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Abstract

A classical interpretation of the Dirac~Van Vleck spin version of
valence bond theory is used to obtain a classical model for electronic
degrees of freedom within the valence bond framework. The approach is
illustrated by deriving the explicit forms of the classical Hamiltonians,
involiving electronic and heavy particle degrees of freedom, for the HwHZ3
FmHZ, and Osz systems. It is also shown how the initial conditions for
both electronic and heavy particle degrees of freedom are chosen to carrvy
out a classical trajectory simulation of collision processes. The

attractive feature of this model is that it is as easily applicable

to electronically non-adiabatic processes as it 1s to adiabatic ones.



1. Introduction.

During the last few vyears a theoretical approachl to electronically
non-adiabatic collision phenomena has been developed which treats the
electronic degrees of freedom, as well as the nuclear degrees of
freedom (i.e., translation, rotation, and vibration), by classical
mechanics. The advantage of such a model is that a classical trajectory
simulation can be carried out which treats the dynamics of all degrees
of freedom, the electronic transition and the nuclear motion, in a
consistent way. The original motivation for this approach was the

’7 that models which do not treat electronic and heavy particle

realization
degrees of freedom on a dynamically consistent fodting will fail to
describe certain aspects of the process correctly.

Even though these "totally classical’ models are more dynamically
consistent than others (except, of course, the totally quantum mechanical
formulation, i.e., the rovibronic coupled-channel Schrodinger equation),
they have the obvious shortcoming that they characterize the electronic
degrees of freedom via classical rather than quantum mechanics. Since
electrong are usually considered to be highly quantum mechanical entities,
it is not obvious that such an approach will be usefully accurate.

Several applications,l however, have shown that these classical models
can describe electronically inelastic processes essentially as well as
ordinary classical trajectory approaches describe rotationally and/or
vibrationally inelastic processes. It should be noted, too, that the

electrons themselves are not treated classically, but rather a classical

degree(s) of freedom is introduced to model the collective electronic



degrees of freedom responsible for the electronic states of interest,

The purpose of this paper is to show how the chemical notion of
valence bond theory can be given a classical interpretation and then
used to construct a classical model for the electronic states of a
molecular system. Although this approach to modeling electronic degrees
of freedom by classical mechanics has some features in common with our
earlier approaches, it is actually quite different. As will be seen, in
this approach one never requires the Born-Oppenheimer potential energy
surfaces per se; they and all the non-adiabatic couplings between them
are all contained implicitly in the classical valence bond model. One
of the most promilsing aspects of this approach 1s that it provides a
classical model for electronic degrees of freedom which incorporaies all
the chemically important features of valence bond theory, i.e., bond
breaking and making, directed valence, etc.

The key to constructing this classical analog to valence bond
theory is the Dirac~Van Vleck4 spin model for electronic degrees of freedom.
If the quantum mechanical version of this spin model is used to determine
the electronic energy for fixed nuclear geometry (i.e., the Born-Oppenheimer
potential energy surfaces), one obtains standard valence bond results,
i.e., the familiar London equationS if all the atoms are monovalent
S-atoms (e.g., H3>9 the diatomics=in~molecules6 result if only one of
the monovalent atoms has angular momentum {(e.g., FHZ), etc. Most important
for present purposes, however, is that this Dirac-Van Vleck version of
valence bond theory leads to a elegantly simple classical model for the
electronic degrees of freedom, namely one takes the various spins and
orbital angular momenta (vide infra) to be classical angular momenta;

this will be clear below.



Rather than attempt a more precise statement of the model, we
developed it wilith several examples. Section II considers the simplest

example, the H, system; i1t also shows how the initial conditions of

3
the classgical spin (i.e., electronic) variables are chosen if one
wishes to carry out a trajectory calculation within the usual quasi-~
classical framework. The results of such a trajectory calculation using
the classical valence bond model for the H + HZ - HZ + H reaction are
presented in Sectlon Ilc, and the results are reasonably encouraging.
Section III then shows how the model can be applied to more complex

chemical systems, first the Fsz system, and then a system involving a

multivalent atom, OmHZ,



II. The Model:; Application to HB”

a. The Classical Hamiltonian and Equations of Motion

The usual quantum mechanical version of the Dirac-Van Vleck spin
model for electronic degrees of freedom is well known. It is essentially
an alternate formulation of valence bond theory. Here we show how the
classical version of this model is defined, taking as first example the
simple case of three hydrogen atoms.

