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Edge-Preserving PET Image Reconstruction Using Trust 
Optimization Transfer

Guobao Wang and Jinyi Qi
Department of Biomedical Engineering, University of California, Davis, CA, USA

Abstract

Iterative image reconstruction for positron emission tomography (PET) can improve image quality 

by using spatial regularization. The most commonly used quadratic penalty often over-smoothes 

sharp edges and fine features in reconstructed images, while non-quadratic penalties can preserve 

edges and achieve higher contrast recovery. Existing optimization algorithms such as the 

expectation maximization (EM) and preconditioned conjugate gradient (PCG) algorithms work 

well for the quadratic penalty, but are less efficient for high-curvature or non-smooth edge-

preserving regularizations. This paper proposes a new algorithm to accelerate edge-preserving 

image reconstruction by using two strategies: trust surrogate and optimization transfer descent. 

Trust surrogate approximates the original penalty by a smoother function at each iteration, but 

guarantees the algorithm to descend monotonically; Optimization transfer descent accelerates a 

conventional optimization transfer algorithm by using conjugate gradient and line search. Results 

of computer simulations and real 3D data show that the proposed algorithm converges much faster 

than the conventional EM and PCG for smooth edge-preserving regularization and can also be 

more efficient than the current state-of-art algorithms for the non-smooth ℓ1 regularization.

Keywords

PET; image reconstruction; edge-preserving regularization; optimization transfer; optimization 
algorithm

I. INTRODUCTION

Iterative image reconstruction methods can accurately model the system response and noise 

statistics in positron emission tomography (PET). They have been increasingly used to 

improve image quality. The maximum likelihood (ML) method [1], [2] reconstructs an 

image from projections by maximizing the log likelihood of PET data and can be elegantly 

solved by the expectation maximization (EM) algorithm [3], [4]. However, a true maximum 

likelihood solution can be very noisy. Common ways to stabilize the image estimation are 

either terminating the iteration before convergence or using a penalty function to encourage 

spatially smooth images [5]. Both early termination of the EM algorithm and using the 
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quadratic penalty function tend to over-smooth sharp edges and fine features in 

reconstructed images. In comparison, penalized likelihood (PL) methods using a non-

quadratic regularization can preserve edges and achieve higher contrast recovery for small 

targets [9], [10], [33].

Existing optimization transfer (OT) algorithms, either based on the EM algorithm [3], [11], 

[12] or the separable quadratic surrogates [13], [14], work well for PL reconstruction with 

quadratic regularization. However, when applied to a high-curvature nonquadratic penalty 

function, these algorithms can be very inefficient (as shown in the simulation studies in 

Section V) and they are not applicable to non-smooth regularization because the penalty 

function is not differentiable at zero. While the conventional preconditioned conjugate 

gradient (PCG) algorithm [15], [16] can be faster than the OT algorithms, it still suffers the 

same problem of slow convergence because the preconditioners are often borrowed from the 

EM algorithm and contain no information of the regularization. Incorporating the 

regularization information and using a non-diagonal preconditioner can further accelerate 

the PCG algorithm [17]. Iterative coordinate descent (ICD) algorithms can achieve fast 

convergence but usually present challenges to parallel implementation [18]-[20].

Recently, there has been growing interests in developing algorithms for non-smooth 

regularization due to the emerging area of compressive sensing. The alternating direction 

method of multipliers (ADMM) has been developed for Poisson image deconvolution under 

different names (PIDAL [22] and PIDSplit [23]) and has been applied to PET and SPECT 

image reconstruction [24], [25]. ADMM-type algorithms can be very fast, but are not 

guaranteed to converge monotonically. The ADMM for Poisson data involves Lagrangian 

penalty parameters that have to be tuned for fast convergence, which is a nontrivial task. The 

Chambolle-Pock (CP) algorithm [26]-[28], a kind of primal-dual optimization method, can 

handle non-smooth penalties and other constraints very easily. However, the CP algorithm 

can be slow when applied to spatially variant inverse problems and has no guarantee on 

monotonic convergence. The SPIRAL [29] is another new algorithm that utilizes the fast 

iterative shrinkage and thresholding algorithm (FISTA). It is fast in its non-monotonic 

implementation, but can be slow if monotonicity is enforced.

