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PERSPECTIVE

Iterative near-term ecological forecasting: Needs,
opportunities, and challenges
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Andrew T. Tredennickq,r, Rodrigo Vargass, Kathleen C. Weatherst, and Ethan P. Whiteu,v,w

Edited by Monica G. Turner, University of Wisconsin–Madison, Madison, WI, and approved December 29, 2017 (received for review
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Two foundational questions about sustainability are “How are ecosystems and the services they provide
going to change in the future?” and “How do human decisions affect these trajectories?” Answering these
questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts
focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to
decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to
new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the
opportunity to iteratively cycle between performing analyses and updating predictions in light of new
evidence. This iterative process of gaining feedback, building experience, and correcting models and
methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological re-
search, make it more relevant to society, and inform sustainable decision-making under high uncertainty
and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities,
and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and
accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quan-
tification. Similarly, ecologists have made considerable advances in applying computational, informatic, and
statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfra-
structure. Effective forecasting will also require changes in scientific training, culture, and institutions. The
need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is
the fastest route to drive the science forward.

forecast | ecology | prediction

There are two fundamental questions at the heart of
sustainability: “Howare ecosystems and the services they
provide going to change in the future?” and “How do
human decisions affect this trajectory?”Until recently, we
could reasonably rely on observed means and variability
as the frame of reference for sustainable environmental
management (e.g., 100-y floods, historical species ranges).

However, the current pace of environmental change is
moving us outside the envelope of historic variation (1).
It is becoming increasingly apparent that we cannot rely
on historical variation alone as the basis for future man-
agement, conservation, and sustainability (2, 3).

Addressing these challenges requires ecological
forecasts—projections of “the state of ecosystems,

aDepartment of Earth and Environment, Boston University, Boston, MA 02215; bSchool of Natural Resources and the Environment, University of
Arizona, Tucson, AZ 85721; cDepartment of Biology, Colorado State University, Fort Collins, CO 80523; dNational Research Program, Water Mission
Area, US Geological Survey, Reston, VA 20192; eColorado Cooperative Fish and Wildlife Research Unit, US Geological Survey, Fort Collins, CO
80523; fDepartment of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523; gDepartment of Statistics,
Colorado State University, Fort Collins, CO 80523; hFort Collins Science Center, US Geological Survey, Fort Collins, CO 80523; iDepartment of
Integrative Biology, University of Texas, Austin, TX 78712; jEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD
20740; kBattelle, National Ecological Observatory Network, Boulder, CO 80301; lDepartment of Geography, University of California, Berkeley, CA
94720; mInstitute of Alpine and Arctic Research, University of Colorado Boulder, Boulder, CO 80301; nDepartment of Forestry and Natural
Resources, Purdue University, West Lafayette, IN 47907; oDepartment of Earth System Science, University of California, Irvine, CA 92697; pOffice
of Water Information, US Geological Survey, Middleton, WI 53562; qDepartment of Wildland Resources, Utah State University, Logan, UT 84322;
rEcology Center, Utah State University, Logan, UT 84322; sDepartment of Plant and Soil Sciences, University of Delaware, Newark, DE 19716;
tCary Institute of Ecosystem Studies, Millbrook, NY 12545; uDepartment of Wildlife Ecology and Conservation, University of Florida, Gainesville,
FL 32603; vInformatics Institute, University of Florida, Gainesville, FL 32603; and wBiodiversity Institute, University of Florida, Gainesville, FL 32603
Author contributions: M.C.D., A.F., L.M.B.-J., J.L.B., M.B.H., C.S.J., T.H.K., M.A.K., C.M.L., L.G.L., H.W.L., C.K.L., B.C.P., J.T.R., E.K.R., A.T.T., R.V.,
K.C.W., and E.P.W. wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
Published under the PNAS license.
1To whom correspondence should be addressed. Email: dietze@bu.edu.

1424–1432 | PNAS | February 13, 2018 | vol. 115 | no. 7 www.pnas.org/cgi/doi/10.1073/pnas.1710231115

P
E
R
S
P
E
C
T
IV

E

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1710231115&domain=pdf
http://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:dietze@bu.edu
www.pnas.org/cgi/doi/10.1073/pnas.1710231115


ecosystem services, and natural capital, with fully specified uncer-
tainties” (4). Decisions are made every day that affect the health
and sustainability of socioenvironmental systems, and ecologists
broadly recognize that better informed decision-making requires
making their science more useful and relevant beyond the disci-
plinary community (5, 6). Advancing ecology in ways that make it
more useful and relevant requires a fundamental shift in thinking
from measuring and monitoring to using data to anticipate
change, make predictions, and inform management actions.

Decision-making is fundamentally a question about what will
happen in the future under different scenarios and decision
alternatives (6), making it inherently a forecasting problem. Such
forecasts are happening, but there is currently a mismatch
between the bulk of ecological forecasts, which are largely
scenario-based projections focused on climate change responses
on multidecadal time scales, and the timescales of environmental
decision-making, which tend to require near-term (daily to de-
cadal) (7, 8) data-initialized predictions, as well as projections that
evaluate decision alternatives. The overall objective of this paper
is to focus attention on the need for iterative near-term ecological
forecasts (both predictions and projections) that can be continu-
ally updated with new data. Rather than reviewing the current
state of ecological forecasting (9), we focus on the opportunities
and challenges for such forecasts and provide a roadmap for
their development.

