive subsets and facilitates rapid Bayesian updating of different parameter

subsets in parallel. While the algorithm is applied to mitigate the aforementioned

computational issues in the Bayesian high dimensional linear regression, the al-

gorithm per se is more general in nature and could be implemented beyond high

dimensional linear regressions.

2.3.1 Relevant Notations and Details of DFP

Let Θ = {θ1, . . . , θq} represent the parameter space with q parameters, which is

bigger than p (the number of predictors), since the parameter space includes the

error variance σ2 as well as latent variables from the data augmentation procedures

described in Section 2.2. We further assume

(1) q is fixed over time, i.e., the parameter space does not change with the arrival

of new data shards.

(2) At each time point, the posterior distribution of the parameters Θ depends on

the data only through lower dimensional functions of D(t) which are referred

to as sufficient statistics. More formally, S(t) is a vector of sufficient statistics

for Θ if Θ|D(t) has the same distribution as Θ|S(t). Denoting f(Θ|D(t)) as

the full posterior distribution of Θ, this assumption implies that f(Θ|D(t)) =

f(Θ|S(t)).

Referring to Section 2.2, both (1) and (2) are valid for linear regression models
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with shrinkage prior distributions or discrete mixture variable selection priors on

coefficients.

At time t, consider a partition of the parameter indices given by G(t) =

{Gt
1, . . . , Gt

kt
}, such that Gt

l ∩ Gt
l′ = ∅, l ̸= l′ and ⋃kt

l=1 Gt
l = {1, . . . , q}. Also

let ΘGt
l

= {θi | i ∈ Gt
l} and Θ−Gt

l
= Θ{1,...,q}\Gt

l
= {θi | i ∈ {1, . . . , q} \ Gt

l} =

{θi | i /∈ Gt
l} be parameters contained and not contained in the lth partition,

respectively. We consider both the number of partitions kt and the constitution

of each partition to be adaptive and dynamically changing over time. The prior

specifications and conditional independence assumptions often suggest natural pa-

rameter partitioning schemes. We provide an outline of the dynamic parameter

partitioning schemes employed in this chapter in the context of high dimensional

regressions with shrinkage and Spike and Lasso priors towards the end of this

section.

Consider also a sequence of point estimates Θ̂
(t) constructed dynamically

over time for the parameter Θ. Given a partition of the parameter space at

time t, the DFP approximation to the posterior full conditional distribution

f
(
ΘGt

l
|Θ−Gt

l
, S(t)

)
of ΘGt

l
(l = 1, ..., kt), referred to as the DFP pseudo con-

ditional posterior, is given by f
(

ΘGt
l
|Θ̂(t−1)

−Gt
l

, S(t)
)

, with Θ−Gt
l

replaced by its

point estimate Θ̂
(t−1)
−Gt

l
at time (t − 1). Since the conditioning set remains fixed

throughout time t, conditional distributions ΘGt
l
’s for l = 1, ..., kt are not depen-

dent on each other at time t. This eliminates the need to sequentially update

parameter blocks ΘGt
l
’s, and samples can rather be drawn rapidly from kt DFP

pseudo conditional posteriors in parallel. All these concepts and notations will be

used to describe the DFP algorithm below.
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2.3.2 DFP Algorithm for Online Approximate MCMC In-

ference

The DFP algorithm provides an online approximate MCMC sampling based on

dynamically adaptive parameter partitions and their point estimates constructed

sequentially over time. The algorithm begins by initializing the point estimate of

Θ (call it Θ̂
(0)) at some default value and initializing sufficient statistics S(0) at

0. When new data shard Dt arrives at time t (t = 1, ..., T ), sufficient statistics

S(t) are updated as a function of S(t−1) and Dt, denoted as S(t) = g(S(t−1), Dt).

In the examples of Section 2.2, g(·) is implicitly defined through the three equa-

tions, S
(t)
1 = S

(t−1)
1 + X ′

tX t, S
(t)
2 = S

(t−1)
2 + X ′

tyt and S
(t)
3 = S

(t−1)
3 + y′

tyt.

The dynamic partitioning scheme (described later) then updates partitions of the

set of parameters and creates new partitions G(t) at time t. The DFP algorithm

then proceeds by sampling from the DFP pseudo conditional posteriors at time

t in parallel. If the DFP pseudo conditional posteriors are in closed form, one

may consider block updating of ΘGt
l

from f
(

ΘGt
l
|Θ̂(t−1)

−Gt
l

, S(t)
)

. Otherwise, the

sampling in each partition proceeds by employing a Gibbs sampler with smaller

blocks of parameters in the lth partition. More specifically, θj ∈ ΘGt
l

is updated

by drawing S (a moderately large number, taken to be 500 in Section 2.4) approx-

imate MCMC samples θ̃
(1,t)
j , ..., θ̃

(S,t)
j from f

(
θj|ΘGt

l
\{j}, Θ̂

(t−1)
−Gt

l
, S(t)

)
, where the

tilde emphasises the fact that we are sampling from an approximation to the full

conditional distribution, instead of the full conditional distribution. Often this

distribution depends on a lower dimensional function of ΘGt
l
\{j}, Θ̂

(t−1)
−Gt

l
and S(t),

as we will see in Sections 2.4.1, 2.4.2 and 2.4.3. Once S approximate MCMC sam-

ples are drawn from DFP pseudo conditional posteriors fairly rapidly, we use these

samples to construct the point estimates of parameters at time t, given by Θ̂
(t). In

our exposition, we use the mean of the S samples θ̃
(1,t)
j , ..., θ̃

(S,t)
j to construct θ̂

(t)
j .
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The theoretical results in appendix A prove desirable performance of the proposed

algorithm when the sequence of estimators Θ̂
(t) is consistent in estimating the true

parameters as t → ∞. In practice, we found this assumption can be validated

empirically for implementation of DFP in Sections 2.4.1, 2.4.2 and 2.4.3. In fact,

the trace-plots of Θ̂
(t) corresponding to representative regression parameters in

Section 2.4 show convergence around the true data generating parameters. Effi-

cient updating of DFP pseudo conditional posteriors using the sufficient statistics

and point estimates of parameters from the previous time point lead to scalable

inference.

Partitioning schemes:

As discussed before, an efficient partitioning of parameter indices G(t) at the tth

time is achieved by heavily exploiting the nature of the model and prior distri-

butions. We believe that a general partitioning scheme that is applicable to any

model and/or any prior distribution is unappealing since it will not be able to

fully exploit the specific features of the model and prior distributions. Since the

main focus of this chapter is on Bayesian shrinkage and variable selection priors

in high dimensional linear regression models, broadly two different partitioning

schemes are proposed, one for the model (2.1) with shrinkage priors and the other

for spike and slab priors.

(A) Partitioning algorithm for shrinkage priors:

Referring to the discussion in Sections 2.2.1 and 2.2.2, the computational bot-

tleneck mainly arises due to sampling from the posterior full conditional of β.

Therefore, in the course of developing a partitioning strategy for the set of pa-

rameters in (2.1) with shrinkage priors, the main focus rests on how to partition

β into blocks of sub-vectors with a minimal loss of information due to separately

updating these blocks residing in different subset partitions from their DFP full
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Algorithm 1: Dynamic Feature Partition
Input: (1) Data shard Dt at time t; (2) Parameter partition G(t−1); (3)

Sufficient Statistics S(t−1) (4) Approximate posterior draws
Θ̃(1,t−1)

, . . . , Θ̃(S,t−1) at time (t− 1); (5) Parameter Estimates Θ̂(t−1)

Output: (1) Approximate posterior draws Θ̃(1,t)
, . . . , Θ̃(S,t) at time t; (2)

Sufficient Statistics S(t); (3) Parameter Estimates Θ̂(t)

1 DFP(Dt,G(t), S(t−1), Θ̂(t−1))
2 begin

/* Step 1: Update the partition of the set of parameters at
time t: the partitioning schemes should ideally exploit the
nature of the model and prior distributions. We propose
partitioning schemes specific to the high dimensional linear
regression with shrinkage priors and spike and slab priors
in Section 2.3.2. */

3 G(t) = PartitionUpdate
(
Θ̃(1,t−1)

, . . . , Θ̃(S,t−1))
/* step 2: Update Sufficient Statistics */

4 Update S(t) = g(Dt, S(t−1))
/* step 3: Approximate Sampling for Parameter Blocks in

Parallel */
5 for Gt

l ∈ G(t) do
6 for θj ∈ ΘGt

l
do

7 for s=1:S do

8 sample θ̃
(s,t)
j ∼ f

(
θj |ΘGt

l
\{j}, S(t−1), Θ̂(t−1)

−Gt
l

)
9 end

10 end
11 end

/* step 4: Update Estimates */
12 for Gt

l ∈ G(t) do
13 for θj ∈ ΘGt

l
do

/* Compute relevant point estimates for the parameters
from approximate MCMC samples. We consider the mean
of the samples as the point estimate for each
parameter */

14 set θ̂
(t)
j ← stat

(
θ̃

(1,t)
j , . . . , θ̃

(S,t)
j

)
15 end
16 end
17 return {Θ̃(1,t)

, . . . , Θ̃(S,t)}, S(t), Θ̂(t)

18 end
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conditionals. To this end, we set the maximum size of each block of β residing in

different partitions to be less than or equal to M at every time to keep a control

on the computational complexity. M is user defined and its choice depends on

the available computational resources. In our empirical investigations with high

dimensional linear regression with Bayesian shrinkage priors, we find M = 100 to

be sufficient and provide discussion on how the choice of small values of M affects

inference. Thereafter we envision the problem of partitioning β at time t as a

graph partitioning problem. To elaborate, at time t, for j, j′ ∈ {1, ..., p}, let the

sample correlation between S iterates of βj and βj′ from time (t − 1) following

the DFP algorithm, given by {β̃(s,t−1)
j }S

s=1 and {β̃(s,t−1)
j′ }S

s=1, be denoted by rj,j′ .

A graph is constructed with nodes as the predictor indices {1, ..., p} and an edge

between two nodes j, j′ if rj,j′ > c where c ∈ (0, 1). Our proposed scheme con-

structs different graphs in this manner corresponding to different choices of the

cut-off c ∈ seq(0.01,0.99,by=0.01). Thereafter we find connected components

of all these constructed graphs and look for the smallest value of c (say c∗) for

which the size of all connected components are less than M . Such an implemen-

tation is readily achieved by the functionalities in the igraph package in R. Let

there be bt connected components corresponding to the cut-off value c∗ at time t,

which we denote by {P(t)
1 , ...,P(t)

bt
}. These bt connected components at time t are

recognized as partitions of the indices {1, ..., p} and βj’s corresponding to different

connected components go to different partitions of the parameter sets at time t.

Thus, βP(t)
1

, ..., βP(t)
bt

go to different subsets in the implementation of DFP at time

t. Since the data augmentation approaches in Sections 2.2.1 and 2.2.2 introduce

latent vectors (τ 2 in Section 2.2.1, λ and ν in Section 2.2.2) related to β, we

either keep all elements of a latent vector together in one partition or divide a la-

tent vector into blocks with indices {P(t)
1 , ...,P(t)

bt
} and send the latent vector with
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indices P(t)
k to the same parameter subset where βP(t)

k

lies. Variance σ2 and other

hierarchical parameters are kept together in a separate partition. Since a parti-

tion involves blocks of β with size at most M , sampling them together from their

DFP full conditionals incurs complexity at most of O(M3). We later empirically

establish that the subsets of parameters constructed by the above partitioning

scheme stabilize over time. In fact, our empirical analysis also demonstrates that

the optimal value c∗ also stabilizes as time progresses.

(B) Partitioning algorithm for Spike and Lasso priors: Since the Spike and Lasso

example in Section 2.2.3 involves coefficients belonging to one of the two mixture

components at every iteration of the posterior sampling, the parameter partition-

ing scheme adopted for shrinkage priors appears to be less efficient here. Instead,

we propose a dynamic partitioning scheme of the parameter space by tacitly ex-

ploiting the natural partitioning of the β parameters and associated latent vector

τ into important and unimportant components. Define Θ1t = {(βj, τ 2
j ) : γ̂

(t−1)
j =

1} and Θ2t = {(βj, τ 2
j ) : γ̂

(t−1)
j = 0}, where γ̂

(t−1)
j ∈ {0, 1} corresponds to the point

estimate of γj at time (t−1). Thereafter our partitioning scheme suggests keeping

the entire Θ1t in one partition and dividing Θ2t into subsets, with each subset of

Θ2t containing (βj, τ 2
j ) for a single j. Additionally, all γj’s are kept in the same

partition and λ2, σ2, θ in another partition. Since spike and slab priors are typi-

cally employed to recover β parameters which are sparse in nature in the truth,

Θ1t is expected to be of small to moderate size with cardinality much smaller

than p as time progresses. Thus, updating (βj : βj ∈ Θ1t)′ together requires com-

putational complexity of order |Θ1t|3 << p3. On the other hand, βj’s for j ∈ Θ2t

are updated individually without incurring any notable computational burden. A

similar strategy is followed when the double exponential slab distribution in the

Spike and Lasso prior is replaced by any other distribution.
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2.4 Illustrations of DFP with Shrinkage and

Discrete Mixture Priors in

High-Dimensional Regressions

This section illustrates parametric and predictive performances of the online

DFP algorithm for (i) Bayesian Lasso, (ii) Horseshoe and (iii) Spike and Lasso

discrete mixture priors. For the simulation examples in (i)-(iii), shards of size

n = 1000 observations arrive sequentially over T = 500 time horizons. Data

shard Dt at time t consists of an n× 1 response vector yt and an n× p predictor

matrix X t = (x1t, ..., xnt)′, t = 1, ..., T . At each time, S = 500 approximate

MCMC samples of ΘGt
1
, ..., ΘGt

kt
are drawn from their respective DFP pseudo

conditional posteriors to approximate the full posterior distribution f(Θ|D(t)).

The p × 1 predictor vector xjt (j = 1, ..., n) at time t is generated as xjt ∼

N(0, H), where H = Block-diag(H1, ..., H100), with each H l being a 50 × 50

Toeplitz structured matrix having the (m, m′)th element as ρ|m−m′|, ρ ∈ (0, 1).

This is to mimic the scenario where there are blocks of predictors such that pre-

dictors within a block are correlated and predictors across blocks are uncorre-

lated. All simulation examples consider high correlations among predictors in a

block with ρ = 0.9. This presumably induces strong associations among param-

eters, which is often challenging for any high dimensional regression framework

to estimate. The inferential challenge appears to be more critical for the DFP

framework as it relies on parameter partitioning, which might naturally weaken

correlations a-posteriori among parameters. To simulate the true predictor coef-

ficients β = (β1, ..., βp)′, the following scenarios are considered:

Simulation 1: 50 randomly selected βj’s are drawn i.i.d. from N(3,1), 50 randomly

selected βj’s are drawn i.i.d. from N(1,1), rest are all set to 0.

25



Simulation 2: 50 randomly selected βj’s are drawn i.i.d. from N(3,1), rest are all

set to 0.

Simulation 3: All βj’s are drawn i.i.d. from U(−1, 1).

Simulation 1 focuses on a sparse case with varying magnitudes of nonzero coeffi-

cients. We will refer to it as the low and high sparse case. Simulation 2 corresponds

to a sparse case with similar magnitudes of nonzero coefficients, while Simulation

3 corresponds to a dense case which is motivated by practical applications where

each of the covariates has a small effect on the outcome. The responses yt for

t = 1, ..., T are generated from X t and the true predictor coefficients using (2.1),

with σ2 chosen so as to keep a signal to noise ratio of 1 for the generated data.

Competitors. The performance of DFP is compared with a set of competitors

suitable for high dimensional linear regression models. We specifically compare

with (a) batch MCMC that draws S MCMC samples from the full conditional dis-

tributions at every time point with the full data D(t) through time t at disposal;

and (b) Conditional Density Filtering (CDF) (Guhaniyogi et al., 2013). Batch

MCMC offers the "gold standard" for ordinary Gibbs sampling that uses the full

data D(t) at time t. For batch MCMC, we randomly fix the partition for the co-

efficients at the beginning to ΘG1 , ..., ΘGk
and sequentially draw S MCMC sam-

ples from the conditional distribution of each block of parameters given the rest,

ΘGl
|Θ−Gl

, at each time. In our implementation, each partition of the coefficients

is kept at an equal size of 50. At time t, batch MCMC initializes the MCMC chain

at the last iterate in time (t − 1). In examples (i)-(iii), the conditional posterior

distributions depend on the data through lower dimensional sufficient statistics,

and hence batch MCMC only stores and propagates the sufficient statistics to

update the conditional distributions in successive time points. Conditional den-

sity filtering is proposed in the same vein as DFP and follows the same algorithm
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outlined in Algorithm 1 with an important difference. While DFP partitioning of

the set of parameters is dynamic in DFP, CDF works with parameter partitions

fixed over time. To keep things consistent, we use the same partition for CDF that

we use for batch MCMC. While DFP and CDF both allow drawing samples from

approximate conditional posterior distributions for each partition in parallel, we

find that implementation of CDF in this way demonstrates considerably inferior

performance than DFP. To make CDF more competitive, we employ a version of

CDF that draws samples from parameter partitions sequentially rather than in

parallel, to be able to use samples from one partition to construct more accurate

point estimates for the other partitions at every time. Such an implementation

of CDF considerably improves its performance, though at the expense of added

computational burden. Overall, comparison with this improved version of CDF

will demonstrate the advantages of dynamic partitioning over fixed partitioning

as a tool to provide a better approximation to the full posterior distribution of

parameters. Online variational inference provides an alternate strategy to draw

approximate inference in presence of big data and a large number of parameters.

However, in absence of any open source code for online variational inference in

high dimensional linear regression, we refrain from employing it as a competitor.

Finally, we compare our approach with a variant of the Sequential Monte Carlo

(SMC) approach. As discussed in the introduction, most of the developments

in SMC and PL algorithms have taken place in the high-dimensional state-space

models and they do not assume seamless extensions to high dimensional static

parametric models with p as high as 5000.

Therefore, we adapt the recent sub-sampled SMC approach outlined in Gu-

nawan et al. (2018) to our setting. Note that the approach in Gunawan et al.

(2018) is designed for the scenario when the entire dataset is available to the user.
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To adapt it to the streaming data context, we employ a data annealing approach

instead of the temperature annealing approach used by the authors. Our data

annealing approach performs data sub-sampling from the entire data D(t) when

a new batch arrives at time t and uses the sub-sampling density approximation

as well as the Hamiltonian Monte-Carlo technique for efficient drawing of high

dimensional Monte Carlo samples. This approach uses the entire data set (up to

time t) D(t) in drawing SMC samples at time t, and strictly speaking is not an

online Bayesian competitor. Nevertheless, it can demonstrate the state-of-the-art

performance from SMC which will be helpful in assessing the performance of DFP.

We refer to this approach as sub-sampled SMC (SSMC).

Assessing parametric inference with DFP. Parametric inference with DFP

is demonstrated using plots of kernel density estimates for marginal approximate

DFP posterior densities of representative model parameters shown at various time

points. Kernel density estimates for the batch MCMC at the same time points

are also overlaid to assess quality of parametric inference with the DFP approxi-

mation in comparison with the “gold standard." The true value of the respective

parameters are overlaid to assess the point estimation of parameters from DFP.

Additionally trace-plots of θ̂
(t)
j over time t for representative parameters are also

presented to provide evidence of convergence of Θ̂
(t) to the true parameter as time

progresses.

Assessing predictive inference with DFP and competitors. To measure

the predictive performance of competitors, we report: (a1) mean squared predic-

tion error (MSPE); (a2) Interval score (Gneiting and Raftery, 2007) of the 95%

predictive interval; (a3) coverage of the 95% predictive interval and (a4) average

run time for each batch or shard. Note that (a1) demonstrates the performance in

terms of point prediction, while (a2) and (a3) show how well calibrated the pre-
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dictions turn out to be. Finally, (a4) helps readers gauge the computation time

vis-a-vis accuracy of the competitors. At time (t − 1), evaluations of predictive

performance metrics (a1)-(a3) are based on the data shard observed at time t. All

results are based on averages over 10 independent replications. All computation

times are based on an R implementation in a cluster computing environment with

three interactive analysis servers, 32 cores each with the Dell PE R820: 4x Intel

Xeon Sandy Bridge E5-4640 processor, 16GB RAM and 1TB SATA hard drive.

Assessing dynamic partitions of the set of parameters over time. For

the strategies implemented to dynamically construct subsets in high dimensional

regression with either shrinkage priors or variable selection priors, we monitor the

stability of subsets as time progresses. To this end, we evaluate the Adjusted

Rand Index (ARI) (Hubert and Arabie, 1985) between partitions of parameters

corresponding to two successive time points and plot the ARI over time. The ARI

evaluates the agreement in subset assignment between two subsetting/partitioning

configurations and is corrected for chance. It ranges between −1 and 1, with larger

values indicating agreement between partitioning configurations. Thus, the ARI

should converge around 1 as time progresses if the partitions stabilize over time.

For the partitioning algorithm implemented for shrinkage priors, we additionally

check trace-plot for the optimal value c∗ over time and offer an understanding of

the sensitivity of inference to the choice of M . In order to being not repetitive,

we present trace-plot of c∗ or sensitivity to the choice of M only for the Bayesian

Lasso prior. The conclusions are similar for the Horseshoe prior.

2.4.1 DFP with Bayesian Lasso

We consider the first application of DFP with the popular Bayesian Lasso

(Park and Casella, 2008a) shrinkage prior on high dimensional predictor coef-
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ficients. Details of the Bayesian Lasso prior and challenges regarding posterior

computation with the Bayesian Lasso prior has already been presented in Sec-

tion 2.2.1.

The DFP algorithm applied to this setting proposes dynamic partitioning of

the parameter space over kt = bt + 1 subsets at time t. Let the partition of the

parameter space at time t be defined by

Θ
G

(t)
l

=
{

β
i
(t)
m1+···+ml−1+1

, τ 2
i
(t)
m1+···+ml−1+1

, ..., beta
i
(t)
m1+···+ml

, τ 2
i
(t)
m1+···+ml

}
, l = 1, .., bt,

Θ
G

(t)
bt+1

=
{

σ2, λ2
}

,

where the lth partition, l = 1, .., bt consists of 2ml parameters (ml is also a function

of t) and i
(t)
m1+···+ml−1+1, ..., i

(t)
m1+···+ml

∈ {1, ..., p} correspond to the indices of pre-

dictor coefficients and latent variables belonging to the lth partition at time t. Let

at time t, βl =
(

β
i
(t)
m1+···+ml−1+1

, ..., β
i
(t)
m1+···+ml

)′
, τ 2

l =
(

τ 2
i
(t)
m1+···+ml−1+1

, ..., τ 2
i
(t)
m1+···+ml

)′

,

M τ,l = diag(τ 2
l ) and β−l be the vector of all βj’s except those included in

βl. β̂
(t−1)
l , β̂

(t−1)
−l , τ̂

2(t−1)
l are the point estimates of βl, β−l, τ 2

l respectively at

time (t − 1). S
(t)
1,l and S

(t)
2,l are analogously defined. Also assume S

(t)
1,l,−l =

S
(t−1)
1,l,−l + X ′

t,lX t,−l, where X t,l and X t,−l are the sub-matrices of X t correspond-

ing to βl and β−l, respectively. Section A.2.1 of appendix A describes details of

implementing of Algorithm 1 for the Bayesian Lasso.

Due to space constraint, density estimates for a few selected predictor coeffi-

cients are displayed at t = 250, 500. Since Simulation 1 is the most interesting

scenario, posterior densities of a randomly chosen zero coefficient, a nonzero coef-

ficient with a lower magnitude and a nonzero coefficient with a higher magnitude

are presented in Figure 2.1. Posterior densities of the selected βj’s in the batch

MCMC and DFP tend to show discrepancies in the earlier time points. These dis-
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crepancies diminish at t = 500, empirically validating the fact that approximate

DFP draws converge to the full posterior distribution in time. This conclusion

remains valid for Simulations 2 and 3.

While drawing inference from DFP, we also investigate convergence of model

parameters and convergence of dynamic partitions of the set of parameters over

time. The trace-plot of the ARI between parameter partitions at successive time

points shown in Figure 2.1 under Simulation 1 indicates convergence around 1

within the first 100 time points. We also monitor the optimal value c∗ chosen over

time by the DFP algorithm and found it to stabilize rapidly (see Figure 2.1). Sim-

ilar investigation in Simulations 2 and 3 lead to equivalent conclusions and hence

they have not been included in the figures. Further, we monitor the convergence

of β̂
(t)
j over time for βj corresponding to a high signal, low signal and zero signal

in the truth. Figure 2.2 shows β̂
(t)
j values concentrating around the true data

generating parameter as time progresses. It also serves as an empirical assurance

that the convergence of Θ̂
(t) to the true parameter is a reasonable assumption in

the theoretical study of DFP.

We also present MSPE, coverage, interval score for the 95% predictive inter-

vals and computation time in seconds per batch of the competing methods for

Simulation 1 in Figure 2.1. Figures 2.3 and 2.4 highlight the same quantities for

Simulations 2 and 3 respectively, except the computation time which is similar for

competitors across the three simulations. Batch MCMC, being a batch method,

is expected to converge faster. The predictive inference of DFP improves rapidly

and becomes indistinguishable from batch MCMC within t ≈ 100 − 150 for all

three simulations. In contrast, the predictive performance of CDF appears to be

inferior to batch MCMC even at t = 150. To ensure that the faster decay in MSPE

of DFP compared to CDF can actually be attributed to dynamic construction of
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parameter subsets at each time, we explore three other versions of DFP for which

we update partitions of the parameter set in every 10, 50 and 100 batches. We

refer to them as lagged DFP with lag = 10, 50, 100, respectively. The regular

DFP corresponds to lag = 1. The trace-plots of MSPE for the regular DFP (i.e.,

with lag= 1) along with lagged DFP for the Bayesian Lasso Model in the three

simulation settings are shown in Figure 2.5. As the value of lag increases, it takes

more time for MSPE in the lagged DFP to stabilize. In fact, the figure shows that

the MSPE for a lagged DFP with lag= 100 takes about 50 more data shards to

stabilize compared to the MSPE of the regular DFP. Thus, dynamic partitioning

learns posterior correlations among parameters accurately which yields a better

approximation of the full posterior than CDF or any other lagged version of DFP

in the earlier time points.