In this paper, we develop a new trust optimization transfer algorithm that achieves fast 

monotonic convergence for edge-preserving PET image reconstruction. We first introduce 

the optimization transfer descent (OTD) concept by exploring the descent nature of the 

original optimization transfer [21] for minimization problems. Conjugate gradient and line 

search [30, p.120] are then incorporated in the OTD for acceleration. The OTD can be 

viewed as a PCG algorithm with an implicitly defined preconditioner which contains 

information of both the likelihood term and regularization term. It is therefore expected to 

achieve faster convergence than the conventional PCG algorithm [15], [16]. To extend the 

OTD algorithm to high-curvature and non-smooth penalties, we adopt the trust surrogate 

concept that has been used in the Levenberg-Marquardt algorithm [34] and trust region 

method [30, p.65, p.262] for nonlinear optimization. We approximate the original objective 

function by a smooth surrogate and solve the smooth surrogate by the OTD algorithm. The 

resulting trust optimization transfer algorithm can solve edge-preserving image 
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reconstruction very efficiently. It is nearly free of parameter tuning and guarantees to 

descend monotonically.

This paper is organized as follows. We briefly introduce the penalized likelihood PET image 

reconstruction in Section II. We then present the optimization transfer descent method in 

Section III and the trust optimization transfer in Section IV. In Section V, we perform 

simulation studies and compare the proposed algorithm with other state-of-art algorithms. 

An example application of the proposed algorithm to real 3D PET data is given in Section 

VI. Conclusions are drawn in Section VII.

II. PENALIZED LIKELIHOOD PET RECONSTRUCTION

PET data y = {yi} can be well modeled as a collection of independent Poisson random 

variables with the log likelihood function as

(1)

where the expected data  is related to the unknown image x through an affine transform 

[5]

(2)

where  is the system matrix with pij denoting the probability of detecting 

an event originated at pixel j by detector pair i, r accounts for background events such as 

randoms and scatters. ni is the total number of detector pairs and nj is the total number of 

pixels in image.

Penalized likelihood (PL) reconstruction (or equivalently maximum a posteriori, MAP [6]-

[8]) estimates the unknown image by minimizing a penalized negative likelihood function

(3)

where U (x) is an image roughness penalty that can be measured based on the intensity 

difference between neighboring pixels [5], [7],

(4)

where ψδ (t) is the penalty function and δ is a parameter that controls the smoothness of the 

penalty function, wjk is the weighting factor related to the distance between pixel j and pixel 

k in the neighborhood Nj, and β controls the strength of the regularization.
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In contrast to the quadratic penalty function ψδ (t) = t2/2 which may oversmooth edges, the 

non-smooth ℓ1 (absolute value function)

(5)

can preserve edges, but it is not differentiable at zero. Smooth functions that approximate 

the ℓ1 function but are differentiable at zero have been proposed. Here we refer to them as 

smooth ℓ1 functions. One example is the Fair function [11]

(6)

which has a continuous second-order derivative. Other examples include the hyperbola 

function  and the Huber function [31]. A common feature of the smooth ℓ1 functions 

is that they approximate the quadratic function when |t| « δ and approach the nonsmooth ℓ1 

for |t| » δ.

III. OPTIMIZATION TRANSFER DESCENT

A. Optimization Transfer

Optimization transfer (OT) algorithms (a.k.a. majorization-minimization) are popular for 

regularized image reconstruction. The basic idea of OT is to construct a surrogate function 

Q(x; xn) of the image x at the nth iteration which majorizes the original objective function 

Φ(x) by satisfying the following two conditions [21]:

(7)

(8)

where ∇ denotes the gradient with respect to x. Equation (8) assumes that Φ(x) is 

differentiable. Then the minimization of Φ(x) is transferred into minimization of Q(x; xn)

(9)

By design the surrogate function Q(x; xn) is usually easier to optimize than the original 

objective function. The new update  guarantees a decrease in the original objective 

function,

(10)

unless xn is a stationary point of the objective function [21].
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By setting , the majorization-minimization procedure guarantees monotonic 

convergence. The well-known expectation maximization (EM) algorithm [1] is a special 

case of optimization transfer [21]. For the Poisson log-likelihood function of PET data, the 

EM-based surrogate [1], [21] can be written as

(11)

where pj, the sensitivity image value at pixel j, is

(12)

and the intermediate EM update  is given by

(13)

where  is the back projection of the ratio sinogram.