Recent changes make the time particularly ripe for progress on
iterative near-term forecasting. On the scientific side, there has
been a massive increase in the accumulation and availability of
data, as well as advances in statistics, models, and cyberinfras-
tructure that facilitate our ability to create, improve, and learn from
forecasts. At the same time, the societal demand for ecological
forecasts, which was already high, is growing considerably. Near-
term ecological forecasts are already in use in areas such as
fisheries, wildlife, algal blooms, human disease, and wildfire
(Table 1). As demonstrated by the 21st Conference of Parties in
Paris, where a majority of nations agreed on the United Nations
Framework on Climate Change, international recognition of cli-
mate change has finally shifted in favor of action. With this comes
a greater mandate to manage for novel conditions, and a shift in
research needs from detection to mitigation and adaptation,
which require accurate forecasts of how systems will respond
to intervention. Key priority areas include forecasting the follow-
ing: ecological responses to droughts and floods; zoonotic and
vector-borne diseases; plant pathogen and insect outbreaks;
changes in carbon and biogeochemical cycles; algal blooms;
threatened, endangered, and invasive species; and changes in
phenological cycles.

In addition to having greater societal relevance, refocusing
ecological forecasting on the near-term also provides greater
benefits to basic science. At the core of the scientific method is
the idea of formulating a hypothesis, generating a prediction
about what will be observed, and then confronting that pre-
diction with data (Fig. 1 A–E). All scientists view this process as
inherently iterative, with our understanding of the natural world

continually being refined and updated. Models embody this un-
derstanding and make precise our underlying hypotheses. Thus,
by using models to make testable quantitative predictions, iter-
ative forecasting is an approach that can represent the scientific
method. Quantitative predictions can also provide a more rigor-
ous test of a hypothesis than is commonly found in traditional
null-hypothesis testing, where the default null is often trivial
(e.g., no effect) and ignores what we already know about a sys-
tem. Furthermore, by making out-of-sample predictions about a
yet-to-be-observed future, ecological forecasts provide a stron-
ger test than in-sample statistical testing and are less susceptible
to overfitting, which can arise covertly through multiple compar-
isons or subconsciously because those building the model have
already seen the data.

An iterative forecasting approach also has the potential to
accelerate the pace of basic ecological research. Because fore-
casts embody the current understanding of system dynamics,
every new measurement provides an opportunity to test predictions
and improve models. That said, ecologists do not yet routinely
compare forecasts to new data, and thus are missing opportuni-
ties to rapidly test hypotheses and get needed feedback about
whether predictions are robust. Near-term forecasts provide the
opportunity to iteratively test models and update predictions
more quickly (10, 11). Research across widely disparate disciplines
has repeatedly shown that this iterative process of gaining feed-
back, building experience, and correcting models and methods is
critical for building a predictive capacity (12, 13).

While examples of iterative ecological forecasts do exist (Table
1), there has been no coordinated effort to track the different
ecological forecasts in use today and independently assess what
factors have made them successful or how they have improved
over time. A quantitative assessment of iterative ecological fore-
casts is severely limited by a lack of open forecast archiving, un-
certainty quantification, and routine validation. We can contrast
this with weather forecasting, where skill has improved steadily
over the past 60 y. Weather forecasts have benefitted not only
from technological advances in measurement and computation,
but also from insights and improvements that came from contin-
ually making predictions, observing results, and using that expe-
rience to refine models, measurements, and the statistics for
fusing data and models (20, 21). Initial numerical weather fore-
casts were unspectacular, but rather than retreating to do more
basic research until their models were “good enough,”meteorol-
ogists embraced an approach focused on “learning by doing”
and leveraging expert judgment that accelerated both basic
and applied research (22, 23). By contrast, in ecology the prevail-
ing opinion about forecasting has been both pessimistic and con-
servative, insisting that “biology is too complex” and demanding
that any forecasting model work optimally before it is applied (24,
25). Given our rapidly changing world, we can no longer afford to
wait until ecological models are “good enough” before we start
forecasting. We need to start forecasting immediately: learning by
doing is the fastest route to drive science forward and provide
useful forecasts that support environmental management
decisions.

Herein, we articulate the needs, opportunities, and challenges
in developing the capacity for iterative near-term ecological
forecasts. Specifically, we provide a roadmap for rapid advancement
in iterative forecasting that looks broadly across data, theory,
methods, cyberinfrastructure, training, institutions, scientific culture,
and decision-making. Overall, taking an iterative near-term fore-
casting approach will improve science more rapidly and render it
more relevant to society. Despite the challenges, ecologists have
never been better poised to take advantage of the opportunities for
near-term forecasting.

Table 1. Examples of iterative near-term ecological forecasts

Variable Extent Time Model Ref.