The average MSPE, run time, coverage and interval scores of 95% predictive

intervals over the last 100 time points for all the competitors are presented in

Table 2.1. The results show that in all three simulations, DFP emerges as a

computationally efficient replacement for batch MCMC, both in terms of point

prediction as well as characterizing predictive uncertainties. Batch MCMC being

the gold standard, it shows little higher coverage with little smaller interval length

than DFP and CDF. This is due to a little improved point estimation by batch

MCMC than both DFP and CDF. CDF demonstrates about the same length of

confidence interval with practically the same coverage. As mentioned earlier, naive

implementation of CDF demonstrates inferior predictive inference. An improved

implementation of CDF presented here, in contrast, loses appeal with minimal gain

in computation time over batch MCMC. The SSMC approach also demonstrates

similar inferential performance with DFP with a higher computation time.

Sensitivity to the choice of M . Our investigation reveals that for any choice of M ,
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Table 2.1: Bayesian Lasso performance statistics for MCMC, CDF, DFP and
SSMC. Coverage and length are based on the average of the 95% credible pre-
dictive intervals in the last 100 batches. The subscript provides standard errors
calculated over 10 replications.

Low & High Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9140.019 0.0020.000 3.8270.345 339.57866.343
DFP 0.8970.021 0.0020.000 3.9250.370 148.29243.878
CDF 0.9020.021 0.0020.000 3.8970.370 303.21573.600
SSMC 0.9030.018 0.0020.000 3.8110.355 234.19857.627

Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9150.021 0.0020.000 3.5020.345 400.20388.666
DFP 0.8980.023 0.0020.000 3.5920.393 162.78858.104
CDF 0.9030.023 0.0020.000 3.5560.380 365.98371.200
SSMC 0.9120.021 0.0020.000 3.5120.346 289.17966.265

Dense

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9400.017 4e − 051e−05 1.6290.121 377.822128.891
DFP 0.9170.019 4e − 051e−05 1.6620.148 145.34048.056
CDF 0.9190.018 4e − 051e−05 1.6540.143 352.099105.388
SSMC 0.9430.016 4e − 051e−05 1.6280.121 278.35465.505

the mean squared prediction error (MSPE) starts decreasing as time progresses

and finally stabilizes. It is also interesting to note that they stabilize at similar

values for various choices of M . This is not surprising, since the posterior cor-

relations between parameters become less important factors in prediction when

sample size is much larger than the number of parameters. However, for a larger

value of M , MSPE stabilizes much more rapidly over time. This is demonstrated

for the Bayesian Lasso shrinkage prior with M = 10 and M = 60 under the three

simulation settings, see Figure 2.6. We conclude that when inference is necessary

at the earlier time points, one should perhaps adopt a larger choice of M . In con-

trast, when inference is only required at very large time points, one may construct

a more efficient DFP algorithm with a smaller value of M .
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Figure 2.1: Performance measures for MCMC, DFP and CDF in the case of
Bayesian Lasso under the high and low sparse case are presented in the first row.
Coverage and Interval scores are based on the average of the 95% predictive inter-
vals. Confidence bands are based on repeating the analysis over 10 replications.
The second row shows estimated densities of selected parameters at t = 250 and
t = 500 for DFP and batch MCMC. Finally, third row presents the trace-plot of
the ARI between partitions in two successive time points for DFP and the trace-
plot for the optimal value c∗ of DFP.
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Figure 2.2: Trace-plots of β̂
(t)
j for representative βj parameters under DFP

Bayesian Lasso implementation in Simulation 1. We present β̂
(t)
j for a low signal,

a high signal and a zero signal in the truth. The horizontal line specifies the true
value of a parameter.
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Figure 2.3: Performance measures for MCMC, DFP and CDF for Bayesian
Lasso under the sparse case (Simulation 2) are presented. Coverage and Interval
scores are based on the average of the 95% predictive intervals. We also show
estimated densities for a selected βj at t = 250 and t = 500 for both batch
MCMC and DFP.
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Figure 2.4: Performance measures for MCMC, DFP and CDF for Bayesian
Lasso under the dense case (Simulation 3). Coverage and Interval scores are based
on the average of the 95% predictive intervals. Estimated densities of selected
parameters at t = 250 and t = 500 for both batch MCMC and DFP are also
added.
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Figure 2.5: The trace-plots of MSPE for regular DFP (lag = 1) and lagged
DFP with lag = 10, 50, 100 implemented using Bayesian Lasso in Simulations 1-3.
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Figure 2.6: Trace-plots of MSPE for M = 10, 60 implemented using Bayesian
Lasso prior in Simulations 1-3.
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2.4.2 DFP with Horseshoe

Our second application considers implementing DFP on the Horseshoe shrink-

age prior (Carvalho et al., 2010). The full conditional distributions of parameters

along with computational issues in implementing Gibbs sampling with the Horse-

shoe shrinkage prior are given in Section 2.2.2. The DFP algorithm is employed

to incur computational benefits in situations with large p.

The DFP algorithm applied to this problem considers partitioning the param-

eters Θ = {β, λ, ν, σ2, τ 2, ξ} into kt = bt + 2 subsets at time t given by

Θ
G

(t)
l

=
{

β
i
(t)
m1+···+ml−1+1

, λ2
i
(t)
m1+···+ml−1+1

, ..., β
i
(t)
m1+···+ml

, λ2
i
(t)
m1+···+ml

}
, l = 1, .., bt,

Θ
G

(t)
bt+1

=
{

ν
}

, Θ
G

(t)
bt+2

=
{

σ2, τ 2, ξ
}

.
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Table 2.2: Horseshoe performance statistics for MCMC, CDF, SSMC and DFP.
Coverage and interval scores are based on the average of the 95% credible predic-
tive intervals of the last 100 batches. Subscripts provide standard errors over 10
simulations.

Low & High Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9240.019 0.0020.001 3.7251.006 298.12652.808
DFP 0.9050.020 0.0020.000 3.7150.341 143.58730.989
CDF 0.9090.020 0.0020.000 3.7040.338 289.12058.688
SSMC 0.9220.021 0.0020.001 3.7221.006 288.78383.226

Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9250.021 0.0020.001 3.3751.004 357.01064.220
DFP 0.9060.021 0.0020.000 3.3860.343 164.55542.560
CDF 0.9100.022 0.0020.000 3.3720.349 329.12983.201
SSMC 0.9230.022 0.0020.001 3.3771.026 338.99666.246

Dense

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9310.018 0.0010.000 2.38321.448 262.59434.915
DFP 0.8910.022 4e − 051e−05 1.7490.180 117.41614.589
CDF 0.9030.021 3e − 051e−05 1.6960.162 261.79868.321
SSMC 0.9320.017 0.0010.001 2.2213.996 311.43870.867

Let βl and λl be the vector of βjs and λ2
js, respectively, corresponding to the lth

partition. Define S
(t)
1,l , S

(t)
2,l and S

(t)
1,l,−l as in Section 2.4.1. Let Mλ,l = diag(λl)

and β−l be the βjs not contained in βl. A detailed implementation of DFP for

the Horseshoe prior is described in Section A.2.2 of the appendix A.

Figure 2.7 presents dynamically evolving MSPE, coverage, interval score for

the 95% predictive interval and computation time in seconds per batch of the com-

peting methods for Simulation 1. As observed in Section 2.4.1, MSPE for DFP

falls sharply as time progresses and becomes indistinguishable with the MSPE of

batch MCMC after t ≈ 200− 250. While accurate point prediction is one of our

primary objectives, characterizing uncertainty is of paramount importance given

the recent development in the frequentist literature on characterizing uncertain-

ties in high dimensional regressions (Van de Geer et al., 2014; Zhang and Zhang,

2014). Although Bayesian procedures provide an automatic characterization of

uncertainty, the resulting credible intervals may not possess the correct frequen-
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Figure 2.7: Performance measures for MCMC, DFP and CDF in the case
of Horseshoe under the high and low sparse case (Simulation 1) are presented
in the first row. Coverage and Interval scores are based on the average of the
95% predictive intervals. The second row shows estimated densities of selected
parameters at t = 250 and t = 500 for both batch MCMC and DFP. Confidence
bands are based on the analysis over 10 replications.

(a) MSPE

0 100 200 300 400 500

0.
00

0
0.

00
4

0.
00

8

Batch (t)

M
S

P
E

MCMC
DFP
CDF

0 100 200 300 400 500

0.
00

0
0.

00
4

0.
00

8

0 100 200 300 400 500

0.
00

0
0.

00
4

0.
00

8

(b) Coverage

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Batch (t)

C
ov

er
ag

e

MCMC
DFP
CDF

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Interval Score

0 100 200 300 400 500

0
2

4
6

8
10

Batch (t)

In
te

rv
al

 S
co

re

MCMC
DFP
CDF

0 100 200 300 400 500

0
2

4
6

8
10

0 100 200 300 400 500

0
2

4
6

8
10

(d) Time

0 100 200 300 400 500

0
10

0
30

0
50

0

Batch (t)

C
om

pu
ta

tio
n 

T
im

e 
(s

ec
) MCMC DFP CDF

0 100 200 300 400 500

0
10

0
30

0
50

0

0 100 200 300 400 500

0
10

0
30

0
50

0

(e) Low β

0.780 0.785 0.790 0.795 0.800

0
50

10
0

15
0

20
0

D
en

si
ty

0.780 0.785 0.790 0.795 0.800

0
50

10
0

15
0

20
0

0.780 0.785 0.790 0.795 0.800

0
50

10
0

15
0

20
0

0.780 0.785 0.790 0.795 0.800

0
50

10
0

15
0

20
0

MCMC (250)
MCMC (500)
DFP (250)
DFP (500)

(f) High β

2.735 2.740 2.745 2.750 2.755

0
50

10
0

15
0

20
0

D
en

si
ty

2.735 2.740 2.745 2.750 2.755

0
50

10
0

15
0

20
0

2.735 2.740 2.745 2.750 2.755

0
50

10
0

15
0

20
0

2.735 2.740 2.745 2.750 2.755

0
50

10
0

15
0

20
0

MCMC (250)
MCMC (500)
DFP (250)
DFP (500)

(g) Zero β

−0.02 −0.01 0.00 0.01

0
50

10
0

15
0

20
0

D
en

si
ty

−0.02 −0.01 0.00 0.01

0
50

10
0

15
0

20
0

−0.02 −0.01 0.00 0.01

0
50

10
0

15
0

20
0

−0.02 −0.01 0.00 0.01

0
50

10
0

15
0

20
0

MCMC (250)
MCMC (500)
DFP (250)
DFP (500)

(h) σ2

0.36 0.40 0.44 0.48

0
50

10
0

15
0

20
0

D
en

si
ty

0.36 0.40 0.44 0.48

0
50

10
0

15
0

20
0

0.36 0.40 0.44 0.48

0
50

10
0

15
0

20
0

0.36 0.40 0.44 0.48

0
50

10
0

15
0

20
0 MCMC (250)

MCMC (500)
DFP (250)
DFP (500)

Figure 2.8: Performance measures for MCMC, DFP and CDF for Horseshoe
under the sparse case (Simulation 2) are presented. Coverage and Interval scores
are based on the average of the 95% predictive intervals. We also show estimated
densities of a selected βj at t = 250 and t = 500 for both batch MCMC and DFP.
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tist coverage in nonparametric/high-dimensional problems (Szabó et al., 2015).

An attractive adaptive property of the shrinkage priors, including Horseshoe, is

that the lengths of the intervals automatically adapt between the signal and noise

variables, maintaining close to nominal coverage. Approximate Bayesian infer-
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ence with the DFP algorithm is found to preserve this desirable property of the

Horseshoe prior. In fact, Figures 2.7, 2.8 and 2.9 show similar coverage and

interval scores for DFP and batch MCMC as time progresses. The inference on

the last 100 batches is provided in Table 2.2. Similar to Section 2.4.1, batch

MCMC demonstrates marginally better coverage with little narrow predictive in-

tervals, which is due to the little more precise point prediction offered by batch

MCMC. In contrast, CDF and DFP offer practically indistinguishable predictive

coverage and length. However, we have employed an improved version of CDF for

comparison with computation time twice as compared to DFP. SSMC also shows

state-of-the-art predictive inference with much higher computation time.

Density estimates for a few selected predictor coefficients are displayed at t =

250, 500. Since Simulation 1 is the most interesting scenario, posterior densities of

a randomly chosen zero coefficient, a nonzero coefficient with a lower magnitude

and a nonzero coefficient with a higher magnitude are presented in Figure 2.7.

For nonzero coefficients, the density estimates seem to be similar in DFP and

in batch MCMC, though DFP yields marginally narrower credible intervals than

batch MCMC corresponding to zero coefficients. We refrain from adding any

further discussion on the convergence of partitions or convergence of c∗, since the

conclusion is very similar to Bayesian Lasso.

One fundamental advantage of the Horseshoe shrinkage prior over frequentist

penalized optimization is its ability to accurately characterize parametric and

predictive uncertainties without any user dependent choice of tuning parameters.

However, it might lose this appeal due to its high computation time and inability

to provide rapid inference with big n and p. DFP applied to the Horseshoe

prior solves the computational bottleneck for big n and p, perhaps offering wider

applicability to the Horseshoe prior in regression problems at a much larger scale.
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Table 2.3: Spike and Lasso performance statistics for MCMC, CDF, SSMC and
DFP. MSPE, Coverage and interval scores are based on the average of the 95%
credible predictive intervals for the last 100 batches.

Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9210.021 0.0020.000 3.4790.335 396.73097.681
DFP 0.8980.023 0.0020.000 3.5870.388 9.2623.476
CDF 0.8940.023 0.0020.000 3.5950.385 395.402136.833
SSMC 0.9220.02 0.0020.001 3.4830.379 311.89752.019

Low & High Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9220.019 0.0020.000 3.7950.324 393.42255.556
DFP 0.8970.021 0.0020.000 3.9290.385 9.4062.886
CDF 0.8920.021 0.0020.000 3.9820.380 407.42450.365
SSMC 0.9250.017 0.0020.001 3.8020.333 314.78345.451

We expect similar conclusions to hold for other state-of-the-art shrinkage priors

such as, the Generalized Double Pareto (Armagan et al., 2013) and the normal

gamma (Griffin et al., 2010) prior distributions.

Figure 2.9: Performance measures for MCMC, DFP and CDF for Horseshoe
under the dense case (Simulation 3) are presented. Coverage and Interval scores
are based on the average of the 95% predictive intervals. We also show estimated
densities of a selected βj at t = 250 and t = 500 for both batch MCMC and DFP.
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2.4.3 Spike and Lasso

Since spike and slab prior distributions are primarily designed to identify im-

portant variables in sparse high dimensional regressions, we investigate DFP with

the Spike and Lasso prior for Simulations 1 and 2. Again, Section A.2.3 of ap-

pendix A details out the implementation of Algorithm 1 of Spike & Lasso prior.
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Figure 2.10 presents the dynamic progression of various performance metrics for

DFP, batch MCMC and CDF over T = 500 time points. Unlike Sections 2.4.1

and 2.4.2, the operating characteristics of the Spike and Lasso applied to all three

competitors take longer time to stabilize. This is not surprising, given that batch

MCMC with spike and slab mixture priors is known to offer less accurate perfor-

mance with a smaller sample size due to the high correlation between various γj’s.

As before, DFP approximates batch MCMC accurately in terms of the operating

characteristics. Similar to the earlier sections, Table 2.3 presents predictive infer-

ence averaged over last 100 batches for all the competitors under all simulation

cases. As observed in the earlier sections, DFP and CDF show practically in-

distinguishable performance, while batch MCMC yields marginally lower interval

scores and little higher coverage, perhaps due to a more precise point estimation.

SSMC continues to show competitive performance with a much higher compu-

tation time compared to DFP. DFP dynamically learns the partition based on

Θ1t and Θ2t. Since we consider sparse examples, the cardinality of the set Θ1t

is never large, and hence the parameters therein can be updated quickly. Our

detailed investigation also reveals that even a large number of partitions of Θ2t

does not compromise the accuracy of the inference and prediction. This helps to

accrue substantial gains in computation time for DFP compared to its competi-

tors, as demonstrated in Table 2.3. In contrast, CDF fixes the partitions in the

beginning and is unable to leverage the information of the zero and nonzero βj’s

as the approximate posterior sampling progresses.

Representative posterior densities of βj’s from DFP and batch MCMC (pre-

sented in Figure 2.11) are centered around the truth and have similar tails. Both

Simulations 1 and 2 involve high sparsity, resulting in the posterior density of θ

centered at a small value. Again there is a considerable agreement in the posterior
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densities of θ from DFP and batch MCMC. Finally, posterior densities of σ2 for

DFP and batch MCMC are found to differ by a small margin from the truth. The

trace-plots of β̂
(t)
j for representative coefficients with zero, low and high signals

in the truth are also shown in Figure 2.12 and they are found to converge to the

true parameter values. Finally, we explore how the partitions evolve dynamically

and observe that the ARI between partitions at two successive time points quickly

converges to 1 with time (see Figure 2.12).

Figure 2.10: Performance measures for MCMC, DFP and CDF with the Spike
and Lasso prior under Simulations 1 (1st row) and 2 (second row). Coverage and
interval scores are based on the average of the 95% predictive intervals.
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2.4.4 Sensitivity to the choice of S

One of the important ingredients in the development of DFP is the choice of

the number of Monte Carlo samples S at every time and it is instructive to see

the effect on inference with different choices of S. The simulation section presents

results of DFP with S = 500. To assess the sensitivity to the choice of S in our

simulations, we compute DFP after moderately perturbing S. Table 2.4 presents
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Figure 2.11: Estimated densities for a few selected βjs, σ2 and θ at t = 250
and t = 500. The first row presents results for Simulation 1 while the second row
demonstrates performance of DFP in Simulation 2.
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Figure 2.12: Trace-plots for β̂
(t)
j for representative parameters in DFP Spike

& Lasso implementation under Simulation 1. We include plots for representative
predictor coefficients with low signal, high signal and zero signal in the truth. The
horizontal line specifies the true value of the parameters. The left most column
shows the trace-plot of the ARI for the parameter set partitions at two successive
time points.
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the predictive inference with DFP for S = 500, 750, 1000 in the different simulation

cases with the Bayesian Lasso prior. The results show practically indistinguishable

inference with different choices of S, with S = 750 and S = 1000 naturally

incurring much more computational cost. In our experience, the inference can be

marginally improved with much larger choices of S, though such choices practically
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Table 2.4: Bayesian Lasso performance statistics for DFP with S =
500, 750, 1000. Coverage and length are based on the average of the 95% pre-
dictive intervals on the last 100 batches. The subscript provides standard errors
calculated over 10 replications.

Low & High Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

DFP(S = 500) 0.8970.021 0.0020.000 3.9250.370 148.29243.878
DFP(S = 750) 0.9060.024 0.0020.000 3.9570.344 243.17648.245
DFP(S = 1000) 0.9120.015 0.0020.000 3.9540.358 309.54244.268

Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

DFP(S = 500) 0.8980.023 0.0020.000 3.5920.393 162.78858.104
DFP(S = 750) 0.9030.028 0.0020.000 3.5780.369 248.92754.200
DFP(S = 1000) 0.9110.022 0.0020.000 3.5890.327 316.17859.264

Dense

Method Predictive Coverage MSPE Int. Score Runtime (sec)

DFP(S = 500) 0.9170.019 4e − 051e−05 1.6620.148 145.34048.056
DFP(S = 750) 0.9190.017 4e − 051e−05 1.6840.143 234.09946.498
DFP(S = 1000) 0.9190.016 4e − 051e−05 1.6780.141 305.35446.491

diminish any computational advantage of DFP.

2.5 Application to Financial Stock Database

To illustrate the performance of DFP, we implement DFP for a financial data

set consisting of minute by minute average log-prices of the NASDAQ stock ex-

change from September 10, 2018 to November 13, 2018 during trading hours. The

data consists of log-prices of Apple stocks along with 3430 assets, and the aim

of the data analysis is to evaluate the elasticity of the price of Apple stocks with

respect to the prices of the remaining assets. This is of particular interest, since

Apple, one of the biggest publicly traded companies in the world, is ubiquitous

in portfolios ranging from retirement funds to small portfolios managed by in-

dividuals in the financial market. Thus accurate inference on the relationship

between Apple and other financial stocks allows better portfolio diversification.

We envision it as a high dimensional linear regression problem with the log-price

44



of the Apple stock as the response and log-prices of other assets as predictors.

Along with prediction, the inferential interest lies mainly in identifying important

predictors significantly associated with the response. Hence the Spike & Lasso

prior on regression coefficients are employed.

The data includes several assets, such as ETFs, Trust Funds, stock tracker

indexes, and banks, which as expected, present a very high degree of collinearity.

To avoid less desirable inference due to high collinearity, a few financial assets are

removed along with assets which have very few transactions (less than 40), yielding

2015 predictors for the analysis. The data set consists of 18330 observations

collected over two months.

To compare the predictive inference of DFP with respect to the gold standard

“batch MCMC," the dataset is divided into 183 approximately equal shards to

implement DFP and the batch MCMC. Both are implemented 10 times with 10

different permutations of the dataset to minimize the effect of sample ordering on

the identification of influential variables. Furthermore, this allows us to examine if

the predictive inferential mechanism in DFP is sufficiently robust to the inaccurate

posterior approximations at earlier time points.

Figure 2.13 tracks the progression of MSPE, interval score and coverage of

95% predictive intervals for both DFP and batch MCMC as more batches are

processed. At time t, the predictive inference is assessed with the data shard

obtained at time t + 1. Similar to simulation studies, the behavior of DFP in the

early batches is somewhat erratic due to the inaccurate posterior approximation

in the initial phase of the algorithm, though it stabilizes as more data shards

arrive. Furthermore, the performances of the competitors become closer as time

progresses, with batch MCMC demonstrating marginally superior performance at

higher time points. While batch MCMC runs 500 iterations per batch in 18.35
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seconds, DFP finishes 500 iterations per batch in 0.40 seconds. Such a dramatic

improvement in computation time can be attributed to efficient partitioning of

the parameter space as well as parallel inference on parameter partitions at each

time.

Figure 2.13: Performance measures for MCMC and DFP. MSPE, coverage and
interval scores for 95% predictive intervals are presented. Confidence bands (in a
lighter color) are calculated by observing the variations of these metrics over 10
permutations.
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Model fitting observes a high degree of multi-modality in the posterior dis-

tribution is known to have minimal effects on the predictive inference, but may

provide somewhat unreliable inference in terms of variable selection. This is ob-

served and noted in the earlier literature on high dimensional regression (see e.g.,

Guhaniyogi et al. (2013)). In such cases, it is customary to run the posterior

computation multiple times, record the set of variables being identified in each of

these runs, and finally declare those variables as influential which have appeared

as influential in more than half of the runs. Due to the multi-modality in the

posterior distribution, we observe that 10 runs of both DFP and batch MCMC

do not lead to the same set of variables identified. In fact, we find a difference in

the conclusion between DFP and MCMC in terms of identified variables.

To ensure more reliable inference from DFP and the “gold standard" batch

MCMC for variable selection, we run both these competitors 10 more times on

the dataset of interest. In these 10 runs, the data is divided into 163 shards with

the first shard having 20% observations, and the rest 162 shards all approximately
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Table 2.5: Number of times a stock is selected under DFP and MCMC out of
10 runs of both methods.

Company DFP MCMC Company DFP MCMC
Allscripts Healthcare Solutions, Inc. 10 10 SeaSpine Holdings Corporation 6 10
Alphabet Inc. 10 10 Qorvo, Inc. 7 10
Century Aluminum Company 10 10 Costco Wholesale Corporation 7 0
Ferroglobe PLC 10 10 iQIYI, Inc. 8 0
Skyworks Solutions, Inc. 10 10 The Ultimate Software Group, Inc. 7 0
Red Robin Gourmet Burgers, Inc. 9 10 Global Water Resources, Inc. 0 10
Viavi Solutions Inc. 9 10 Kala Pharmaceuticals, Inc. 0 10
The Kraft Heinz Company 8 10 National General Holdings Corp 0 10
Amazon.com, Inc. 7 10 Applied Optoelectronics, Inc. 0 9
Popular, Inc. 7 9 Atlas Air Worldwide Holdings 0 9
Caesarstone Ltd. 7 9 Baozun Inc. 0 9
Microsoft Corporation 8 9 Genprex, Inc. 0 9

equal. We observe that feeding more data early on leads to reliable variable selec-

tion with minimal variation between different runs. To provide concrete evidence

on this observation, we refer to Table 2.5 which presents all predictors identified

by either DFP or batch MCMC in any of the 10 runs. The table also records the

number of times among the 10 runs they are identified as influential. It shows

that the number of times a predictor is selected by either batch MCMC or DFP

is very close to 0 or 10, indicating quite reliable variable selection. Importantly,

much less discrepancy is observed between DFP and batch MCMC, with them

identifying 17 and 21 variables as influential respectively, with 14 identified by

both.