For the regularization term, we consider penalty functions that satisfy [31]-[33]

(14)

where  is the half-quadratic weight function [31],

(15)

with  denoting the first-order derivative of the penalty function ψδ (t). Most convex 

penalty functions (e.g. Huber, Fair, hyperbola functions) used in image reconstruction 

belong to this class, excluding the nonsmooth penalty |t| because of its nondifferentiability at 

zero. The Fair penalty function, for example, has

(16)

By replacing t with (xj − xk), we can get the surrogate function  for the penalty 

function U (x) at iteration n:

(17)
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where  and a constant term that is only a function of xn but 

independent of x is omitted. By using De Pierro’s decoupling rule [12], the surrogate 

function  can be further majorized by a separable surrogate function 

[33]

(18)

where the pixel-wise weight  is

(19)

and the intermediate edge-preserving smooth image  is calculated by

(20)

Solving the Karush-Kuhn-Tucker condition for minimizing the surrogate 

, we get the OT image update equation at iteration (n + 1)

(21)

where .

B. Acceleration Using Conjugate Direction and Line Search

We observe from Eq. (10) that the OT direction at iteration (n + 1),

(22)

is a descent direction. This motivated us to use the conjugate direction method [16] to 

achieve a more aggressive update on x:

(23)

where αn+1 is a step size and an+1 is the conjugate direction of  that is given by

(24)
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with . The parameter γn is determined by the Polak-Ribiere form [16]

(25)

where the superscript “T” denotes matrix or vector transpose and the gradient vector 

 is computed by

(26)

The step size αn+1 in (23) is determined by a line search

(27)

which can be solved by the modified Newton-Raphson algorithm in [17].

The nonnegativity constraint is enforced in the same way as that in the PCG [15]. If any 

negative values exist in xn+1, a second line search is performed to enforce the nonnegativity 

constraint on x:

(28)

where [·]+ sets any negative values to zeros. Then the new image estimate at (n + 1) is given 

by

(29)

To distinguish the new update in Eq. (23) or Eq. (29) from the original OT update, we refer 

to it as the optimization transfer descent (OTD). The OTD algorithm moves more 

aggressively than the OT does, while still guaranteeing to descend monotonically. The OT 

direction  can be treated as a preconditioned negative gradient direction, where the 

preconditioner is defined implicitly. Comparing with the conventional PCG algorithm that 

uses an EM-based preconditioner, the implicitly defined OT preconditioner contains 

information from both the likelihood term and the penalty term. Therefore, the proposed 

OTD is expected to be faster than the PCG using the EM preconditioner for PL image 

reconstruction.

IV. TRUST OPTIMIZATION TRANSFER

The OTD algorithm developed in the previous section is not directly applicable to the non-

smooth ℓ1 penalty function and can be slow when δ in a smooth ℓ1 is too small. To 
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accelerate the algorithm for high-curvature edge-preserving penalties and to extend the OTD 

algorithm to the non-smooth ℓ1 penalty, we borrow the trust surrogate concept from the 

classic Levenberg-Marquardt [34] and trust region methods [30, p.65, p.262] for nonlinear 

optimization.

At iteration n, the original objective function Φ(x) is approximated by a surrogate function 

S:

(30)

where SL(x) is the surrogate of the likelihood term and σ (x) is the smooth approximation of 

the penalty term, with σ being the damping parameter [34]. Note that Sσ (x) is not an 

optimization transfer surrogate and does not have to satisfy the two conditions in (7) and (8). 

Fig. 1 illustrates the difference between an optimization transfer surrogate and a trust 

surrogate.

In the trust optimization transfer, a new estimate is obtained by minimizing the surrogate

(31)

which can be solved by the OTD algorithm. If

(32)

then the associated surrogate Sσ (x) is a so called trust surrogate. The image estimate is then 

updated by

(33)

If (32) is not satisfied, a new value of σ will be tested until a trust surrogate is found.