Wildfire Global Seasonal Regression 14
Influenza National Weekly Random forest 15
Algal bloom Regional Daily Hydrodynamic 16
Wildlife Regional Annual State space 17
Waterfowl Regional Annual Population 18
Fisheries Stock Quarterly Various 19
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Data
Updating forecasts iteratively requires data. Fortunately, many
types of ecological data are increasing rapidly in volume and va-
riety (Fig. 2) (26). In addition, key abiotic model drivers, such as
weather forecasts, are also improving, particularly at timescales of
weeks to years that are relevant to near-term ecological fore-
casting. At the same time, scientific culture is evolving toward
more open, and in some cases real-time, data. Of particular value for
forecasting is the growing fraction of data that comes from co-
ordinated efforts, such as national networks [e.g., National Ecolog-
ical Observatory Network (NEON), Terrestrial Ecosystem Research
Network], global community consortiums [e.g., International
Long-Term Ecological Research, FLUXNET, Global Lakes Eco-
logical Observatory Network (GLEON)], open remote sensing (27),
grassroots experiments (e.g., NutNet), and citizen science initia-
tives (28). While some problems will remain data-limited, collec-
tively these trends represent important new opportunities. In what

follows, we assess four characteristics of data that are useful for
iterative forecasting and address the challenges and opportunities
for each: repeated sampling, interoperability, low data latency,
and uncertainty reporting.

Repeated measurements over time are the first requirement
for iterative forecasting. More measurements mean more oppor-
tunities to update model results and improve model performance.
However, many forecasting problems also require spatial repli-
cation, which leads to a trade-off where an increase in temporal
frequency usually comes at a compromise on spatial resolution or
replication. This can lead to mixed designs, such as measuring
subsets of variables and/or sites at higher frequencies to assist
with extrapolating back to a larger network. Optimizing this trade-
off between space and time requires a better understanding of
the spatial and temporal autocorrelation and synchrony in ecological
responses (29), as this controls the uncertainties in interpolating
between sites and scaling-up forecasts.

A

E
D

C

B

Fig. 1. Conceptual relationships between iterative ecological forecasting, adaptive decision-making, and basic science. Hypotheses (A) are
embedded in models (B) that integrate over uncertainties in initial conditions (IC), inputs, and parameters to make probabilistic forecasts (Fx, C),
often conditioned on alternative scenarios. New observations are then compared with these predictions (D) to update estimates of the current
state of the system (Analysis) and assess model performance (E), allowing for the selection among alternative model hypotheses (Test and
Refine). Analysis and partitioning of forecast uncertainties facilitates targeted data collection (dotted line) and adaptive monitoring (dashed line).
In decision analysis, alternative decision scenarios are generated (2) based on an assessment of a problem (1). Since decisions are based on what
we think will happen in the future, forecasts play a key role in assessing the trade-offs between decision alternatives (3). Adaptive decisions (4)
lead to an iterative cycle of monitoring (5) and reassessment (1) that interacts continuously with iterate forecasts.

Fig. 2. Forms of model–data integration (Top) and the availability of environmental data (Bottom) through time. Changes in relative data volume
indicated by line width.
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When making repeated measurements, iterative forecasting
also provides opportunities to collect data in more targeted ways
that can lead to improved inference (e.g., more accurate forecasts)
at reduced costs (30, 31). Dynamic adaptive monitoring ap-
proaches (Fig. 1) can vary when and where data are collected in
response to forecast uncertainty estimates (32). Next, uncertainty
analyses can identify which measurements are most crucial to
reducing uncertainties (33, 34). Finally, value-of-information
analyses can assess the sensitivity of decision-making to forecast
uncertainties to identify where better forecasts would improve
decision trade-offs (35, 36).

The second data challenge is interoperability, the ability of one
system to work with or use the parts of another system. Interop-
erability affects both efforts to combine different data sources
and the continuity of data sources as instruments change (i.e.,
harmonization). Technical requirements for interoperability include
data standards (variable names, units, etc.) and data formatting and
communication protocols to enablemachine-to-machine exchange.
There are also semantic challenges, due to the use of the same
terms to represent different concepts or different terms to describe
the same concept, that can bemitigated throughmachine-readable
ontologies that describe the relationships among variables and help
translate information between data standards. However, increasing
data interoperability goes beyond just information technologies
(37). Organizational barriers can arise due to issues related to in-
stitutional responsibility for, and authority over, data. Similarly,
cultural barriers can occur due to incompatibilities in how people
work collaboratively, value and manage data ownership, and
handle data latency.

The third data challenge is latency, which is defined as the time
between data collection and data availability. Latency on a
timescale similar to the ecological processes of interest can sig-
nificantly limit the ability to make forecasts. Latency increases
whenmeasurements require laboratory analyses or have complicated
processing and quality assurance/quality control requirements.
Forecasts would benefit from shared standards among commercial
laboratories and competition to meet timely and strict contractual
obligations. For all data, long embargo periods reduce the accuracy
of forecasts, potentially rendering them obsolete before they can
even be made. For example, high frequency limnology data typically
take 2–5 y to appear in publications (38). Data embargo is driven, in
part, by concern that data collectors will not receive sufficient credit
(39), as well as concerns about releasing data that has not been fully
vetted. For the former, ensuring proper attribution is important for
maximizing the potential of ecological forecasting. In the latter case,
latency can be reduced through a tiered system that clearly distin-
guishes provisional (but rapid) data from final products.