2.6 Conclusion

The emergence of large volumes of high dimensional data mandates that model

fitting tools evolve quickly to keep pace with the rapidly growing dimension and

size of data. The DFP algorithm proposed in this chapter dynamically partitions

the parameter space after observing every data shard and employs fast and ap-

proximate Bayesian inference at each partition in parallel. The detailed simulation

studies of DFP with popular Bayesian shrinkage priors (Bayesian Lasso, Horse-
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shoe and Spike and Lasso) show indistinguishable inference from batch MCMC

with a considerable reduction of per batch computation time. Appendix A con-

tains the proof of convergence of the DFP algorithm for high dimensional linear

regression as time t→∞.
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Chapter 3

Bayesian Multi-Object Regression

3.1 Introduction

Similar to Chapter 2, Chapter 3 focuses on regressions. However, the predictor

variables in the regression framework in Chapter 3 are objects with topological

structures, rather than ordinary scalar-valued variables. The motivation of such

regressions mainly comes from biomedical applications. Aided by technological ad-

vances in both biomedical hardware and software, neuroscientists routinely collect

high-dimensional imaging data from multiple sources (modalities) to interrogate

the human brain (Sui et al., 2012). Inspection of multiple brain images produces

complementary cross information that can be leveraged to combat Alzheimer’s

disease (AD) and other neurodegenerative disorders (NDs) by advancing founda-

tional cognitive theory, models of disease progression, and biomarker development

(Ossenkoppele et al., 2016). For example, ND progression is best tracked via dis-

ruptions of brain structure and networks, and are detected by stitching together

information across these images (Mandelli et al., 2016; Gorno-Tempini et al., 2008;

Brown et al., 2019). This chapter focuses on multi-modal imaging data which in-

clude: (a) network information in the human brain estimated using functional
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magnetic resonance imaging(fMRI) and (b) structural information in the human

brain obtained using structural magnetic resonance imaging (sMRI), e.g., grey

matter (GM) images. Both images are collected on a common brain atlas which

segments a human brain into different regions of interest (ROI).

There are several compelling possibilities in terms of relating data on these

brain-modalities to phenotypic traits of individuals. This chapter is motivated by

a clinical application where we consider predicting a scalar cognitive score used

to measure primary progressive aphasia (PPA), an ND with similar pathology

to Alzheimer’s disease and fronto-temporal dementia, from multi-modal imaging

predictors (a) and (b). There are three major inferential objectives of our clinical

study. First, neuroscientists are often interested in identifying regions of the

brain which are influential in predicting a cognitive score measuring the degree

of PPA. Second, it is important to draw predictive inference on a cognitive score

based on the multi-modal imaging predictors. Finally, it is of practical interest to

examine the inferential and predictive advantage of exploiting cross-information

from multi-modal predictors over a single modality.

From a statistical point of view, our inferential problem can be formulated

under a regression framework with a scalar response and multi-object predictors

that includes a network object. Traditional regression approaches involving a

scalar response and object predictors mostly ignore predictor topology leading to

sub-optimal inference. As an example, in an object-oriented regression with a

network valued predictor as an object, the most popular approaches either choose

a few summary measures from the network as predictors (Bullmore and Sporns,

2009), or vectorize the network object into a high dimensional collection of edge

weights (Craddock et al., 2009; Richiardi et al., 2011). While this approach can

make use of the latest developments in high-dimensional frequentist and Bayesian
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regression literature (Tibshirani, 1996; Park and Casella, 2008b; Carvalho et al.,

2010), they ignore the fact that coefficients corresponding to edges connected to

a common ROI in the network predictor are expected to be correlated a priori.

Of late, there are developments of scalar on image regression approaches ex-

ploiting topological information of the image predictors. To this end, a class

of methods envisions an image as a collection of spatially correlated predictors

(Goldsmith et al., 2014; Li et al., 2015; Feng et al., 2019; Kang et al., 2018; Huang

et al., 2013), and accounts for the spatial association between regression coeffi-

cients corresponding to the image pixels while estimating them. Another class

of approaches visualizes a brain imaging predictor having a structure of a multi-

dimensional array or tensor, and proposes regression with a scalar response and

a tensor predictor (Zhou et al., 2013; Zhou and Li, 2014; Guhaniyogi et al., 2017;

Fan et al., 2019). The latter approaches enjoy the advantage of being more com-

putationally scalable than the former by implicitly using the spatial information.

While these methods can be directly employed to identify important edges related

to the scalar response or to assess the impact of each edge in predicting the re-

sponse, they have not been applied in the literature to identify important ROIs

influencing the response. One can perhaps add a post-processing step to these

methods and declare an ROI to be influential if at least one of edges related to

the ROI is deemed influential, though this strategy does not lead to uncertainty

quantification in identifying influential ROI. As we highlight later, our proposed

approach provides model-based uncertainty quantification for inference on influen-

tial ROIs. Yet another class of methods (Guha and Guhaniyogi, 2021; Guha and

Rodriguez, 2020) proposes regression approaches with scalar response and network

valued predictors and enables drawing inference on influential ROIs. While these

regression approaches establish the importance of preserving the structure and
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network topology in image objects for better inference and prediction, the refer-

enced works mainly regard object topology for a single image object but principled

linkages among image objects are not made and thus inference on scalar outcomes

is made without regard to valuable information that are shared across these ob-

jects. For instance, in our clinical case study of language dysfunction in PPA

patients, existing methods do not directly combine structural information relat-

ing to neuronal atrophy with network information on brain connectivity to jointly

model deficits in language comprehension scores. Failure to consider the structure

and cross information from multiple images have generally a negative impact on

ND research in terms of lower detection power (Li et al., 2018), bias in estimated

effects (Dai and Li, 2021), statistical inefficiency (Dai and Li, 2021), and sensitiv-

ity of results to noise (Calhoun and Sui, 2016a). Additionally, all these approaches

consider low-dimensional structure of the network coefficient, while the approach

we propose does not rely on such assumptions.

We employ a Bayesian model for multi-object regression with the brain network

and GM images as predictors with a scalar response. In particular, we construct a

prior distribution framework on multi-modal predictor coefficients which exploits

ideas from variable selection and Bayesian shrinkage framework in high dimensions

to account for both the structural and network topology in multi-object data and

allows the information in separate image objects to complement and re-enforce

each other in their relation to the scalar outcome. To elaborate on it, we begin

with a common brain atlas for both image predictors to ensure that it provides an

organizing principle that links together structural and network information via a

shared set of ROIs. ROI-specific binary latent indicators taking values in {0, 1}

are then introduced. To jointly borrow information from the GM image and the

network predictor, our prior construction on their respective coefficients ensures
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that an ROI-specific binary indicator estimated to be zero automatically enforces

that the structural information corresponding to all voxels from that particular

ROI and all network edges connected to that particular ROI have no effect on

the response. Further, the prior construction on network predictor coefficient pre-

serves transitivity property and hierarchical constraint of the network predictor,

as described in Section 3.2. While this chapter does not explicitly make use of

the structural information in the GM images by careful spatial modeling of GM

image coefficient, it partially exploits the structural information by respecting the

hierarchical arrangement of voxels and ROIs in the prior construction step. A

more explicit spatially varying coefficient modeling of GM image coefficients in

the multi-modal regression is computationally challenging and is left for future

exploration. The prior construction achieves efficient computation and accurate

predictive inference of the language score, and offers identification of ROIs which

are key to study neuronal atrophy. Moreover, our framework attaches uncertainty

in identifying these ROIs and produces well-calibrated interval estimates for the

multi-modal regression coefficients.

Our proposed approach is considerably different from the existing statistical

literature on multi-modal data integration. In particular, there have been a class

of unsupervised multi-modal analysis built on matrix or tensor factorization (Lock

et al., 2013), or methods exploiting structural connectivity information from diffu-

sion tensor imaging (DTI) in the prior construction for the functional connectivity

analysis from functional MRI (fMRI) data (Xue et al., 2015). In contrast, we focus

on the supervised analysis with a scalar response and multi-modal predictors. To

this end, Xue et al. (2018) proposes regression on disease status on low-frequency

fluctuation (fALFF) from resting-state fMRI scans, voxel based morphometry

(VBM) from T1-weighted MRI scans, and fractional anisotropy (FA) from DTI
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scans. In the same vein Li and Li (2021) develops a factor analysis-based lin-

ear regression model, and Dai and Li (2021) extends this framework to account

for non-linear association between a scalar response and multi-modal predictors.

While these supervised approaches do form linkages among image modalities, they

do not properly model within image correlations and thus are not able to address

our inferential goals of jointly modeling information across images while main-

taining within image topology. Moreover, all these approaches are frequentist in

nature and do not naturally offer uncertainty in predicting the response.

The rest of the chapter proceeds as follows. Section 3.2 provides a descrip-

tion of the multi-modal data that motivates our development in this chapter.

Section 3.3 describes the novel prior framework to draw inference and prediction

with multi-modal predictors and Section 3.4 discusses posterior computation of

the proposed model. Empirical investigations with data generated under various

simulation settings are reported in Section 3.5. Section 3.6 shows an analysis of

the multi-modal dataset with simulated response. Finally, Section 3.7 summarizes

the idea laid out in this chapter and highlights some of the extensions of our model

to be explored in the near future.

3.2 Motivating clinical application

This chapter is motivated by a clinical application derived from multimodal

imaging studies conducted on patients with a diagnostic variant of Primary Pro-

gressive Aphasia (PPA), known as the nonfluent/aggramatic variant (nfvPPA)

characterized by motor speech and grammar loss and left inferior frontal atrophy

(Gorno-Tempini et al., 2008).

Clinical images: Imaging data is acquired on 26 nfvPPA patients during the

course of clinical research activity. Data is collected from the following imag-
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Figure 3.1: Schematic of the multi-object brain imaging data structure for a PPA patient.
(a) Structural image encoding voxel-level gray matter (GM) probability, (b) Brainnetome atlas
parcellation of the brain into anatomical ROIs, (c) Network image obtained by calculating the
pairwise Pearson correlation Z-score for the average fMRI signal in each ROI. Red circles and
lines connect (a) structural and (c) network information from images via the (b) parcellated atlas.
Thus, the atlas provides an organizing hierarchy that links together structural information (GM)
at the voxel level with network information indexed by pairs of ROIs (fMRI).

(a) Structural image (b) Atlas (c) Network image

ing modalities: sMRI derived gray matter (GM) (Figure 3.1a) which measures

the likelihood a voxel containing neuronal cell bodies; and task-free resting state

functional magnetic resonance imaging (fMRI) to measure brain activation via

neuronal oxygen consumption in subjects at rest. All images are registered to

the Montreal Neurological Institute (MNI) template space with voxels parcellated

into 246 ROIs using the Brainnetome atlas such that images across modalities and

subjects can be directly compared and each voxel is nested in an anatomically de-

fined ROI (Figure 3.1b) (Fan et al., 2016). Findings from the prior clinical studies

allows us to focus only on 19 of these ROIs which are more likely to be related to

nfvPPA.

For each subject, a ‘brain network’ represented by a symmetric adjacency ma-

trix is obtained from the fMRI image by considering rows and columns of this

matrix corresponding to different ROIs and entries corresponding to the Z-scores

obtained by transforming the Pearson correlation between average fMRI data of

two ROIs (Figure 3.1c).
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Language loss in nfvPPA patients is driven by neurodegeneration in the left infe-

rior frontal region but the dual role of structural damage and brain connectivity

in language loss is not well characterized (Mandelli et al., 2016). To better under-

stand the neural underpinnings of language dysfunction in 26 nfvPPA patients,

measures of language deficiency must be regressed on sophisticated multimodal

images, specifically the GM map which capture focal neurodegeneration, and,

fMRI brain connectivity networks which capture disruptions of brain connectiv-

ity. The scientific objective also includes identifying ROIs influential in related to

the language loss. The next section describes a novel regression framework needed

to answer these inferential questions.

3.3 Bayesian Multi-object Regression

This section details out the model development and prior formulation, including

the hyper-parameter specification.

3.3.1 Model Framework

For the ith subject, let yi ∈ R denote the observed continuous scalar response (e.g.,

a language score) and Ai denote the weighted network predictor. We assume that

network predictors of all subjects are defined on a common set of nodes, with ele-

ments of Ai encoding the strength of network connections between different nodes

for the i-th subject. In particular, the network predictor Ai is expressed in the

form of a P×P matrix with the (p, p′)-th entry of the matrix ai,(p,p′) signifying the

strength of association between the pth and p′th node, where p, p′ = 1, ..., P and P

is the number of network nodes. This chapter specifically focuses on networks that

contain no self relationship, i.e., ai,(p,p) ≡ 0, and are undirected (ai,(p,p′) = ai,(p′,p)).
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Such assumptions hold for the data pertaining to Section 3.2, where Ai repre-

sents the brain connectome network matrix obtained from the fMRI scan, with

each node representing a specific brain region of interest (ROI). Let gi,1,...,gi,P

denote the V1, ..., VP dimensional structural objects in regions R1,...,RP , respec-

tively. In the context of Section 3.2, they represent volumetric elements (voxels) of

the GM image from the P ROIs. This multi-object characterization of fMRI and

GM data allows structural information across these images to share a common set

of ROIs, where each voxel is nested within an ROI. The nested structure of voxels

within ROIs provides biologically plausible organization and is instrumental for

variable selection and computation as detailed in the upcoming methodological

development.

With an additional information on covariates xi of dimension m × 1 (which

may be behavioral or biological, e.g., age, gender, race/ ethnicity), we propose the

linear model with multi-object predictors as,

yi = β0 + xT
i βx +

P∑
p=1

gT
i,pβp + ⟨Ai, Θ⟩/2 + ϵi, ϵi ∼ N(0, τ 2). (3.1)

Here βp is the coefficient of dimension Vp×1 corresponding to the structural image

inRp, βx represents coefficients of xi in Rm, τ 2 is the variance of the observational

error and ⟨·, ·⟩ is the Frobenius inner product between two matrices. Similar to Ai,

the P × P coefficient matrix Θ = ((θp,p′)) is assumed to be symmetric with zero

diagonal entries, so that ⟨Ai, Θ⟩ = 2∑1≤p<p′≤P ai,(p,p′)θp,p′ . Such a simplification

is useful in drawing connection between the multi-object regression model (3.1)

to a linear regression framework given by,

yi = β0 + xT
i βx +

P∑
p=1

gT
i,pβp +

∑
1≤p<p′≤P

ai,(p,p′)θp,p′ + ϵi, ϵi ∼ N(0, τ 2). (3.2)
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(3.2) keeps a tab on the network node index of the structural object gi,p. Thus

such a formulation allows linking the information on ROI level data from the

two types of predictors to draw inference on influential ROIs through biologically

inspired prior construction on model coefficients as described in the next section.

3.3.2 Prior Distribution on Multi-Object Coefficients

Our joint prior construction on coefficients βp’s and {θp,p′ : p < p′} for multi-

object predictors is fundamental to exploiting topology of the objects and cross-

information among them by forming principled linkages among objects at the

node/ROI level. The prior construction is aimed at: (a) identification of influen-

tial nodes/ROIs; (b) accurate estimation of voxel-level coefficients for structural

objects; and (c) guaranteeing efficient computation of the posterior for the pro-

posed prior. We envision the problem identifying influential ROIs/nodes from the

multi-object predictors as a high-dimensional variable selection problem and for-

mulate prior distributions on multi-object coefficients building upon the existing

literature on prior constructions for high-dimensional regression coefficients.

To this end, two classes of prior distributions on coefficients are typically em-

ployed in an ordinary high dimensional regression literature. The traditional ap-

proach is to develop a discrete mixture of prior distributions (George and McCul-

loch, 1993, 1997; Scott and Berger, 2010). These methods enjoy the advantage of

inducing exact sparsity for a subset of parameters, but may face computational

challenges when the number of predictors is large. As an alternative to this ap-

proach, continuous approximation to the discrete mixture priors (Carvalho et al.,

2010; Armagan et al., 2013) have emerged which induce approximate sparsity in

high-dimensional parameters. Such prior distributions can mostly be expressed

as global-local scale mixtures of Gaussians (Polson and Scott, 2010), are compu-
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tationally efficient and offer an approximation to the operating characteristics of

discrete mixture priors.

The direct application of a variable selection prior on multi-object coefficients

is unappealing for multiple reasons. First, an ordinary variable selection prior

on coefficients aims at identifying important predictors (which in our applica-

tion are network edges and voxel-level structural images), rather than influential

ROIs/nodes. Second, we seek to impose an additional restriction on the prior

construction of Θ motivated by the neuro-scientific application, that is, if any of

the pth and p′th nodes are un-influential in predicting the response, the edge coef-

ficient θp,p′ corresponding to the edge between pth and p′th nodes is unimportant.

Third, our prior specification should ensure that if a node/ROI is not important in

predicting the response, then any voxel in the ROI is also uninfluential in predict-

ing the response. This restriction is relevant due to the hierarchical arrangement

of voxels and ROIs in our motivating application and is referred to as the hier-

archical constraint. Finally, we expect the matrix of coefficients Θ (which itself

can be regarded as describing a weighted network) to exhibit transitivity effects,

that is, we expect that if the interactions between nodes p and p′ and between

nodes p′ and p′′ both influence the response, the interaction between nodes p and

p′′ will likely be influential (see, e.g., Li et al. (2013)). An ordinary variable se-

lection prior on multi-object coefficients does not necessarily conform to all these

requirements.

We offer a prior construction exploiting the literature on both discrete and

continuous mixture variable selection priors to fulfill our inferential goals. To

elaborate on it, let ξ1, ..., ξP denote the binary inclusion indicators corresponding

to the P ROIs/nodes taking values in {0, 1}, with ξp = 0 determining no effect

of the pth ROI/nodes on the response from all covariates. The network edge
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coefficient θp,p′ is then endowed with a variable selection prior given by

θp,p′|λp,p′ , τ, σθ, ξp, ξp′
ind.∼ ξpξp′N(0, τ 2σ2

θλ2
p,p′) + (1− ξpξp′)δ0, p < p′, (3.3)

where δ0 corresponds to the Dirac-delta function, λp,p′ are local parameter cor-

responding to the (p, p′)th edge and σθ is the global parameter for the network

coefficient. The prior closely mimics the spike-and-slab variable selection structure

with an important difference. While an ordinary spike-and-slab prior introduces a

binary inclusion indicator corresponding to each variable, (3.3) enforces θp,p′ = 0

when either ξp = 0 or ξp′ = 0. Such a formulation is sensible from a network

perspective as it implies that the edge connecting two network nodes is insignif-

icant in predicting the response when at least one of the network nodes is not

influential. Additionally, the formulation naturally incorporates transitivity ef-

fects in the network coefficient Θ. We further assign half-Cauchy distributions on

σθ ∼ C+(0, 1) and λp,p′
ind.∼ C+(0, 1) to complete the prior specification on the net-

work coefficient. Integrating out σθ and λp,p′ in (3.3), θp,p′ |τ, ξp = 1, ξp′ = 1 follows

the popular horseshoe prior (Carvalho et al., 2010) which offers a flexible prior

structure for precise estimation of nonzero network edge coefficients a posteriori.

The structural object coefficient βp ∈ RVp for the pth ROI/nodes is modeled

using βp = ξpγp, where γp = (γp,1, ..., γp,Vp)T is a vector of the same dimension as

βp. To estimate voxel level effects in the pth ROI on the response, each element of

γp is assigned a horseshoe shrinkage prior which takes the following scale-mixture

representation,

γp,j|ηp,j, ∆p, τ ∼ N(0, τ 2∆2
pη2

p,j), ηp,j
i.i.d.∼ C+(0, 1), ∆p

i.i.d.∼ C+(0, 1), (3.4)

for j = 1, ..., Vp; p = 1, ..., P . The prior structure (3.4) induces approximate spar-

60



sity in voxel-level GM coefficients γp by shrinking the components which are less

influential toward zero while retaining the true signals (Polson and Scott, 2010).

Finally, the binary inclusion indicators are assigned Bernoulli prior distribution

ξp
i.i.d.∼ Ber(ν) with ν ∼ Beta(aν , bν) to account for multiplicity correction (Scott

and Berger, 2010). Notably, an estimate of the posterior probability of the event

{ξp = 1} shows the uncertainty in identifying the pth ROI to be influential. Thus,

P (ξp = 1|Data) close to 1 or 0 signifies strong evidence in favor of identifying the

pth ROI to be active. The prior specification is completed by assigning a normal

prior on coefficients of βx, α and IG(aτ , bτ ) on the error variance τ 2.

3.4 Posterior Computation

Although summaries of the posterior distribution cannot be computed in closed

form, full conditional distributions for all the parameters are available and mostly

correspond to standard families (described in appendix B). Thus, posterior com-

putation can proceed through a Markov chain Monte Carlo algorithm. While a

naive implementation of such an algorithm to jointly update (βT
p : p = 1, .., P )T

and (θp,p′ : 1 ≤ p < p′ ≤ P )T is viable for small values of P and V1, ..., VP , it

entails complexity of ∼ Q3, where Q = ∑P
p=1 Vp + P (P − 1)/2, which may lead to

intractable computation for moderately large values of P and V1, ..., VP . To ad-

dress this issue, we follow the procedure outlined in Guha and Guhaniyogi (2021)

which allows computation at ∼ n3 complexity. Since in multi-modal neuroimaging

applications n is typically much smaller than Q, this approach leads to substan-

tial computational savings. Details of the Markov chain Monte Carlo algorithm

and the efficient sampling procedure for multi-modal coefficients are presented in

Appendix B.

The MCMC sampler is run for 10, 000 iterations, with the first 5000 discarded
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as burn-in. All posterior inference is based on post burn-in samples. The average

effective sample size for post burn-in iterations averaged over all Θ and βp’s for

all cases are over 1500, indicating fairly uncorrelated post burn-in iterates to draw

inference.

We have implemented our code in R (without using any C++, Fortran, or

Python interface) on a cluster computing environment with three interactive anal-

ysis servers, 56 cores each with the Dell PE R820: 4x Intel Xeon Sandy Bridge

E5-4640 processor, 16GB RAM and 1TB SATA hard drive. Different replications

of the model are implemented under a parallel architecture by making use of the

packages doparallel and foreach within R. The computation times of running

5000 MCMC iterations with P = 20 and V1 = ... = VP = 20 is given by 2.82 min

on average across all simulations.

L (suitably thinned) post burn-in MCMC samples ξ(1)
p , ..., ξ

(L)
P of the binary

indicator ξp are used to empirically assess if the pth ROI is significantly associated

with the response. In particular, the pth ROI Rp is related to the response if∑L
l=1 ξ(l)

p > t, for 0 < t < 1. The ensuing simulation section computes the true

positive rates (TPR) and false positive rates (FPR) for various choices of t. For

the real data section, we use t = 0.5 to decide which ROIs are influential in

predicting the response.

3.5 Simulation Studies

In this section we compare inferential and out-of-sample predictive perfor-

mance of our proposed Bayesian Object Oriented Modeling (BOOM) approach to

that of a few representative ordinary Bayesian and frequentist high dimensional

regression methods. Both ordinary frequentist and Bayesian high-dimensional re-

gression competitors treat edges between nodes in the undirected network pre-
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dictor Ai as a “long vector of predictors" and regress response yi on vectors

ai = (ai,(p,p′) : 1 ≤ p < p′ ≤ P )T and gi = (gT
i,1, ..., gT

i,P )T , thereby ignoring

the relational nature of Ai. Horseshoe prior (Carvalho et al., 2010) is used on

the regression coefficients in the Bayesian high dimensional regression competitor

due to its state-of-the-art empirical performance in regressions with both sparse

and not-so-sparse settings. We implement the Horseshoe prior regression using

the R package horseshoe (van der Pas et al., 2019) by setting the method.tau as

"haflCauchy" and tau as "Jeffreys" (which stands for assigning Jeffrey’s prior on the

variance component of horseshoe) to obtain a traditional full Bayesian implemen-

tation of Horseshoe. Furthermore, we obtain 10, 000 samples and burn-in 5000 to

obtain 5000 samples with no thining. On the other hand, the frequentist high di-

mensional regression competitor adopts a penalized optimization framework with

the minimax convex penalty (MCP) on the predictor coefficients (Zhang, 2010).

MCP is implemented using the ncvreg (Breheny and Huang, 2011) package in

R, with the penalty parameter of MCP chosen through ten-fold cross validation

technique. An in depth comparison with these methods will indicate the relative

advantage of exploiting the structure of the network predictor and utilizing the

linkage of information in the multi-modal predictors by our BOOM approach un-

der various degrees of sparsity and the number of estimated parameters in the

model. Horseshoe is allowed to draw 10,000 MCMC samples, with the first 5000

used as burn-in and inference is drawn on the remaining 5000 samples.

3.5.1 Data Generation

In all our simulations, we generate response from the following model,

yi = β0,t +
P∑

p=1
gT

i,pβp,t + ⟨Ai, Θt⟩/2 + ϵi, ϵi ∼ N(0, τ 2
t ), (3.5)
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where the subscript t indicates the true data generating parameters. We set

the number of regions to be equal to P = 20 and the sample size n = 150

in all simulations. The number of cells in every region in the structural object

is considered equal, i.e., V1 = · · · = VP = V in all simulations. We present

simulation cases by varying V , as discussed later.