To apply OTD, we use

(34)

(35)

where σn, the value of σ at iteration n, is greater than or equal to δ (δ = 0 for non-smooth ℓ1). 

Fig. 2 shows the Fair function ψδ (t) with different δ values. All the functions approach |t| 

when t » δ, but a larger δ value provides a smoother penalty function near t = 0, which 

usually results in faster convergence in the optimization than a smaller δ does. The proposed 

trust surrogate method shares a similar spirit to the continuation scheme in optimization, but 
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utilizes a trust mechanism to guarantee monotonicity. For efficient computation, we do not 

solve the minimization problem in (31) completely. Instead, only one iteration of OTD is 

used and we check the monotonicity in Φ(x).

A. Search Rule

In order to determine σn at each iteration, we define ρ as the ratio between the change ΔΦ in 

the original cost function Φ(x) and the change ΔS in the surrogate function Sσ (x caused by 

µˆ(σn),

(36)

If , then Φ µˆ(σn) ≤ Φ(xn). Note that the objective function values involved in 

calculation of ρ π be rapidly evaluated by reusing the projections that have already been 

calculated in the OTD algorithm, so no addition forward projection is required.

When  is large, the value of σn is trusted and will be used in the next iteration. To 

prevent too many iterations being spent on the same value of σ with only an insignifica 

decrease in Φ(x), we measure the relative change in Φ(x) by

(37)

where nstart(σ) denotes the index of the first iteration at whi the current σ is used. The rule 

for determining σn+1 is

(38)

Basically if ρ > 0 and ν is greater than a threshold, the curre value of σ will be used again; 

otherwise, σ will be decreas by a factor of 3. The threshold 0.01/ρ allows more iteratio to be 

taken for a σ value that results in a large ρ. When ν too small, the σ value shall be reduced in 

the next step even if ρ > 0.

B. Initial σ Value

The initial value of σ can be critical for the convergen speed. A large σ results in fast 

convergence for the surroga optimization, while a σ closer to δ provides better approxim tion 

of the original objective function. We empirically find th σinit = 0.01 max(x) or σinit = 

0.1mean(x) is a good initi value if an estimate of x is known before reconstruction. A 

alternative is to determine σinit by the least square estima of a uniform image from the PET 

data :
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(39)

where q = P1obj and 1obj denotes the support mask region of the object. The σinit value from 

(39) roughly equals to 10% of the average image intensity.

C. Convergence Discussion

Because it is a conjugate gradient algorithm with an implicitly defined preconditioner, the 

OTD algorithm shares the same convergence property with the PCG algorithm [15], [16] for 

smooth ℓ1 optimization with a fixed penalty parameter δ. The trust OTD algorithm uses a 

sequence of surrogate penalty parameters σn in different iterations to accelerate 

convergence, but σn will eventually reach the value of δ after a finite number of iterations 

according to (38). Due to the use of the trust mechanism, the trust OTD algorithm is also 

guaranteed to descend monotonically. For nonsmooth ℓ1 optimization where δ = 0, the 

surrogate penalty parameter σ can never reach the exact value δ = 0. However, the proposed 

algorithm is guaranteed to descend monotonically to an approximate ℓ1 solution defined by 

the objective function with a δ value close to the machine precision. We found that the 

difference between the solution of δ = 0 and that of a very small positive δ is negligible in 

PET image reconstruction (see Fig. 13 in Section V.D).

A pseudo-code of the trust optimization transfer algorithm is given in Algorithm 1. In the 

algorithm table, we restrict the maximum number of iterations to MaxIter. Alternatively, a 

stopping rule based on the changes in gradient or image estimate can be used to terminate 

the iteration.

V. SIMULATION STUDIES

Computer simulation was conducted to compare the proposed algorithm with several 

existing algorithms. We simulated a PET emission image using a 2D brain phantom shown 

in Fig. 3(a). A real CT image shown in Fig. 3(b) was used to generate the attenuation 

factors. The PET image in a 128×128 grid was first forward projected to obtain a noise-free 

sinogram. A 20% uniform background was added to simulate mean randoms and scatters. 