Let Tigs r139 and Tog be the internuclear distances for the three
hydrogen atoms and §19 i=1,2,3 the spin of the electron on atom i. The
electronic Hamiltonian is taken to be the spin Hamiltonian for these three
spins and_is a sum of spin-~dependent pair interactions between each of

the electrons,

H,=H (2.1)

el + H

+ H

12 13 23 >

where

H

i

> > 3
14 vij + Avij(si sj. +4) . (2.2)

The operators in this quantum mechanical Hamiltonian are the spin
operators for the three spins; the quantities Vij and Avij are numbers
which are functions of the internuclear distance rij’ and because of

the equivalence of the three H atoms,

vij V(rij) (2.3a)

it

]

Av AV(rij) . (2.3b)



Choosing the functions V(r) and AV(x) to be
1
V() = 2{(r) (2.4a)
3 1
Av(r) = "5(x) - "I(r) . (2.4b)

where 1Z(r) and 3Z(r) are the potential energy curves for the lowest lZ
and 32 states of HZ’ respectively, enéures that the correct diatomic
electronic states arve obtained 1f one of the atoms is removed to infinity.
1f one diagonalizes the spin Hamiltonian of Eq. (2.1) in the space of
total spin 1/2 (a2 2 %X 2 matrix), the well-known London energy expression5
is obtained for the ground state Born-Oppenheimer potential energy surface
of H3n
To proceed classically we use the above spin Hamiltonian but take
the three spins to be classical spins. To have a complete classical
Hamiltonian for nuclear and electronic degrees of freedom the nuclear
kinetic energy must be added to this Hamiltonian. Within the overall
center of mass of the three-atom system the conventional choice of nuclear
variables is §9 the relative coordinate between atoms 1 and 2, say, and
ﬁg the coordinate of atom 3 relative to the center of mass of atoms 1 and
2:

> =
T, =T

57Ty (2.5a)

> ,i >
R = Ty =G (r1+r2) . (2.5b)

- -+ -+ e
If p and P are the momenta conjugate to v and R, and m and U the
corresponding reduced masses, then the classical Hamiltonian for the

complete system is



B = Y ;2 2
_ P 0
HGp,z, 28,8, ,8,,8) = o+ B
+ V¢ A 3.8 43
Typ) F AV(r ) (828, + )

3 > 3
+ V(r13) + AV(rB)(SlsS3 + Z)

> >
+’V(r23) + AV(ZZS)(SZQS3 + 4) . (2.6)
where
> o
r12 =y
R
F13 7 7
-3 > 1 -
323 Rmzr (2.7)

-+ > -> >
The classical equations of motion for r{t), R(t), p(t), P(r),

gi(t)9 gé(t) and §3(t) are generated by the equations

é%~¥(t) - %%, (2.8a)

L Ry = '3% (2.8b)

é%.;kt> = - g% (2.8¢)

L3 = - .2.% (2.8d)

é%,gi(t) - - §i x %%Ta , i=1,2,3 , (2.8e)
1

and with the classical Hamiltonian of Eq. (2.6) these equations of motion

are easily found to be



4 - >
EEX = p/m (2.9a)
d = -+
S S (2.9b)
d =3 _ ¥ g > a+ i A
30 P = - [V (rlz) + Ay (rlz)(sl 82%04»)]r12
l [ 9 3 9"?’ i PN
=5 [V Gy g) + BV (g g) (8753 +7) 1Ty 4
L ' 2.2 43y
+ 5 [v (r23) + Ay (rzg)(sz S3m%4)]r23 (2.9¢)
...Ei.;.w} = e A ¥ > a"> é A
e P [v <r13) + AV (r13) (Sl 83—%-4)]1:13
-y ' T3 238
[v (rZB) + Ay (r23)(82 83%=4)]r23 (2.94)
43 - ‘23@ x 8.y Av( {=1,2,3 2
dt i - o= ~jm1 i j) rij) ? l = 9 $ ( 098)
j#i
where
N > >
Fi3 7 rij/irijl

