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1Department of Computer Science, University of California, Santa Barbara, Santa Barbara, California,
United States of America, 2Department of Biology, Washington University, St. Louis, Missouri, United States
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Abstract
Being able to infer one way direct connections in an oscillatory network such as the supra-

chiastmatic nucleus (SCN) of the mammalian brain using time series data is difficult but cru-

cial to understanding network dynamics. Although techniques have been developed for

inferring networks from time series data, there have been no attempts to adapt these tech-

niques to infer directional connections in oscillatory time series, while accurately distin-

guishing between direct and indirect connections. In this paper an adaptation of Granger

Causality is proposed that allows for inference of circadian networks and oscillatory net-

works in general called Adaptive Frequency Granger Causality (AFGC). Additionally, an

extension of this method is proposed to infer networks with large numbers of cells called

LASSO AFGC. The method was validated using simulated data from several different net-

works. For the smaller networks the method was able to identify all one way direct connec-

tions without identifying connections that were not present. For larger networks of up to

twenty cells the method shows excellent performance in identifying true and false connec-

tions; this is quantified by an area-under-the-curve (AUC) 96.88%. We note that this method

like other Granger Causality-based methods, is based on the detection of high frequency

signals propagating between cell traces. Thus it requires a relatively high sampling rate and

a network that can propagate high frequency signals.

Introduction
To understand how complex behaviors arise, we must learn how populations of elements com-
municate with each other to produce coherent outputs. For example, in the brain, neurons
dynamically interact with each other to represent, store and respond to the physical world in
real time. Many methods have been developed to discriminate and map functional connections
[1–5]. In some cases, one method works well to identify connections at one time scale, but fails
to map interactions that occur on other time scales. For example, we recently developed
Between-Sample Analysis of Connectivity (BSAC) to map functional GABA connections
within a network of circadian neurons [6]. Although BSAC could discriminate the relatively
fast and weak excitatory and inhibitory interactions between hundreds of neurons with a high
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hit rate and low false alarm rate, it did not identify the slower interactions that synchronize cir-
cadian rhythms among cells. This highlights the need for different approaches to identify func-
tional connections that may differ in their topologies (e.g. the number or strength of incoming
or outgoing connections per node) or dynamics (e.g. when and for how long nodes interact)
within the same network of elements.

Synchrony among circadian cells is essential for daily rhythms in physiology and behaviors
including sleep-wake, hormone release and metabolism. The suprachiasmatic nucleus (SCN)
of the hypothalamus is comprised of a population of approximately 20,000, intrinsically circa-
dian, cells that synchronize their daily rhythms to each other. This is an excellent system for
developing algorithms for mapping functional connectivity. Enough is known about how
rhythms are generated and synchronized that we can use computational methods to simulate
the network. The population of cells is small enough that we can compute their performance
over time. There is strong interest in identifying the network topology within the SCN, as dis-
ruptions in the network may underlie diverse behaviors from seasonal reproduction to jetlag to
fragmented sleep in aging [7–11].

Although approaches for inferring network connections from spike train data [12, 13] and
simple oscillators exist [14–19], adapting these methods to infer functional connections in the
SCN from gene expression data is difficult. The characteristically unique and fast nature of
spike train data make these techniques difficult to apply to circadian gene expression data. Sim-
ilarly, inference techniques for networks of simple oscillators have not been successfully
applied to gene expression data of circadian systems as they are highly complex compared to
simple oscillators such as the Kuramoto oscillator.

Although there is a clear difference in appearance between synchronized and unsynchro-
nized raw cell traces (see Fig 1), it is very difficult to tell from these raw traces of gene expres-
sion the directionality of influence between cells. Even if the directionality of influence is
identified, it is difficult to tell when a cell is directly influencing another cell or simply influenc-
ing that cell via a mediator cell (indirect connection).

Traditionally, Granger Causality has been a popular choice for inference of networks in gen-
eral [20–22]. However, Granger Causality is highly reliant on the assumption that the time
series are stationary [23]. The highly non stationary nature of gene expression data from circa-
dian systems is widely known [24, 25] and makes Granger Causality a poor choice for analyz-
ing networks of circadian oscillators using gene expression data. Classical time series
techniques for obtaining stationary time series from seasonal data, i.e. data with a repeating or
cyclical pattern, rely on obtaining the dominant period of the time series and applying seasonal
differencing [26]. While techniques exists for obtaining this dominant period from circadian
gene expression data [27], these techniques assume a single stationary period for the time
series, which circadian gene expression data has been shown not to have [24].