Independent Poisson noise was then introduced, resulting in a total of 200k coincidence 

events. The noisy sinogram was reconstructed using a smooth ℓ1 penalty via the Fair 

function with δ = 100, 10−2, 10−6, and the non-smooth ℓ1 penalty. The first-order 

neighborhood was used and the regularization parameter β was set to β = 2−6 to achieve a 

low mean squared error in the reconstructed images.

We compared the proposed algorithm with the De Pierro’s EM (DEM) [12] using Eq. (21), 

PCG [15], [16], ADMM [22], SPIRAL [29], and the Chambolle-Pock (CP) algorithm [27], 

[28]. The DEM and PCG algorithms were applied only to the smooth ℓ1 regularizations, 

because they are not applicable to the non-smooth ℓ1. The ADMM [22] with two different 

sets of tuning parameters (ADMM1 and ADMM2) were implemented for both the smooth 

and non-smooth penalties. The empirical rule used in [35] for parameter tuning was 

modified here to guide the selection of the three parameters. ADMM1 was tuned to 

converge as fast as possible in a non-monotonic fashion and ADMM2 was tuned to 
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converge as fast as possible in a nearly monotonic way. The reconstruction step in the 

ADMM was solved by a PCG algorithm with two sub-iterations. The initial σ value in the 

proposed algorithm was calculated by Eq. (39). The SPIRAL algorithm [29], downloaded 

from the authors’ website, was used with its default parameter setting for the non-smooth ℓ1 

penalty. The Chambolle-Pock (CP) algorithm was implemented with preconditioning [27], 

[28]. All reconstructions start from a same all-one uniform initial image. All of algorithms 

were implemented in MATLAB on a Apple MacBook Pro with a 2.6 GHz dual-core Intel 

Core i5 processor.

To compare the convergence rate of different algorithms, we plotted the normalized 

objective function, which is defined as

(40)

where Φ∗ denotes a reference value of objective function, and the image mean squared error 

(MSE),

(41)

as functions of iteration number and CPU time.

A. Comparison for Smooth ℓ1 Regularization

Fig. 4 shows the images reconstructed by the DEM, PCG and proposed algorithm using the 

smooth ℓ1 penalty with two small δ values: δ = 10−2, 10−6. The DEM result at 100 iterations 

has poor image quality due to slow convergence. The reason for the noisy appearance is that 

with a uniform initial image, a small value of δ results in a very large value of the edge-

preserving weight  in (19) through the half-quadratic function (16). As a result, false 

edges are often identified and preserved in the subsequent iterations. We observed that the 

DEM algorithm had to be run for thousands of iterations to get a good image estimate for 

these small δ values with a uniform initial image. Such problem does not appear when the 

DEM algorithm is initialized with an ML EM reconstructed image (see also Section V.F). 

Similarly, when δ in the smooth ℓ1 function decreases from 10−2 to 10−6, the PCG also 

becomes less efficient, resulting in a substantial increase in the image MSE. In comparison, 

the proposed algorithm is stable as δ changes.

Fig. 5 shows the cost function and image MSE as functions of iteration number and CPU 

time for PL reconstruction using different smooth ℓ1 algorithms with a relatively large δ = 1. 

The PCG image estimate at iteration 2000 was used as the reference for calculating the 

normalized cost function. All the algorithms, including the DEM, converge relatively 

quickly and the proposed algorithm is the fastest in terms of the cost function. The PCG is 

even faster than ADMM1 and ADMM2 in decreasing the cost function and also converges 

faster than ADMM2 in terms of image MSE.

Wang and Qi Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6 shows the comparison results for smooth ℓ1 with δ = 10−6. For such a small value of δ, 

both the DEM and PCG exhibit slow convergence and result in high image MSE. The 

ADMM reconstructions converge very fast but the faster version, ADMM1, behaves non-

monotonically. The proposed algorithm converges monotonically and is as fast as ADMM1.

B. Comparison for non-smooth ℓ1
Different algorithms for the PL reconstruction with the non-smooth ℓ1 penalty are compared. 