A fourth issue is data uncertainty reporting. Measurement
errors set an upper bound on our ability to validate predictions—
beyond this point, we cannot assess model performance or dis-
tinguish between competing hypotheses. It is also impossible to
assimilate data into forecasts (Fig. 1, Analysis) without estimates of
the uncertainty, such as sampling variability, random and sys-
tematic instrument errors, calibration uncertainty, and classifica-
tion errors (e.g., species identification). Because iterative forecasts
combine the previous forecast with the data, each weighted by
their respective uncertainties, data with incomplete error ac-
counting will be given toomuch weight, potentially biasing results
and giving falsely overconfident predictions. An outstanding
challenge is that there are no general standards for reporting
measurement uncertainty, and robust uncertainty estimates tend
to be the exception rather than the rule.

Theory and Methods
Although data are critical to detect change, data by themselves
cannot be used to anticipate change; making forecasts requires
that data be fused with models. Models translate what we know
now into what we anticipate will happen, either in the future, at a
new location, or under different decision scenarios. That said,
there are a wide range of models that are potentially useful for
forecasting, ranging from simple statistical models to complex
simulations that integrate physical, chemical, and ecological the-
ory. While there are well-established trade-offs related to model
complexity (40), we focus on three important forecasting challenges
and opportunities: predictability and forecast uncertainty; model
assessment; and model–data assimilation.

Predictability and Forecast Uncertainty. Because there is no
such thing as a “perfect” forecast, it is critical that ecological fore-
casts be probabilistic. A probability distribution of possible out-
comes captures forecast uncertainty, and rather than reflecting
doubt and ignorance, its calculation should arise from a careful and
quantified accounting of the data in hand, the past performance of
predictive models, and the known variability in natural processes
(9). Uncertainty is at the core of how people evaluate risk and make
decisions. This makes ecological forecasts crucial under high un-
certainty and a cornerstone of adaptive management (41). As we
embark on the path of learning by doing, we must have every ex-
pectation that early forecasts will be poor and associated with high
uncertainty. However, even if the amount of variance that can be
explained is relatively low, failure to include important sources of
uncertainty results in falsely overconfident predictions, which
erodes trust in ecological forecasts (42) and provides inadequate
inputs for risk-based decision-making.

Ecological research aimed at understanding the limits to eco-
logical predictability is in its infancy (24, 43). Because forecast un-
certainty increases with lead time, a key part of understanding
predictability lies in understanding how fast uncertainty increases.
Multiple sources of uncertainty (initial conditions, covariates/drivers,
parameters, process variability, model structure, stochasticity, rare
events; Fig. 1B) contribute to forecast uncertainty, and the impor-
tance of each is moderated by the sensitivity of the system to each
factor (9, 43). Our understanding of a system, and our ability to
forecast it, is strongly influenced by which term dominates forecast
error. Knowledge about the dominant sources of uncertainty can
also have broad impacts on data collection, model development,
and statistical methods across a whole discipline. For example,
weather forecasts are dominated by initial condition uncertainty
(i.e., uncertainty about the current state of the atmosphere) because
the high sensitivity to initial conditions causes similar initial states to
diverge rapidly through time. As a result, billions of dollars are
invested every year collecting weather data primarily to better
constrain the initial-state estimates in weather models, and a whole
discipline of atmospheric model–data assimilation is dedicated to
improving how models ingest these data (20).

By contrast, there is unlikely to be a single source of un-
certainty that dominates across all of ecology. A practical way
forward is to develop a comparative approach to predictability by
empirically classifying a wide range of ecological systems based
on which forecast uncertainties dominate their predictions (9, 43).
Do the dominant sources of uncertainty vary by ecological sub-
disciplines, trophic levels, functional groups, or spatial, temporal,
or phylogenetic scales? Answers to these questions provide a
high-level means of organizing our understanding of ecological
processes and will lead to new theories and research directions.
The answers are also practical—given that we cannot measure
everything everywhere, such patterns help determine what we
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can predict and how to direct limited resources when encoun-
tering new problems.

Model Assessment and Improvement.When making ecological
forecasts, our current knowledge and theories are embedded in
the models we use. Model improvement, however, is not guar-
anteed simply by making forecasts; model results need to be
compared with data and their accuracy evaluated (Fig. 1E). While
a wide variety of skill scores are used by ecologists for model
assessment [e.g., R2, root-mean-square error (RMSE), area under
the curve] statisticians advocate the use of proper and local
scores, such as deviance, to assess predictive ability (44). A local
score depends on data that could actually be collected, while a
proper score is one based on the statistical model used for in-
ference and calibration. For example, because a Gaussian likeli-
hoodminimizes RMSE, RMSE would be a proper score for a model
calibrated under a Gaussian likelihood. By contrast, mean abso-
lute error would not be proper for this likelihood because another
model could score higher than the best-fit model. Formalizing
repeatable model–data comparisons into explicit model bench-
marks (45) can facilitate tracking skill over time and across models.

When assessing forecast skill, it is also useful to compare
forecasts against an appropriate null model (46). Unlike statistical
null models (e.g., slope = 0), the appropriate null for forecasts
often is more sophisticated. The range of natural/historical vari-
ability (47), which may come from long-term means and variances
(e.g.., disturbance regimes), natural cycles (e.g., diurnal, season),
or first-principle constraints, provides an important null model—
the ecological equivalent to comparing a weather forecast to the
long-term climatology.