We have developed a technique for the inference of functional networks which is based on
Granger Causality and tailored specifically to nonlinear oscillatory systems such as the circadian
system, which exhibit non constant frequency. The technique, called Adaptive Frequency
Granger Causality, or AFGC, involves a series of manipulations that make circadian gene expres-
sion data a viable candidate for Granger Causality. Unlike Granger Causality based techniques
for spike train data, AFGC does not require stationary data, making it suitable for not only spike
train data, but oscillatory data as well. This was previously not possible in the literature.

We test our method on known networks of circadian cells modeled with a stochastic version
of the LeLoup and Goldbeter model [28] that is coupled via the mechanism described in [29].
The proposed technique based on Granger Causality was able to identify direct one-way con-
nections between neurons in simulated networks with a high degree of accuracy. Additionally,
we show how to use a LASSO Granger based statistical technique, LASSO AFGC, to derive
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causal relationships when the number of time course observations are small relative to the
number of cells in a system.

Materials and Methods

Overview of Granger Causality and Its Assumptions
Granger Causality is a statistical technique that has been used successfully in the past for infer-
ring gene networks via time course data [30]. Granger Causality involves modeling multiple
time series as a linear system of steady-state (stationary) time series with Gaussian noise then
finding the correlation between time series to assess how much they affect each other. Thus the
assumption that must hold to reliably conduct Granger Causality analysis is that the value of a
time series at a single time is a linear combination of the other time series at previous times
plus a Gaussian noise term. Complicated oscillatory networks such as the circadian network
are unfortunately not linear and thus do not meet this assumption. We more formally define
this assumption in Section 2.4. We show however, how to overcome this limitation and apply
AFGC to infer oscillatory networks from nonlinear time series data.

Overview of Circadian Model and Coupling Mechanism
To derive a unique and fundamentally sound methodology for utilizing Granger Causality for
inference of circadian networks, we analyzed a stochastic variant of the LeLoup and Goldbeter

Fig 1. An example of computer simulated PERmRNA cell traces for three different cells in an uncoupled setting (upper plot) and coupled setting
(lower plot). Although the difference is visually obvious, it is nearly impossible from the raw traces to tell the directionality of influence between cells and
whether connections are direct or indirect.

doi:10.1371/journal.pone.0137540.g001
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circadian cell model, which has been shown to accurately capture characteristics of circadian
gene expression data [28]. We chose this model because of its simplicity. The model represents
each cell as a three state system consisting of PER mRNA (M), cytoplasmic PER protein (PC),
and nuclear PER protein (PN). The relationships between these expression levels are given for
the ith cell by,

dMðiÞ

dt
¼ vðiÞs

Kn
1

Kn
1 þ ðPðiÞ

N Þn
� vm

MðiÞ

Km þMðiÞ

dPðiÞ
C

dt
¼ ksM

ðiÞ � vd
PðiÞ
C

Kd þ PðiÞ
C

� k1P
ðiÞ
C þ k2P

ðiÞ
N

dPðiÞ
N

dt
¼ k1P

ðiÞ
C � k2P

ðiÞ
N

ð1Þ

where k1, k2, Ks, vd, vm, K1, and Kd are constants. The coupling between cells was modeled as in
[29] via a change in PER expression given by.

vðiÞs ≔0:83þ Lþ að �M ðiÞ �MðiÞÞ; ð2Þ

where �M ðiÞ is the average PERmRNA level of all cells which directly influence cell i, and α is a
constant that determines the strength of the coupling. Throughout all analysis and simulations,
initial conditions and parameters of the model were chosen such that during the interval of data
collection cells were in approximate synchrony. We converted the ordinary differential equation
model to a discrete stochastic model in the usual way, by replacing all concentrations in (Eq 1)
by discrete populations. This requires multiplication of the concentrations by a system volume
O. This system volume controls how closely the stochastic system is to its deterministic counter-
part. We choseO = 50 in our experiments, as this value was found to best mimic the stochastic
properties of cell traces from experimental data such as those found in [31]. To differentiate
between the differential equation Model (1) and the stochastic analog, we label all constants and
populations with a subscriptO when working with the discrete stochastic model.

Granger Causality Applied to Circadian Systems
Our first goal was to detrend the data so that Granger Causality would be applicable. We start by
drawing our attention not toM(i)[t] per say, but toD(i)[t]: =M(i)[t] −M(i)[t − 1], i.e. the change in
PER mRNA levels of each cell at each instant in time.D(i)[t] is also referred to as the “differenced”
version ofM(i)[t]. Analyzing the differenced series is useful because whenM(i)[t] is approximately
linear, its difference,D(i)[t], is stationary and thus suitable for Granger causality inference.