Simulating true coefficients Θt and βp,t. To simulate the true coefficients Θt

and βp,t, we first simulate binary variables ξ1,t, ..., ξP,t
i.i.d.∼ Ber(νt) with ξp,t = 1

sets the p-th region to be influential in predicting the response. Since (1 − νt)

is the probability of a region not being “influential," it is referred to as the node

sparsity parameter. The coefficient corresponding to the edge connecting the p-th

and p′-th region is drawn from the following mixture distribution,

θp,p′,t|ξp,t, ξp′,t ∼ ξp,tξp′,tN(µθ, σ2
θ) + (1− ξp,tξp′,t)δ0, θp,p′,t = θp′,p,t; p < p′. (3.6)

(3.6) ensures that any edge connecting to the p-th region in the network predictor

is un-influential if the p-th region is un-influential, i.e., ξp,t = 0 ⇒ θp,p′,t = 0 for

all p′ ∈ {1, .., P}. Similarly, corresponding to each un-influential region Rp, the

V × 1 dimensional structural predictor coefficient βp,t is set at 0. When ξp,t = 1,

i.e., the p-th region is influential, we randomly choose υt = 0.4 proportion of cell

coefficients in the p-th region to be nonzero and rest are set to be zero. These

nonzero coefficients within βp,t are simulated from N(µβp , σ2
βp

). All simulations

fix µθ = 1, σ2
θ = 1, µβp = 1 and σ2

βp
= 1.

Simulation cases. For a comprehensive simulation study, we consider 14 cases

after varying V and the node sparsity parameter (1 − νt), as summarized in Ta-

ble 3.1. These 14 cases include two different scenarios to simulate the network

predictor, as we describe below.

Scenario 1: In Cases 1–12, the upper triangular entries of the undirected net-
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Table 3.1: It presents the different simulation cases. Here νt is the probability of
a region being active and V is the number of cells per region. Cases 1-12 represent
dense network predictors with all edges present and referred to as Scenario 1,
where as Cases 13 and 14 use network predictors with generated from different
stochastic block models. Thus these two cases are referred to as Scenario 2.

Case Node sparsity Cells per region Case Node sparsity Cells per region
(1− νt) (V ) (1− νt) (V )

Case 1 0.9 10 Case 8 0.8 25
Case 2 0.9 15 Case 9 0.7 10
Case 3 0.9 20 Case 10 0.7 15
Case 4 0.9 25 Case 11 0.7 20
Case 5 0.8 10 Case 12 0.7 25
Case 6 0.8 15 Case 13 0.7 20
Case 7 0.8 20 Case 14 0.7 20

work predictor matrix Ai is simulated from a standard normal distribution, re-

sulting in a dense network predictor (i.e., there is an edge between any pair of

nodes). These 12 cases are together referred to as Scenario 1.

Scenario 2: To further assess the performance of competitors under network

predictors with different structures, the network predictor is generated following

a stochastic block-model in Cases 13 and 14. In Case 13, we assume that each

brain network has three local clusters with high within-cluster and low between-

cluster connectivity. More specifically, the matrices Ai consist of three symmetric

block diagonal matrices of dimensions 6×6, 7×7, and 7×7, respectively. Elements

in these matrices are drawn from N(j, j2) where j ∈ {1, 2, 3}, for the j-th block

diagonal. The off-diagonal blocks are highly sparse, with very few non-sparse ele-

ments denoting connections between nodes in different clusters, randomly chosen

from N(0, 1). In Case 14, each network predictor consists of 3 block diagonal

matrices of dimensions 6 × 6, 7 × 7, and 7 × 7. As before, the elements in these

matrices have been drawn from N(j, j2) where j ∈ {1, 2, 3}, for the j-th block
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diagonal. However, in this case the elements in the off-diagonal matrices have

been drawn from N(2, 1), N(3, 1), and N(4, 1). These two cases are referred to as

Scenario 2 to differentiate them from the cases in Scenario 1. The error variance

τ 2
t is fixed at 1 under all simulation settings.

Identification of Influential Regions

Table 3.2 shows the true positive rate (TPR) and false positive rate (FPR) of

identifying the truly influential ROIs by the three competing models, averaged over

100 simulations. While BOOM approach allows identification of influential ROIs

from the ROI specific latent binary indicators in a principled Bayesian manner as

described in Section 3.4, ordinary MCP and Horseshoe are not designed for ROI

identification. However, to compare them with BOOM in terms of inference on

ROIs, we devise a strategy to select influential ROIs from MCP and Horseshoe via

post-processing methods. For MCP, the p-th ROI Rp is identified as influential

if at least one of the voxels in Rp in the structural predictor or one of the edges

connected to the p-th ROI in the network predictor turns out to be significant

in the regression. In other words, Rp is influential if one of elements of βp,

{θp,p′ : p′ > p} and {θp′,p : p′ < p} (referring to (3.2)) is estimated to be nonzero.

Since the ordinary Horseshoe prior estimates all coefficient to be nonzero using

their posterior median, we first apply a post-processing step following Li and

Pati (2017) to identify which of these coefficients are nonzero. We then consider

Rp to be influential if at least one of the coefficients in βp, {θp,p′ : p′ > p} and

{θp′,p : p′ < p} is estimated to be nonzero in the post-processing step of Horseshoe.

The TPR values close to 1 and FPR values close to 0 under all cases (see Ta-

ble 3.2), except Case 12, suggests overwhelmingly accurate detection of influential

ROIs by BOOM. MCP is the second best performer in this regard, also yielding
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Table 3.2: True Positive Rates (TPR) and False Positive Rates (FPR) for iden-
tifying the truly influential regions for the three competitors are presented under
all simulation cases. Highest TPR and lowest FPR are boldfaced in each case.
Results are averaged over 100 replications.

Node Sparsity (1− νt) = 0.9, Scenario 1

True Positive Rate False Positive Rate
Cases V BOOM HS MCP BOOM HS MCP

1 10 1.00 1.00 0.87 0.00 0.82 0.02
2 15 0.99 1.00 0.84 0.00 0.86 0.03
3 20 1.00 1.00 0.87 0.00 0.84 0.04
4 25 0.99 1.00 0.79 0.00 0.95 0.04

Node Sparsity (1− νt) = 0.8, Scenario 1

True Positive Rate False Positive Rate
Cases V BOOM HS MCP BOOM HS MCP

5 10 1.00 1.00 0.99 0.00 0.80 0.04
6 15 0.99 1.00 0.99 0.00 0.87 0.04
7 20 0.99 1.00 0.99 0.01 0.84 0.03
8 25 1.00 1.00 0.91 0.10 0.86 0.08

Node Sparsity (1− νt) = 0.7, Scenario 1

True Positive Rate False Positive Rate
Cases V BOOM HS MCP BOOM HS MCP

9 10 1.00 1.00 0.91 0.00 0.82 0.03
10 15 1.00 1.00 0.88 0.00 0.77 0.02
11 20 1.00 1.00 0.79 0.14 0.90 0.08
12 25 1.00 1.00 0.54 0.74 0.98 0.03

Node Sparsity (1− νt) = 0.7, Scenario 2

True Positive Rate False Positive Rate
Cases V BOOM HS MCP BOOM HS MCP

13 20 1.00 1.00 0.79 0.14 0.87 0.08
14 20 0.99 1.00 0.83 0.11 0.90 0.19

high TPR and low FPR for high sparsity cases. On the other hand, Horseshoe

shows both high TPR and FPR, identifying almost all of the ROIs as influential.

As sparsity decreases and V increases, the performance of all models tend to dete-
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riorate, with case 12 demonstrating high FPR for BOOM and low TPR for MCP.

Importantly, BOOM is able to offer uncertainty in identifying Rp as influential

using P (ξp = 1|Data), unlike its competitors. The performance does not appear

to be affected by different structures of the network predictor in Scenario 1 and

Scenario 2.

Estimation of Parameters Θt and βp,t

Figures 3.2 and 3.3 present point estimation along with uncertainty quantifica-

tion in estimating Θt and βt = (βT
1,t, ..., βT

P,t)T , respectively. The point estimation

of every competitor is assessed using mean squared errors (MSE) of estimating the

coefficients corresponding to the network predictor and the structural predictor.

Since both Θ and Θt are symmetric with zero diagonals, the MSE for the network

predictor coefficient is given by 2∑p<p′(θp,p′,t− θ̂p,p′)2/P (P − 1), where θ̂p,p′ is the

point estimate of θp,p′ . Similarly, we compute and present MSE for the structural

predictor coefficients given by ∑P
p=1 ||βp,t − β̂p||2/V P , with β̂p representing the

point estimate of βp. The point estimates are taken to be the posterior median

for the Bayesian competitors.

Both Figures 3.2 and 3.3 show that the proposed Bayesian Object Oriented

Method (BOOM) outperforms Horseshoe and MCP in all 14 cases. When both

V is moderately large and true sparsity level is moderate, i.e. in cases 11, 12,

13, 14, we perform overwhelmingly better than both competitors due to exploit-

ing the network information and linkage between the network and the structural

predictor. Since an overwhelming number of coefficients are set to zero in cases

1-8, we modestly outperform our competitors. This might be attributed to the

fact that very high degree of sparsity in the truly influential ROIs leads to high

degree to sparsity in the regression coefficients in the truth, which is conducive
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Figure 3.2: Estimation of Θ: Figures present mean squared error, coverage and
length of 95% credible interval for Θ.
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for ordinary high dimensional regression which treats network edges as one set of

predictors. As we decrease sparsity or increase V keeping sample size fixed, the
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Figure 3.3: Estimation of B: Figures present mean squared error, coverage and
length of 95% credible interval for B.
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performance of all competitors deteriorate significantly, with BOOM continuing

to show an edge over the other two.
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While both Bayesian competitors BOOM and Horseshoe provide automatic

characterization of uncertainty, the resulting confidence intervals may not have

the correct frequentist coverage in high dimensional regressions (Szabó et al.,

2015). Thus, in order to assess uncertainty in estimating Θt from Bayesian com-

petitors, we evaluate the length and coverage of 95% credible intervals averaged

across coefficients in Θ and present them in Figure 3.2 for all cases. Similar

quantities are presented for B in Figure 3.3. Both figures show close to nominal

coverage of BOOM under all cases. As sparsity decreases and V increases, the

uncertainty associated with BOOM seems to be more which results in an increase

in the length of the credible intervals. Importantly, under all cases, BOOM enjoys

similar coverage as Horseshoe with much narrower credible intervals. The more

precise uncertainty quantification of BOOM over Horseshoe is presumably due to

incorporating the structural information of predictors. One important observation

from the simulation studies is that we consistently obtain average coverage of the

regression coefficients above the nominal coverage of 95%. While this is some-

what less desirable, it is a general phenomenon with high dimensional Bayesian

shrinkage priors in presence of large number of unimportant predictors. A brief

discussion on this issue is offered by Bhattacharya et al. (2016a), where they also

observe average coverage of all coefficients being 1, while the average coverage

of truly nonzero coefficients is close to nominal for horseshoe shrinkage priors.

To confirm with their earlier observation on horseshoe shrinkage prior, Table 3.3

separately shows average coverage of truly active and inactive coefficients for both

BOOM and Horseshoe in two randomly chosen cases (cases 5 and 7). Note that

an element θp,p′ in the network coefficient matrix is truly nonzero, referred to as

“active" coefficients, if ξp,t = 1 and ξp′,t = 1 in the simulation design; θp,p′ is other-

wise referred to as an “inactive" otherwise. The results corroborate the findings of
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Table 3.3: Coverage of the 95% Probability Intervals for of network coefficients
for Cases 5 and 7.

Θ
Method Active Inactive All

Case 5

Boom 0.928 1 0.997
(0.141) (0) (0.00399)

Horseshoe 0.82 1 0.993
(0.216) (0.00157) (0.00811)

Case 7

Boom 0.882 1 0.997
(0.253) (0.000617) (0.00589)

Horseshoe 0.746 1 0.996

Bhattacharya et al. (2016a), i.e., the average coverage of truly active coefficients

is little below the nominal coverage, while the noisy/inactive predictive coeffi-

cients show coverage of 1, which is responsible for inflating the average coverage

of regression coefficients. We found similar behavior for the voxel coefficients B.

Predictive Inference

The predictive inference from different models are compared based on the point

prediction and characterization of predictive uncertainties using n∗ = 100 out-of-

sample observations. We employ the mean squared prediction error (MSPE) to

assess point prediction, which is the average squared error distance between the

true and predictive response. Additionally, coverage and length of 95% predic-

tive intervals are used to evaluate uncertainty quantification from the Bayesian

competitors. Table 3.4 present results on predictive inference for all competitors.

With high sparsity in cases 1-4, all competitors perform similarly in terms of

MSPE. BOOM starts outperforming its competitors as sparsity decreases, i.e.,

in cases 5-14, and the performance gap widens as we increase V and decrease

sparsity. Digging a bit further, we observe that with moderate degree of sparsity
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Table 3.4: Mean Squared Prediction Error (MSPE), average coverage and av-
erage length of 95% predictive intervals for BOOM, Horseshoe (HS) and MCP
are presented for various simulation scenarios. Lowest MSPE in each case in
boldfaced. Results are averaged over 100 replications.

Node Sparsity (1− νt) = 0.9, Scenario 1

MSPE Avg. Coverage of 95% PI Avg. length of 95% PI
Cases V BOOM HS MCP BOOM HS BOOM HS

1 10 1.12 1.14 1.14 0.72 0.88 1.38 2.62
2 15 1.20 1.24 1.22 0.77 0.92 1.71 3.17
3 20 1.21 1.38 1.29 0.81 0.95 2.03 3.89
4 25 1.45 1.52 1.44 0.99 0.99 0.02 0.17

Node Sparsity (1− νt) = 0.8, Scenario 1

MSPE Avg. Coverage of 95% PI Avg. length of 95% PI
Cases V BOOM HS MCP BOOM HS BOOM HS

5 10 1.24 1.49 1.43 0.74 0.87 2.25 4.00
6 15 1.42 1.89 1.68 0.79 0.92 2.83 5.07
7 20 1.61 2.16 2.32 0.84 0.96 3.47 6.08
8 25 1.99 3.12 7.03 0.78 0.91 4.57 7.80

Node Sparsity (1− νt) = 0.7, Scenario 1

MSPE Avg. Coverage of 95% PI Avg. length of 95% PI
Cases V BOOM HS MCP BOOM HS BOOM HS

9 10 1.60 2.26 2.01 0.81 0.92 3.18 5.74
10 15 1.97 3.37 8.55 0.88 0.96 4.27 8.22
11 20 6.01 22.74 52.69 0.92 0.96 7.64 18.20
12 25 39.29 68.21 89.46 0.95 0.92 21.79 28.03

Node Sparsity (1− νt) = 0.7, Scenario 2

MSPE Avg. Coverage of 95% PI Avg. length of 95% PI
Cases V BOOM HS MCP BOOM HS BOOM HS

13 20 6.11 24.09 49.28 0.92 0.94 7.61 17.92
14 20 6.72 27.28 53.35 0.92 0.94 7.17 18.44
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and larger values of V , both Horseshoe and MCP over-shrink nonzero coefficients

in order to estimate zero coefficients, which leads to poor performance of these

methods. In terms of predictive uncertainty, BOOM offers slight under-coverage

with high sparsity and smaller values of V , and the coverage becomes very close to

nominal as sparsity decreases and V increases. While Horseshoe offers marginally

better coverage than BOOM, it yields predictive intervals almost twice of the

size of BOOM. Overall, BOOM appears to be a much better performer than its

competitors in terms of both inference and prediction under a variety of simulation

settings.

Sensitivity Analysis

Our model fitting requires user-dependent choice of the hyper-parameters

aτ , bτ , aν , bν . Further, the MCMC algorithm needs to set the initial value for the

region indicators. This section investigates sensitivity of inference to such choices.

Recall that the analysis presented before sets aτ = bτ = 1 and aν = bν = 1.

This section explores model performance by setting aτ = bτ , aν = bν , and varies

them in a wide range. More specifically, we monitor performance by varying

aτ = bτ ∈ {0.1, 10} and aν = bν ∈ {0.1, 10}. We also explore two starting points

for the MCMC iterations of region selection indicators. The first one starts by

setting all region-specific indicators equal to 0, ξ(0)
p = 0 ∀p ∈ {1, . . . , P}, i.e., no

region is influential. The second one starts by setting all region-specific indicators

equals 1, i.e., ξ(0)
p = 1 ∀p ∈ {1, . . . , P}. Table 3.5 shows the MSE for the differ-

ent combinations after simulating 100 datasets according to a representative case

(case 7) of our simulation study. We find that the impact of this different specifi-

cations makes no significant difference. This is perhaps due to the fact that they

are either tempered by the data as in the case of aτ and aτ , are deeply embedded
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in the model as in the case of aν and bν or their effects are nullified by the burn-in

period of the MCMC sampling as with the initial values for the region specific

indicators.

3.6 Analysis of PPA Data with a simulated re-

sponse

In this section, we consider the clinical application described in Section 3.2. As

described in Section 3.2, in the course of our data analysis we regress the language

deficiency score on the GM map and the brain connectivity network for the 26

subjects, where we construct 19× 19 symmetric matrix A representing the brain

connectivity network. The second modality on GM object is unstructured and it

represents information on gray matters for 8 voxels for each of the 19 regions of

interest.

3.6.1 Data Exploration

Even though our preliminary analysis suggests limited signal with only 26

subjects, we would like to show evidence that our modeling framework and as-

sumptions are realistic for this data. In particular, we will empirically investigate

the validity of (a) homoscedastic error assumption; and (b) the assumption of

fixed predictor coefficient across subjects by fitting the model on the real data

with 26 subjects. We would also like to check the predictive performance of our

approach with the ordinary horseshoe for the real data.

We proceed to fit BOOM and ordinary horseshoe for this data by running

10,000 MCMC iterations of which we use 5000 for our burn-in period as in the

simulations. Figure 3.4 shows the box-plots of the residuals for both models. We
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Table 3.5: Sensitivity analysis for the MSE of case 7 varying initialization
settings and hyper-parameters.

Θ B All
g

(0)
p = 1

aν = bν = 0.1
aτ = bτ = 0.1 0.002 0.002 0.002

(0.00077) (0.00029) (0.00052)
aτ = bτ = 1 0.002 0.002 0.002

(0.00085) (0.00031) (0.00057)
aτ = bτ = 10 0.002 0.002 0.002

(0.00081) (0.00029) (0.00054)
aν = bν = 1

aτ = bτ = 0.1 0.002 0.002 0.002
(0.00078) (0.0003) (0.00053)

aτ = bτ = 1 0.002 0.0019 0.002
(0.00082) (0.0003) (0.00055)

aτ = bτ = 10 0.002 0.002 0.002
(0.00082) (0.00029) (0.00054)

aν = bν = 10
aτ = bτ = 0.1 0.002 0.002 0.002

(0.00081) (0.00029) (0.00054)
aτ = bτ = 1 0.002 0.002 0.002

(0.00083) (0.00029) (0.00055)
aτ = bτ = 10 0.002 0.002 0.002

(0.00082) (0.0003) (0.00055)

g
(0)
p = 0

aν = bν = 0.1
aτ = bτ = 0.1 0.002 0.002 0.002

(0.00081) (0.00027) (0.00053)
aτ = bτ = 1 0.002 0.002 0.002

(0.0008) (0.00027) (0.00052)
aτ = bτ = 10 0.002 0.002 0.002

(0.00082) (0.0003) (0.00055)
aν = bν = 1

aτ = bτ = 0.1 0.002 0.002 0.002
(0.00081) (0.0003) (0.00055)

aτ = bτ = 1 0.002 0.002 0.002
(0.00083) (0.00026) (0.00054)

aτ = bτ = 10 0.002 0.002 0.002
(0.00079) (0.00028) (0.00053)

aν = bν = 10
aτ = bτ = 0.1 0.002 0.002 0.002

(0.00082) (0.00029) (0.00054)
aτ = bτ = 1 0.002 0.002 0.002

(0.00083) (0.00028) (0.00055)
aτ = bτ = 10 0.002 0.002 0.002

(0.00082) (0.00028) (0.00054)
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do not observe any outlying residual for BOOM, while there are clear signals of

overfitting corresponding to the residuals for horseshoe. Importantly, this figure

provides evidence supporting homoscedastic error assumption for the data.

Figure 3.4: Distribution of the Residuals for the BOOM and Horseshoe models
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We also perform leave one out cross-validation, and compute the mean square

prediction error for BOOM and horseshoe. Table 3.6 shows significantly better

point prediction offered by BOOM compared to the ordinary horseshoe prior on

coefficients.

Table 3.6: Mean square predictive error of leave one out cross validation for
BOOM and Horseshoe. Best result is presented in bold. Standard deviations are
given in parentheses.

Method MSPE
BOOM 0.058

(0.244)
Horseshoe 0.316

(1.160)

Lastly, we proceed to check the assumption on fixed predictor coefficient across

subjects. In particular, the patients might not share the same coefficient structure

and it might be necessary to add flexibility to the coefficient structure to allow

different coefficients for different patients. In order to explore this issue, we sepa-

rately regress response on every voxel level predictor from GM and every network
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edge from A, and use a subject-specific regression coefficient. In particular, we

run the following regression model with the language score separately on each

voxel level data from GM, given by,

yi = βi,p,vGi,p,v + ϵβ,i,p,v, βi,p,v ∼ N(β0,p,v, σ2
β,p,v), ∀i, p, v (3.7)

Similarly, we regress the language score separately on every network edge,

given by,

yi = θi,p,p′Ai,p,p′ + ϵθ,i,p,p′ , θi,p,p′ ∼ N(θ0,p,p′ , σ2
θ,p,p′), ∀i, p ≤ p′ (3.8)

In this analysis we compare the posterior distributions of β1,p,v, ..., β26,p,v with

the prior mean β0,p,v for every region p and every voxel v within the p-th region.

Similarly, the posterior distributions of θ1,p,p′ , ..., θ26,p,p′ with the prior mean θ0,p,p′ ,

for every 1 ≤ p < p′ ≤ P . Figure 3.5(a) shows the posterior distributions of

GM coefficient corresponding to all 26 individuals in region p = 1 and voxel

v = 4. Similarly, Figure 3.5(b) shows the posterior distributions of coefficient for

the network edge connecting regions 2 and 3 corresponding to all 26 individuals.

According to the figure, the prior mean falls within the inter-quartile range for

almost all the subject-specific coefficients (except for subject 9). Further, Figure

3.6 presents the proportion of subjects for which the prior mean parameter falls in

the interquartile range for every network cell coefficient and GM voxel coefficient.

All values appear to be close to 1 indicating no significant difference of prior

mean from every subject-specific coefficient. Hence, the assumption of identical

regression coefficient appears to be a reasonable assumption.
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Figure 3.5: Distribution of the coefficients for every subject for the region 1
voxel 4 and network coefficient corresponding to regions 2 and 3. In red the mean
of the prior mean for the coefficients.
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Figure 3.6: Heatmap with the percentage the prior falls within the interquartile
range of every coefficient.
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While the aforementioned analysis suggests (a) the dataset being supportive

of our model assumptions; and (b) we offer better predictive inference than or-

dinary horseshoe, the small sample size deters BOOM from identifying activated

regions reliably. Therefore we simulate 150 new observations from the original 26

observations. To simulate each predictor for a newly generated observation, we

first randomly select a predictor matrix Ai′ from the original 26 observations. The

(p, p′)-th upper triangular entry of the predictor matrix A for a new observation is

simulated from a mixture model 0.8δai′,(p,p′) + 0.2N(0, 1), where δx represents the

Dirac-delta function. GM predictor for the new observation is simulated similarly

from the GM predictor corresponding to the i′-th gi′ in the original data. We

then construct sparse predictor coefficients Θ and B keeping 5 randomly selected

regions as activated. For this illustration, we choose the first, second, third, sev-

enth and fifteenth regions to be activated with 3 voxels in each region randomly

selected to be influential. The simulated coefficients B and Θ can be observed in

Figures 3.7a and 3.7b. Here circles indicate the non-zero entries of each matrix

and colors represent the magnitude of each simulated coefficient.

Similar to simulation studies, we implement BOOM along with Horseshoe and

MCP on this dataset. Both BOOM and Horseshoe run for 10,000 MCMC itera-

tions out of which the last 5,000 are used to draw inference. Figures 3.7c and 3.7d

show that BOOM accurately estimates the sparsity pattern as well as the coeffi-

cients in each cell of Θ. This is also corroborated by the TPR and TNR (TNR is

defined as 1− FPR) values of identifying influential ROIs, and the MSE values in

estimating the coefficients, as shown in Table 3.7 for BOOM. Since BOOM em-

ploys continuous Horseshoe shrinkage prior to estimate coefficients corresponding

to each voxel of GM, it is not expected to recover the sparsity pattern of voxels

within each ROI of GM coefficient. Nonetheless, it provides accurate estimation of
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Figure 3.7: Randomly generated B and Θ matrices. Circles indicate the non-
zero coefficients.
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GM coefficients as demonstrated in Table 3.7. Importantly, both its competitors

yield less accurate point estimation of B and Θ. Additionally, they offer signif-

icantly lower values for either TPR or TNR in identifying the influential ROIs.

We also compare the uncertainty in estimating the coefficients B and Θ by the

Bayesian competitors. While the average coverage is the same for both BOOM

and Horseshoe, the length of the intervals is considerably smaller for BOOM,

indicating more precise uncertainty quantification by BOOM.

Finally, as in our simulation studies, the predictive performance of the com-
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Table 3.7: Mean Squared Error (MSE), average coverage and average length of
95% credible intervals for BOOM, Horseshoe (HS) and MCP are presented for the
perturbed PPA data. Best results are presented in boldface.

MSE Avg. Coverage Avg. length
of 95% CI of 95% CI

Method TPR TNR B Θ All B Θ All B Θ All
BOOM 1 1 0.018 0.035 0.027 1 0.976 0.987 0.288 0.078 0.177

Horseshoe 1 0.285 0.042 0.063 0.053 1 0.976 0.987 0.732 0.684 0.707
MCP 0.2 0.928 0.146 0.139 0.142 − − − − − −

Table 3.8: Mean Squared Predictive Error (MSPE), average coverage and aver-
age length of 95% predictive intervals for BOOM, Horseshoe (HS) and MCP are
presented for the perturbed PPA data. Best results are presented in boldface.

