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Abstract 

Multistage interconnection networks (MIN's) allow communication between termi
nals on opposing sides of a network. Lowest Common Ancestor Networks (LCAN's) [1] 
have switches capable of connecting bi-directional links in a permutation pattern that 
additionally permits communication between terminals on the same side. Self-routing 
LCAN's have interesting permutation routing capabilities and are highly partionable. 
This paper characterizes self-routing LCAN's and analyzes their permutation routing 
capabilities. It is shown that the routing network of the CM-5 is a particular instance 
of an LCAN. 

Keywords: SIMD, interconnection network, self-routing, permutation routing 
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1 lntrod uction 

Multistage interconnection networks (MIN's) can be used to effect communication between 

processing elements (PE's) in SIMD machines, as well as MIMD machines. SIMD commu

nication takes the form of permutation routing where given a unique labelling of the PE's, 

source-destination pairs are obtained from a one-to-one mapping of the set of labels onto it

self. MIN's differ in many respects, e.g. permutation routing capabilities, network topology, 

and switch size [3], [5], [7], [18], [19]. However, all MIN's share one characteristic: the rout

ing of a source-destination pair progresses in only one direction through the network (this is 

called uni-directional routing) and must utilize a switch in every stage. This characteristic 

is called the MIN "model of interconnectivity." 

Lowest Common Ancestor Networks (LCAN's) [1] permit routing in both directions 

across a network (this is called bi-directional routing). In this paper LCAN's are re-characterized 

and the advantages of their model of interconnectivity over the MIN model of interconnec

tivity are demonstrated. Self-routing LCAN's are classified and shown to possess interesting 

permutational capabilities. They are also shown to be easily partitioned hierarchically. 

Self-routing LCAN's exploit a communication hierarchy imposed by the actual imple

mentation of massively parallel computers. The MIN model of interconnectivity does not 

inherently allow utilization of the hierarchy. The hierarchy is exemplified by the MasPar 

MP-1: the MP-1 is constructed with a number of boards attached to a backplane; each 

board holds a number of chips; and each chip holds a number of PE's [4] (see Figure 1). 

Due to physical limitations, this construction leads to a natural hierarchy with respect to 

communication time: on-chip communication is performed the quickest, then on-board com

munication, and lastly, communication requiring the backplane. Connecting boards to the 

backplane is also expensive in terms of pinouts; this is because of physical limitations upon 

the number of pinouts per board. 

Typically, using a MIN for interconnection forces every permutation to require backplane 

communication, since each source-destination pair utilizes a switch in every stage. The LCAN 
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Figure 1: Router network construction 

model of interconnectivity forces off-chip and off-board communication only when necessary. 

As an extreme example, consider the identity permutation: why should each source PE 

need to find a path through the entire network to its destination PE? Using LCAN's, each 

source-destination pair need only route to the first stage of the network and back; thus, only 

on-chip communication is necessary. 

An LCAN switch in stage i has d links to stage i - 1 and u links to stage i - 1. Previous 

research on networks allowing bi-directionality between stages can be categorized as com

prising either switches with d > u or d = u, but not d < u. In both cases, the networks are 

used not in SIMD context, but rather MIMD, i.e. they have strategies for PE-to-PE routing, 

not permutation routing. 

X-tree, the DAC, and the P-tree [6], [10], (11], [12] employ a tree of processors, and 

Hypertree, KYKLOS and fat-trees [8], (15], (14] use a tree of switches as an interconnec

tion network between processors. LCAN's with switches where d > u fall into the latter 

category. Trees are attractive to use as interconnection networks because they are highly 

scalable and require a number of switches that is linear with respect to the number of PE's. 

However, trees are unappealing because of the high degree of contention near the root of 
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Figure 2: Front and side views of LCAN(2,2,8,3,(2, 2) - complete bipartite) drawn in 3-D 

the tree. Hypertree and X-tree are variations upon complete binary trees, both networks 

add links between nodes on the same level to reduce the average interprocessor distance. 

KYKLOS comprises replications of k-ary trees; the isomorphic replications provide alternate 

paths, again reducing the average interprocessor distance. Fat-trees reduce root contention 

by increasing the "capacity» of the links (i.e. each link has more bandwidth) progressively 

approaching the root switch in a binary tree. However, they require switches that propor

tionally increase in size. In [6], [8] and [15], X-tree, Hypertree and KYKLOS were analyzed 

in a MIMD context. 