From the theory of Markov processes, we know that in a short period of time τ, the change
in PER mRNA level is the difference of two Poisson random variables with propensities that
are functions of the system at that moment in time, that is

DðiÞ
O ½t þ t� ¼ Pois tvðiÞs;O½t�

Kn
1;O

Kn
1;O þ PðiÞ

N;O½t�
� �n

8<
:

9=
;� Pois tvm;O

MðiÞ
O ½t�

Km;O þMðiÞ
O ½t�

( )
; ð3Þ

where vðiÞs;O½t� ¼ OvðiÞs and vm,O = Ovm. For now we draw our attention to intervals of the time

where PER mRNA is increasing. During these intervals, the system as described by (Eq 1)
exhibits several important properties that facilitate the use of Granger Causality:

1. Coupling is more highly expressed in the system. This can be seen from the first equation in
(Eq 1). During periods where PER mRNA is increasing, the first term (birth term) is in
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general much larger than the second term (death term). Since coupling is facilitated through

the vðiÞs coefficient of the first term, cells will be more responsive to the signals and fluctua-
tions of other cells during periods of PER mRNA increase. Although other parts of the dif-
ferenced time series may exhibit properties necessary for Granger Causality (i.e. stationarity
and whiteness), the effective low coupling during these periods makes them an unsuitable
candidate for Granger Causality since it works best when time series are more sensitive or
responsive to the other time series that influence them.

2. M ðiÞ
O ½t� is approximately linear. This can be seen from plots of cell traces of PER mRNA

from simulations such as Fig 2. When PER mRNA is increasing, the cell traces appear
approximately linear in shape. This allows the data to better fit the linearity mold that
Granger Causality (VAR) models require.

3. PðiÞ
N ;O½t� remains approximately constant in contrast to intervals where PER mRNA is

decreasing and PðiÞ
N ;O½t� is not constant. We show through derivations that when PðiÞ

N ;O½t� is
constant, the system can be reasonably approximated as linear, and is thus suitable for

Granger Causality. Since, PðiÞ
N ;O½t� remains approximately constant then

Kn
1;O= Kn

O þ ðPðiÞ
O ½t�Þn

� �
also remains approximately constant. This can be seen qualitatively

by observing gene expression from simulations of Model (1). Fig 2 depicts how, in a stochas-
tic simulation of Model (1), PN remains approximately constant asM increases for each
individual cell.

From the third property, (Eq 3) can be written as

DðiÞ
O ½t þ t� � Pois tcOv

ðiÞ
s;O½t�

n o
� Pois tvm;O

MðiÞ
O ½t�

Km;O þMðiÞ
O ½t�

( )
; ð4Þ

Fig 2. An example of trajectories of species in a single cell over 200 hours. The cell is modeled by the discrete stochastic analogue of the Model (1) with
Ω = 50.M represents the mRNA levels of the Period gene, Pc represents the cytoplasmic levels of the PERIOD protein, and Pn, the nuclear levels of the
PERIOD protein. In the model, Period mRNA is translated into PERIOD protein and PERIOD protein feeds back to repress production of Period mRNA. Note
that in the subintervals whereM is increasing, the trajectories ofM are nearly linear. Additionally, during these subintervals PN tends to remain nearly
constant.

doi:10.1371/journal.pone.0137540.g002
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where cO is a constant. During these small windows whereMðiÞ
O is linear, DðiÞ

O is stationary. This

is illustrated in Fig 3, which shows theMðiÞ
O trajectory of Fig 2 from time 95 to time 100. Fig 4

shows the difference in the autocorrelation function between an ordinary oscillatory trajectory
and a differenced segment of the portion of the time series where mRNA is increasing. The
slow drop off in the autocorrelation function for the former is a clear indicator of nonstationar-
ity, while the small spikes at the lags of the latter time ACF indicate a time series that is station-
ary and can be “whitened”, that the residuals of a VAR model fit to this time series will be
white noise.

Continuing with our derivation, expanding the term vðiÞs;O½t� in the parameter of the first Pois-

son random variable in (Eq 4) yields

tcOv
ðiÞ
s;O½t� ¼ tcO ð0:83Oþ að �M ðiÞ

O ½t� �MðiÞ
O ½t�ÞÞ

¼ tcO 0:83Oþ a
1

N

X
k

MðkÞ
O ½t�

 !
�MðiÞ

O ½t�
" # !

¼ tcO 0:83Oþ a
1

N

X
k

MðkÞ
O ½t� �MðiÞ

O ½t�
� �" # ! ð5Þ

from which we see that the model coupling was constructed so thatMðiÞ
O is “driven” in time to

match the values of the cells it is coupled with. Thus although there are momentary gaps

betweenMðiÞ
O andMðkÞ

O due to the stochastic nature of the system, these two quantities will
always be near to each other. Furthermore, any momentary difference between the two quanti-

ties can be assumed to be due to the last p changes inMðkÞ
O , where p is some finite integer. We