Method MSPE Coverage of the 95% PI Length of the 95% PI
BOOM 7.807 0.8 7.584
Horseshoe 15.024 0.91 12.339
MCP 35.068 − −

petitors are assessed based on 100 out of sample observations. Table 3.8 presents

the MSPE, coverage and length of 95% predictive intervals for all competitors. Ta-

ble 3.8 shows significantly smaller MSPE for BOOM than its competitors. While

Horseshoe has little better predictive coverage than BOOM, it achieves so with

twice the length of the 95% predictive interval. Since MCP is a frequentist com-

petitor, we do not provide estimate of predictive uncertainty from MCP.

3.7 Conclusion

Recent emergence of multi-modal imaging data mandates development of new

models which can simultaneously exploit topology of multiple objects and the

linked information between the objects in a regression framework. Motivated

by such multi-modal data, we develop BOOM approach in this chapter which is

among the first Bayesian regression approaches with a scalar response and multi-

object predictors, including a network predictor. The framework is illustrated
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with extensive simulation studies which allows drawing Bayesian inference on

important ROIs significantly associated with the response and offers predictive

inference on the same.
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Chapter 4

A Bayesian Covariance Based

Clustering for High Dimensional

Tensors

4.1 Introduction

Unlike Chapters 2 and 3 which develop regression framework for structured

data, Chapter 4 addresses the problem of unsupervised clustering of multidimen-

sional arrays or tensors. In recent times, multidimensional arrays or tensors, which

are higher order extensions of two dimensional matrices, are being encountered

in datasets emerging from different disciplines including datasets from different

brain imaging modalities, multi-omics studies, chemometrics and psychotropic’s.

Statistical analysis of tensor data presents several challenges over and above mul-

tivariate vector-based methods. First of all, due to the high dimensional nature of

tensor data, inference from tensors often require a large parameter space. Also, ex-

tra care needs to be exercised to exploit structural information in a tensor object.
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To address such challenges for tensor data, a plethora of literature has emerged

on tensor decomposition (Chi and Kolda, 2012; Dunson and Xing, 2009; Sun and

Li, 2019a) and regressions with general and symmetric tensors (Zhou et al., 2013;

Guhaniyogi et al., 2017; Lock, 2018; Guhaniyogi and Spencer, 2018; Guha and

Guhaniyogi, 2021; Spencer et al., 2020). Most of these approaches employ low-

rank and sparse approximations in the tensor structure to reduce the number of

parameters considerably, and propose novel estimation tools to draw adequate

inference.

This chapter focuses on clustering of high dimensional tensors into subgroups

when tensors in different subgroups are barely distinguishable in terms of loca-

tions (e.g. mean), but exhibit difference in their correlation structures/variability.

Examples of such datasets can be found in image analysis, financial, and biological

processes. Loss-based algorithmic approaches for clustering of vectors (Hartigan

and Wong, 1979; Banerjee et al., 2004) can be extended to the clustering of tensors

(Huang et al., 2008), offering a simple approach that is computationally efficient.

However, loss-based approaches focuses on the aggregation and separation of a

sample into groups depending on similarities in locations of data, and hence is

not useful in applications of our interest. Moreover, there is no way to account

for clustering uncertainty in these methods. In contrast with algorithmic clus-

tering, model-based clustering exploits the entire data distribution for clustering,

hence is relatively less affected by the fact that locations of the tensors are simi-

lar. For more background, see Fraley and Raftery (2002a); Müller et al. (2015) for

overviews of model-based clustering. In clustering the tensor observations under

the model-based clustering framework, one simple solution would be to vector-

ize the tensor object followed by unsupervised clustering of these vectors. Such

an approach can make use of the wide literature on clustering high dimensional
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vector observations (Medvedovic and Sivaganesan, 2002; Zhong and Ghosh, 2003;

Raftery and Dean, 2006; Fröhwirth-Schnatter and Kaufmann, 2008; Pan and Shen,

2007; Wang and Zhu, 2008; Lee et al., 2013; Oh and Raftery, 2007). However,

vectorization ignores the crucial neighborhood structure of tensor objects. Addi-

tionally, vectorization of a K-mode tensor of dimensions p1 × · · · × pK results in

a ∏K
k=1 pk dimensional vector. Model-based clustering of such long vectors often

results in inaccurate clustering with each subject assigned to its own singleton

cluster (Celeux et al., 2019). Frühwirth-Schnatter (2006) proposes a specific prior

elicitation criterion to overcome this issue for moderate dimensions. However,

calibration of hyper-parameters may appear to be difficult for large dimensions

that we focus in this chapter.

The model-based clustering typically assumes each observation to follow a

finite/infinite mixture of distributions. In particular, Gaussian mixture model

(GMM) is widely deployed for clustering of scalar- or vector-valued observations.

In the context of clustering higher order tensors, an ordinary GMM can be ex-

tended to mixture of tensor normal distributions, referred to as tensor normal

mixtures (TNM) hereon. The tensor normal distribution expresses the covariance

structure of a tensor in terms of covariance structure in every mode of the tensor,

i.e., the covariance of a K-mode tensor is expressed with covariance matrices of

the order p1× p1,..., pK × pK . This eliminates the need to model an unstructured

covariance matrix of the order of p × p, where p = ∏K
k=1 pk for a tensor obser-

vation, and instead expresses covariance structure with only ∑K
k=1 pk(pk + 1)/2

elements, leading to a substantial reduction in the number of parameters required

for covariance modeling. Further, the tensor covariance structure can be suitably

exploited to simultaneously cluster observations and estimate parameters using

either expectation maximization (EM) algorithm, its variants (in the frequentist
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framework) or Gibbs sampling (in the Bayesian framework) (Viroli, 2011; Ander-

lucci et al., 2015; Gao et al., 2021; Mai et al., 2021a). However, a standard Gibbs

sampling algorithm applied to the clustering of high-dimensional tensors presents

the arduous task of sampling the covariance structure in each mode of the high-

dimensional tensors at every iteration. Besides being computationally inefficient,

this often results in inaccurate estimation of true clusters.

This chapter tackles the problem from a different point of view. In partic-

ular, we focus on a set of observations from multiple populations all of which

follow tensor normal distributions with the same mean but different covariances.

Rather than directly clustering these observations using model-based clustering

that presents challenges described earlier, we adopt a two-step approach. As a

first step, we construct a set of matrices, referred to as the “transformed features,"

from each tensor. These transformed features are designed to estimate variability

of a tensor along different modes. We show that when p1, ..., pK are large, the

transformed features provide abundant information on the mode-specific covari-

ance matrices of a TN distribution, thereby turning the curse of dimensionality

into a blessing. In the second step, a Bayesian mixture model on transformed

features is employed to cluster observations. The proposal makes use of differ-

ences between clusters in their covariance structure, and at the same time avoids

drawing Markov Chain Monte Carlo (MCMC) samples for high dimensional co-

variance parameters from tensor normal distributions, resulting in straightforward

computation even with large tensor dimensions. Moreover, we provide clustering

uncertainty in terms of mis-classification probabilities.

In the similar spirit as ours, Ieva et al. (2016) developed a novel covariance-

based clustering algorithm exploiting the distance between covariances for multi-

variate and functional data. Their approach is based on the crucial assumption
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that there are two groups/clusters, while we do not need to specify the number

of clusters. Hallac et al. (2018) proposed a method for multivariate time-series

data to segment and cluster. While this approach can be used for the tensor

clustering, they assume a Toeplitz structure for the covariance matrix. In contrast,

our proposed approach is applicable to a more general structure of the tensor

covariance matrix induced by the tensor normal distribution.

Rather than clustering tensors using the mixture of tensor normal distribu-

tions, there is a literature regarding K-means clustering on low-rank approxima-

tion of tensors. For example, a class of methods assume tensor decomposition of

the mean of the tensor normal distribution, followed by minimization of the total

squared Euclidean distance of each observation mean to its cluster centroid (Sun

and Li, 2019a). While the low-rank approximation is widely adopted in tensor

data analysis, this approach typically works by identifying clusters through the

centers of their distributions, and is thus less suitable for our purpose. Our goal

is also very different from the literature on bi-clustering and co-clustering meth-

ods. Lee et al. (2010); Tan and Witten (2014) develop bi-clustering methods that

simultaneously group features and observations into clusters. Extensions of the

feature-sample bi-clustering for vector observations are known as the co-clustering

or multiway clustering problems (Jegelka et al., 2009; Chi et al., 2020; Wang and

Zeng, 2019), where each mode of the tensor is clustered into groups. Our problem

is different from these works in that our sole goal is to cluster the observations.

The rest of the chapter evolves as follows. In section 4.2 we provide a brief

introduction of model based clustering and describe our approach for clustering

tensors with covariance estimators. Posterior computation from the model is

described in Section 4.3. Empirical evaluations with simulation studies and a

real data analysis are presented in Sections 4.4 and 4.5, respectively. Finally, we
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conclude in Section 4.6.

4.2 Covariance-Based Bayesian Tensor Cluster-

ing

This section begins with defining notations related to tensors. The Bayesian

model-based clustering approach is then briefly discussed in its full generality in

the context of tensor observations. We then describe the covariance-based two-

step clustering approach in the context of high dimensional tensor observations.

4.2.1 Notations

We begin with a quick review of some tensor notations and operations which

will be subsequently used. A more detailed review can be found in Kolda and

Bader (2009).

Consider the K-way tensor (also known as K-mode or K-th order tensor)

T ∈ Rp1×...×pK with its (i1, ..., iK)-th element denoted by Ti1,...,iK
. When K = 1,

the tensor reduces to a vector and when K = 2, the tensor is a matrix. The

vec(T ) operator applied to a tensor T stacks elements into a column vector of

dimension p = ∏K
k=1 pk with Ti1,...,iK

mapped to the j-th entry of vec(T ), for

j = 1 +∑K
k=1(ik − 1)∏k−1

k′=1 pk′ .

A fiber is the higher order analogue of a matrix row and column, and is defined

by fixing every index of the tensor but one. A k-mode fiber is a pk-dimensional

vector obtained by fixing all other modes except the k-th mode. For example, a

matrix column is a mode-1 fiber and a row is a mode-2 fiber. There are p/pk such

k-mode fibers for T each with dimension pk × 1. The k-mode matricization of a

tensor transforms a tensor into a matrix T (k) ∈ Rpk× p
pk , where T(i1,...,iK) mapping
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to (ik, j)-th element of the matrix, where j = ∑
k′ ̸=k(ik′ − 1)∏k′′<k′,k′′ ̸=k pk′′ . The

k-mode product of a tensor T ∈ Rp1×...×pK and a compatible matrix A ∈ RJ×pk ,

will result in a tensor T ×k A ∈ Rp1×...×pk−1×J×pk+1×...pK , where each element is the

product of mode-k fiber of T multiplied by A. Notice that this operation reduces

to the usual matrix product for a 2-way tensor and to the inner product for a 1-

way tensor. For a list of matrices A1, . . . , AK with compatible sizes Ak ∈ RJk×pk

we define the product T × [A1, . . . , AK ] = T ×1 A1 ×2 . . . ×K AK ∈ RJ1×...×JK .

Thus, when A1, . . . , AK are square matrices, the resulting tensor is of the same

dimension as T . In what follows, we will use ||·||F to denote the Frobenius norm of

the tensor T given by ||T ||F :=
√∑

i1,...,iK
T 2

i1,...,iK
. Finally, we denote as ⊗K

k=1Ak as

the sequential Kronecker product of the matrices, that is ⊗K
k=1Ak = A1⊗. . .⊗AK .

4.2.2 Bayesian Model-based Tensor Clustering Approach

Let T i be a tensor valued observation in T , T ⊆ Rp1×···×pK , for i = 1, ..., n.

Let C = {C1, ..., Cn(C)} be a partition of n observations into n(C) disjoint sets,

i.e., |C| = n(C). Typical Bayesian models for clustering are based on posterior

distributions of the form

π(C|T 1, .., T n) ∝ π(C)
n(C)∏
h=1

∫ ∏
i∈Ch

f(T i|Θh)π(Θh)dΘh


= π(C)

n(C)∏
h=1

m({T i : i ∈ Ch}), (4.1)

where f(T i|Θh) denotes the likelihood for a tensor observation belonging to the

h-th cluster with the cluster-specific model parameter Θh and π(Θh) corresponds

to the prior distribution on the parameter Θh. The quantity m({T i : i ∈ Ch}) =∫ ∏
i∈Ch

f(T i|Θh)π(Θh)dΘh denotes the marginal distribution of tensors belonging

to the h-th cluster which is typically not obtained in a closed form. Alternatively,
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the partition can be described through cluster labels for n observations given by

c = (c1, ..., cn)′, so that ci = h, if and only if i ∈ Ch, for i = 1, ..., n. Irrespective

of the representation, our interest only lies in the induced partition C rather than

the labels on the indicators c = (c1, ..., cn)′.

A natural choice for the likelihood f(T i|Θh) appears to be a tensor normal

distribution, denoted as TN(Mh, Σ1,h, ..., ΣK,h), and is given by

f(T i|Mh, Σ1,h, . . . , ΣK,h) = (2π)− p
2

{
K∏

k=1
|Σk,h|

− p
2pk

}

× exp
(
−1

2

∥∥∥∥(T i −Mh)× [Σ− 1
2

1,h , . . . , Σ− 1
2

K,h]
∥∥∥∥2

F

)
,

(4.2)

where Mh is the mean/center of the tensor normal distribution, and Σk,h is a

pk × pk dimensional positive definite matrix, also referred to as the covariance

matrix for the k-th mode. We consider a scenario where the observed tensors in

the sample are barely distinguishable in terms of their means. Thus, we make the

following crucial assumption:

Assumption A: Different clusters of tensors only vary in terms of their covari-

ance structure and not in their means. Thus, without loss of generality, Mh = 0

for all h = 1, .., n(C).

According to the likelihood specification in (4.2) and Assumption A, Θh corre-

sponds to the collection of covariance matrices for all modes, i.e.,

Θh = {Σ1,h, . . . , ΣK,h}.

Notably, the distributional form of f(T i|Θh), as given in (4.2), does not yield

a closed form integral for the marginal distribution in (4.1). The common practice

is to begin with the distribution (T i|Θh, ci = h) ∼ f(T i|Θh) and develop a Gibbs

sampler to draw posterior samples of c along with Σk,h’s, for all k = 1, ..., K and
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h = 1, ..., n(C). However, when p1, ..., pK are large, Gibbs sampling of covariance

matrices Σk,h’s results in inferential inaccuracy related to clustering, as well as

computational challenges, as demonstrated in our detailed empirical investiga-

tion in Section 4.4. Next section develops an approximate Bayesian clustering

algorithm that offers remedies to both these challenges simultaneously.

4.2.3 A Covariance-Based Bayesian Tensor Clustering Ap-

proach

To avoid complications due to model based clustering of high-dimensional ten-

sor observations, we propose a two-step Bayesian clustering approach of tensors.

In summary, our approach first extracts important features of high dimensional

tensors to adequately estimate the covariance structure along different modes, fol-

lowed by model-based clustering of these features. To elaborate on it, let A(T i) be

the set of extracted features from tensor T i which will be referred to as transformed

features (TF) hereon. The transformed features are carefully chosen to estimate

variability of the tensor normal distribution in each mode. Section 4.2.4 details

out a specific choice of such transformed features. While the exact distribution of

A(T i) is determined by the tensor normal specification given in (4.2), we focus

on a reasonable approximation of the distribution for A(T i) in our goal to cluster

these transformed features. Let f̃(A(T i)|Θ̃h, Θ̃a) be the approximated distribu-

tion of A(T i) in the h-th cluster, with Θ̃h as its h-th cluster-specific parameter

and Θ̃a an auxiliary lower dimensional parameter common across all clusters. Let

π̃h(Θ̃h) and π̃a(Θ̃a) denote the prior distribution of Θ̃h and Θ̃a, respectively, for

h = 1, ..., H. We choose f̃(·) and π̃h(·) to ensure closed form marginal distribution

of m̃({A(T i) : i ∈ Ch}|Θ̃a) =
∫ ∏

i∈Ch
f̃(A(T i)|Θ̃h, Θ̃a)π̃h(Θ̃h)dΘ̃h.

With closed form marginals for TFs in each cluster, the posterior distribution
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of clusters and the auxiliary parameters is given by,

π(C, Θ̃a | A(T 1), ...,A(T n)) = π(C)π̃a(Θ̃a)
n(C)∏
h=1

m̃({A(T i) : i ∈ Ch}|Θ̃a), (4.3)

where π(C) denotes the prior on partitions. In the absence of real prior informa-

tion about the items, we will assign positive prior probability to every possible

partition. In the interests of computational convenience, we might be attracted

to prior models on partitions for which posterior simulation methods are fully

developed. While the nonzero prior on partitions can be induced by Dirichlet pro-

cesses (Ferguson, 1973a; Antoniak, 1974; Gopalan and Berry, 1998), an explicit

prior on partitions can also be derived from an infinite or a finite mixture model

representation of the distribution of A(T i) after integrating out the weights of the

mixing components. With the posterior distribution of partitions given in (4.3),

the computation proceeds through a Chinese restaurant sampler described below

(Lau and Green, 2007a).

1. Initialize: Choose an initial partition C(0). Common options are either to set

singleton clusters or to put all observations in the same cluster.

2. Obtain s-th iterate of C: To obtain s-th iterate of the partition C(s) do:

(a) Initialize the Partition: Set C = C(s−1), and let C = {C1, . . . , Cn(C)}.

(b) Loop through every observation:

i. Remove observation A(T i) from the partition: Remove i-the obser-

vation from the partition C to obtain a new partition

C−i = {C1,−i, ..., Cn(C−i),−i}.

ii. Assign observation i: Either assign the i-th observation to a new
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cluster, that is update C to C = {C1,−i, ..., Cn(C−i),−i, {i}} with prob-

ability proportional to:

m̃(A(T i)|Θ̃a)× π({C1,−i, ..., Cn(C−i),−i, {i}})
π({C1,−i, ..., Cn(C−i),−i})

, (4.4)

or, assign the i-th observation to the existing j-th cluster Cj,−i,

that is update C to

C = {C1,−i, ..., Cj,−i ∪ {i}, . . . , Cn(C−i),−i} with probability propor-

tional to:

m̃({A(T s) : s ∈ {{i} ∪ Cj,−i}}|Θ̃a)
m̃({A(T s) : s ∈ Cj,−i}|Θ̃a)

×
π({C1,−i, ..., Cj,−i ∪ {i}, . . . , Cn(C−i),−i})

π({C1,−i, ..., Cn(C−i),−i})
(4.5)

(c) Set the partition C(s): After updating C, going through every observa-

tion, set C(s) = C.

3. Sample the s-th iterate of Θ̃a: Draw s-th iterate of Θ̃a from its full condi-

tional distribution derived from (4.3).

Notably, steps (a)-(c) involve marginal distribution of TFs which are available in

closed form by our assumption. In fact, the algorithm bypasses updating high

dimensional parameters at any step, which leads to rapid mixing of the Markov

Chain. Since the algorithm uses transformed features A(T i) of the tensor T i,

the clustering accuracy is naturally dependent on the choice of these features.

Next section describes specific choice of TFs which leads to desirable clustering

performance for tensors, as discussed in the simulation studies.

94



4.2.4 Transformed Features and Their Distributions

This section discusses the specific choice of transformed features A(T ) and the

approximate distribution f̃(A(T )|Θ̃h, Θ̃a) of the transformed features used in this

chapter. For clustering of high dimensional tensors, we propose to work with the

collection of transformed features given by A(T i) = {pk

p
T i,(k)T

′
i,(k) : k = 1, ..., K},

where T i,(k) is the k-th mode matrix of the tensor T i. Therefore, given a k-way

tensor observation T i of dimension p = ∏K
i=1 pi, we extract a collection of K

matrices of sizes p1 × p1, . . . , pK × pk, which will suitably capture the covariance

structure of the observed tensor, as described by the lemma below.

Lemma 4.2.1. Let T i ∼ TN(0, Σ1, . . . , ΣK) and A(T i)(k) = pk

p
T i,(k)T

′
i,(k). As-

sume that for all k = 1, ..., K, (i) pk

p
→ 0 (ii) pk

p
tr(⊗k′ ̸=kΣk′) → wk and (iii)

p2
k

p2
∑

l,r{⊗k′ ̸=kΣk′}l,r → 0, for all l, r = 1, ..., p/pk, where {⊗k′ ̸=kΣk′}l,r denotes the

(l, r)th entry of the matrix ⊗k′ ̸=kΣk′. (i)-(iii) together imply that {A(T i)(k)}l,r →

{Σk}l,rwk, where wk is a constant.

The proof of Lemma 4.2.1 is provided in appendix C. While high-dimensional

tensors pose challenges in the ordinary clustering approaches due to the need to

estimate high dimensional covariance matrices for different modes, higher tensor

dimensions appear to be "blessings" for our approximate tensor clustering ap-

proach, as revealed in Lemma 4.2.1. In fact, the result implies that under regular-

ity conditions, as the tensor dimensions grow, the transformed features converge

to mode-specific covariance matrices upto a scale factor, recovering their shapes

and orientations.

Some discussions on assumptions (i)-(iii) is warranted. Assumption (i) is a

mild one only guaranteeing growth of tensor along every dimension. Assumptions

(ii) and (iii) restrict the growth of the elements in the covariance matrices of the

data generating tensor normal distribution. In particular, when Σk is an identity
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matrix of dimension pk × pk, (ii) and (iii) are trivially satisfied with wk = 1 for

all k = 1, ..., K. They are also found to hold in other non-trivial cases such as in

the Toeplitz structured covariance matrices. Broadly, the conditions (ii) and (iii)

assumes sparsity in the mode-specific covariance matrices which turn out to be

crucial in dictating the clustering performance of the approach.

The TF Distribution and Prior On Parameters

To cluster tensors with the transformed features introduced in the previous

section, we employ cluster-specific normal means model on the upper triangular

entries of A(T i)(k) in all clusters and for all modes k = 1, ..., K. More specifically,

the (l, r)-th entry of A(T i)(k) is modeled as

{A(T i)(k)}l,r
ind.∼ N(θ(k)

l,r,h, σ2), for i ∈ Ch, θ
(k)
l,r,h ∼ N(θ0, σ2/ϕ), l < r. (4.6)

(4.6) appears to be an approximation to the actual distribution of TFs under the

tensor normal specification of T i, when tensor dimensions are large. In fact, when

i ∈ Ch and T i ∼ TN(0, Σ1,h, .., ΣK,h), {A(T )(k)}l,r is approximately distributed

as normal by central limit theorem as pk/p→ 0.

The specification of (4.6) leads to a closed form marginal distribution of A(T i)

in each cluster conditional on the auxiliary parameters Θ̃a = (σ2, ϕ)′ by integrating

out cluster specific parameters Θ̃h = (θ(k)
l,r,h : l < r)′. More specifically,

m̃
(
{{A(T i)(k)}l,r : i ∈ Ch}|ϕ, σ2

)
=
(
2πσ2

)−nh
2

[
ϕ

nh + ϕ

] 1
2

× exp

− 1
2σ2

∑
i∈Ch

(
{A(T i)(k)}l,r − {Ā(T )(k)

Ch
}l,r

)2
+ ϕ

(
{ ¯A(T )(k)

Ch
}l,r − θ0

)2
 ,

(4.7)
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where nh = |Ch| is the number of samples belonging to the h-th cluster Ch and

{Ā(T )(k)
Ch
}l,r = 1

nh+ϕ

(∑
i∈Ch
{A(T i)(k)}l,r + ϕθ0

)
. The marginal distribution of

A(T 1), ...,A(T n) conditional on the auxiliary parameters σ2 and ϕ is of the form

m̃
(
A(T 1), ...,A(T n)|ϕ, σ2

)
=

n(C)∏
h=1

∏
i∈Ch

K∏
k=1

∏
1≤l<r≤pk

m̃
(
{{A(T i)(k)}l,r : i ∈ Ch}|ϕ, σ2

)
, (4.8)

where the form of m̃
(
{{A(T i)(k)}l,r : i ∈ Ch}|ϕ, σ2

)
is obtained from (4.7).

While Section 4.2.3 outlines a number of possibilities for the choice of the

prior distribution on partitions, we have adopted the prior on the partitions in-

duced from the Dirichlet Process. Following Lau and Green (2007a), the prior

distribution on the partition C under such a specification assumes the form,

π(C|ϕ) = ϕn(C)+1 Γ(ϕ)
Γ(n + ϕ)

n(C)∏
h=1

Γ(nh), (4.9)

with the prior being dependent on the auxiliary parameter ϕ. Following the

Chinese Restaurant analogy, (4.9) implies that the probability of assigning a new

customer to a new table is proportional to ϕ a priori. The prior specification

is completed by setting an inverse-gamma prior on σ2, σ2 ∼ IG(aσ, bσ) and a

discrete uniform prior on ϕ taking values ϕ1, ..., ϕF each with probability 1/F .

4.2.5 Point Estimation and Uncertainty Quantification in

Clustering

While we will explore the posterior distribution of partitions through MCMC-

based sampling algorithms (see Section 4.3 for details of posterior computation), it

is worth understanding the point estimate of partitions induced by our approach.
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Although several alternatives exist (e.g., Medvedovic et al. (2004); Lau and Green

(2007a); Fritsch et al. (2009)), maximum a posteriori (MAP) estimation provides

a particularly natural and simple choice. Unfortunately, the maximum a poste-

riori clusters are not available in closed form from our approach; thus we study

some profile properties of partitions by fixing the auxiliary parameters σ2 and ϕ.