O e >
Given initial conditions for v, R, p, P, and Si’ i=1,2,3, Eq. (2.9) can

be integrated numerically with standard trajectory programs7 to determine
the final values of these quantities. Section ITb discusses the initial
conditions appropriate to an H + HZ collision.

Rather than characterizing the classical spins by their three



cartesian components, i.e., gidi (Six’siyssiz)’ one may alternatively use
the action-angle variables <mi9qi)“ m, is the component of gi along a
space~fixed direction, and 4 is the angle variable conjugate to it.

Since the magnitude of the spin is conserved, the spin gi is completely
characterized by the palr of action-angle variables (misqi); specifically,

.:*
the cartesian components of Si are given In terms of the action-angle

variables by8

A A\

/VSi umi cosqi \

gi = Véizmmizasinqi ; } (2.10)
\
\\ m, ,,
Since
319§5 = mimj %~Véiz~mi2lVéj2-mj21cos(qieqj) s (2.11)

it is easy to express the classical Hamiltonian of Eq. (2.6) in terms of

.
R9m19qlsm29q29m39q3)5 and thelf tlme

e
the canonical variables (p,r,P,
dependence is determined by Hamilton's equations, i.e., Egs. (2.8a)~-

(2.84), with (2.8e) replaced by

S e
a BH(p,r,PaRsml,qlgngqz,m3sq3)
Ez'qi(t) - om,
i
R e
ii.m ()= BH(p,f,PyR,ml,ql,mzsqz,m3,q3) 2.8e0)
dt 4 qu i :
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i=1,2,3. One can verify by direct calculation that, with gi and
(mi,qi) related by Eq. (2.10), the equations of motion given by

Eqse (2.8e) and (2.8e’) are identical. Characterizing the spin gi

by the two variables (misqi) rather than the three cartesian components

(s ) means that there is one less equation in the classical

ix’siy’siz
equations of motion for each spiny i.e., BEq. (2.8a)-(2.8e) consists

of 21 first order differential equations, whereas Eqs. (2.8a)-(2.84)

plus (2.8e') are only 18 first order differential equations. In
practice, however, 18 is not sufficiently less than 21 to be significant,
and since the equations of motion in terms of the cartesian spin
variables are quite a bit simpler algebraically than the ones in terms

of the action~angle variables, 1t is actually more convenient and
efficient to carry out numerical trajectory calculations using the
cartesian spin variables rather than the action-angle spin variables.

As seen in the next section, though, the action-angle variables are

necessary for specifying the appropriate initial values of the spins.

b. Initial Conditions

> > > >
Here we specify the initial conditions for the variables (psrgﬁsR,

and gig i=1,2,3) of Eq. (2.9) that are appropriate for an H + 52(12)

collision within the standard quasi-classical mode1°7 Initial values for
.

the nuclear variables (;,?,%,R) are determined in the usual way,7’8 S0

no further discussion regarding them  1s necessary. It remains to specify
the appropriate initial values of the spin variables.
A 1
If atoms 1 and 2 are the two that initially form HZ( L), then