Fig 3. An example of a trajectory of a PERmRNA population level over a four hour period where PERmRNA is increasing. Part A depicts how the
PERmRNA population count grows approximately linearly when observed over short periods of time on increasing slopes. Part B is the same time series
over the same time period, but differenced over one minute time intervals. Once the approximately linear time series is differenced, the resulting time series is
stationary in appearance. The differenced time series can also be interpreted as the change in PERmRNA level at each time point. Although this is only a
particular subinterval of the trace, the approximately linear property holds for all subintervals where PERmRNA is increasing. In practice, observations from
several of these subintervals (one from each circadian cycle) are used in the network inference method.

doi:10.1371/journal.pone.0137540.g003
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thus make the modeling choice

tcOv
ðiÞ
s;O½t� ¼ tcO 0:83Oþ a

1

N

X
k

Xp

j¼0

DðkÞ
O ½t�

" # !

¼ tcO 0:83Oþ
Xp

j¼0

X
k

a
N
DðkÞ

O ½t�
" # !

:

ð6Þ

Since the term in the square brackets is simply a linear combination of the DðiÞ
O ½t�, we define a

new term α0DO½t� which is the dot product of some constant vector and the difference of
mRNA levels in all cells at time t, to obtain

tcOv
ðiÞ
s;O½t� ¼ tcO 0:83Oþ

Xp

j¼0

α0DO½t�
 !

; ð7Þ

Fig 4. Autocorrelation function of undoctored oscillating PERmRNA sequence (top) and concatenation of differenced increasing PERmRNA
segments over the same time period. ACF was calculated on a time series sampled every minute simulated for 500 hours. The concatenated time series is
only 15 hours in length as it is derived from the small sub portions of oscillation where PERmRNA is increasing.

doi:10.1371/journal.pone.0137540.g004
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so that substituting back into (Eq 4) yields

DðiÞ
O ½t þ t� � Pois tcO 0:83Oþ

Xp

j¼0

α0DO½t�
 !( )

� Pois tvm;O

MðiÞ
O ½t�

Km;O þMðiÞ
O ½t�

( )

¼ Pois 0:83OtcO þ tcO
Xp

j¼0

α0DO½t�
( )

� Pois tvm;O

MðiÞ
O ½t�

Km;O þMðiÞ
O ½t�

( ) ð8Þ

Now we define λ1 and λ2 to be the respective propensities of the two Poisson random variables
in (Eq 8). If at least one of these quantities is large, which happens when either τ is large, O is
large, or α is large, then we can use the approximation

DðiÞ
O ½t þ t� � N ðl1 � l2; l1 þ l2Þ

¼ N 0:83OtcO þ tcO
Xp

j¼0

α0DO½t� � l2; l1 þ l2

 !

¼ 0:83OtcO þ tcO
Xp

j¼0

α0DO½t� � l2 þN ð0; l1 þ l2Þ

ð9Þ

which roughly fits the mold of a vector autogregessive process (VAR) and is thus appropriate
for application of Granger Causality. Empirical data from our stochastic model suggests that
the normal approximation is appropriate. Fig 5 illustrates a sample density of the changes in

PER mRNA, DðiÞ
O , from the time series in Fig 3. Note the characterically Gaussian shape.

We note that although (Eq 9) shows a variance in the random component of our model that
is dependent on time, for large enough λ1 and/or λ2 the random variable (Eq 8) converges to a
normal random variable with constant variance. This constant variance is a necessary assump-
tion of vector autoregressive models and Granger Causality. We found that O = 50, α = 100,
yielded good synchronization.

Granger Causality and Significance Test
The vector autoregressive (VAR) model is described by

yt ¼ νþA1yt�1 þ � � � þApyt�p þ ut; ð10Þ

where yt represents the state of K cells at time t, ν is a constant vector, A1, � � �, Ap are constant
matrices, and ut is a vector of normal random variables with mean zero. In scalar form, we
write the state of each cell i at time t as

yðiÞt ¼ nþ að1Þi;1 y
ð0Þ
t�1 þ � � � þ að1Þ

i;Ky
ðKÞ
t�1 þ � � � þ aðpÞ

i;1 y
ð0Þ
t�p þ � � � þ aðpÞi;Ky

ðKÞ
t�p þ uðiÞ

t ; ð11Þ

where aðkÞ
i;j is the entry of Ak in the ith row and jth column. Since (Eq 11) is a linear combination

of past states, then by using the noisy past observations of our system, we estimate the coeffi-
cients in (Eq 11) by ordinary least squares (OLS) regression. Similarly, we estimate the coeffi-
cients in the simpler model

yðiÞt ¼ nþ að1Þ
i;1 y

ð0Þ
t�1 þ � � � þ að1Þ

i;j�1y
ðj�1Þ
t�1 þ að1Þi;jþ1y

ðjþ1Þ
t�1 þ � � � þ að1Þi;Ky

ðKÞ
t�1

þ � � � þ aðpÞi;1 y
ð0Þ
t�p þ � � � þ að1Þ

i;j�1y
ðj�1Þ
t�1 þ að1Þi;jþ1y

ðjþ1Þ
t�1 þ � � � þ aðpÞi;Ky

ðKÞ
t�p þ uðiÞ

t ;
ð12Þ

which differs from (Eq 11) only in that there is no dependence on cell j. From regression esti-
mates we can derive an estimate of standard error ŝ2