In particular, from (4.8), the MAP estimate of clustering is obtained by minimiz-

ing the following objective function with respect to clusters C1, ..., Cn(C) and their

centers.

n(C)∑
h=1

K∑
k=1

∑
1≤l<r≤pk

∑
i∈Ch

||{A(T i)(k)}l,r − {Ā(T )(k)
Ch
}l,r||2 + ϕ

(
θ0 − {Ā(T )(k)

Ch
}l,r

)2


(4.10)

With little algebra, equation (4.10) can be rewritten as

n(C)∑
h=1

K∑
k=1

∑
1≤l<r≤pk

∑
i∈Ch

||{A(T i)(k)}l,r − {Ā(T )(k)
Ch,0}l,r||2

+ nhϕ

nh + ϕ

(
θ0 − {Ā(T )(k)

Ch,0}l,r

)2
}

, (4.11)

where {Ā(T )(k)
Ch,0}l,r = 1

|Ch|
∑

i∈Ch
{A(T i)(k)}l,r. Notably, the objective function in

(4.11) bears close connection with the objective function of regularized k-means

clustering for high dimensional objects (Sun et al., 2012). Since the upper tri-

angular vectors of A(T i) are high-dimensional, regularized k-means clustering is

more suitable for cluster analysis than the ordinary k-means clustering. In fact,

in an ordinary k-means clustering, the observations from the same cluster tend to

lie symmetrically at the vertices of a regular simplex, and the distance between

observations from different clusters is determined by the cluster difference relative
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to the data dimension. Consequently, if the cluster difference is relatively small

compared with the diverging data dimension, the ordinary k-means clustering

based on the Euclidean distance will operate in a degenerate fashion, assigning all

the observations to the same cluster. In contrast, a regularized k-means cluster-

ing shrinks high dimensional observations to a lower-dimensional subspace while

simultaneously performing cluster analysis, which is more suitable in our context.

One of the advantages of probabilistic model-based clustering is that it offers

uncertainty quantification along with point estimate of clusters. Recall that the

partitioning set C can be equivalently expressed in terms of cluster membership

indices c = (c1, ..., cn)′ for the data points, where each ci = h ⇔ i ∈ Ch. In

principle, the uncertainty of clustering can be expressed through posterior proba-

bilities P (ci = h|Data), but these are affected by the label-switching phenomenon

(Stephens, 2000). For this reason, one typically focuses on the co-clustering matrix

G (Fritsch et al., 2009), whose entries Gi,i′ are such that Gi,i′ = P (ci = ci′|Data),

for i, i′ ∈ {1, ..., n}. The G matrix can be used to identify which pair of units are

more certain/uncertain to belong to the same cluster.

4.3 Posterior Computation

With likelihood and prior distributions specified as in Section 4.2.4, the full

posterior distribution of partitions and auxiliary variables is given by,

p(C, ϕ, σ2|A(T 1), ...,A(T n)) ∝ m̃
(
A(T 1), ...,A(T n)|ϕ, σ2

)
× ϕn(C)+1 Γ(ϕ)

Γ(n + ϕ)

n(C)∏
h=1

Γ(nh) βασ
σ

Γ(ασ)(σ2)−ασ−1 exp
(
−βσ

σ2

)
.

The posterior computation proceeds following the general algorithm described

in Section 4.2.3 with simplifications due to the prior structure. Specifically, the
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probability of assigning the i-th observation to a new cluster, described in (4.4),

reduces to

m̃(A(T i)|ϕ, σ2)× ϕ.

On the other hand, the probability of being assigned to the existing j-th cluster

Cj,−i, described in (4.5), takes the form

m̃ ({A(T s) : s ∈ {i} ∪ Cj,−i}|ϕ, σ2)
m̃ ({A(T s) : s ∈ Cj,−i}|ϕ, σ2) × |Cj,−i|.

Thus Chinese restaurant process assigns an observation into an existing cluster

or to a new cluster depending on the size of the existing clusters, parameter ϕ

and similarity of the customers (observations) already in a cluster with the new

observation.

Finally, the full conditional distribution to sample σ2 in step 3 of the algorithm

is given by IG(aσ|−, bσ|−) distribution with the values of aσ|− and bσ|− are given

by

aσ|− = aσ +
n

K∑
k=1

pk(pk − 1)

2

bσ|− = bσ + 1
2

n(C)∑
h=1

K∑
k=1

∑
1≤l<r≤pk

∑
i∈Ch

(
{A(T i)(k)}l,r − {Ā(T )(k)

Ch
}l,r

)2

+ϕ
(
{ ¯A(T )(k)

Ch
}l,r − θ0

)2
]

.

ϕ is sampled in each iteration from a discrete uniform distribution taking values

ϕf with probability proportional to m̃ (A(T 1), ...,A(T n)|ϕf , σ2)× ϕ
n(C)+1
f

Γ(ϕf )
Γ(n+ϕf ) ,

for f = 1, ..., F . We fix F = 20 throughout our empirical investigation.
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4.4 Numerical Illustration

This section studies the clustering performance of our proposed Bayesian Ten-

sor Clustering (BTC) approach vis-a-vis its competitors. To study all competitors

under various data generation schemes, we simulate n = 100 tensors T 1,...,T n from

a finite mixture of tensor normal models with H mixing components given by

T i ∼
H∑

h=1
πhTN(0, Σ1,h, ..., ΣK,h),

H∑
h=1

πh = 1. (4.12)

The data generation scheme ensures that the tensors in different clusters differ

only in their variability. Further, each simulated tensor is assumed to have K = 3

modes of dimensions p1 = 10, p2 = 20 and p3 = 30. While our approach is scal-

able for a much bigger tensor size, we kept the tensor dimensions moderate in

simulations to aid its comparison with the full Bayesian model-based clustering

approach, discussed later. The probability of inclusion in every mixture compo-

nent is taken to be identical πh = 1/H, resulting in clusters of similar size. The

precision matrices Σ−1
k,h for the covariance structure are generated as sparse matri-

ces to introduce complex conditional independence structure between the tensor

cells following the popular literature on graphical models (Rothman et al., 2008;

Liu and Martin, 2019; Cai et al., 2011). More specifically, each sparse matrix of

dimension pk × pk, k = 1, ..., K, is generated following the steps described below.

1. A symmetric edge matrix E is generated. Where each of diagonal entry is

equal to 1 with probability α and 0 otherwise. And all the diagonal elements

are equal to 0.

2. A matrix D = E/2 + δI where I is the identity and δ is chosen so that D

has a condition number of pk. Note that α determines the sparsity level.
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3. The final matrix is obtained sampling from a G-Wishart distribution with

degrees of freedom equal to pk + 3 and scale matrix equal to D.

In generating the true covariance matrices for different modes, the parameter α is

used to control sparsity of the covariance matrices. We consider seven simulation

cases by varying the number of clusters H and the sparsity of random precision

matrices α, given by,

(a) Case 1: H = 3, α = 0.1, (b) Case 2: H = 4, α = 0.1,

(c) Case 3: H = 3, α = 0.2, (d) Case 4: H = 4, α = 0.2,

(e) Case 5: H = 3, α = 0.3, (f) Case 6: H = 4, α = 0.3,

(g) Case 7: H = 4, α = 0.4.

The simulation results will develop understanding of how the interplay between

number of clusters and the sparsity in the covariance matrices affects performance

of the competitors.

4.4.1 Competitors and Metrics of Evaluation

As a competitor to our approach, we employ a few popular frequentist tensor

clustering approaches; a static version of the Dynamic Tensor Clustering algo-

rithm (DTC) (Sun and Li, 2019b) and Doubly-Enhanced EM algorithm (DEEM)

proposed for tensor mixture models (Mai et al., 2021b). While our Bayesian

approach allows simultaneous model-based determination of cluster number and

composition of each cluster, both of these frequentist clustering techniques fix the

number of clusters before implementing the clustering. In the simulation studies,

we implement both DTC and DEEM by fixing the number of clusters at the truth.

Although this leads to somewhat unfair comparison for BTC, it is nonetheless in-

structive to investigate its performance vis-a-vis these competitors. Further, we

acknowledge the fact that the DEEM algorithm does not necessarily fix the mean
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of every cluster at zero. To be fair to the DEEM competitor, we implement a

modified version of DEEM which simplifies the enhanced expectation step of the

algorithm by setting the means as known and equal to zero. We then implement

the enhanced Maximization step considering different within cluster covariances

as necessary for our set-up. Although the implementation of DEEM in (Mai et al.,

2021b) has the same within cluster covariance, their method is not restricted to

this set up. We then initialize the cluster memberships by performing k-means

clustering on the vectorized tensors as suggested in (Mai et al., 2021b). We run the

algorithm for 100 iterations, noticing that cluster membership stabilizes around 20

iterations. For DTC we use the code shared by the authors in its default setting,

running a first step to determine the tuning parameters, followed by running the

second step of clustering. We fix the number of clusters at their true values.

Finally, we also employ (4.12) after fixing the true number of clusters and the

true values of Σk,h’s for each tensor normal mixture component. This competitor

is referred to as the Oracle Bayesian tensor clustering approach, where the only

parameters left to estimate are the weights of the mixture components. Oracle is

generally expected to perform better than all the approaches and is used to assess

the loss in performance due to various approximations in our approach. Notably,

Oracle competitor is only available for simulation studies.

To assess inference on clusters from BTC, we look at (i) the point estimate of

cluster membership indicators denoted by ĉ, and (ii) a heatmap of the posterior

probability of any two samples belonging to the same cluster, or the co-clustering

matrix G with the (i, j)th entry P (ci = cj|Data) (which provides a measure of

the uncertainty associated with the clustering). An empirical estimate of the co-

clustering matrix G can be obtained from the post burn-in MCMC samples of the

cluster membership indices c.
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With the information on true cluster configuration in simulation studies, we

evaluate the quality of point estimate of clustering using the Adjusted Rand In-

dex (ARI) (Hubert and Arabie, 1985) of the posterior cluster configurations with

respect to the known cluster configuration. The ARI evaluates the agreement in

cluster assignment between two cluster configurations. It ranges between −1 and

1, with larger values indicating more agreement between cluster configurations.

Notably, ARI is only available for simulation studies where the true clusters are

known.

4.4.2 Simulation Results

Table 4.1 provide insights into the point estimates of the cluster structure by

displaying the discrepancy between the true and the estimated clusters. BTC

shows excellent clustering accuracy under all cases with ARI being close to 1.

However, as sparsity of tensors decreases BTC tends to mis-classify a fraction of

the data points, leading to a drop of ARI to 0.67 for α = 0.4 and further deteriorat-

ing with higher values of α. The deterioration in performance can be attributed to

the fact that with decreasing sparsity, the transformed features may not be able

to provide an accurate estimation of the tensor covariance structure, as noted

in Lemma 2.1. Further, BTC essentially clusters high-dimensional transformed

features and sparsity or any low-dimensional structure favors high-dimensional

clustering (Sun et al., 2012).

While DEEM is supplied with the true number of clusters, it often clubs mul-

tiple clusters to a single cluster which naturally yields an under-estimation in the

number of clusters and consequently, a drop of ARI values. Table 4.1 shows that

the clustering accuracy of DEEM plummets when true number of clusters in the

data increases, though sparsity does not seem to have any major impact on the
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clustering performance of DEEM. Note that DTC clusters based on the low-rank

decomposition of the mean structure of each tensor which is not conducive in

capturing in the present scenario, since data generating clusters mainly differ in

terms of their variability. In fact, the tensors simulated from (4.12) are not likely

to be approximated well by a low-rank decomposition, which presumably leads to

the less satisfactory performance of DTC. In contrast, the "gold standard" Oracle

is provided with the true covariance structure of the tensors as well as the true

number of clusters; hence it demonstrates ARI close to 1 in every simulation.

Interestingly, for higher degree of sparsity in the simulated tensors, the clustering

performance of BTC and Oracle are practically indistinguishable.

Table 4.1: Adjusted Rand Index (ARI) for competitors (BTC, DTC, DEEM,
Oracle) for different simulation configurations.

Cases α H BTC DEEM DTC Oracle

1 0.1 3 0.94 0.53 0.05 0.98
2 0.1 4 1.00 0.32 0.37 1.00
3 0.2 3 0.96 0.65 0.13 0.97
4 0.2 4 1.00 0.39 0.32 1.00
5 0.3 3 0.99 0.79 0.11 0.99
6 0.3 4 1.00 0.62 0.30 1.00
7 0.4 4 0.67 0.38 0.31 0.94

The uncertainty in clustering is displayed using the heat maps of posterior

probabilities of pairs of subjects belonging to the same cluster, or the co-clustering

matrix. Figures 1 and 2 show co-clustering matrices for all competitors (except

DTC) under all the simulation scenarios. Since DTC only offers point estimate

of clusters, co-clustering matrix corresponding to DTC is not available. To facili-

tate visualization in Figures 1 and 2, subjects are ordered according to their true

cluster configurations in the heatmap. In cases 1-6, BTC successfully recovers the
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Figure 4.1: Heatmap of the posterior probability of any two samples belonging
to the same cluster. For the cases with H = 4.
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true cluster structure, with little uncertainty associated with the estimator. With

decreasing sparsity, the clustering performance deteriorates as demonstrated by

case 7. However, even in case 7, where the BTC framework falls short of recover-

ing the true cluster structure, we find less uncertainty in the cluster estimation.

As discussed before, DEEM often produces less accurate clusters, though it does

so with a very little uncertainty. Oracle also recovers true clusters with very little

uncertainty. In general, BTC appears to be a competitive clustering approach
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Figure 4.2: Heatmap of the posterior probability of any two samples belonging
to the same cluster. For the cases with H = 3.
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when tensors are sparse. Importantly, unlike existing model-based tensor cluster-

ing approaches, high dimensionality of tensors is a blessing rather than a curse

for BTC as with high dimensions, the transformed features can more accurately

recover the true covariance matrices. This offers crucial advantage to BTC in

neuroscietific applications where high resolution tensors are routinely collected.
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4.5 EEG Data Application

We illustrate performance of BTC using a dataset on EEG signals for 58

children aged 25 to 126 months with autism spectrum disorder (ASD). For each

subject, EEG signals were sampled at 500 HZ for two minutes from a 128-channel

HydroCel Geodesic sensor Net. EEG recordings were collected during an ‘eyes-

open’ paradigm in which bubbles were displayed on a screen in a sound-attenuated

room to subjects at rest. More details related to pre-processing and data acqui-

sition can be found at Scheffler et al. (2020). The EEG data for each subject

is interpolated down to a standard 10 − 20 system 25 electrode montage using

interpolation as discussed in Perrin et al. (1989), producing 25 electrodes with

continuous EGG signal. We obtained spectral density estimates on the first 38

seconds of artifact free EEG data, across subjects, using the Fast Fourier Trans-

form described in Welch (1967) with two second Hanning windows and 50 percent

overlap. We further restrict our data to the alpha spectral band (Ω = (6Hz,

14Hz)) which due to the sampling scheme has a frequency resolution of 0.25Hz

resulting in 33 functional grid points. Finally, we normalize this band to a unit

area to better facilitate comparisons across electrodes and subjects. As a result

we end up with 58 two-way tensors (or matrices) of dimensions 25× 33.

Prior evidence suggests patients with autism spectrum disorder (ASD) can

be clustered based on EEG recordings with substantial heterogeneity in cluster-

specific mean and covariance structures Hasenstab et al. (2016). In a previous

analysis of our motivating alpha spectral density EEG data, Scheffler et al. (2020)

found a common alpha spectral mean structure across ASD patients 2-12 years old.

However, patients exhibited substantial heterogeneity in terms of alpha spectral

dynamics across the scalp. Thus, in this application, it is of interest to deter-

mine if ASD patients cluster in terms of patterns of variation rather than mean
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structure as most unsupervised approaches consider. Potential subgroups with

cluster-specific covariances can be investigated for links to observed characteris-

tics such as age, gender, or verbal and non-verbal intelligence quotients (VIQ and

NVIQ, respectively).

We apply the approximate tensor clustering framework of BTC to the collec-

tion of this 58 tensors. Since the BTC approach is mainly designed to address

clustering of tensors which are similar in their centers but show difference in

variability, it is instructive to investigate if the EEG dataset encourages such a

structure. While it is hard to verify such an assumption in high dimensional ob-

jects, we present two separate exploratory analyses to investigate this issue on this

dataset. We conduct an exploratory analysis by performing Principal Component

Analysis (PCA) of the data matrices. Figure 4.3 presents a plot for the first two

principal components, which account for 42.39% of the total variability in the

observations, here we can also see that no clustering is apparent, with the first

two principal components for observations being smoothly distributed instead of

being clustered in groups. While this offers no guarantee, one might expect that

a meaningful cluster difference in the location of the observations would become

apparent here.

To investigate this issue further, we vectorize each 25 × 33 tensor to a long

vector of 825 co-ordinates and perform k-means clustering separately on each of

these co-ordinates. If several of the coordinates show similar clustering pattern,

then one might intuitively expect that there is a meaningful difference in the clus-

ter means. We compute the similarity of each coordinate clustering by computing

the ARI of every coordinate clustering against every other coordinate clustering,

resulting in a possible
(

825
2

)
ARI values. We perform this analysis for k-means

with 2, 3, 4 and 5 clusters. Table 4.2 presents the 5th, 25th, 50th, 75th and 95th
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Figure 4.3: Observations visualizations: we present the first two principal com-
ponents after performing Principal Component Analysis.
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percentile values for ARI corresponding to k = 2, 3, 4, 5. The results demonstrate

the distribution of the ARI is concentrated around 0 for all choices of k, offering

no evidence that a significant number of coordinates results in similar clusters. In

fact, even for the 95th percentile, the level of similarity is still very low, and it

becomes even lower as we increase the number of clusters.

Table 4.2: Summary statistics of the coordinate clustering similarity computed
by ARI.

Means 5th 25th Median 75th 95th
percentile percentile percentile percentile

k = 2 -0.06940 -0.023240 -0.003562 0.06126 0.2623
k = 3 -0.02938 -0.010196 0.015847 0.06482 0.1857
k = 4 -0.02837 -0.005866 0.019221 0.05750 0.1400
k = 5 -0.02692 -0.003716 0.018981 0.05024 0.1162

With the preliminary exploration indicating no difference in clusters in terms
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of mean, we proceed to identify clusters with differences in their variability using

BTC. BTC was run for 400 iterations total, of which we used 100 as burn-in period.

The posterior distribution of the number of clusters in Figure 4.4b shows a clear

mode at 3, indicating three clusters among subjects. The co-clustering matrix

shown in Figure 4.4a indicates four clusters with a high degree of uncertainty

among the elements in the second and in the first cluster. Indeed, the result

indicates that the elements in the second cluster are often included as part of

the first cluster, which is consistent with the posterior mode of the number of

clusters being identified as three. In Figure 4.4c we observe that the posterior

distribution of ϕ in our approximate Bayesian clustering approach concentrates

around 1, which is equivalent to using a Chinese restaurant approach with a person

already seated in each table.

To demonstrate the stability of clusters in the post burn-in iterations, we plot

(Figure 4.5) ARI of clusters in any two successive post burn-in iterations. The

plot indicates that most of the partitions in successive iterations are identical or

very close to 1. The nominal degree of fluctuations in the ARI stems mainly from

the fact that elements in the second cluster are entirely part of the first cluster in

some of the iterations.

We further investigate the three clusters identified by BTC. The three clusters

include 30, 25 and 3 subjects. The groups are contrasted across four covariates

measured on the sample: gender, age, VIQ, and NVIQ. The three clusters varied

significantly with respect to NVIQ (p-value = 0.021) and borderline significance

with respect to VIQ (p-value = 0.065). These results seem driven largely by the

third cluster which only contains three subjects. If we remove this cluster, there

are no more significant contrasts. Ultimately, an unsupervised tensor clustering

analysis is inherently exploratory, and the identified clusters form the basis of

111



identifying ASD phenotypes of interest by fitting a sophisticated cluster specific

model.

Figure 4.4: Cluster structure for EEG data on 58 ASD children.
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Figure 4.5: ARI of each partition with respect to the previous partition through-
out the 300 MCMC iterations sequentially.
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We also perform a full Bayesian mixture model analysis of the data using

matrix normal distributions with zero mean as mixture components. This ap-

proach also attempts to cluster tensors based on their variability, but without
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any approximation as in BTC. This approach should ideally offer better cluster-

ing performance than DTC, since DTC is essentially is clustering technique that

clusters tensors based on the difference in their centers. As the true model pa-

rameters are not available for the real data, we are unable to present the Oracle.

Figure 4.6 presents co-clustering matrices for the full Bayesian implementation

for a mixture of K = 3, 4, 5 matrix normal distributions. The figure demonstrates

unsatisfactory performance of the full Bayesian clustering approach, showing only

one cluster. This is somewhat expected based on the performance of our compet-

ing approach DEEM in the simulation studies. DEEM is a frequentist analogue

to the Bayesian mixture model and it is found to underestimate the true number

of clusters under all cases in the simulation study. Importantly, even with a full

Bayesian implementation, the complexity of the real data combined with a moder-

ate sample size, makes the clustering results from the full Bayesian mixture model

of matrix normal distributions practically useless in our real data. Furthermore,

the BTC approximation is computationally less expensive than the full Bayesian

mixture model, as presented in Table 4.3.

Figure 4.6: Cluster structure for EEG data on 58 ASD children using a full
Bayesian mixture of matrix normals.
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Table 4.3: Runtime (in seconds) for 400 iterations for BTC and Full Bayesian
implementation for K = 5, 4, 3 for ASD data.

Method Runtime (secs)

BTC 148.10
Full Bayesian k = 5 341.20
Full Bayesian k = 4 271.03
Full Bayesian k = 3 211.72

4.6 Conclusion

This chapter has studied the problem of clustering high dimensional tensors

into subgroups where subgroups differ mainly in their variabilities, rather than in

their means. Algorithmic clustering approaches mainly cluster objects differing

in their centers, where as the Bayesian model based clustering approaches are too

heavy computationally for high dimensional tensors. Moreover, their performance

is less than satisfactory when the sample size is also moderate. To overcome these

issues, we have proposed a novel approach where we first start with an estimator

of the variability for each tensor and then develop model-based clustering of these

estimators. The approach is computationally simple, easily scales with big tensors

and offers accurate clusters, as well as clustering uncertainties. While there is a

plenty of literature on Bayesian mixture model based clustering or algorithmic

clustering for scalar, vector or functional data, very few articles have addressed

the issue of clustering tensors with high dimensions. This chapter proposes a novel

solution to this important problem.
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Chapter 5

Future Work

Many future directions emerge from Chapters 2-4 of the thesis. The DFP

algorithm in Chapter 2 develops an online approximate Bayesian framework for

high-dimensional linear regression with Gaussian errors. However, the scope of

the DFP algorithm can be extended well beyond the realm of Gaussian errors.

For example, DFP will be employed for high dimensional logistic and probit re-

gressions as part of our future work. While data augmentation schemes (Albert

and Chib, 1993; Polson et al., 2013) in high-dimensional binary regression allow

Gibbs sampling for parameter blocks, making the DFP formulation natural, they

also violate assumptions (1) and (2) in the formulation of DFP in Section 2.3 of

Chapter 2, which needs further research to be implemented. We also propose to

extend the DFP formulation for high dimensional linear regression with heavy-

tailed error distributions. Notably, a heavy-tailed error distribution can often be

expressed as a scale mixture of Gaussian errors. Thus, upon using a data augmen-

tation scheme, developing DFP under this model will require extending the DFP

framework when the number of parameters increases with the onset of a new data

shard. We would also like to extend our theoretical results on the convergence of

the DFP kernel to the full posterior from a fixed partitioning set up to an adaptive
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dynamic partitioning set up. Finally, this article constructs Θ̂
(t) as the average of

samples of Θ drawn from the DFP algorithm at time t. It is mentioned that the

theory allows alternative constructions of Θ̂
(t), as long as the sequence converges

to the true data generating parameter as t → ∞. As a future exploration, we

plan to develop a hybrid DFP algorithm where Θ̂
(t) is constructed separately by

implementing a frequentist high dimensional regression technique (e.g., lasso) at

the onset of a new data shard at every time. This will guarantee consistency

of Θ̂
(t) and the purpose of fitting the DFP algorithm then becomes quantifying

uncertainty in the posterior distribution of parameters.

Similar to Chapter 2, several future research directions emerge from our multi-

object regression framework in Chapter 3. In the first step to our multi-object

regression, we only exploit the hierarchical structure between ROIs and voxels in

the GM image but did not consider the spatial neighborhood information of vox-

els within an ROI. In future work, we plan to incorporate spatial information for

voxels within every ROI of GM. Such a framework will presumably present com-

putational challenges due to employing Gaussian processes for spatial smoothing.

As part of this work, we will employ computationally efficient Gaussian processes

to overcome such challenges. Another line of future work may incorporate images

from additional sources (e.g., white matter) as predictors to draw more robust

inference on influential ROIs.

Finally, the tensor clustering framework in Chapter 4 also opens the door to

a number of future research directions. We want to develop the tensor clustering

framework when tensors are symmetric as part of future work. As another future

work, we will develop clustering of multi-object data. Some of these constitute

our ongoing work.
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Appendix A

Bayesian Dynamic Feature

Partitioning in High-Dimensional

Regression with Big Data

A.1 Convergence Behavior of Approximate Sam-

plers

We study convergence behavior for the DFP algorithm provided in Section 2.3

of chapter 2. Since developing results with dynamic partitioning is challenging

given that any partitioning scheme exploits specifics of model and prior distri-

butions, the results developed here establish convergence of the DFP algorithm

with the assumption that the partitioning of the parameter set is fixed over time.