Thinking Machines Corporation>s CM-5 is a MIMD computer using a router network they 

call a "hyper-tree» [17]. On the bottom level, each PE connects to two switches; all switches 

are identical. Each switch upwardly connects to either two or four switches, each via one link 

(likewise for the downward links). In higher stages, some switch connectors are not used, 

thereby decreasing the bandwidth. The router network is similar to LCAN(2,2,8,3,(2, 2) -
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Figure 3: (a) 3-D view of LCAN(2,2,8,3,(2, 2) - complete bipartite), (b) the same network 

drawn in two dimensions 
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complete bipartite) shown in Figures 2 and 3. The CM-5 network is a particular instance of 

LCAN's where d = u = 4. 

Full communication, a network's ability to connect one terminal to any terminal on 

either side of the network was introduced in [20] (in this paper, full communication is called 

bi-directional routing). A routing strategy for full communication using a baseline network 

was described; a baseline network is a particular instance of LCAN's where d = u = 2. 

In [1] a permutation routing algorithm for LCAI\''s where switches with d > u was 

presented and analyzed. Now, in this paper, LCAN's \\ith all switches of all sizes are 

analyzed. Section 2 characterizes self-routing LCAN's, and uni-directional and bi-directional 

routing schemes for them are explained in Section 3. Section 4 presents permutation routing 

algorithms, Section 5 shows the analyses, and Section 6 concludes. 

2 Characterization 

2.1 LCAN's 

This section re-characterizes LCAN's from [1] and explains their advantages. Then, a class 

of LCAN's, self-routing LCAN's, is parameterized. In [lL LCAN's were parameterized by 

(u, d, n, l, SP)-tuples. There are n PE's, and l levels (stages) of switches in the network. 

SP is a vector of size l, each vector element describing the permutations between stages, 

the manner in which the switches in adjacent stages are connected. Each switch in level i, 

where 0 ~ i ~ l - 1, has d bi-directional downers, links which connect to switches in the 

next lower level, level i - 1, and u bi-directional uppers which connect to switches in the 

next higher level, level i + 1 (see Figures 4 and 5). Thus, sv.itches in level i only connect 

to switches in levels i - 1 and i + 1. The exceptions are leYel 0 (the lowest level in the 

network), in which case the uppers do not connect to anything, and level l - 1 (the highest 

level in the network), in which case the downers connect to the PE's. Note that the levels 

are now re-labeled; previously in [1], level 0 was the highest level. A switch accepts up to 
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Figure 4: An LCA switch 

u + d inputs and switches them to u + d outputs. Any upper and downer can connect to 

any upper or downer, including itself. An example LCAN is shown in Figure 6, its stage 

permutation (2, 3) - complete bipartite is defined later in this paper. 

LCAN's were characterized as networks with identical switches. However, it has become 

clear that the key advantage of LCAN's lies in the proper usage of the bi-directional links. 

Non-identical switches in an LCAN do not preclude this usage. Thus, LCAN's are now 

re-characterized such that every switch need not have the same number of bi-directional 

connectors ( d and u ). At the same time however, attention is restricted to LCAN's with 

identical switches so that the development and analyses of permutation routing schemes are 

simplified. 

With respect to a tree, the lowest common ancestor of two nodes (PE's) is the node 

(a switch) at greatest depth which counts both nodes (PE's) among its descendants, this 

node corresponds to an LCA switch. All LCAN's exhibit the following characteristic: given 

a source-destination pair, there are one or more LCA switches, and communication need 

progress upwards only to a stage containing an LCA switch, this stage is called the LCA 

level. At this point, routing can return downwards to the destination. Thus, given a network, 

there clearly exist source-destination pairs that do not require routing through every stage of 

the network; whereas in MIN's, all source-destination pairs must route through every stage. 

This common LCAN characteristic is useful because it permits the network to be easily 
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partionable onto chips and boards in a manner that minimizes the number of pinouts per 

board and allows certain permutations to be performed quickly (permutations that only 

require on-chip and on-board communication; determination of these permutations depends 

on a given partioning). Even permutations that require backplane communication gain: 

source-destination pairs not routing through the uppermost stage route downwards at some 

lower stage, thus reducing link contention at the upper switches. 