A and ŝ
2
B for each of these models. These
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estimators can be interpreted as the amount of variation in yðiÞt that Models (11) and (12) can
explain. Clearly the simpler model, (Eq 12), is nested in the Model (11) and thus must explain

less of the variation in yðiÞt than Model (11). It can be shown that given our assumptions, these
estimators are chi-squared distributed and thus their ratio is F-distributed. Under the null
hypothesis that cell i is not dependent on cell j, ŝ2

A and ŝ
2
B should be approximately equal, and

their ratio, i.e. the F-statistic should be close to one. When the F-statistic is significantly larger
than one, we say that cell j Granger Causes cell i. The following algorithm shows how this tech-
nique can be used to reconstruct the connections of an entire network of cells.

Algorithm 1: Algorithm For Reconstructing Functional Circadian Network
From Time Series Data
Data: K Gene Expression Time Series Corresponding to Each Cell
Result: Graph Corresponding to Cell Network
initialize graph G = (V, A) with vertex for each of the K cells and no vertices;
for i = 0 to K − 1 do

estimate coefficients âð1Þ
i;1; � � � ; âðpÞ

i;K for Model (11);
use these coefficients to estimate standard error of full model, i.e. ŝ2

A;
for j = 0 to K − 1 do

estimate coefficients âð1Þ
i;1; � � � ; âðpÞ

i;K for nested Model (12) not including
coefficients for cell j;
use these coefficients to estimate standard error of nested model, i.e. ŝ2

B;
use ŝ2

A and ŝ2
B to calculate F-statistic;

if F statistic > significance threshold then
insert directed edge e = (j, i) in to E, i.e. cell j influences cell i;

end
end

end

Fig 5. Sample density of the PERmRNA differences,DðiÞ
o , from the time series in Fig 3a.Ω = 50 and the samples taken at one minute intervals (τ = 1/

60). The sample density appears normal, justifying the normality approximation of Eq (8). We see that the mean of the changes in PERmRNA every minute
is slightly positive and the range is between -4 and 4, as was the case in Fig 3.

doi:10.1371/journal.pone.0137540.g005
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Group LASSOMethod
For parameter estimation where the number of parameters is large relative to the number of
observations, parameter estimates vary highly and can lead to misleading inference. Fig 6
shows receiver operating characteristic curves (ROC) depicting the accuracy of AFGC as the
number of observations is increased for a 10 cell model called the 10 cell dual chain network.
Here accuracy is defined as the ratio of true-positive connections found to the number of false-
positive connections found. In all three plots, the same network is being simulated, with the
number of parameters to be estimated given by Kp + 1 = 101. As the number of data points is
increased, we we see that the area under the ROC curve (AUC) increases and thus the accuracy
of our inference if higher, as we would predict. Fig 7 shows how the AUC from the AFGC
increases as a function of the number of observations used.

Fig 6. ROC’s of inferred one-way connections for the 10-cell dual chain network in Fig 7. Inferred conducted by AFGC using (a): 6 hours of
observations (AUC = 54.35%), (b): 14 hours of observations (AUC = 61.95%), and (c): 28 hours of observations (AUC = 79.33%).

doi:10.1371/journal.pone.0137540.g006

Fig 7. AUC from AFGC as the number of observations in hours increases.Note that observations are only taken from subintervals of the time series
where PERmRNA is increasing. Using 40 hours of observations from these intervals (equivalent to about two weeks of total observations) returns an AUC
that is nearly equal to one.

doi:10.1371/journal.pone.0137540.g007
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For instances where observations are small relative to the number of parameters being esti-
mated, the group LASSO method [30, 32] has been shown to reduce variance in exchange for
bias in parameter estimates, by imposing a penalization on the size of parameter estimates.
This lowering of variance often leads to improved results. We propose a modified version of
the Granger causality technique with group LASSO in [30] to infer functional cell networks
when the number of cells in a system is large relative to the number of observations available
for that system. We show in the next section that this method often returns improved results
over ordinary Granger Causality inference.