Beyond refuting a null model, a combination of model assess-
ment and exploring alternative model structures (either separate
models or variants of a single model) is essential for testing hypoth-
eses and improving models (e.g., identifying time lags, feedbacks,
and thresholds). However, the concept of parsimony and the statistics
of model selection tell us that the “best”model is not always the one
that minimizes error (44). Beyond the well-known admonition to
avoid overfitting, forecasting requires that we balance forecast skill
(e.g., minimizing RMSE) and forecast uncertainty. Forecast un-
certainty increases with the number of model parameters, state var-
iables, and inputs/drivers, particularly if there are large uncertainties
associated with any of these (43). Forecasters need to moderate the
urge to solve every problemby addingmodel complexity and rely on
formal model selection criteria that account for multiple uncertainties.

Finally, it is important to remember that some human re-
sponses to a forecast (e.g., management) may influence the out-
come, causing the original forecast to be wrong and eliminating
our ability to validate the forecast. Care must be taken when
validating such models, such as through extensive code testing,
validation of the model components, and carefully constructed
counterfactuals (i.e., demonstrating that reality is now different
from what would have happened without the action).

Model–Data Assimilation and the Forecast–Analysis Cycle. The
increased feasibility of iterative forecasting is not solely driven by
increased data availability. Methodologically, the past decade has
seen considerable advances in and uptake of sophisticated ap-
proaches for bringing models and data together (4). Bayesian
methods are particularly relevant to iterative forecasting because
Bayes’ theorem is fundamentally an iterative approach to inference—
our prior beliefs are updated based on the likelihood of new data,
generating a posterior that can be used as the next prior. Bayesian
methods also provide a means to make forecasts when data are
very sparse (48). Specifically, the use of informative priors, such as

through expert elicitation (49), generates a starting point for
chronically data-limited problems (e.g., invasive species, emer-
gent diseases) to make formal predictions with uncertainties, and
then to iteratively refine these predictions as data become avail-
able. Furthermore, Bayesian methods offer a flexible approach for
partitioning and propagating uncertainties. In particular, the
Bayesian state space framework (a hierarchical model; e.g., hid-
den Markov model) (50) is frequently used to fit models because it
explicitly separates observation and process errors. It can also
combine multiple sources of information that inform the same or
related processes, as different datasets can have different ob-
servation error models but share the same process model. Im-
portant special cases of the state space framework include
nonlinear iterative data assimilation methods, such as sequential
Monte Carlo/particle filters and ensemble filters, which are in-
creasingly being employed with both statistical and process-
based models (9).

More generally, data assimilation techniques are used in iterative
forecasting as part of the forecast–analysis cycle (Fig. 1). During the
forecast step, predictions are made probabilistically that integrate
over the important sources of uncertainty (e.g., initial conditions,
parameters, drivers/covariates). Next, when new data are collected,
the state of the system is updated during the analysis step, treating
the probabilistic forecast as the Bayesian prior. A challenge in ap-
plying the forecast–analysis cycle in ecology is that not all data as-
similation techniques make the same assumptions, and the uncritical
adoption of tools designed for different uncertainties (e.g., initial
condition uncertainty in atmospheric data assimilation) will likely
meet with limited success. For example, hierarchical and random-
effect models allow ecologists to better account for the heteroge-
neity and inherent variability in ecological systems (e.g., by letting
parameters vary in space and time), and to partition inherent sto-
chasticity (e.g., disturbance) from model uncertainty (50, 51). Such
approaches are increasingly used by ecologists for data analysis, but
have largely been absent from data assimilation because they are
not the dominant uncertainties in weather forecasting.

Another important data assimilation challenge is that ecological
models can have large structural uncertainties (i.e., that first-principles
governing equations are unknown). An important way to account for
structural uncertainties is to forecast using multiple models. This
approach is particularly important when there are multiple compet-
ing hypotheses about long-term dynamics that are all consistent with
current short-term data. Multimodel forecasts tend to perform better
than individual models because structural biases in models may
cancel out (52). Often multimodel approaches use unweighted en-
sembles (all models count equally), but Bayesian model averaging
can be used to obtain weighted forecasts with improved predictive
skill (44, 53). Finally, forecasting competitions, targeted grants, and
repositories of ecological forecasts represent possible mechanisms
for promoting a diverse community of forecasting approaches.

While model structural error is accommodated via an ensem-
ble across models, other sources of uncertainty are propagated
into forecasts by running a model dozens to thousands of times,
with each run sampling from the distribution of the model pa-
rameters, random effects, inputs/drivers, and initial conditions
(Fig. 1B). Additional sampling of stochastic processes (e.g., dis-
turbance) and residual process error is required to generate a
posterior predictive distribution and predictive interval. However,
it is challenging to construct, calibrate, and validate models of rare
events due to limited observational and experimental data (54).
Furthermore, some rare events and disturbances are too in-
frequent to warrant inclusion in a model’s structure; these are best
handled by running rare-event scenarios (also known as war
games). It is important to remember that forecasts are only as
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good as the scenarios they consider; the greatest challenge in
rare-event forecasting lies in anticipating rare events (55). Indeed,
rare events are one of the greatest challenges to ecological
forecasting as a whole.