Exploiting this characteristic requires determining network parameters that permit rout

ing to and from an LCA switch, based solely on local knowledge, i.e. the source and desti

nation addresses. Without the ability to determine when an LCA switch has been reached, 

all source-destination pairs must route through the topmost level, then return downwards -

negating the advantages of LCAN's. 

2.2 Self-Routing LCAN's 

A MIN has a set of terminals at both sides of the network, the two sets correspond to one 

set of PE's. Uni-directional routing is allowed, but bi-directional routing is not. Certain 

MIN's, delta networks [16] are capable of self-routing (i.e. require only a destination address 

to route). A subclass of delta networks, bidelta networks [13] are also self-routing if the 

network is reversed. Self-routing LCAN's are topologically similar to delta and bidelta 

networks, however they additionally allow bi-directional routing, using only the source and 

destination addresses. 

In [1] it was shown that LCAN's with identical switches with d > u and a "tree" stage 

permutation allowed simple routing to and from LCA switches. Now, a generalized stage 

permutation, called (d, u)-complete bipartite, that applies to all switch sizes (d > u, d = u 

and d < u) is described. Networks with this stage permutation are self-routing both up and 

down the network, and have l = logd n stages. Thus, self-routing LCAN's are parameterized 

by (u,d,n)-tuples, where n = dk for some integer k. Each stage i has Si switches, where 

Si = n · d~1, where 0 ~ i ~ l - 1 Stage l - 1 is the highest stage and stage 0 is the lowest 

stage. For a given u, d and n, the total switch cost = I:~~~ n-l Si. 
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SP = ( d, u) - complete bipartite connects d switches in stage i and u switches in stage 

i + 1 in a complete bipartite fashion, i.e. there is exactly one link between each switch of 

the first set and each switch of the second set. Properly choosing which switches to connect 

in this fashion leads to self-routing properties. 

Label the PE's consecutively using logd n digits based: < Plogdn-1P1o9dn-2 ···Po >. La

bel the switches in stage i consecutively using logd n - 1 digits such that the logd n -

1 - i most significant digits are base d and the i least significant digits are base u: < 

Definition 1 The stage permutation of an LCAN is {d,u)-complete bipartite if] 1) switches 

in stage i, 0 ~ i < logd n - 1, labelled < W/ogd n-2W/ogd n-3' · · Wi+ijWi-1 '' 'Wo > 1 Where j = 

0, 1, ... , d-l, are connected to switches in stage i+l labeled< w1o9d n-2W109d n-3 · · · Wi+l wi-1 ···wok >, 

where k = O, 1, ... , u - 1, via the j +1st upper of the switch in stage i and the k + lst downer 

of the switch in stage i + 1; and 2) a PE labelled< P1o9dn-1Plogdn-2 ···Po> is connected to 

switch< Plogdn-lPlogdn-2 · · · P1 > via the Poth downer of the switch. 

Baseline networks [20] are a particular instance of LCAN's with d = u = 2 and SP = 
(d, u) - complete bipartite. An example of self-routing LCAN's where d = u is shown in 

Figure 7. Examples of self-routing LCAN's with d > u and d < u are shown in Figures 8 

and 9, respectively. The examples show the inherent partitionality of self-routing LCAN's. 

The interconnection networks in the last two examples are isomorphic to each other, thus 

self-routing LCAN(d,u,n) is the same as self-routing LCAN(u,d,n · (u/d) 10Ydn). 

3 Routing 

Routing in the baseline network is accomplished using routing tags in base two. In the 

generalized network for all d = u where SP= (d, d)- complete bipartite, routing tags are in 

base d. The generalized networks with d > u or d < u and SP = ( d, u) - complete bipartite 

facilitate routing upwards using routing tags in base u and downwards with routing tags in 
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based. In this section, PE-to-PE routing in self-routing LCAN's is explained: the procedure 

for uni-directional routing is shown, and bi-directional routing is shown using an LCA level 

computation. 

3.1 Uni-Directional Routing 

Uni-directional routing uses routing tags in base u to route upwards, and tags in base d to 

route downwards. Each stage "retires" a unique digit of the destination tag, i.e. a switch 

in a given stage uses one digit to determine to which link to route. From the bottom of the 

network, routing upwards to a terminal at the top of the network, let < t,_ 1t,_2 ... to > be 

the destination tag. Then, routing to stage i, ti is used to select which of the u uppers to 

connect to. From the top of the network, routing downwards to a terminal at the bottom 

of the network, let < T1-iT1_ 2 ... To > be the destination tag. Then, routing from stage i, Ti 

determines to which of the d downers to connect. 