Partition the set of parameters fað1Þ
i;1 ; � � � ; að1Þi;K ; � � � ; aðpÞi;1 ; � � � ; aðpÞ

i;Kg into K groups {G1, � � �, GK}

such that aðlÞi;j 2 Gk , j ¼ k. This amounts to grouping all parameters involving the jth cell into

one group. Let Y be the vector of gene expression observations and Ŷ ðαÞ be the estimate of
those observations via the estimated parameters in Model (11). The estimates α̂Group, defined as

α̂Group ¼ argmin
β

kY � Ŷ ðαÞk2 þ l
XK
k¼1

ðað1Þi;k Þ2 þ � � � þ ðaðpÞ
i;k Þ2; ð13Þ

are known as the group LASSO parameter estimates and were first introduced in [30].
For statistical inference, the variance-covariance matrix of the parameter estimates in α̂Group

must be available. Since there is no known way to calculate this matrix, we approximate this
matrix by the variance-covariance matrix of the OLS estimators. Our results demonstrate that
this approximation leads to improved accuracy in network inference.

Results
We demonstrate the effectiveness of our methodology by applying it to the inference of various
Circadian networks simulated stochastically. The model we use is a stochastic version of (Eq
1), coupled using the scheme described in [29]. Key parameters in our simulation are the scale
concentration to number of molecules, O, which we set to 50, and the coupling strength, α
which we set to 100. Observations of our system are collected once every minute. For larger
models where more observations are needed, we concatenate multiple differenced time series
from a single realization using of course only the portions of the time series where mRNA is
increasing. We then treat this concatenation as a single time series.

The model order was chosen to be 5 for all VAR models. This was chosen to reflect the
information transfer lag of 5 minutes between cells that we observed empirically in cross corre-
lation functions. Fig 8 is a sample cross correlation function from a realization of the 3 cell net-
work described in the next section. Significant lagged correlations drop off at around 0.07
hours, or about 5 minutes. We also obtained the best network inference results with this choice
of model order.

3 Cell Network
Our first example is the three cell model where all cells are lined up and each cell influences the
cell to its right, depicted in Fig 9. We note the indirect connection between cellm0 and cellm2
in the model. We seek to infer only the direct connections.

Table 1 shows computed p-values for the significance of a causal connection from each cell
to another. Computation was done on simulated data from the three cell model. Six hours (360
observations) of time series data was used to calculate the statistics.

The p-values of the true connection (fromm0 tom1 and fromm1 tom2) are several orders
of magnitude smaller than the p-values of all other connections. Our inference methodology is
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Fig 8. Cross correlation function for differenced realization of 3 cell network. The cross correlation function was calculated using six hours of
observations. Significant autocorrelation is not observed while we do see significant cross correlation when cell 0’s time series is lagged against the time
series of cell 1 and cell2 and also when cell 1’s time series is lagged against the time series of cell 2.

doi:10.1371/journal.pone.0137540.g008

Fig 9. 3 Cell Network.

doi:10.1371/journal.pone.0137540.g009
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able to perfectly capture the structure of this network, including not falsely naming the indirect
connection as direct. There was no need to use the group LASSO to improve the results.

4 Cell Network with Bypass
To further test our methodology when indirect connections are present, we introduce a 4 cell
model with a bypass, depicted in Fig 10.

The p-values for inferred connections are shown in Table 2. Seven hours (420 observations)
of time series data was used to calculate statistics.

Again, the true connections (m0 tom1 andm2,m1 tom2, andm2 tom3) are found to have
significance values several orders of magnitude lower than other connections. One again, there
was no need to use group LASSO to try to improve results.

10 Cell Dual Chain
We introduce a 10 Cell Dual Chain cell network depicted in Fig 11, and note the density of its
connections as compared to the two previous cell networks.

Rather than examining a table of p-values, which can be cumbersome, in Fig 12 we display
an ROC curve that depicts the accuracy of our inference methodology for observations. The
ROC curve has an AUC of 80.72% and is calculated from five hours of observations at one min-
ute intervals.

20 Cell Miniature SCN
We introduce a twenty cell model that includes two groups of cells that are all connected to
each other and four randomly selected cells from one group that influence four randomly
selected cells from another group. A diagram of the model is shown in Fig 13.

Table 1. p-values for one-way connections between cells in 3 cell network.

To m0 To m1 To m2

From m0 NA 0 0.01

From m1 0.65 NA 2.2e-16

From m2 0.59 0.89 NA

AFGC identifies the true connections (m0 to m1 and m1 to m2) with a p-value that is at least 15 orders of

magnitude greater than the p-value assigned to all other connections.

doi:10.1371/journal.pone.0137540.t001

Fig 10. 4 Cell Network with Bypass.

doi:10.1371/journal.pone.0137540.g010
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Fig 14 shows ROC curves calculated from simulated data from the 20 cell miniature SCN
model. Obviously, when more observations are used, the inference power is increased, but we
include the ROC when fewer observations are used to show how Grouped Granger is most use-
ful when the number of observations is small compared to the number of network connections
to be inferred.