- ->
S. and S

1 5 need to be coupled initially to form a resultant singlet spin



w1l-

state. This is accomplished by making a canonical transformation from
the uncoupled action-angle variables (ml,qlsmzsqz) to the coupled action-

angle variables (Slz,qslzsmlzgqmlz), where

- 1T L2
Sy = |s.+8

m E my + m, R (2.12)

and where qslz and qmlz are the angle variables conjugate to S12 and myge
This transformation is the classical equivalent of a Clebsch-Gordan
transformation9 in quantum mechanics, and the appropriate expressions

gpecifying this canonical transformation have been given before. For

the singlet state the quantum mechanical values of S12 and m,, are le =

Wy, = 0, but we wish to retain the possibility that 812 may not be zero
(see below). Thus specializing the general expressions to the case lezO
and 5122822s the cartesian spins gl and gé are given in terms of the coupled

actlon-angle variables by

\\
sing sing
VRV
'3 .
= cos sing
! Tm, S,
cosq / (2.13a)
512 /
TG A
S = ith-/s 2 - A2 L dg 212
S, = same as above w1th~/Sl L sy 4 . (2.13b)
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The third spin, that of the free H atom, is given in terms of its

action-angle variables by Eq. (2.10); setting my = 1/2 and since
2 2

83 = Sl , this becomes
-3
83 (2.13¢)
1
2

The question now arises as to the values for S1 and the initial

value of 812 in Eq. (2.13). The quantum mechanical values are obviously

S,y =5 G+ =2

17QM

(siz)QM =000 +1) =0 , (2.14)

but it is well-known in classical/semiclassical folklore that a Langer-

modification to the magnitude of angular momenta usually gives better

resultsagslo The Langer-modified values are
2 1, 1.2
(Sl )Langer - (2 +'§0 =1
22 B 1.2 1
(Slz)Langer =0+ =3 ’ (2.15)

and if these values are used then the fraction 3/4 in Egs. (2.6) and (2.9)

must be replaced by 7/8 so that the initial vibrational potential for Hz

is 15(r).
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With S. and S., given by Eq. (2.15), the angle variables q s
1 12 512
9y > and qq are chosen by Monte Carlo, i.e., as 27 X (random number), and
12
Eq. (2.13) then gives the quasiclassical initial conditions for the Cartesian

spin variables. The classical equations of motion, Eq. (2.9), can then be

integrated by standard methods.

¢c. Numerical Test: H + Hz > Hz + H in 3d

One does not believe that electronically non-adiabatic effects are

important in collisions of ground state H and Hz until very high collision
energies, and this fact can be used to provide a first numerical test of
the classical valence bond model described above.

Thus the conventional (i.e., electronically adiabatic) quasiclassical

.11 , . .
treatment of the H + H, reaction considers it to be classical motion on

2

the lowest Born-Oppenheimer potential surface. This potential surface is
the lowest quantum mechanical eigenvalue of the electronic Hamiltonian (for
fixed nuclear positions), and with the Hamiltonian of Eq. (2.1)-(2.2) this

is, as noted above, the London expression

E( ) = V(rlz) + V(rlg) + V(r23)

T12°%13°%23

+'%-[Av(r12) +AV(ry ) + AV (r,q)]

- AV(rlz)Av(r

2
+ AV (ryq) 13

1 2 2
- ?'[AV(T12> + AV(rlB)

- M(ry,) AV(r,,) - AV(rgy) AV(rZB)]l/z . (2.16)



=1l

where V and AV are given by Eq. (2.4). A standard quasiclassical trajectory

7
calculation for the H + H +~HZ 4+ H rveaction with this potential surface

2
thus provides what we consider to be the "correct" classical result for
this system and which we would expectlz to be in reasonably good agreement
with the quantum mechanical results for this surface.

The classical valence bond model, on the other hand, proceeds as
described in Section IIb: The classical equations of motion, involving
the spin (i.e., electronic) variables as well as the nuclear coordinates
and momenta, i.e., Egs. (2.9), are integrated numerically with the initial
conditions given by Egqs. (2.13) and (2.15). As noted in the Introduction,
this approach does not involve the Born-Oppenheimer potential energy
surface but rather uses the classical valence bond (i.e., spin) Hamiltonian
directly. Thus no assumption of electronic adiabaticity is incorporated,
and if the actual electronic dynamics is approximately adiabatic {(as we
expect it to be for H + HZ)’ this must follow from the classical mechanics
of the electronic (i.e., spin} degrees of freedom.