Cyberinfrastructure
Achieving the goals in this paper will require ecological forecasts
to be transparent, reproducible, and accessible. This is especially
important for iterative forecasts, where continuous updates are
needed as new data become available. Fortunately, there has
been a push on many fronts toward making data and code openly
available (56, 57). Others have similarly advocated for following
best practices in data structure (e.g., standardized, machine-
readable data structures, open licenses) (58,59), metadata (60),
and software development (e.g., documentation, version control,
open licenses) (61). These trends make data, models, and code
easier to access, understand, and reuse, and will maximize data
use, model comparison and competition, and contributions by a
diverse range of researchers.

Among these trends, reproducibility is particularly important to
iterative forecasting: each component of a forecast should be easy
to rerun and produce consistent outcomes. Currently, most ecolog-
ical analyses are done once and never repeated. However, the dis-
tinction between such “one-off” analyses and a fully automated
iterative pipeline is not all-or-nothing, but a continuum that involves
increasing investments of time, personnel, training, and infrastructure
to refine and automate analyses [e.g., National Aeronautics and
Space Administration (NASA) Application Readiness Levels]. These
costs highlight the advantages of developing shared forecasting
tools and cyberinfrastructure that can easily be applied to new
problems.Workflows that automate the forecast cycle could be built
using a combination of existing best practices, continuous in-
tegration, and informatics approaches. Forecast infrastructure could
benefit from, and build upon, the experience of existing long-term
data programs, many of which have developed streamlined, tested,
and well-documented data workflows (62).

Improving forecasts, and evaluating their improvement over
time, will also benefit from archiving forecasts themselves (46).
First, this allows unbiased assessment of forecasts that were clearly
made before evaluation data were collected. Second, it allows
comparisons of the accuracy of different forecasting approaches
developed by different research groups to the same question. Last,
it allows the historical comparison of forecast accuracies to deter-
mine whether the field of ecological forecasting (and ecology more
broadly) is improving over time. Efforts to archive ecological fore-
casts could take advantage of existing infrastructure for archiving
data, while developing associatedmetadata to allow forecasts to be
readily compared. Forecasting will improve most rapidly if forecasts
are openly shared, allowing the entire scientific community to assess
the performance of different approaches. By publicly archiving
ecological forecasts from early on, we are preparing in advance for
future syntheses and community-level learning.

Training, Culture, and Institutions
Training. The next generation of ecological forecasters will require
skills not currently taught at most institutions (28, 63). Forecasting
benefits from existing trends toward more sophisticated training in
statistics and in best practices in data, coding, and informatics (e.g.,
Data Carpentry, Software Carpentry). However, the additional skills
needed range from high-level theory and concepts (e.g., classifying
predictability) (43), to specific tools and techniques in modeling,
statistics, and informatics (e.g., iterative statistical methods) (10), to
decision support, leadership, and team science collaboration skills
(28, 63, 64). Furthermore, both new researchers and experienced

forecasters would benefit from interdisciplinary forums to allow
ideas, methods, and experiences to be shared, fostering innovation
and the application of knowledge to new problems.

Some successful models that have emerged to fill gaps in gradu-
ate student skillsets are cross-institution fellowship programs (e.g.,
GLEON Fellows program) (63) and within-institution interdisciplinary
training programs [e.g., National Science Foundation (NSF) Research
TrainingGroups]. The next generation of ecological forecasters would
also benefit from graduate and postdoctoral fellowships directed
at forecasting or supplemental funding aimed at making existing
analyses more updatable and automated. Short courses, held over a
1- to 2-wk period to obtain specific skills, are anothermodel that holds
promise, not only in academia but also in applied disciplines and
professional societies (e.g., water quality, forestry), which often have
continuing education certification requirements. By training practi-
tioners in the latest forecast approaches, such certifications may also
be particularly helpful for bridging ecological forecasts from research
to operations.

From Research to Operations. Forecasting is an iterative process
that improves over years or decades as additional observations
are made. Amajor long-term challenge then is how to bridge from
basic research to sustainable operations. Beyond technical skills,
moving from research to operations requires high-level planning
and coordination, clear communication of end user requirements,
and designs that are flexible and adaptive to accommodate new
research capabilities (64). It also requires sustained funding, a
challenge that may run up against restrictions placed on research
agencies that prohibit funding of “operational” tools and in-
frastructure. For example, in the United States, moving from re-
search to operations requires a hand-off that crosses federal
agencies (e.g., from NSF to US Department of Agriculture, US
Forest Service, National Oceanic and Atmospheric Administra-
tion) with different organizational values and reward structures,
often without a clear mechanism for how to do so. NASA’s Ecological
Forecasting program provides one model for moving basic research
to operations, requiring a phased funding transition where research is
operationalized by an external partner identified at the time of grant
submission. Whether required upfront or transitioned post hoc,
forecasting would be improved if funding agencies did more to ac-
tively support bridges between basic research and organizations with
the infrastructure to sustain operational forecasting capabilities (65).