100 Cell Scale Free and 100 Cell Small World Network
Lastly, we simulate a 100 cell scale free network created using the Barabasi-Albert model [33].
The network has an average node degree of one and is similar in magnitude to true SCN slices.
Node degree here was in terms of outgoing connections. We found that for 60 hours of obser-
vations sampled every minute our LASSO AFGC method was able to achieve an AUC of
66.07%.

We also generated a 100 cell small world network using the Watts-Strogatz β small world
algorithm. We used a beta = 0.1 and had a network with an average node degree of two. For
this network, our algorithm method was able to achieve an AUC of 81.23%.

AFGC Sensitivity to High Frequency Sampling
Because AFGC is a Granger Causality based approach, it is useful for data collected at high fre-
quencies. Although in our results we sampled our systems every minute, we tried our method

Table 2. p-values for one-way connections between cells in 4 cell network.

To m0 To m1 To m2 To m3

From m0 NA 0 1.53e-10 0.60

From m1 0.50 NA 2.75e-06 0.79

From m2 0.73 0.01 NA 1.42e-11

From m3 0.13 0.01 0.62 NA

AFGC is able to separate true from false connections with an order of magnitude in p-value of at least five.

doi:10.1371/journal.pone.0137540.t002

Fig 11. Diagram of 10 Cell Dual Chain Network.

doi:10.1371/journal.pone.0137540.g011
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on lower frequency data of the 10 cell dual chain model to better characterize its effectiveness
at lower sampling rates. Fig 15 shows these results. With a sampling rate of one minute, AGFC
achieved an AUC of 94.51% for 15 hours of observations. This dropped to an AUC 57.18% of
when the system was sampled every eight minutes, controlling for the number of observations
by using 120 hours.

Fig 12. ROC for 10 Cell Network calculated over five hours of observations sampled once a minute.
AUC = 80.72%. These five hours of observations were obtained from a subinterval ofa single circadian cycle
where PERmRNA is increasing. More observations could be collected and used to improve accuracy from
other circadian cycles of the same set of cell traces.

doi:10.1371/journal.pone.0137540.g012

Fig 13. Diagram of 20 Cell Model.

doi:10.1371/journal.pone.0137540.g013
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For optimal results on SCN recordings, we suggest applying AFGC only when samples are
taken at least once every five minutes and ideally once every minute. Applying AFGC to cur-
rent experimental data, which is typically sampled once every thirty minutes to an hour, will
most likely lead to erroneous results. If and when the sampling rate of experimental results
reaches five minutes or faster we anticipate AFGC will provide accurate network inference
results. As AFGC uses only a portion of the time series for each day, we also recommend apply-
ing AFGC to longer recordings. Two weeks of recordings is plenty of recording time for most
cases, even when only five hours of recording time is used per day. This is assuming a sampling
rate of at least five minutes.

In general, for optimal results the sampling frequency can vary. We suggest looking at
cross-correlation plots and validating AFGC on simulated data to see where the cut-off for
high frequency noise is for each particular application.

AFGC Robustness to Measurement Noise
As experimental recordings often contain measurement noise or are able to record only proxies
for mRNA, such as PER2::LUC, we characterized our method’s robustness to measurement

Fig 14. ROC’s of regular Granger causality (black line) and grouped Granger (red line). Fig 12a shows the curves for 14 hours of data sampled every
minute. Using group LASSO improved the AUC from 61.99% to 73.78%. Fig 12b shows the curves for 66 hours of data sampled every minute. Using group
LASSO improved the AUC from 93.75% to 96.86%.

doi:10.1371/journal.pone.0137540.g014

Fig 15. Relationship between AUC and frequency of sampling for AFGC on 10 cell dual chain model.
Data was from the same simulation, and number of observations was controlled for by adding twice the
number of observations when the sampling rate was doubled.

doi:10.1371/journal.pone.0137540.g015
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noise by running the method on data generated from our 10 cell dual chain model with varying
levels of noise. Fig 16 characterizes AFGC’s effectiveness under varying levels of noise.

A Note on AFGC Applied to System Proxies
In our experiments, all results were obtained by applying AFGC to time series of PER mRNA.
This is significant because all coupling between cells in our model is facilitated through the
respective PER mRNA levels of each cell. In our model, PER protein in the cytoplasm is a
proxy for PER mRNA in a sense, because rising levels of PER mRNA lead to rising levels of
PER protein. Thus we would expect these two time series to be approximately correlated in the
same cell. This however does not imply that AFGC can recover networks from PER protein
data when coupling is exclusively facilitated through PER mRNA. The reasoning is that for our
particular model, high frequency noise is damped in the relationship between PER protein and
PER mRNA, thus information crucial to AFGC is lost. More specifically, noise in transcription
is damped during translation. Noise in the protein arises mostly from the translation process
itself. This noise explains why in Fig 2 there is more high frequency noise in the protein trace
than in the mRNA trace. For simulations of our 10 cell network we were unable to achieve net-
work inference that was better than random when using the time series of PER protein rather
than PER mRNA.