Standard Morse and anti-Morse functions were used to represent the

12 and 32 potential curves of HZ,

mZBl(rer)

-8, (r-r,)
2(r) = p e ~2e 10

1 (2.16a)

=28, (r=1 ) =B, (r-1,)
35 () = D, e 3007 9. 3 0y (2.16b)

with parameters

0.1744 hartree, D3 = (,1360 hartree
-1 1
1 1.04435 a, 5 63

0 1.40083 ag .

o
il

1.032 ao“

it

w
it

a3
[
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This gives an adiabatic barrvier height of 11.1 kcal/mole at v = 1.76 ays in

reasonable agreement with the accurate value 9.8 kcal/mole also at r = 1.76 e
For the present test purposes we are not particularly concerned with

representing the true H, potential surface extremely accurately.

3
Figure 1 shows the cross sections as a function of initial

translational energy for reaction (R),

H+ HZ -+ HZ + B s (2.17a)

and also for collisional dissociation (D),
H + HZ +~+H+H+H . (2.17b)

The solid curves are the results of the conventional quasiclassical
calculation on the London potential surface, presumably the "correct"
values, and the broken curves the results of the quasiclassical
calculation with the classical valence bond (i.e., spin) Hamiltonian.

We consider these results to be reasonably encouraging; other than
the threshold region of the reactive channel the classical valence bond
model describes the overall energy dependence of these crogs sections
quite well. The problem with the reactive threshold seems to stem from
the fact that the correct threshold behavior is determined almost entirely
by the adiabatic barrier height, and even though the classical spins do
evolve essentially adiabatically, the classical adiabatic electronic
(i.e., spin) energy in the transition state region does not approximate
the quantum mechanical adiabatic electronic energy well., It is not clear,
of course, whether this difficulty with threshold is typical of this model

or not, a question that can only be settled by further applications. It
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should be kept in mind, too, that this classical valence bond model is
being developed for systems which, unlike H + HZg do involve electronic
non—adiabaticity in an essential way, i.e., for processes which involve

several, maybe many, different electronic states.
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111, Further Applications.

In this section we show how the Dirac-Van Vleck spin formulation of
valence bond theory can be applied to some more interesting molecular
systems, thus yielding classical models for the electronic degrees of
freedom in these systems.

a. F~H2

Interest in the reaction F + H2 was the initial motivation for

developing classical models for electronic degrees of freedom,l so it

iz of special concern to see how the present classical valence bond model can

be applied to it.

-3 >
Let S1 and S2 be the spins of the electrons on each of the two H
.

atoms, and S, the spin of the electron (hole) on the F atom; electron

3

3 (actually an electron hole) is a p-orbital--i.e., F is a 2? atom--8so0
=p
that it also has an orbital angular momentum L, of magnitude 1. Just as

for the H, system of Section Ila, the classical electronic Hamiltonian

3

for FmHZ is taken to be the spin Hamiltonian which is a sum of pair

interactions between all the valence electrons {and electron holes):

H,=H,, +H,+H (3.1

el 12 13 23 :

les interaction between the electrons on the hydrogen atoms, is the same

as that of Section II, 1.e.,

H

> 3
1= Vﬁz(rlz) + .4;w}112(rlz)(s:L Sy+3) . (3.2)

where VH and AVH are given by Eq. (2.4) in terms of the 12 and BZ
2 2

potential curves of H2° H13 and HZB of Eq. (3.1), i.e., the inter-

action between the electrons on each of the two H atoms and the electron
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(hole) on the F atom, has this same form with the generalization that
V and AV now depend on the orbital angular momentum of the electron

(hole) on the F atom—-

H,. = Lef A Tep. )58 43 3.3

13 = Vgp(PygobeFyg) + AV R Gy Loy 9) (5 284+ (3.3a)
- Top Top T2 L3

st = VHF(rZB,L r23) + AVHF(KZBBL r23)(S2 83%°4) . (3.3b)

where we have noted that due to the diatomic symmetry the interaction
can actually depend only on the component of E along the relevant
diatomic axis.
The functions VHF(r,zgf) and AVHF(rsz@f) of Eq. (3.3) are determined,
as before, by the singlet and triplet H-F potential curves [cf. Eq. (2.4)],