Although this is a restrictive assumption, DFP seems to enjoy desirable asymp-

totic behavior even under this assumption. With dynamic partitioning of subsets,

we expect to witness stronger theoretical results for DFP, which needs separate

attention in a future work.
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The theoretical development proceeds in a few steps. DFP algorithm being a

Markov chain framework assumes a transition kernel (denoted by Tt(·, ·) at time

t) and a stationary distribution of the transition kernel at each time t (referred

to as the DFP stationary distribution and denoted by πt). At first, we establish

the general form of the DFP stationary distribution πt at each time t. Next, we

develop sufficient conditions on the transition kernel (Tt(·, ·)), no. of samples (S)

drawn from the transition kernel at each time t, dynamic evolution of the DFP

stationary distributions over time and conditions on the point estimates (Θ̂(t)) to

ensure convergence of the DFP transition kernel to the full posterior distribution

asymptotically. Some of these conditions are verified for the specific cases of high

dimensional linear regression with shrinkage priors and spike and slab priors. To

begin with, we define a few quantities.

A.1.1 Notation and Framework

For the sake of simplicity denote ΘGt
l

= Θl,t ∈ Rql for l = 1, ..., kt a partition

of Θ into kt subsets at time t. Since our theoretical exposition fixes partitions over

time t, kt = k and ql’s are not functions of time t and ∑k
l=1 ql = q = dim(Θ), which

is also fixed across time by Assumption (1) of Section 2.3.1 in chapter 2. Assume

Θl,t = (θl,t,1, ..., θl,t,ql
)′. The full posterior distribution of Θ at time t, denoted

by f(Θ|S(t)) in Section 2.3, is also shortened as ft(Θ). Assume that the density

ft(Θ) is admitted with respect to the Lebesgue measure ν. Tt : Rq × Rq → R+

is a transition kernel at time t having the property that Tt(z, ·) is a probability

measure for all z ∈ Rq and Tt(·, A) is a measurable function for all A in the Borel

sigma algebra of Rq.

Finally, we denote Θ̂
(t)
−Gt

l
and Θ̂

(t)
Gt

l
as Θ̂

(t)
−l and Θ̂

(t)
l respectively, l = 1, ..., k, for

the simplicity of notation.
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A.1.2 The DFP transition kernel

It follows from the DFP algorithm that the DFP transition kernel Tt : Rq1 ×

· · · × Rqk → R+ at time t is given by:

Tt(Θ, Θ′) =
k∏

l=1

ql∏
i=1

ft

(
θ′

l,t,i|Θ̂
(t−1)
−l , {θ′

l,t,j}j<i, {θl,t,j}j>i

)
, (A.1)

which represents sequential updating of parameters within subsets. The unique

stationary distribution πt : Rq → R+ of the transition kernel Tt at time t is given

in the following lemma.

Lemma A.1.1. DFP approximate kernel Tt has a unique stationary distribution

πt(Θ) = ∏k
l=1 ft(Θl|Θ̂

(t−1)
−l ).

Proof. In order to prove the lemma, we will simply show that πt given by the

equation above satisfies
∫

Tt(Θ, Θ′)πt(Θ) dΘ = πt(Θ′). Note that

∫
Tt(Θ, Θ′)πt(Θ)dΘ

=
∫ k∏

l=1

[ ql∏
i=1

ft(θ′
l,t,i|Θ̂

(t−1)
−l , {θ′

l,t,j}j<i, {θl,t,j}j>i)ft(Θl|Θ̂
(t−1)
−l )

]
dΘ

=
k∏

l=1

∫ [ ql∏
i=1

ft(θ′
l,t,i|Θ̂

(t−1)
−l , {θ′

l,t,j}j<i, {θl,t,j}j>i)ft(Θl|Θ̂
(t−1)
−l )

]
dΘ

=
k∏

l=1
ft(Θ′

l|Θ̂
(t−1)
−l ).

Here the last step follows by recognizing that the kernel Tt is a product of various

independent Gibbs sampler (or Metropolis Hastings) kernels in different parameter

partitions.
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A.1.3 Main convergence results

We will now state a theorem and a corollary. The theorem states reasonable

assumptions to ensure decay of the total variation distance between DFP transi-

tion kernel and its stationary distribution as t increases. The corollary then adds

a few more sufficient conditions to ensure that DFP kernel becomes close to the

full posterior distribution as t increases. Let π0 denote the initial distribution

from which parameters are drawn. Suppose T S
t denotes the kernel corresponding

to S draws from the DFP kernel Tt. We use || · ||T V to denote the total variation

distance and dH(·, ·) to denote the Hellinger distance between two densities. The

statement of the theorem is given below.

Theorem A.1.2. Let ϵ ∈ (0, 1). Assume ∃ a constant C > 0, a positive integer

S and a function V : Rq → [1,∞) s.t. for all large t,

(i) Eπt(V 2) ≤ C

(ii) ||Tt(Θ, ·)S − πt||T V ≤ V (Θ)αS
t < 1− ϵ ∀ Θ and for some αt ∈ (0, 1).

Then,

||T S
t · · ·T S

1 − πt||T V ≤
t∑

s=1
ϵt+1−sρs, (A.2)

where ρt = 2
√

CdH(πt, πt−1).

The proof of Theorem A.1.2 follows along the same line of the proof of Theorem

3.6 in (Yang and Dunson, 2013) and is thus omitted.

Corollary A.1.2.1. If conditions (i) and (ii) of Theorem A.1.2 are satisfied and

additionally we assume (iii) ρt → 0 and (iv) ||πt − ft||T V → 0, as t → ∞. Then

||T S
t · · ·T S

1 − ft||T V → 0.
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Proof: Using conditions (i), (ii) and (iii), as t→∞, ||T S
t · · ·T S

1 −πt||T V → 0,

following Theorem 0.2. Now we use (iv) to deduce that ||T S
t · · ·T S

1 − ft||T V ≤

||T S
t · · ·T S

1 − πt||T V + ||πt − ft||T V → 0, as t→∞.

Remark Corollary A.1.2.1 shows that the DFP transition kernel after S draws

each at time 1, ..., t becomes close to the full posterior distribution ft at time t.

This implies that as time t increases, samples drawn from the DFP full conditional

distributions can be taken as the draws from the un-approximated full posterior

distribution ft.

Next, we argue that the assumptions in Theorem A.1.2 and Corollary A.1.2.1

are reasonable. Note that conditions (i) and (ii) refer to the assumption that the

DFP transition kernel at time t converges to the DFP stationary distribution at

time t at a geometric rate. This assumption is also referred to as the Geometric

Ergodicity assumption. We first prove that this assumption holds for shrinkage

and spike and lasso priors used in this article in Theorems 0.4 and 0.5, respectively.

Condition (iii) ensures that the stationary distribution of the approximating kernel

changes slowly as time proceeds. This is a mild condition satisfied by any regular

parametric model by applying the Bernstein-Von Mises theorem. Finally, we prove

condition (iv) under a few regularity assumptions in Lemma 0.6.

We will now proceed to verify Geometric Ergodicty for the DFP kernel with some

of the Gaussian scale mixture priors and spike and lasso prior. The theorem below

shows conditions for geometric ergodicity under Bayesian lasso prior. The proof

uses some of the techniques outlined in Pal et al. (2014).

Theorem A.1.3. Assume there exists m0 > 0 s.t. emin(S(t)
1,∇) ≥ m0, for any set

∇ ⊆ {1, ..., p} and any t = 1, ..., T , where S
(t)
1,∇ is a submatrix of S

(t)
1 with columns

corresponding to the indices ∇. Then the DFP Bayesian lasso transition kernel

is geometrically ergodic.
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Proof. If Tt((β, τ 2, σ2, λ2), (β′, (τ 2)′, (σ2)′, (λ2)′)) is the transition kernel of the

DFP and πt(β, τ 2, σ2, λ2) is the stationary distribution of the transition kernel,

then Tt(·, ·) and πt(·) for the Bayesian lasso are given by

Tt((β, τ 2, σ2, λ2), ((β)′, (τ 2)′, (σ2)′, (λ2)′)

=
∏

l

∏
j∈Gt

l

{
ft((βj)′|(τ 2

j ), β̂
(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

× ft((τ 2
j )′|(βj)′, β̂

(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

}
× ft((σ2)′|β̂(t−1)

, τ̂ 2(t−1))ft((λ2)′|β̂(t−1)
, τ̂ 2(t−1)) (A.3)

πt(β, τ 2, σ2, λ2)

=
k∏

l=1

{
ft(βl, τ 2

l |β̂
(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

}

× ft(σ2|β̂(t−1)
, τ̂ 2(t−1))ft(λ2|β̂(t−1)

, τ̂ 2(t−1)). (A.4)

Hence, ||Tt − πt||T V = ||T̃t,1 − π̃t,1||T V , where

T̃t,1 =
∏

j∈Gt
l

{
ft((βj)′|(τ 2

j ), β̂
(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

×ft((τ 2
j )′|(βj)′, β̂

(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

}

π̃t,1 =
k∏

l=1

{
ft(βl, τ 2

l |β̂
(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

}
.

Thus it is enough to show the geometric ergodicity of the chain by establishing a

geometric drift condition and a geometric minorization condition for the (β, τ 2)

chain.

Minorization condition.

Define, Ṽt(β, τ 2) =
∑p

j=1 β2
j

1
m0

∑k

l=1 H ′
lHl+1

+ ∑p
j=1 τ 2

j , where H l = S
(t)
2,l − S

(t)
1,l,−lβ̂

(t−1)
−l .

Let SṼt,d = {(β, τ 2) : Ṽt(β, τ 2) ≤ d}. While showing minorization condition, we
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will establish that there exists a constant 0 < c(Ṽt, d) < 1 depending on Ṽt and d

such that T̃t,1((β0, τ 2
0), (β, τ 2)) ≥ c(Ṽt, d)g(β, τ 2) for some density function g(·)

for every (β0, τ 2
0) ∈ SṼt,d. Denote λ̃ = λ̂2(t−1) and µ̃j =

√
σ̂2(t−1)λ̂2(t−1)

β2
0j

. Then

ft(τ 2
j |β0) =

√
λ̃

2π
(τ 2

j )−1/2 exp
{
−λ̃

(1− τ 2
j µ̃j)2

2µ̃2
jτ

2
j

}

=
√

λ̃

2π
(τ 2

j )−1/2 exp
{
−

λ̃τ 2
j

2 −
λ̃

2µ̃2
jτ

2
j

+ λ̃

τj

}

≥

√
λ̃

2π
(τ 2

j )−1/2 exp
{
−

λ̃τ 2
j

2 −
λ̃

2µ̃2
jτ

2
j

}
. (A.5)

Note that Ṽt(β0, τ 2
0 ) ≤ d implies β′

0β0
1

m0

∑k

l=1 H ′
lHl+1

+ ∑p
j=1 τ 2

j ≤ d when (β0, τ 2
0) ∈

SṼt,d. Thus β′
0β0 ≤ d

[
1

m0

∑k
l=1 H ′

lH l + 1
]

when (β0, τ 2
0) ∈ SṼt,d. Using this, and

the previous inequality (A.5), we have

ft(τ 2
j |β0) ≥

√
λ̂2(t−1)

2π
(τ 2

j )−1/2 exp

− λ̂2(t−1)τ 2
j

2 −
d
[

1
m0

∑k
l=1 H ′

lH l + 1
]

2τ 2
j σ̂2(t−1)


≥

√
λ̂2(t−1)

2π
(τ 2

j )−1/2

exp

−
1
2

√λ̂2(t−1)τ 2
j −

√√√√√d
[

1
m0

∑k
l=1 H ′

lH l + 1
]

τ 2
j σ̂2(t−1)


2

exp

−
√√√√ λ̂2(t−1)d

[
1

m0

∑k
l=1 H ′

lH l + 1
]

σ̂2(t−1)
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Let c(Ṽt, d) = exp

−
√

λ̂2(t−1)d

[
1

m0

∑k

l=1 H ′
lHl+1

]
σ̂2(t−1)

. Thus

T̃t,1((β0, τ 2
0), (β, τ 2))

=
k∏

l=1

∏
j∈Gt

l

ft(βj|τ 2
j , σ̂2(t−1), λ̂2(t−1))ft(τ 2

j |β0j, σ̂2(t−1), λ̂2(t−1))

≥ c(Ṽt, d)
k∏

l=1

∏
j∈Gt

l

p∏
j=1

ft(βj|τ 2
j , σ̂2(t−1), λ̂2(t−1))gt(τ 2

j |σ̂2(t−1), λ̂2(t−1)),

where

gt(τ 2
j |σ̂2(t−1), λ̂2(t−1)) =

√
λ̂2(t−1)

2π
(τ 2

j )−1/2

exp

−
1
2

√λ̂2(t−1)τ 2
j −

√√√√√d
[

1
m0

∑k
l=1 H ′

lH l + 1
]

τ 2
j σ̂2(t−1)


2

is a density function. Hence the minorization condition is established.

Geometric drift condition.

E[
k∑

l=1
Ṽt(βl, τ 2

l )|β0, τ 2
0] = E2[E1[

k∑
l=1

Ṽt(βl, τ 2
l )|β0, τ 2

0]],

where the inner expectation is w.r.t conditional distribution of β|τ 2
0 and the outer
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expectation is w.r.t. τ 2|β0.

E1[
k∑

l=1
Ṽt(βl, τ 2

l )|β0, τ 2
0]

=
∑k

l=1 H ′
l(S

(t)
1,l + M−1

τ 0,l
)−1(S(t)

1,l + M−1
τ 0,l

)−1H l + tr(σ̂2(t−1)(S(t)
1,l + M−1

τ 0,l
)−1)[

1
m0

∑k
l=1 H ′

lH l + 1
]

+
p∑

j=1
τ 2

j

≤
(∑p

j=1 τ 2
0j) 1

m0

∑k
l=1 H ′

lH l + σ̂2(t−1) p
m0[

1
m0

∑k
l=1 H ′

lH l + 1
] +

p∑
j=1

τ 2
j

≤ (
p∑

j=1
τ 2

0j)
1

m0

∑k
l=1 H ′

lH l[
1

m0

∑k
l=1 H ′

lH l + 1
] +

σ̂2(t−1) p
m0[

1
m0

∑k
l=1 H ′

lH l + 1
] +

p∑
j=1

τ 2
j , (A.6)

where the second step follows

(S(t)
1,l + M−1

τ 0,l
)−1 ≤ 1

m0
I, (S(t)

1,l + M−1
τ 0,l

)−1 ≤
p∑

j=1
τ 2

j . (A.7)

E2[
p∑

j=1
τ 2

j ] =
p∑

j=1

√ β2
0j

σ̂2(t−1)λ̂2(t−1)
+ 1

λ̂2(t−1)



=
p∑

j=1

√√√√√ β2
0j[

1
m0

∑k
l=1 H ′

lH l + 1
]
[

1
m0

∑k
l=1 H ′

lH l + 1
]

σ̂2(t−1)λ̂2(t−1)
+ p

λ̂2(t−1)

≤ β′
0β0

2
[

1
m0

∑k
l=1 H ′

lH l + 1
] +

p
[

1
m0

∑k
l=1 H ′

lH l + 1
]

2σ̂2(t−1)λ̂2(t−1)
+ p

λ̂2(t−1)
, (A.8)

where the last inequality follows by the Cauchy-Schwartz inequality. Using (A.6)
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and (A.8),

E[
k∑

l=1
V (βl, τ 2

l )|β0, τ 2
0] ≤ (

p∑
j=1

τ 2
0j)

1
m0

∑k
l=1 H ′

lH l[
1

m0

∑k
l=1 H ′

lH l + 1
] +

σ̂2(t−1) p
m0[

1
m0

∑k
l=1 H ′

lH l + 1
]

+ β′
0β0

2
[

1
m0

∑k
l=1 H ′

lH l + 1
] +

p
[

1
m0

∑k
l=1 H ′

lH l + 1
]

2σ̂2(t−1)λ̂2(t−1)

+ p

λ̂2(t−1)

≤ γV (β0, τ 2
0) + b,

where 0 < γ = max

1
2 ,

1
m0

∑k

l=1 H ′
lHl[

1
m0

∑k

l=1 H ′
lHl+1

]
 < 1 and b =

σ̂2(t−1) p
m0[

1
m0

∑k

l=1 H ′
lHl+1

]+ p

λ̂2(t−1) +

p

[
1

m0

∑k

l=1 H ′
lHl+1

]
2σ̂2(t−1)λ̂2(t−1) > 0. Hence the geometric drift condition is satisfied. Geometric

drift and minorization condition together implies geometric ergodicity of the chain.

We will now prove a similar result for the spike and lasso model. Indeed,

Theorem A.1.4. Assume there exists m0 > 0 s.t. emin(S(t)
1,∇) ≥ m0, for any

set ∇ ⊆ {1, ..., p} and any t = 1, ..., T , where S
(t)
1,∇ is a submatrix of S

(t)
1 with

columns corresponding to the indices ∇. Then the DFP Bayesian spike and lasso

transition kernel is geometrically ergodic.

Proof. If Tt((β, τ 2, σ2, λ2, θ, γ), (β′, (τ 2)′, (σ2)′, (λ2)′, (θ)′, (γ)′)) is the transition

kernel of the DFP and πt(β, τ 2, σ2, λ2, θ, γ) is the stationary distribution of the

transition kernel, then Tt(·, ·) and πt(·) for the Bayesian spike and lasso model are
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given by

Tt((β, τ 2, σ2, λ2, θ, γ), ((β)′, (τ 2)′, (σ2)′, (λ2)′, (θ)′, (γ)′))

=
{

ft((β1)′|(τ 2
1), β̂

(t−1)
−1 , τ̂

2(t−1)
−1 , σ̂2(t−1), λ̂2(t−1))

ft((τ 2
1)′|(β1)′, β̂

(t−1)
−1 , τ̂

2(t−1)
−1 , σ̂2(t−1), λ̂2(t−1))

}
∏

l

∏
j∈Gt

l

{
ft((βj)′|(τ 2

j ), β̂
(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

ft((τ 2
j )′|(βj)′, β̂

(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

}
ft((σ2)′|β̂(t−1)

, τ̂ 2(t−1))ft((λ2)′|β̂(t−1)
, τ̂ 2(t−1))

ft((θ)′|β̂(t−1)
, τ̂ 2(t−1))

p∏
j=1

ft((γ)′|β̂(t−1)
, τ̂ 2(t−1)) (A.9)

πt(β, τ 2, σ2, λ2, θ, γ)

=
k∏

l=1

{
ft(βl, τ 2

l |β̂
(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

}

ft(σ2|β̂(t−1)
, τ̂ 2(t−1))ft(λ2|β̂(t−1)

, τ̂ 2(t−1))

ft(θ|β̂
(t−1)

, τ̂ 2(t−1))ft(γ|β̂
(t−1)

, τ̂ 2(t−1)). (A.10)

where β1 = {βj : βj ∈ Θ1,t}, τ 2
1 = {τ 2

j : τ 2
j ∈ Θ1,t}. Hence, ||Tt − πt||T V =

||T̃t,1 − π̃t,1||T V , where

T̃t,1 =
{

ft((β1)′|(τ 2), β̂
(t−1)
−1 , τ̂

2(t−1)
−1 , σ̂2(t−1), λ̂2(t−1), θ̂(t−1), γ̂(t−1))

ft((τ 2
1)′|(β1)′, β̂

(t−1)
−1 , τ̂

2(t−1)
−1 , σ̂2(t−1), λ̂2(t−1), θ̂(t−1), γ̂(t−1))

}
π̃t,1 =

{
ft(β1, τ 2

1|β̂
(t−1)
−1 , τ̂

2(t−1)
−1 , σ̂2(t−1), λ̂2(t−1), θ̂(t−1), γ̂(t−1))

}
.

Thus it is enough to show the geometric ergodicity of the chain by establishing a

geometric drift condition and a geometric minorization condition for the (β1, τ 2
1)
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chain. Define, Ṽt(β1, τ 2
1) = β′

1β1
1

m0
H ′

1H1+1 + 1′τ 2
11, where H l = S

(t)
2,l − S

(t)
1,l,−lβ̂

(t−1)
−l .

Using similar calculations as in Theorem A.1.3, the proof of minorization and

geometric drift conditions follow.

It remains to show (iv) in Corollary 0.3. The lemma presented below develops

sufficient conditions to derive (iv). The lemma is presented for a general likelihood

function pΘ(·).

Lemma A.1.5. Assume the following,

(B1) the likelihood function pΘ(·) is continuous as a function of Θ at Θ0 =

(Θ0
1, .., Θ0

k) and
√

tpΘ0(D(t)) in limit is bounded away from 0 and ∞;

(B2) Θ0 is an interior point in the domain and prior distribution π0(Θ) is positive

and continuous at Θ0;

(B3) Θ̂
(t) → Θ0 a.s. under the data generating law at Θ0;

(B4) for a neighborhood Nϑ = {Θ : ||Θ − Θ0|| < ϑ∆t}, ft(Nϑ) → 1 and

πt(Nϑ) → 1, as t → ∞, under the data generating law at Θ0, for any ϑ > 0.

Thus, the distributions ft and πt both concentrate around Θ0 at a rate ∆t (with

∆t ↓ 0 as t→∞).

Under (B1)-(B4), ∃ κt depending on ∆t, s.t. κt → 0 and ||ft−πt||T V = 2
∫ ∣∣∣πt(Θ)−

ft(Θ)
∣∣∣ dΘ ≤ 2κt for large t, a.s. under the data generating model at Θ0.

Proof. Stationary distribution πt of the DFP transition kernel Tt is the approxi-

mate posterior distribution to πt obtained at time t, and by Lemma A.1.1 is given

by

πt(Θ1, ..., Θk) =
k∏

l=1
ft(Θl|Θ̂

(t−1)
−l ) =

∏k
l=1

∏t
s=1

{
p

Θl,Θ̂
(t−1)
−l

(Ds)π0(Θ̂
(t−1)
−l , Θl)

}
∫ ∏k

l=1
∏t

s=1

{
p

Θl,Θ̂
(t−1)
−l

(Ds)π0(Θ̂
(t−1)
−l , Θl)

} .

By assumption, Θ̂
(t)
l → Θ0

l a.s. under Θ0, there exists Ω0 which has probability 1
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under the data generating law s.t. for all ω ∈ Ω0, Θ̂
(t)
l (ω) is in an arbitrarily small

neighborhood of Θ0
l , l = 1, ..., k. Also by assumption, prior π0 is continuous at Θ0.

That is, given ϵt > 0 and η1,t, η2,t > 0, there exists a neighborhood Nϵt,η1,t,η2,t =

{Θ : ||Θ − Θ0|| ≤ M∆t} s.t. for all Θ ∈ Nϵt,η1,t,η2,t one has |π0(Θ1, ..., Θk) −

π0(Θ0
1, ..., Θ0

k)| < ϵt. Using this and the consistency of Θ̂
(t)
l , l = 1, ..., k as above,

one obtains for all t > t0 and ω ∈ Ω0

|π0(Θl, Θ̂
(t−1)
−l )− π0(Θ0)| < ϵt, (A.11)

Similarly, continuity of pΘ(·) at Θ0 leads to the condition that for all t > t0,

|pΘ1,...,Θk
(Dt)− pΘ0

1,...,Θ0
k
(Dt)| < ϵt. (A.12)

Further, convergence assumptions on ft and πt yield that for all t > t1 and ω ∈ Ω1

ft(Nϵt,η1,t,η2,t |D(t)(ω)) > 1 − η1,t, πt(Nϵt,η1,t,η2,t|D(t)(ω)) > 1 − η2,t, where Ω1 has

probability 1 under the data generating law. Considering Ω = Ω0 ∩ Ω1 and t2 =

max{t1, t0} it is evident that Ω has probability 1 under the true data generating

law and all of the above conditions hold for t > t2 and ω ∈ Ω. Simple algebraic

manipulations yield

πt(Θ|D(t)(ω))
ft(Θ|D(t)(ω))

=
πt(Nϵt,η1,t,η2,t|D(t)(ω))
ft(Nϵt,η1,t,η2,t |D(t)(ω))

∫
Nϵt,η1,t,η2,t

∏t
s=1 pΘ(Ds)π0(Θ)∏t

s=1 pΘ(Ds)π0(Θ)[∏t
s=1

∏k
l=1 p

Θl,Θ̂
(t)
−l

(Ds)π0(Θ̂
(t)
−l , Θl)

]
∫

Nϵt,η1,t,η2,t

[∏t
s=1

∏k
l=1 p

Θl,Θ̂
(t)
−l

(Ds)π0(Θ̂
(t)
−l , Θl)

] .
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Using (A.11) we have

(π0(Θ0)− ϵ)
∫

Nϵt,η1,t,η2,t

t∏
s=1

pΘ(Ds) ≤
∫

Nϵt,η1,t,η2,t

[ t∏
s=1

pΘ(Ds)
]
π0(Θ)

≤ (π0(Θ0) + ϵ)
∫

Nϵt,η1,t,η2,t

t∏
s=1

pΘ(Ds).

Thus,

πt(Θ|D(t)(ω))
ft(Θ|D(t)(ω))

≤
(1− η1,t)−1∏t

s=1
∏k

l=1 p
Θl,Θ̂

(t)
−l

(Ds)∫
Nϵt,η1,t,η2,t

∏t
s=1

∏k
l=1 p

Θl,Θ̂
(t)
−l

(Ds)

∫
Nϵt,η1,t,η2,t

∏t
s=1 pΘ(Ds)∏t

s=1 pΘ(Ds)

(π0(Θ0) + ϵ)3

(π0(Θ0)− ϵ)3 .

Using similar calculations we have

πt(Θ|D(t)(ω))
ft(Θ|D(t)(ω))

≥
(1− η2,t)

∏t
s=1

∏k
l=1 p

Θl,Θ̂
(t)
−l

(Ds)∫
Nϵt,η1,t,η2,t

∏t
s=1

∏k
l=1 p

Θl,Θ̂
(t)
−l

(Ds)

∫
Nϵt,η1,t,η2,t

∏t
s=1 pΘ(Ds)∏t

s=1 pΘ(Ds)

(π0(Θ0)− ϵ)3

(π0(Θ0) + ϵ)3 .