3.2 Bi-Directional Routing 

Bi-directional routing is necessary when PE's are connected to only one side of the network, 

as in LCAN's. With this placement of PE's, a source-destination pair need not route to a 

specific LCA switch, only to its LCA level. That is, any switch in the source-destination 

pair's LCA level that is reachable from the source is guaranteed to have a path to the 

destination, because of the nature of LCAN construction and the definition of the LCA 

level. The routing procedure is now simplified: randomly route upwards anyway possible to 

the LCA level, then deterministically route downwards to the destination PE. This strategy 

provides some degrees of freedom, i.e. multiple paths, when routing to the LCA level. 

Given a source-destination pair requiring bi-directional routing, assume the LCA level is 

i and the destination address is < T1-iT1-2 ... To >. Then, digits < TiTi-I ... To > are used to 

route downwards once the LCA level has been reached. 
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3.3 LCA Level Computation 

Let x =< Xn-lXn-2 ... Xo >, y =< Yn-lYn-2 ... Yo > and z =< Zn-lZn-2 ... Zo > such that 

all xi's and y/s are digits base b, b > 1, and all z/s have value either 0 or 1. Define a function 

J(X, Y) = Z, where Zi = 0 if Xi = Yi and zi = 1 if xi f- yi, 0 S i S n - 1. 

Given a source-destination pair, let the source address S =< s1-is1_ 2 ... s0 > and the des

tination address D =< d1-1d1-2 ..• do >. Compute J (S, D) = Z, < Z = z1-1z1_2 ... Zi · · · zo >. 

Then, the LCA level is j such that Zk = 0 for j + 1 S k S l - 1, and zi = 1; i.e. j is the 

most significant digit where S and D differ. 

4 Permutation Routing 

Self-routing LCAN's can be classified into networks with switches that have: d > u, d = u 

or d < u. The bi-directional routing schemes for self-routing LCAN's simplify permutation 

routing. All classes of self-routing LCAN's follow the same procedure: 

Each source-destination pair computes its LCA level and each source PE sends a header 

packet upwards through the network until reaching an LCA switch (any switch in its LCA 

level). Next, it uses the destination address in the header packet to route downwards to its 

destination PE. The switches are set as the packets route through them. If a PE receives 

a tag, a path has been successfully established; it sends a packet back to the source PE 

through the path to confirm the connection. 

When d > u, there may be contention routing upwards. Up to d packets may compete for 

u uppers; u packets are chosen randomly. If d = u or d < u, there is no contention upwards 

since there is enough bandwidth to accommodate all packets, and packets are routing to 

LCA levels, not particular switches. Packets are randomly assigned to uppers. 

Routing downwards, all three classes may experience contention since the routing is 

deterministic. At each unit time step, at most u packets may enter a switch from its uppers. 

There are two possibilities for contention: 1) if the requested downer is already set, the 
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requesting packet is dropped; and 2) if the downer is free but more than one packet requests 

it, one packet is randomly is assigned to it. After all the switches are set, the successful 

PE's pipeline data to their destinations. The process of setting switches and sending data is 

repeated until all source-destination pairs of the permutation have been satisfied. 

5 Analysis 

This section gives a probabilistic analysis of the permutation routing algorithm presented in 

the previous section. Clearly, self-routing LCAN's do not route all permutations in the same 

number of passes. For example, the identity permutation is routed in one pass, whereas 

bit-reversal more than likely requires multiple passes. 

Given a network with l stages, consider a "worst-case" set of permutations: permutations 

where all source-destination pairs have LCA levels equal to l. This set is "worst-case" 

in a probabilistic sense: the permutations are likely to take more passes to route than 

permutations with some source-destination pairs having LCA levels less than l, since the 

latter introduce less contention into the network. 

Following the permutation routing algorithm, these worst-case permutations initially 

randomly route packets to stage l. At this point, a number of packets are at stage l. Assuming 

an initial load of 1.0 at the bottom of the network, self-routing LCAN's where d > u or 

d = u now have a load of 1.0 at the top of the network. If d < u, then the load at the top is 

( d/ u )1o9d n. Load is defined as the fraction of terminals on a given side of the network with 

a header packet to route. Since the upwards routing is random, the packets are distributed 

pseudo-randomly: routing choices are made randomly, however the choices force a "spreading 

out" of the packets from a given switch at stage 0. This should in fact reduce contention 

when routing downwards. However, for the purposes of analysis, it is assumed that the 

packets are distributed randomly. 