.
and their dependence on the projection of orbital angular momentum, L°¥,

by the Z and Il potential curves; i.e.,

Ve (5,100) = v (o) + v, () Eee)? (3.4a)

B (e Te8) = AT (1) + 8V, (o) Be)” (3.4b)
where VO5 V19 Avo, and AV, are given in terms of the HF potential curves by

Vo(r) = ¥ZHF(r) (3.5a)

v, 00 = M - p @) (3.5b)

M) =m0 - e () | (3.5¢)

& () = O ) - T @) - a0 - Y o] (3.50)
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+ ) 2 I3 o °
Thus when (Ler)z = 0 the interaction is determined by the I potentials,

and BEq. (3.4) gives

Vi (T = 1ZHF(r)

1

M () = SZHF(I:) S O N

* A
and when (L‘r)2 = 1 the interaction is determined by the Il potentials,

and Eq. (3.4) becomes

Vg () = lHHF(r)

3 1
AVHF(r) = HHF(r) - HHF(r)

2

> A .
Ths interpolative nature with respect to m £ Le¥, i.e., T + (HEZ)mL .

L
is the same dependence that has appeared in our earlier classical
modelsel

Using Eq. (3.4) in Eq. (3.3) completely specifies the electronic

Hamiltonian. If one takes this to be a quantum mechanical Hamiltonian,

T >
with 81,82953, and L being operators, then one can show that this spin

Hamiltonian is completely equivalent to the diatomics-in-molecules (DIM)

Hamiltonian if only the lowest 12 and 32 states of HZ and the lowest

12,32,1H9 and 3H states of HF are used. That is, the matrix of this spin

1

i i i { > > > > =8 =G ==
Hamiltonian in the basis lSlmS1 ISZm82 iS3m83 leL s where S1 82 53 5
1=1, is ddentical to the DIM matrix. (This 2 x 2 x 2 x 3 = 24 dimensional

matrix factors considerably:; for states of ZA' symmetry, for example, one

has a 4 x 4 matrix, and for ZA" states a 2 x 2 matrix.)
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To obtain a classical model for the electronic degrees of freedom

of the FHZ system, however, we proceed as in Section II and take the

-
spins 5158 .

momenta and Eqs. (3.1)-(3.5) thus define

Hamiltonian as a function of the nuclear

the classical electronic

coordinates. Again within the

overall center of mass system, the nuclear variables are chosen as in

o -+
2 83, and the orbital angular momentum L to be classical angular

> -+
Eq. (2.5), i.e., r is the H-H relative coordinate and R the coordinate of

F relative to the center of mass of Hze

> -+
energy and the spin-orbit interaction between L and 83

atom, the complete classical Hamiltonian

explicitly by

-
+ VHZ(rlz) + AVHZ(rlz)(Slssz

> A 2
T Vo(ryg) + V() (Lo o)

+/\
+ [AVO(r13) + Avl(rlB)(Ler
2

%/\
T Vo (ryg) + V (ry0) (LoE,5)

m}‘/\
+ [AVO(rZB) + Avl(r23) (L%

o3
with rij still given by Eq. (2.7) and VO,

13>

23

Adding in the nuclear kinetic
on the fluorine

for the F-H, system is given

2

+

2. 3
15, *54 + )

2. 2 % .3
)71 G, 5, 4+ ) ,

Vs AVO7 and AVl by Eq. (3.5).

(3.6)
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The classical equations of motion are generated as before, by Eq.