In general, the usefulness of a proxy will depend on how much incoming high frequency
noise the proxy filters out. This is highly model dependent. Of course, we expect that in real
world scenarios coupling happens through multiple channels and is highly complex. We have
shown that AFGC can be highly successful in network inference when applied to signals that
are directly responsible for coupling.

A Note on Applying AFGCWhen Large Phase Differences Are Present
For all results, we selected portions of the synchronous time series where PER mRNA was ris-
ing. These portions were usually at least three hours in length, but often up to seven. Time
series need not be synchronous in order for AFGC to work. As long as the linear rising portion
of the oscillations match for at least some significant time chunk, AFGC will provide fruitful
results. The AUC of 80.72% obtained on the 10 cell network was obtained using only five hours

Fig 16. AUC of AFGCwhen varying levels of noise are added to data from the 10 cell dual chain
model.Noise is Gaussian distributed and is characterized by a standard deviation that is a fraction of the
highest sample standard deviation of time series of all 10 cells. That is a 1.0 translates to a signal to noise
ratio of one. For each level of noise 10 different realizations of the noise was added to the observations, then
the AUC was calculated each time and averaged to account for variation in AFGC’s performance from the
randomness of the noise.

doi:10.1371/journal.pone.0137540.g016
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of observations. Thus even if the oscillations contained only one hour of overlapping rising
portions, it would only take five days to obtain enough data to conduct that inference.

For larger networks, such as the 100 cell small world network we simulated, lack of syn-
chrony can be more limiting because more sampling is needed and thus recording must go on
for longer. In the case of the small world network, 60 hours of observations were needed to
obtain an AUC of 81.23%. This would amount to 60 days of observations if only one hour is
extractable every day, which unfortunately rules out many experimental recordings. In cases
where there are groups of oscillations that exhibit large phase differences from other groups of
oscillations or they are not in synchrony at all with other oscillations, we recommend conduct-
ing AFGC separately on the different groups. In these cases we can at least extract network
topology within the group and assume weak coupling between groups.

Discussion
Granger Causality has proven to be an effective method for detecting direct causality in multi-
variate time series but is applicable only when data meets certain assumptions. These assump-
tions include, but are not limited, to linearity of the system, normality of noise, and stationarity
of time series. Furthermore, the number of observations in the time series must be large relative
to the number of cells in a system.

We have proposed a methodology for application of Granger Causality to circadian data,
for the detection of functional networks. This technique is able to accommodate the assump-
tions that are required by Granger Causality through the use of approximation and differencing
techniques. The technique works by first selecting a specific subsection of each cycle from each
of the oscillatory time series. The subsections are then differenced and spliced to form station-
ary processes of equal lengths. Vector autoregressive models are then fit to these stationary
time series and tests are conducted on parameters to assess Granger Causality and answer the
question at hand.

We also showed a way to improve the results of this technique when the number of time
course observations are small relative to the number of cells in a system. This involves penaliz-
ing parameter estimates in accordance to the group LASSO methodology. The high level of
accuracy that was displayed by our method on simulated circadian networks provides encour-
aging evidence that one way relationships between circadian cells in the SCN can be detected
from time course gene expression data.

Although our analysis provides an accurate way of detecting direct one way connections
between cells in simulated data, it remains to be seen how the method performs on large sets of
real biological data. Granger Causality relies on analysis of noise propagation, thus it is a neces-
sary assumption that high frequency noise in cell traces indeed propagates between cells that
are connected. We chose a coupling parameter in our model to ensure propagation of noise in
simulations given the coupling mechanism. This was to illustrate how well Granger Causality
is able to achieve the task of network inference when the propagation exists. Fig 17 formally
quantifies how the results of AFGC can change when coupling strength is varied for the 10 cell
dual chain model.

Although the mathematical justification of our method relied on the particular form of the
coupling mechanism, our method will work under any coupling mechanism that allows for
high frequency noise propagation. It is in fact unknown whether high frequency noise propa-
gates between cell traces. We also note that because AFGC is solely reliant on noise propaga-
tion, it is robust to minor phase differences between cells. Phases must not be aligned exactly
but only so that their upswing in mRNA coincides for some portion of time, since that is when
noise best propagates.
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Fig 17. AUC of AFGC on 10 cell dual chain model as coupling strength in the model is varied. Five realizations were run for all three levels of coupling
strengths then AFGCwas applied to 15 hours of observations for each realization to get an AUC. From these a mean and error was calculated. We note that
here coupling strength is on a log scale.

doi:10.1371/journal.pone.0137540.g017
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