Culture. In addition to technical training and organizational support,
there are important shifts in scientific culture that would encourage
greater engagement in iterative forecasting. First, prediction needs
to be viewed as an essential part of the scientific method for all of
ecology (25). The need for iterative forecasting goes beyond
informing decisions; so long as forecasts are tested against obser-
vations, they have a central role to play in refining models, pro-
ducing fundamental insights, and advancing basic science.

Second, prediction often requires a perceptual shift in the
types of questions we ask and the designs we use to answer them.
For example, rather than asking “does X affect Y,” we need to ask
“how much does X affect Y.” A simple shift to a greater use of
regression-based experimental designs over ANOVA designs does
not require sophisticated statistical tools or advanced training, but
would immediately shift the questions being asked,make it easier to
build on previous work quantitatively, and provide informationmore
relevant to forecasting (25). More broadly, the modeling and mea-
surement communities should be actively encouraged to work to-
gether iteratively from the earliest stages of research projects (66).
Overall, a change in our approach to many long-standing problems
is likely to generate new insights and research directions.
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Third, while testing explicit, quantitative predictions has the
potential to accelerate basic science, it also comes with a much
greater chance of being wrong. Indeed, we should expect that
individual predictions will often be wrong, particularly in the early
stages of forecasting. While “getting it wrong” is an essential part
of the scientific method, it is rarely embraced by the scientific
community. Because ecologists are not accustomed to making
explicit predictions, fear of being wrong may lead to concerns
about impacts on professional reputations, career prospects,
competition for funding, or even legal liability. Indeed, research
forecasts should be labeled as “experimental” to ensure users are
aware that such systems are a work in progress and should be
treated with caution. That said, there are already parts of ecology
(e.g., ecosystem modeling) where model intercomparisons are a
common part of the culture and important for both advancing
science and building community (66). Furthermore, forecast per-
formance is not black-and-white—in both research and policy, it is
better to be honestly uncertain than overconfidently wrong, which
reiterates the importance of including robust uncertainty esti-
mates in forecasts. In a decision context, honestly uncertain eco-
logical forecasts are still better than science not being part of
decisions—when correctly communicated, uncertain forecasts
provide an important signal for the need to seek alternatives that
are precautionary, robust to uncertainty, or adaptive (67).

Decision Support
Because decisions are focused on the future consequences of a
present action (68), societal need is a major driver for increased
ecological forecasting. To facilitate direct incorporation into a
decision context, forecasts need to provide decision-relevant
metrics for an ecological variable of interest at the appropriate
spatial and temporal scale. Many scientists (and some organiza-
tions) think there is a predefined “proficiency threshold” a fore-
cast has to reach (24), and thus some of the reluctance among
scientists to provide ecological forecasts may stem from misper-
ceptions about when a forecast is “good enough” to be useful for
decision-making. Instead, environmental management decisions
should be based on the best available information. If the best
available forecast is rigorously validated (69) but highly uncertain,
it is important that uncertainty be included in risk management
decisions. As long as a forecast provides an appropriate un-
certainty characterization, and does better than chance, then
decision analysis methods can be used to identify the options that
are the most desirable (i.e., maximize utility) given the uncer-
tainties and the decision maker’s goals (5, 70).

The following sections focus on two key opportunities to si-
multaneously facilitate the development of iterative forecasts and
support decisions. First, the process of developing near-term
ecological forecasts (on the scientific side) and using them (on the
management side) will require long-term partnerships between
researchers and managers to refine and improve both forecasts
themselves and how they are used. Second, there is an important
opportunity for linking iterative near-term forecasts with adaptive
management (Fig. 1) and other inherently iterative policy rules
(e.g., annual harvest quotas).

Partnerships. Rather than a “build it and they will come”model of
decision support, making ecological forecasts useful for decision-
making requires partnerships. Decision-relevant outputs may best
be achieved through coproduction processes, where ecological
forecast users (e.g., stakeholders, decision makers, and other
scientists) collaborate with forecasting experts to mutually learn
and understand the desired outputs for a range of decision con-
texts, as well as the potential or limitations of current forecasting

capabilities (71). However, collaborations between scientists and
stakeholders can be challenging because each think about a
particular problem from different perspectives (72). These chal-
lenges can be reduced by employing best practices for interdis-
ciplinary teams to help build trust, establish effective communication
and a shared lexicon, and identify and manage conflict (63).

Often it can be useful to engage in “boundary processes” to
connect information and people focused on the scientific and
policy aspects for a particular topic (35). These can be collabora-
tions with individual science translation experts, who represent
the perspectives of multiple stakeholders or an institution, or with
boundary organizations, whose organizational role is to help
translate relevant scientific information to support decision-making.
Partnering with such organizations facilitates engagement within
their established and trusted networks, increases the impact of
the research more quickly, and provides their stakeholder and
decision-making networks with credible forecasts that are relevant
for their decisions. The effectiveness of these collaborations can be
measured over time as forecasts are actually used and value of
information is analyzed to determine its influence on decisions (73).
Regardless of the collaborator, effective engagement requires a
long-term investment in mutual learning and relationship devel-
opment to achieve successful science policy translation and facili-
tate increased use of scientific information (7, 74).