In the specific instance where d = u = 2, the analysis becomes the same problem as de

termining the number of passes needed to route a permutation in a butterfly network. This 
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analysis is given in [13]. The same problem formulation is now generalized for any d and u. 

Assume the labelling of the stages is reversed, i.e. the top stage is stage 0 and the bottom 

stage is stage logd n. Consider an upper of a switch in stage i. Let Pi be the probability that 

a packet comes in on it. Then, Pi+I is the probability that one or more incoming packets from 

all uppers want to utilize a particular downer. So, Pi+I = 1-P[no packet wants the downer]. 

P[no packet wants the downer] = P[a given upper does not want the downer]u, since there 

are u uppers. P[a given upper does not want the downer]= 1-P[the given upper has a packet]· 

P[the upper wants the particular downer] = 1 - (pi/ d). Thus, Pi+I = 1 - ( 1 - pi/ d)u, where 

0 :::; Pi :::; 1, and d and u are integers greater than 0. 

This is a non-linear recurrence; its solution is currently unavailable. Attempting to lower 

bound Pi by expanding the binomial expansion yields another non-linear recurrence of the 

form Pi+I = a· P7 + b, where 0 ::; Pi ::; 1, and a and b are constants in terms of d and u. 

This is another non-linear recurrence that has been solved for particular cases of a and 

b [2], [9]; however, the general solution is currently unavailable. To understand the behavior 

of the recurrence in a limited fashion, Pi is plotted as a function of i for particular values of 

u and d. 

In Figure 10, d = u. As d (and u) becomes larger, the p/s approach 0 more quickly. 

Considering this plot in terms of throughput (define throughput as the fraction of PE's that 

get routed assuming a given load), note that for a given number of PE's, the larger the 

switch, the smaller the number of stages required. Thus, it is not fair to compare p~s at 

i = 16 for all switch sizes. For example, in a network comprising 216 PE's and switches with 

d = u = 2, there are 16 stages (each stage retires one bit). Since the number of stages is 

logd n, another network with the same number of PE's and switches with d = u = 16 uses 

only 4 stages (each stage retires four bits). Thus, the throughputs of networks with different 

switch sizes need to be considered at the proper i coordinate on the plot. In general, as 

expected according to the recurrence, when d = u it appears that throughput increases with 

increasing switch size. 

Plotting values of Pi for d > u (see Figure 11), the same consideration needs to be given to 
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the i coordinates. However, throughput decreases when u is held constant and dis increased. 

This is expected because the number of PE's allowed to utilize the top stage links decreases, 

thereby increasing contention. 

In Figure 12, as u gets larger and dis held constant, Pi approaches 1.0 faster (as expected 

from the recurrence). In terms of the analysis formulation, both of the previous cases, d = u 

and d > u have loads of 1.0 after routing packets to the top stage. This case, however, leads 

to a load of (d/u) 109an in the top stage. Figure 12 shows the behavior of the recurrence, but 

in order to compare throughputs, given n, the differing loads at the top stage need to be 

considered (see Figure 13). Here, the Pi increases as i increases since there are ofless wires 

for the packets to be "shared" among. Also, greater values of u, given a fixed value of d, 

yield better performance since there is less contention in higher stages. 
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6 Conclusion 

In this paper, self-routing LCAN's were characterized, and uni-directional and bi-directional 

routing schemes were given. The partionability of these networks was shown. The routing 

schemes facilitated a simple permutation routing algorithm. An analysis of a set of worst

case permutations resulted in a non-linear recurrence, its solution is not available at this 

time. The recurrence's behavior for particular values of d and u was shown and discussed in 

the context of throughput. 

Most self-routing LCAN's where d > u are not practical because of the likelihood of 

contention at the upper stages of the network, given a random permutation. However, if it 

is determined that many "commonplace" permutations do not require usage of the upper 

stages, these networks become very attractive because of hardware considerations (low pinout 

cost from the backplane) and their permutation routing capabilities. LCAN's with d < u 

are also likely to be not practical because of the high switch cost. However, LCAN's with 

d = u are feasible - the CM-5 router network. Future work includes simulating the routing 

20 



algorithm and network. Also, it is important to identify permutations that can be routed 

quickly on specific LCAN's. 
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