Condition (A.12) now gives us

∏t
s=1(pΘ0(Ds)− ϵ)3∏t
s=1(pΘ0(Ds) + ϵ)3 ≤

∏t
s=1

∏k
l=1 pΘl,Θ̂

t
−l

(Ds)∫
Nϵt,η1,t,η2,t

∏t
s=1

∏k
l=1 p

Θl,Θ̂
(t)
−l

(Ds)∫
Nϵt,η1,t,η2,t

∏t
s=1 pΘ(Ds)∏t

s=1 pΘ(Ds)

≤
∏t

s=1(pΘ0(Ds) + ϵ)3∏t
s=1(pΘ0(Ds)− ϵ)3 .

Using the condition that limt→∞
√

tpΘ0(D(t)) is bounded away from 0 and ∞

and choosing ϵ, η sufficiently small, we have
∣∣∣∣πt(Θ|D(t)(ω))

ft(Θ|D(t)(ω)) − 1
∣∣∣∣ < υt for all t >
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t2 and ω ∈ Ω. Finally,

∫
|πt(Θ)− ft(Θ)| ≤

∫
Nϵt,η1,t,η2,t

|πt(Θ)− ft(Θ)|+
∫

Nc
ϵt,η1,t,η2,t

|πt(Θ)− ft(Θ)|

≤
∫

Nϵt,η1,t,η2,t

|πt(Θ)− ft(Θ)|+ η1,t + η2,t

≤ ft(Nϵt,η1,t,η2,t)υt + η1,t + η2,t < υt + η1,t + η2,t = κt.

Remark: Lemma A.1.5 outlines sufficient conditions (B1)-(B4) for the DFP sta-

tionary distribution to be close to the full posterior distribution as t increases. One

of the important sufficient conditions pertains to the consistency of the sequence

of estimators Θ̂
(t) (assumption (B3)). Referring to Section 2.3.2 of chapter 2, we

construct Θ̂
(t) as the average of samples of Θ drawn from the DFP algorithm

at time t. While consistency of Θ̂
(t) constructed in this way is difficult to prove

theoretically, we have empirically demonstrated that Θ̂
(t) concentrates around the

true Θ0 in the simulation examples presented in Section 2.4 of chapter 2. It is

mentioned that the theory allows alternative constructions of Θ̂
(t), as long as the

consistency condition is met. As a future exploration, we plan to develop a hybrid

DFP algorithm where Θ̂
(t) is constructed rapidly by implementing a separate fre-

quentist high dimensional regression technique (e.g., lasso) at the onset of a new

data shard at every time. This will guarantee consistency of Θ̂
(t) and the purpose

of the DFP algorithm then becomes quantifying uncertainty on the parameters.

We also emphasize that the assumption (B4) on the concentration of posterior

ft around the truth Θ0 is reasonable as t → ∞, as there is a fairly well devel-

oped literature that shows posterior of parameters concentrating around the true

parameter Θ0 at a rate close to t−1/2 in the high dimensional regression with vari-

able selection or shrinkage priors, see e.g., Song and Liang (2017). Similar proof
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techniques can be adapted to show the concentration of πt around Θ0 as t→∞.

We will take ∆t to be the smallest among the rates of convergence for πt and ft.

A.2 Algorithms

This section details out specifics of the DFP algorithm for high dimensional

regression with the Bayesian Lasso prior (Section 2.4.1 of chapter 2), Horseshoe

prior (Section 2.4.2 of chapter 2) and Spike-and-Lasso prior (Section 2.4.3 of chap-

ter 2).

A.2.1 Bayesian Lasso Prior

1. Initialize: Initialize variables β, τ 2, σ2 and λ. Set β̂
(0)

, σ̂2(0), τ̂ 2(0), λ̂2(0) at

their initial values.

2. Observe data and partition parameter space at time t: Observe data Dt =

{yt, X t} at time t. Update the partitions of the parameters based on the

iterates of the parameters at time (t− 1). The parameter partitioning algo-

rithm at time t for the shrinkage priors is given in Section 2.3.

3. Update sufficient statistics: Update sufficient statistics S
(t)
1 , S

(t)
2 , S

(t)
3 based

on

S
(t−1)
1 , S

(t−1)
2 , S

(t−1)
3 and Dt with the equations given in Section 2.2.1.

4. Drawing approximate posterior samples: Draw S samples from the DFP full
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conditional posterior distributions of βl and τ 2
l given by

1
τ 2

j

|· ∼ Inv −Gaussian


√√√√ λ̂2(t−1)σ̂2(t−1)

β2
j

, λ̂2(t−1)

∀τ 2
j ∈ τ 2

l ,

βl ∼ N
(

µ
β

(t)
l

, Σ
β

(t)
l

)
µ

β
(t)
l

=
(
S

(t)
1,l + M−1

τ,l

)−1
(

S
(t)
2,l − S

(t)
1,l,−lβ̂−l

(t−1)
)

,

Σ
β

(t)
l

= σ̂2(t−1)
(
S

(t)
1,l + M−1

τ,l

)−1
.

The conditional distributions of the parameters in the lth server depends

on the lower dimensional functions of sufficient statistics, point estimates

from time (t − 1) and the other parameters from the same partition. This

is conceptualized in the notation J
(t)
l,j in Section 2.3. Sampling from the

DFP full conditionals of {βl, τ 2
l } (l = 1, ..., bt) is performed on bt servers in

parallel. In the (bt +1)-th server, draw S samples from the DFP conditional

distributions of λ2 and σ2 given by λ2 ∼ Gamma

(
p + r,

∑p

j=1 τ̂
2(t−1)
j

2 + d

)
,

σ2 ∼ IG

nt+p
2 ,

(
S

(t)
3 +β̂

(t−1)′
S

(t)
1 β̂

(t−1)
−2β̂

(t−1)′
S

(t)
2

)
+β̂

(t−1)′
(M̂

(t−1)
τ )−1β̂

(t−1)

2

.

5. Compute the sequence of estimators at time t: Set β̂
(t), τ̂ 2(t), σ̂2(t), λ̂2(t)

from their respective sample averages from S MCMC samples.

A.2.2 Horseshoe Prior

1. Set β̂
(0)

, σ̂2(0), λ̂
2(0)

, ν̂2(0), τ̂ 2(0) and ξ̂(0) at their initial values.

2. Observe data Dt = {yt, X t} at time t. Update the partitions of the param-

eters based on the iterates of the parameters at time (t− 1). The dynamic

partitioning scheme for parameters for shrinkage priors described in Section

2.3 is employed. Throughout, the partitions G
(t)
bt+1 and G

(t)
bt+2 are kept fixed.

3. Update sufficient statistics S
(t)
1 , S

(t)
2 , S

(t)
3 based on S

(t−1)
1 , S

(t−1)
2 , S

(t−1)
3 and
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Dt with the equations given in Section 2.2.2.

4. Draw S samples from the DFP conditional distributions of βl and λl given

by

λ2
j ∼ IG

1,

 1
ν̂

(t−1)
j

+
β2

j

2τ̂ 2(t−1)σ̂2(t−1)

 , λ2
j ∈ λ2

l , βl ∼ N
(

µ
β

(t)
l

, Σ
β

(t)
l

)

µ
β

(t)
l

=
(

S
(t)
1,l +

M−1
λ,l

τ 2

)−1 (
S

(t)
2,l − S

(t)
1,l,−lβ̂−l

(t−1)
)

,

Σ
β

(t)
l

= σ̂2(t−1)
(

S
(t)
1,l +

M−1
λ,l

τ 2

)−1

,

Sampling from the DFP full conditionals of {βl, λl} (l = 1, .., bt) are per-

formed on bt servers in parallel with the number of flops at most M3 at

every server. Draw S samples from the DFP full conditionals of ν given

by νj ∼ IG

(
1,

(
1 + 1

λ̂
2(t−1)
j

))
, j = 1, ..., p, in the (bt + 1)-th server. Fi-

nally, in the (bt + 2)-th server, draw S samples from the DFP full con-

ditional posterior distributions of τ 2, ξ, σ2 given by ξ ∼ IG
(
1, 1 + 1

τ2

)
,

τ 2 ∼ IG

(
p+1

2 , 1
ξ

+ β̂
(t−1)′

(M̂
(t−1)
λ )−1β̂

(t−1)

2σ2

)
,

σ2 ∼ IG

(
nt+p

2 ,
S

(t)
3 +β̂

(t−1)′
S

(t)
1 β̂

(t−1)−2β̂
(t−1)′

S
(t)
2

2 + β̂
(t−1)′

(M̂
(t−1)
λ )−1β̂

(t−1)

2τ2

)
.

5. Set β̂
(t), λ̂

2(t), ν̂(t), τ̂ 2(t), σ̂2(t) and ξ̂(t) as their respective sample averages

from S MCMC samples.

A.2.3 Spike & Lasso Prior

1. Initialize: Set β̂
(0)

, σ̂2(0), λ̂2(0), γ̂2(0), τ̂ 2(0) and θ̂(0) at their initial values.

2. Parameter space partitioning at time t: Observe data Dt = {yt, X t} at time

t. Update the partitions of the parameters based on the iterates of the pa-

rameters at time (t − 1). As discussed in the partitioning scheme for the
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Spike and Lasso prior in Section 2.3, the number of partitions is kt = 1+|{j :

(βj, τ 2
j ) ∈ Θ2t}|, where | · | denotes the cardinality of the set.

3. Update sufficient statistics: Update sufficient statistics S
(t)
1 , S

(t)
2 and S

(t)
3

based on S
(t)
1 = S

(t−1)
1 +X ′

tX t, S
(t)
2 = S

(t−1)
2 +X ′

tyt and S
(t)
3 = S

(t−1)
3 +y′

tyt.

4. Draw approximate posterior samples at time t: Define I1t = {j : (βj, τ 2
j ) ∈

Θ1t}, where Θ1t = {(βj, τ 2
j ) : γ̂

(t−1)
j = 1}. In a server, draw S samples from

the DFP full conditional posterior distributions of βI1t
= (βj : j ∈ I1t)′ and

τ 2
I1t

= (τ 2
j : j ∈ I1t)′ given by

1
τ 2

j

|· ∼ Inv −Gaussian


√√√√ λ̂2(t−1)σ̂2(t−1)

β2
j

, λ̂2(t−1)

 ∀ j ∈ I1t,

βI1t
∼ N

(
µ

β
(t)
I1t

, Σ
β

(t)
I1t

)
, Σ

β
(t)
I1t

= σ̂2(t−1)
(
S

(t)
1,I1t

+ M−1
I1t

)−1

µ
β

(t)
I1t

=
(
S

(t)
1,I1t

+ M−1
I1t

)−1
(

S
(t)
2,I1t
− S

(t)
1,I1t,−I1t

β̂−I1t

(t−1))
,

where MI1t is a sub-matrix of M corresponding to the indices of I1t,

S
(t)
1,I1t

, S
(t)
1,I1t,−I1t

and S
(t)
2,I1t

are defined analogous to the last section. Sim-

ilarly draw (βj, τ 2
j ) for j ∈ I2t = {j : (βj, τ 2

j ) ∈ Θ2t}, Θ2t = {(βj, τ 2
j ) :

γ̂
(t−1)
j = 0} in different processors from their DFP full conditional distribu-

tions. Draw S samples from the DFP full conditional posterior distributions

of γ given in (4) with σ2, β, τ replaced by their point estimates from time

(t − 1). Finally, draw S samples from the DFP full conditional posterior

distributions of λ2, σ2 and θ in a server.

5. Compute the sequence of estimators at time t: Set β̂
(t), τ̂ 2(t), λ̂2(t), σ̂2(t) and

θ̂(t) as their respective sample averages from S MCMC samples. Set γ̂
(t)
j = 1

if out of S approximate posterior samples of γj at time (t− 1), at least S/2

have resulted in γj = 1.
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Appendix B

Bayesian Multi-Object Regression

This chapter discusses posterior computation in BOOM. Efficient sampling of

the posterior is done through Gibbs sampling. Here, we exploit the combination

of the two frameworks for variable selection to perform efficient computation of

the posterior. In a first instance the focus on the spike and slab prior is used, and

in a second step we use the global-local scale of mixtures for improved mixing. As

we will see, the combination of this two steps has as a result an efficient sampling

procedure.

The full posterior distribution is given by:
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p(·|·) ∝
n∏

i=1
N

yi

∣∣∣∣∣∣β0 + xT
i βx +

P∑
p=1

gT
i,pβp + ⟨Ai, Θ⟩/2, τ 2


×
∏

p<p′

[
N
(
θp,p′

∣∣∣0, τ 2σ2
θλ2

p,p′

)]ξpξp′ [δ0]1−ξpξp′

×
P∏

p=1

V∏
j=1

[
N
(
βp

∣∣∣0, τ 2∆2
pηp,j

)]ξp [δ0]1−ξp

P∏
p=1

Ber(ξp|ν)IG(τ 2|aτ , bτ )

×N (βx|ax, bx) C+(σ2|0, 1)× C+(∆2|0, 1)
∏

p′<p

C+(λp,p′|0, 1)

×
P∏

p=1

V∏
j=1

C+(λp,p′ |0, 1) (B.1)

We explore this full posterior by Gibbs sampling in three main steps, of each

Gibbs iteration, as follows:

• First step: Joint sampling, of each triplet:
{
βp, θp, ξp

}
for p ∈ {1 . . . , P},

given all the other parameters. Here θp is either column p or row p of matrix

Θ. Notice that sampling each triplet requires, at most, operations of the

order O ((P + V )3).

• Second step: Joint sampling of Θ, β0, B = [β1, . . . , βp], βx given all the

other parameters, most importantly the ξ = (ξ1, . . . , ξP )′ indicators. Since

the sampling of each triplets separately has as a consequence chains with

poor mixing, we perform an extra sampling step of all the coefficients in-

volved in the regression to improve mixing. This not only improves mixing,

but makes the algorithm more stable. For this step, we follow Bhattacharya

et al. (2016a), since usually for this applications n << p, resulting in com-

putations of the order O (n3) instead of O (Q3).

• Third step: In the final step, we sample the remainder of the parameters.
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Here, we introduce the following notation. For a matrix M let M [−i,−j]

be the sub-matrix of M without row i and column j. In the same way M [−i, ·]

and M [·,−j] are the sub-matrices of M without row i and column j respectively.

In the same way for a vector z let z[−i] the sub-vector of z without entry i.

For two boolean vectors ϕ and ϕ′ and a matrix M of adequate sizes, we denote

M [ϕ = 1, ϕ′ = 1] as the sub-Matrix of M composed of the columns and rows

for which ϕ = 1 and ϕ′ = 1 respectively. In a similar way, M [ϕ = 1, ·] the

sub-matrix of M that contains all the columns of M but only the rows for which

ϕ = 1, and equivalently M [·, ϕ = 1]. For a boolean vector ϕ and a vector z of

the same size, we define z[ϕ = 1] as the sub-vector of z that only contains the

corresponding entries for which the entries of ϕ are 1. In a similar fashion, let us

define z[ϕ = 1] as a sub-vector z that only contains the corresponding entries for

which the entries of ϕ are 0.

For the each triplet {βp, θp, ξp}, where θp = {θp,1, . . . θp,P}. We do so as follows:

p(βp, θp, ξp|β0, βx, {β′
p}p′ ̸=p, Θ[−p,−p], ∆, σ2, η, Λ, τ 2)

= p
(
ξp

∣∣∣β0, βx, {β′
p}p′ ̸=p, Θ[−p,−p], ∆, σ2, η, Λ, τ 2

)
× p

(
βp, θp

∣∣∣β0, βx, {β′
p}p′ ̸=p, Θ[−p,−p], ∆, σ2, η, Λ, τ 2, ξp

)
(B.2)

That is, first we integrate βp, θp and sample ξp given the remaining parameters.

Then we sample βp, θp given all the parameters. Given that ξp is Bernoulli dis-

tributed, we only need the probability of success. To compute the probability, we

find first the odds after integrating out βp, θp, for which we introduce new notation.

In this way, for each p, we can re-write the regression equation as follows:
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ri,p = xT
i,pαp + ϵi (B.3)

where ri,p = yi − β0 − xT
i βx −

∑
p′ ̸=p gT

i,p′βp′ − ⟨Ai[−p,−p], Θ[−p,−p]⟩/2,

α = (βT
p , θp[−p][ξ[−p] = 1]T )T , xp = (gT

i,p, ai,p[−p][ξ[−p] = 1]T )T

which we can also express in matrix form.

Rp = Xpαp + ϵ (B.4)

where Rp = (r1,p, . . . , rn,p)T , Xp = (x1,p, . . . , xn,p)T and ϵ = (ϵ1, . . . , ϵn)T .

Given this representation, we have that the odds are given by:

p
(
ξp = 1

∣∣∣β0, βx, {β′
p}p′ ̸=p, Θ[−p,−p], ∆, σ2, η, Λ, τ 2

)
p
(
ξp = 0

∣∣∣β0, βx, {β′
p}p′ ̸=p, Θ[−p,−p], ∆, σ2, η, Λ, τ 2

)
= |Ψp|−

1
2
∣∣∣XT

p Xp + Ψ−1
p

∣∣∣− 1
2 exp

{
− 1

2τ 2 α̂T
p

(
XT

p Xp + Ψ−1
p

)
α̂p

}
(B.5)

where α̂p =
(
XT

p Xp + Ψ−1
p

)−1
XT

p Rp and Ψp is a diagonal matrix with diago-

nal entries(
∆2

pη2
p, σ2λ2

p[−p][ξ = 1]
)
. For βp, θb. If ξp = 1 we have that:

βp, θp[−p][ξ[−p] = 1]|β0, βx, B−p, Θ−p,−p, ∆, σ2, η, Λ, τ 2, ξp

∼ NP +V

(
α̂p,

(
XT

p Xp + Ψ−1
p

)−1
)

(B.6)

and if ξp = 0, we simply set βp = 0 and θp = 0. Finally, in every case,
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θp[−p][ξ[−p] = 0]|β0, βx, B−p, Θ−p,−p, ∆, σ2, η, Λ, τ 2, ξp = 0 (B.7)

After the first step, we proceed to re-sample B and Θ, from it’s full conditional.

Notice that given ξ we have that, if ξp = 0 then βp = 0 and θp[−p][ξ[−p] = 0] = 0.

So we only need to re-sample B[·, ξ = 1] and Θ[ξ = 1, ξ = 1]. Here we use,

the vectorized version αξ = (β0, vec(B[·, ξ = 1]), lower(Θ[ξ = 1, ξ = 1])) of

this parameters. Even though we have vectorized the parameters, this vectorized

version still conserves some information from the object structure with the lasso

structure. The full conditional of αξ is given by

αξ|∆, σ2, η, Λ, τ 2 ∼ N
(
α̂ξ, (XT

ξ Xξ + Ψξ)−1
)

(B.8)

where

α̂ξ = (XT
ξ Xξ + Ψξ)−1XT

ξ y, Xξ = (x′
1,ξ, . . . , x′

n,ξ)′,

xi,ξ = (1, xi, vec(Gi[·, ξ = 1]), lower(Ai[ξ = 1, ξ = 1]))′,

Ψξ = diag
(
1, bx, vec

((
∆2

1η1, . . . , ∆2
P ηP

)
[·, ξ = 1]

)
, lower (Θ[ξ = 1, ξ = 1])

)
.

Here the sampling follows Bhattacharya et al. (2016a) for efficient computing.

Finally, in the third step, we sample the Horseshoe structure parameters fol-

lowing Makalic and Schmidt (2016) and τ 2 from the usual Inverse Gamma distri-

bution.

Since we double sample the regression coefficient parameters to improve mixing

we only save the coefficients sampled after the mixing for the Markov Chain, but
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we do not apply any thining to the resulting chain.
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Appendix C

A Bayesian Covariance Based

Clustering for High Dimensional

Tensors

C.1 Convergence Behavior of the Transformed

Features

C.1.1 Convergence of the Transformed Features

Lemma C.1.1. Let T i ∼ TN(0, Σ1, . . . , ΣK) and A(T i)(k) = pk

p
T i,(k)T

′
i,(k). As-

sume that for all k = 1, ..., K, (i) pk

p
→ 0 (ii) pk

p
tr(⊗k′ ̸=kΣk′) → wk and (iii)

p2
k

p2
∑

l,r{⊗k′ ̸=kΣk′}2
l,r → 0, for all l, r = 1, ..., p/pk. (i)-(iii) together imply that

{A(T i)(k)}l,r → {Σk}l,rwk, where wk is a constant.

Proof. In order to prove the lemma, we will simply show that as pk

p
→ 0 we

have that E
[
{A(Ti)(k)}l,r

]
→ {Σk}l,rwk and V

[
{A(Ti)(k)}l,r

]
→ 0. Note that if

T i ∼ TN(0, Σ1, . . . , ΣK) then vec(T i,(k)) ∼ N(0, Σk ⊗ (⊗k′ ̸=kΣk′)) and {T i,(k)}l,r
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is the entry (r − 1)pk + l of vec(T i,(k)). And also, we have that {A(Ti)(k)}l,r =
pk

p

∑ pk
p

j=1{T i,(k)}j,l{T i,(k)}j,r. Using the vectorized representation of {T i,(k)} we

have that:

E
[
{T i,(k)}j,l{T i,(k)}j,r

]
= {Σk ⊗ (⊗k′ ̸=kΣk′)}(l−1)pk+j,(r−1)pk+j

= {Σk}l,r {⊗k′ ̸=kΣk′}j,j

Then we have that:

E
[
{A(Ti)(k)}l,r

]
= E

pk

p

pk
p∑

j=1
{T i,(k)}j,l{T i,(k)}j,r


=

pk
p∑

j=1

pk

p
E
[
{T i,(k)}j,l{T i,(k)}j,r

]

=

pk
p∑

j=1

pk

p
{Σk}l,r {⊗k′ ̸=kΣk′}j,j

= {Σk}l,r

pk

p

pk
p∑

j=1
{⊗k′ ̸=kΣk′}j,j

= {Σk}l,r

pk

p
tr(⊗k′ ̸=kΣk′)

Then by condition (ii) as p
pk
→∞, we have that E

[
{A(Ti)(k)}l,r

]
→ {Σk}l,rwk.

From here we have that the constant wk is the weighted average of all the

variance elements of the covariance matrices but for the ones corresponding to k.

In particular if the covariance matrices have unit variance elements, wk will be
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equal to 1 for every k. In a similar way

E
[
{T i,(k)}j,l{T i,(k)}j,r{T i,(k)}m,l{T i,(k)}m,r

]
= {Σk ⊗ (⊗k′ ̸=kΣk′)}(l−1)pk+j,(r−1)pk+j {Σk ⊗ (⊗k′ ̸=kΣk′)}(l−1)pk+m,(r−1)pk+m

+ {Σk ⊗ (⊗k′ ̸=kΣk′)}(l−1)pk+j,(l−1)pk+m {Σk ⊗ (⊗k′ ̸=kΣk′)}(r−1)pk+j,(r−1)pk+m

+ {Σk ⊗ (⊗k′ ̸=kΣk′)}(l−1)pk+j,(r−1)pk+m {Σk ⊗ (⊗k′ ̸=kΣk′)}(r−1)pk+j,(l−1)pk+m

= {Σk}l,r {⊗k′ ̸=kΣk′}j,j {Σk}l,r {⊗k′ ̸=kΣk′}m,m

+ {Σk}l,l {⊗k′ ̸=kΣk′}j,m {Σk}r,r {⊗k′ ̸=kΣk′}j,m

+ {Σk}l,r {⊗k′ ̸=kΣk′}j,m {Σk}r,l {⊗k′ ̸=kΣk′}j,m

= {Σk}2
l,r {⊗k′ ̸=kΣk′}j,j {⊗k′ ̸=kΣk′}m,m

+
(
{Σk}l,l{Σk}r,r + {Σk}2

l,r

)
{⊗k′ ̸=kΣk′}2

j,m

Which implies that:

C
[
{T i,(k)}j,l{T i,(k)}j,r, {T i,(k)}m,l{T i,(k)}m,r

]
= E

[
{T i,(k)}j,l{T i,(k)}j,r{T i,(k)}m,l{T i,(k)}m,r

]
− E

[
{T i,(k)}j,l{T i,(k)}j,r

]
E
[
{T i,(k)}m,l{T i,(k)}m,r

]
= {Σk}2

l,r {⊗k′ ̸=kΣk′}j,j {⊗k′ ̸=kΣk′}m,m

+
(
{Σk}l,l{Σk}r,r + {Σk}2

l,r

)
{⊗k′ ̸=kΣk′}2

j,m

− {Σk}2
l,r {⊗k′ ̸=kΣk′}j,j {⊗k′ ̸=kΣk′}m,m

=
(
{Σk}l,l{Σk}r,r + {Σk}2

l,r

)
{⊗k′ ̸=kΣk′}2

j,m
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Then

V
[
{A(Ti)(k)}l,r

]
= V

pk

p

pk
p∑

j=1
{T i,(k)}j,l{T i,(k)}j,r


= p2

k

p2

∑
j,m

C
[
{T i,(k)}j,l{T i,(k)}j,r, {T i,(k)}m,l{T i,(k)}m,r

]

= p2
k

p2

∑
j,m

(
{Σk}l,l{Σk}r,r + {Σk}2

l,r

)
{⊗k′ ̸=kΣk′}2

j,m

=
(
{Σk}l,l{Σk}r,r + {Σk}2

l,r

) p2
k

p2

∑
j,m

{⊗k′ ̸=kΣk′}2
j,m

Then by condition (iii) we have that if p
pk
→ ∞ then V

[
{A(Ti)(k)}l,r

]
→ 0,

concluding our proof.
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