(2.8) with the additional equation for i,

d >, . > o
"a;; Lt) = ~L x —é;%' (3.7)

Again, it is possible to express the Hamiltonian in terms of the action-
angle variables of all the angular momenta, (mlgql)9 (ngqz)9 (m39q3)9
(mqumL)s and generate equations of motion for them. Although this leads
to fewer first order differential equations, the resulting equations are
sufficiently more complex (involving trignometric functions and square
roots) that computation with the cartesian form of the spins is probably
more desirable.

Within the standard quasi-classical model, initial conditions for
the nuclear variables (;,;sgsﬁ) are again given in the usual way, and

> >
initial conditions for the spins S1 and SZ of the H atoms are the same
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as in Section IIb [i.e., Bq. (2.13)]; i.e., gl and EZ are coupled
initially to form a singlet spin state of H2° The spin and orbital
angular momentum of the F atom, EB and %a must be coupled initially

to form an eigenstate of total electronic angulay momentum of the
fluorine atom, and this is again the classical version of a Clebsch-
Gordan transformation. Thus the uncoupled action-angle variables of

gé and fa (m39q3) and (mqumL), are replaced by the coupled action-angle

variables (J,qj) and (mjsqmj)s vhere

i

i {§3+L””§ (3.8a)

m, = Mg + m R (3.8b)

with q, and their conjugate angle variables, and in terms of the
q 94y g

J >
coupled action-angle variables S3 and f are given by8

~m, oS8 cos - 4 sin sing,
j cosqy cosqy - qmj ag

3
>
L = A -mj sin cosq, + j cos sing,
y q.mj 4y + 3 qmj a
Ve
Vﬁzmm,z cosq,
J J
?jzmm 2 cosq
2412 5.2 J "3
+ <im-~—-~$i—> JgEZ;Tij sinqm (3.9a)
.2 k| .
2j ]
m,
J
gé = game as above with A + -A and (j24~12~=832) -+ (jz%nsgzw»Lz) R

(3.9b)
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where

b 2,2 .22, ,,2,,2,1/2

= [3%tes than?y Bean®s Brag®s 21 sy (3.9¢)

3

Within the usual Monte Carlo procedure the angle variables qj and 9, >
k|

as well as g and qm for the spins of H,, are chosen as 27 X (random

S 2

12 12
numbers) .

For the magnitudes of the angular momenta LZ and j2 it is probably

desirable also to make a Langer modification. If the initial state of F

is the electronically excited state ZP for example, then the gquantum

1/2°

mechanical values for Lz and the initial values of j2 are

(jZ)QM = %(%—-4- 1) = % (3.10a)

(g = 1A+ =2, (3.10b)
while the preferred langer-modified values are

<j2)La,nger = (—% + %)2 =1 (3.11a)

@) anger = L+ D7 =7 (3.11b)

it

There is no Langer modification to projection quantum numbers so that mj

1 ) 2 _ .2 _ .2
-5 or + §~1n1t1ally, and S1 = 82 = 83 and S1

Section IIb, i.e., by Eq. (2.15).

22 are still given as in

b. Ost

To show how the model can be extended to deal with atoms involving

more than one valence electron (or electron "hole”) we consider the O+H2
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system.

wd

- .
Let and S2 be the spins of the electrons on the two hydrogen

i

> >
atoms and (83913) and (SégLé) be the spin and orbital angular momenta for

+

the two oxygen electrons (holes). The Dirac-Van Vlieck spin model takes
the Hamiltonian to be the sum of all pair interactions between the valence

electrons (and holes), so in this case one has

+Hd, +H,,+H,,6 +H,, +H

Hog = Hyp + Hyy + Hyq +Hy) + Hyq

ol (3.12)

24 ?

where Hij is the interaction between electrons 1 and j.
Fach pair interaction Hij in Egq. (3.12) has the same form as in
Section II,
H, =v., +4v,, (3,8 +3 (3.13)
1 ij 13771 Y3 4 ’
where Vij and Avij are functions of the distance between the atoms on
which electrons 1 and j are situated and also the orbital angular momenta

=Y

-3
of electrons 4 and j, L, and ng if these are non-zero. Thus H

N the

12°
interaction between the electrons on each of the H atoms, is still given
by Eq. (3.2). HlSS Hl49 H23 and H24 are the interactions between an

electron on ane of the H atoms and one of the p-electrons (holes) on

oxygen and are thus of the same form as for the H-F interaction in

Egs. (3.3) and (3.4); i.e.,
H,. =V (r) + V. () (L, 9)2
1 ot FRAREAE )

> 2., >
+ [AVO(r) + Avl(r)(Lje?) ](siesj+ go , (3.14)

with
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for
(i,3) = (1,3), (1,4), (2,3), (2,4) .