The reconstructed images at a constant CPU time of 10 seconds are shown in Fig. 7. The 

convergence plots of the cost function and image MSE are shown in Fig. 8. The image 

estimate by the CP algorithm with 5000 iterations was used as the reference for calculating 

the normalized cost function.

The CP algorithm decreases the cost function monotonically but its convergence speed is 

slow. The SPIRAL converges quickly and achieves a very low cost function value but the 

CPU time per iteration, especially at later iterations, is greater than that of other algorithms. 

Both ADMM1 and SPIRAL display non-monotonic behavior in the cost function value. 

While SPIRAL can be run in the monotonic mode, it is slower than its non-monotonic 

implementation and may become extremely slow at later iterations. ADMM2 is slower than 

ADMM1 but converges almost monotonically. Again, the proposed algorithm is the fastest 

among all algorithms in terms of minimizing the cost function and is as fast as ADMM1 in 

terms of MSE convergence.

C. Quadratic regularization

The trust optimization transfer algorithm can also be applied to the PL reconstruction with a 

quadratic regularization, in which case the algorithm reduces to the OTD algorithm. We 

performed a study to compare the performance of different algorithms for the quadratic 

regularization. The regularization parameter was set to β = 2−8 to obtain an image with a low 

MSE. Fig. 9 shows the plots of the normalized cost function and image MSE as functions of 

iteration number and CPU time for different algorithms. The PCG result at iteration 2000 

was used as the reference for calculating the normalized cost function. For the quadratic 

regularization, the DEM and PCG converge quickly and are faster than the two ADMM 

algorithms in terms of minimizing the cost function. The proposed algorithm converges 

fastest, indicating the proposed algorithm is applicable to a wide range of cost functions.

D. Effect of Initial σ Value

Fig. 10(a) shows the change in σ as a function of iteration in one reconstruction by the 

proposed smooth ℓ1 algorithm with a uniform image initial. The value of δ was 10−2. 

Different initial σinit values, ranging from 0.2 to 20, are compared. Starting from an initial 

value σinit, σ stays at the same value if the σ value at previous iteration is trusted, and drops 

down by a factor of 3 when the value becomes untrusted as iteration continues. After 

reaching the value of δ, σ is set to δ in all later iterations. The plot of a fixed σ value equal to 

δ is also included for comparison. The values of the cost function versus iteration number 

are plotted in Fig. 10(b). Note that the value of σinit = 2.4 is the one calculated automatically 

using (39) for the data, which appears to be a good choice. Comparing with the case of 

Wang and Qi Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fixing σ at the value of δ, Fig. 10(b) shows the trust surrogate steps can substantially speed 

up the convergence of the algorithm with a proper initial σ value.

The evolution of σ and the effect of σinit on convergence in the proposed algorithm for non-

smooth ℓ1 are similar to the results shown here. A difference is that σ in the non-smooth ℓ1 

algorithm never reach the exact value δ = 0 but instead approaches the smallest value 

defined by the machine precision.

E. Effect of the initial image

Instead of a uniform initial image, an image estimate by the EM or ordered subsets (OS) EM 

can also be used as the initial image. We investigated the effect of the initial image on the 

convergence speed. Fig. 11 compares the smooth ℓ1 (δ = 0.01) optimizations with a uniform 

initial image and with an EM image initialization. The EM image was reconstructed using 

20 iterations of the ML EM algorithm, which provides nearly the lowest MSE among all EM 

iterations. The σinit = 2.4 in the proposed algorithm was the same as that in the case of 

uniform initialization. The cost function values in Fig. 11 (b) are shifted by the difference 

between the uniform initial image and the EM initial image for easy comparison. The results 

indicate that the EM initial image accelerates convergence speed at earlier iterations, in 

particular for slow-converging algorithms (e.g. DEM). The effect of σinit in the proposed 

algorithm is shown in Fig. 12(b). Different values of σinit result in similar convergence rates 

that are faster than a constant σ fixed at δ = 0.01, indicating that an EM-based initialization 

can be more robust to σinit than a uniform initialization.