Adaptive Management. Adaptive management is an iterative
process of making better environmental decisions, with better
outcomes, by reducing uncertainties through time through moni-
toring, experimentation, and evaluation (ref. 41, figure 1.1-5). Be-
cause decisions are ultimately about the future, predictions of
how systems will respond to different management choices provide
the most relevant ecological information for decision-making (6).
Adaptive management acknowledges that our ability to manage
ecological systems is based on imperfect and uncertain predictions.
A key part of adaptive management is the collection of monitoring
data to assess the outcomes of different management actions.
These data should then be used to update our understanding of the
system andmake new predictions. In this way, an iterative approach
to forecasting plays an important role in adaptive management,
especially if such forecasts are designed to be societally relevant.
Iterative forecasting represents an important opportunity to de-
velop knowledge and experience about the capacity of different
management strategies to cope with change and maximize re-
sistance and resilience. The development of near-term ecological
forecasts could lead to improved decision analysis frameworks and
advances in our understanding of coupled human–natural systems.

A Vision Forward
The central message here is that ecologists need to start fore-
casting immediately. Rather than waiting until forecasts are “good
enough,” we need to view these efforts as an iterative learning
exercise. The fastest way to improve the skill of our predictions,
and the underlying science, is to engage in near-term iterative
forecasts so that we can learn from our predictions. Ecological
forecasting does not require a top-down agenda. It can happen
immediately using existing data, often with only modest reframing
of the questions asked and the approaches taken.

Ecological forecasting would benefit from cyberinfrastructure
for the automation, public dissemination, and archiving of eco-
logical forecasts, which will allow community advances in two
important ways. First, by looking across different types of forecasts,
we can take a comparative approach to understanding what af-
fects predictability in ecology. Second, forecasts of the same or
similar processes facilitates synthesis and lets us use small-scale
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efforts to work toward upscaling. For example, multiple local
forecasts could be synthesized using hierarchical models to later
assess their spatial and temporal synchrony, leading to further
constraints at the local scale.

Beyond cyberinfrastructure, there are additional practical steps
that can be taken to advance the field, take advantage of current
capabilities, and create new opportunities. To summarize the
recommendations from previous sections, at a minimum we
suggest that it is necessary to have the following:

� Increased training and fellowship opportunities focused on eco-
logical forecasting.

� Shifts in the scientific culture to view prediction as integral to
the scientific process.

� Increased theoretical focus on predictability and practical meth-
ods development for iterative forecasting.

� Open and reproducible science, with a particular emphasis on
reducing data latency and increasing automation for problems
amenable to frequent forecasts.

� Increased long-term support for the collection of data and de-
velopment of forecasts, in particular focused on helping re-
searchers at all career stages to bridge projects from research
to operations.

� Early engagement with boundary organizations and potential
stakeholders in developing ecological forecasts.

Two larger initiatives that would advance iterative forecasting
are the establishment of an ecological forecasting synthesis center
and a “Decade of Ecological Forecasting” initiative. A forecasting
synthesis center is a natural next step for technology, training,
theory, and methods development. Such a center could contribute
to development in these areas, both directly and indirectly (e.g.,
through working groups), by synthesizing forecasting concepts, data,
tools, and experiences, and by advancing theory, training, and best
practices. A forecast center could exist in many forms, such as an in-
dependent organization, a university center, an interagency program, or
an on-campus agency/university partnership. In any of these configura-
tions, a forecast center could provide the institutional memory and
continuity required to allow forecasts to mature and improve through
time, and to help transition forecasts from research to operations.

Similarly, initiatives in other research communities, such as the
International Biological Program, the three International Polar
Years, the International Geophysical Year, and the Decade of
Predictions in Ungauged Basins, succeeded in bringing wide-
spread public and scientific attention to topics in need of research
and synthesis. The opportunity to initiate a Decade of Ecological
Forecasting is both timely and critical.

Conclusions
Iterative near-term forecasts have the potential to make ecology
more relevant to society and provide immediate feedback about how
we are doing at forecasting different ecological processes. In doing
so, they will accelerate progress in these areas of research and lead to
conceptual changes in how these problems are viewed and studied.

On longer timescales, efforts to broaden the scope of iterative
forecasting will lay the foundation for tackling harder interdisciplinary
environmental problems. This improvement will come in three major
ways: improvements in ecological theory, improvements in tools and
methods, and gaining experience. Key conceptual and methodo-
logical questions exist about the spatial and temporal scales of pre-
dictability, what ecological processes are predictable, and what
sources of uncertainty drive uncertainties in ecological forecasts.
Scientifically, additional experience is required because we currently
lack a sufficient sample of iterative ecological forecasts to be able to
look for general patterns. Furthermore, gaining forecasting experi-
ence is necessary because the community is currently not ready to
respond quickly to the needs of environmental managers.

To engage actively in near-term forecasts represents an op-
portunity to advance ecology and maximize its relevance to society
during what is undoubtedly a critical junction in our history. The
need for iterative near-term ecological forecasts permeates virtually
every subdiscipline in ecology.While there are definitely challenges
to address, these should not be viewed as requirements that in-
vestigators must meet to start forecasting, but rather as a set of
goals to which forecasters should strive to achieve. There are broad
sets of problems where we can begin to tackle iterative approaches
to forecasting using current tools and data. The time to start is now.
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