F. Smooth ℓ1 versus non-smooth ℓ1
Fig. 13 shows the MSE values of whole image and tumor region only of the PL 

reconstruction as a function of the penalty parameter δ. The smooth ℓ1 reconstructions were 

solved using the proposed algorithm with 200 iterations. The regularization parameter β was 

fixed at 2−6. The MSE of the non-smooth ℓ1 reconstruction obtained by the CP algorithm at 

iteration 5000 is also shown in the figure and marked by “x”. Fig. 14(a)-(d) show the 

reconstructed images by the smooth ℓ1 with four different δ values, δ = 10, 1, 0.1, 0.001. 

Fig. 14(e) and Fig. 14(f) show the images reconstructed by the non-smooth ℓ1 using the 

proposed algorithm and using the CP algorithm with 5000 iterations, respectively.

These results indicate that the non-smooth ℓ1 regularization is not mandatory for edge-

preserving image reconstruction to get the best MSE performance. A smooth ℓ1 with a small 

δ can provide reconstructed images with equal quality. With a careful selection of δ value (δ 

= 1 in this simulation), the smooth ℓ1 can achieve a lower MSE than the non-smooth ℓ1 

regularization does. While it is generally challenging to choose the δ value for the best 

image MSE, Fig. 13 shows that a wide range of δ values exist and can be chosen to get a 

comparable MSE performance. Compared with the traditional DEM and PCG algorithms 

which only work well for large δ values, the proposed algorithm can provide consistent 

image quality over the wide range of δ values, as shown in Fig. 4, and hence reduces the 

burden of choosing the δ parameter.
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VI. APPLICATION TO REAL 3D DATA

We have applied the proposed algorithm to a 3D nonhuman primate brain data acquired on a 

microPET P4 scanner. The radiotracer is 11C-SCH 23390 which binds to dopamine D1 

receptors in the brain. The total number of prompt events is 3.6 million and number of 

delayed events is 1.3 million. Randoms were pre-corrected by the delayed window 

technique. The estimated attenuation factors from a transmission scan and a scatter sinogram 

estimated by the single-scatter simulation method were incorporated into the forward model 

of the PL reconstruction.

The projection data were reconstructed on 128 × 128 × 65 grid using both smooth ℓ1 and 

nonsmooth ℓ1 regularizations. The initial value of σ in the trust OT was automatically set by 

Eq. (39). The regularization parameter β was chosen empirically to give a visually pleasing 

image. The convergence speed of the cost function of the proposed algorithm in comparison 

with those of the PCG, ADMM, and CP algorithms is shown in Fig. 15(a) for the smooth ℓ1 

regularization and in Fig. 15(b) for non-smooth ℓ1 regularization. The CPU time was 

measured on a Linux PC with dual 2.3 GHz quad-core CPUs running MATLAB and a 

parallel implementation of the forward and back projectors. Each point on the curves 

represents 10 iterations. The three Lagrangian penalty parameters in the ADMM were 

manually tuned to make the algorithm as fast as possible. The SPIRAL algorithm was not 

compared here because the downloaded program is not applicable to 3D regularization. The 

results show that the proposed algorithm is faster than PCG and ADMM for the smooth ℓ1 

regularization and is also faster than the ADMM and CP for the non-smooth ℓ1 

regularization.

We note that choosing the proper parameters for ADMM is nontrivial and very challenging 

in practice. In the 2D simulation in Section IV, the three tuning parameters in ADMM were 

selected by using the empirical rule in [35] as a guide. However, the same approach failed to 

choose a good parameter set for the 3D data and the parameters had to be manually tuned 

based on trial and error. In comparison, the proposed algorithm is nearly free of parameter 

tuning, consistently performing well in both 2D and 3D cases, and is therefore easier to use.

VII. CONCLUSION

We have proposed a trust optimization transfer algorithm for edge-preserving PET image 

reconstruction. The fast convergence of the proposed algorithm is demonstrated using 

simulated data and real 3D PET data. The results show that the proposed algorithm is faster 

than the traditional DEM and PCG algorithms for smooth ℓ1 regularization. Compared with 

the emerging algorithms such as the ADMM, SPIRAL and CP algorithms for non-smooth ℓ1 

regularization, the proposed algorithm is guaranteed to descend monotonically and its 

convergence speed is at least comparable to that of non-monotonic ADMM and SPIRAL.

This paper mainly focuses on the development of a fast convergent optimization algorithm 

for edge-preserving image reconstruction. While the anisotropic regularization function in 

(4) often suffers from blocky artifacts, new regularization functions have been proposed to 

reduce such artifacts (e.g. [36]-[40]). We also note that a commercial product of edge-
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preserving PET image reconstruction has recently been made available on clinical PET 

scanners [41]. These new developments will likely promote more applications of edge-

preserving PET image reconstruction in both clinic and research in the future.
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Fig. 1. 
Conceptual illustration of the surrogate functions constructed at iteration n for estimating a 

new image xn+1. (a) An optimization transfer surrogate Q(x; xn) is designed to be always 

above the original objective function Φ(x). (b) A trust surrogate Sσ(x) approximate Φ(x) by 

only requiring its minimum point xn+1 to decrease Φ(x). The minimum point xn+1 of the 

surrogate functions in both cases decreases Φ(x) monotonically.
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Fig. 2. 
Edge-preserving function ψδ (t) with different δ values. A larger δ value usually results in 

faster convergence in the optimization than a smaller δ does, so the proposed trust surrogate 

algorithm can be viewed as using a continuation mechanism to accelerate convergence.
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Algorithm 1. 
The trust optimization transfer (TOT) algorithm for edge-preserving PET image 

reconstruction

Wang and Qi Page 20

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
(a) The simulated PET emission image and (b) the attenuation map from a real CT image.
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Fig. 4. 
PL reconstructions at iteration 100 using (a) the smooth R1 with δ = 10−2 and (b) smooth R1 

with δ = 10−6 by DEM, PCG and proposed algorithms. The image MSE values are given on 

top of each image.
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Fig. 5. 
Convergence of (a) cost function and (b) image MSE for the smooth ℓ1 regularization with δ 

= 1 by different algorithms.
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Fig. 6. 
Convergence of (a) cost function and (b) image MSE for the smooth ℓ1 regularization with δ 

= 10−6 by different algorithms.

Wang and Qi Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
PL reconstructions using the non-smooth R1 by (a) the proposed algorithm, (b) ADMM, (c) 

SPIRAL and (d) CP, all taking a total of 10 seconds of CPU time. The image MSE values 

are given on top of each image.
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Fig. 8. 
Convergence of cost function and image MSE as functions of iteration number and CPU 

time for the non-smooth R1 regularization by different algorithms.
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Fig. 9. 
Convergence of cost function for the quadratic regularization by different algorithms.
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Fig. 10. 
Effect of the initial value σinit on (a) the evolution of σ values and (b) convergence speed of 

cost function of the proposed algorithm for the smooth R1 with δ = 0.01 and a uniform 

image initial. σinit = 2.4 was automatically calculated using Eq. (39).
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Fig. 11. 
Convergence speed of different smooth R1 algorithms (δ = 0.01) with different initial 

estimates: (a) initialized with a uniform image and (b) with an EM reconstruction.
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Fig. 12. 
Effect of the initial value σinit in the proposed algorithm with an EM image initial for the 

smooth R1 with δ = 0.01. (a) The evolution of σ values vs. iteration number; (b) Plot of the 

cost function vs. iteration number.
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Fig. 13. 
Effect of the hyper-parameter δ in the smooth R1 on (a) MSE of the whole image and (b) 

MSE of the tumor region. The smooth R1 regularization uses β = 2−6 and is solved by the 

proposed algorithm. The MSE by the non-smooth R1 using the preconditioned Chambolle-

Pock algorithm at iteration 5000 is marked by x.

Wang and Qi Page 31

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 14. 
Reconstructed images by the smooth R1 regularization with different δ values from 10 to 0 

(a-e) and by the non-smooth R1 regularization (f). The smooth regularizations were solved 

using the proposed algorithm with 200 iterations and the non-smooth R1 regularization was 

solved using the CP algorithm with 5000 iterations. The image MSE values are given on top 

of each image.
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Fig. 15. 
Comparison of convergence speed of different algorithms for the PL reconstruction of the 

3D brain data using (a) smooth R1 and (b) non-smooth R1 regularizations.
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