The four functions VO(r)9 Vl(r)S AVO(r)9 and AVl(r) are determined by
the diatomic potential curves of OH, but this is more complicated than
for the HF case treated in Section IIIa and is deferred to the next
sectiomn.

The remaining pair interaction, ‘HB49 is that between the two

electrons (holes) on oxygen. It is also of the general form of Eq. (3.13)

_ > > e > a») ;3_
Hyy = Vog(lyly) + AVOX<L3,L4)(S3 S+ o (3.15)

and since the two electrons are on the same center, the functions VO%

and AVOX are independent of nuclear geometry and thus characteristic of

the isolated oxygen atom. Because of spherical symmetry of the atom,
F

V, and AV, can be functions only of L,°L,, and since the electrons

Ox Ox 3 T4

(holes) are in p orbitals there can be no higher than quadratic powers

£ T, and T,; i v d AV f the f
0 L3 an Lés i.e., Ox an are of the form

Ox
Vo (bpsTy) = ag + a, @ ty) + a, @y Ty (3.16a)
ARG 7 T U TGS 5 BT I G 05 7 L (3.16b)

Because the two electrons are equivalent, however, AVOX Z 0--i.e., there
is no exchange interaction between equivalent electrons--so that bo = bl =

bz = (. The three constants ags 8y and a, are then determined from the
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1
energies of the 3?, le and "5 states of oxygen.
The electronic Hamiltonian of Eq. (3.12) is now completely specified

once the prescription is given for determining the four functions V _, AV

09 09
Vl’ and AVl in Eq. (3.14); this is considered in the next section. Taking
-3 > -+ 3 -+ -3
all the spins, Sls S29 83 and S49 and orbital angular momenta, LB and L43
to be classical angular momenta and adding the nuclear kinetic energy to

this classical electronic Hamiltonian as in the previous sections, one

obtains the classical Hamiltonian for the complete OmHZ system:

e s e s T TR S S T & 52 >2
w B
H(P,R,p,rssl982583584913914) 7 + o

> + > 2
+ ay + al(L3 14) + az(L3 14)

> > 3
+ VHZ(rlz) o+ AVHZ(rlz)(sl 82-%-3—)

A T @ 2 : F o 5 2 e+ é.
F V(g V(o) Cge D%+ [AV(ry3) + AV, (ry9) (Dgofy ) T (B -85+

—;»QA 2 : =>-a,\ 2->>~e=—> é
+ Vo(r13) + Vl(r13)(L4 r13) + {AVOKr13) 4 Avl(rlg)(Lé rls) ](S1 Sé4ﬂ4)

2

: “* SA + eA 2 + §+ §a
+ VO(rZB) + Vl(r23)(L3 r23) + [AVOKr23) + Avl(r23)(L3 r23) ](S2 834‘4)

¥ 2 e 23 43
+ Vo(ryg) + Vi Cry ) (L o207 + [AV(xyg) + AV, (ry) (L, 28,9) " 1(5) 5, +9)

(3.17)

where ¥ the H-H separation, and g and ryq are defined in terms of

122
? and § by Eqs. (2.5) and (2.7). To include the effects of spin-orbit

coupling in the oxygen atom one would add a term proportional to (f3+fg)°(§3+§g)
to Eg. (3.17).

Initial conditions for the classical trajectories of an 0 + HZ
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collision are specified, as in the previous sections, by coupling the
various angular momenta to correspond to the appropriate initial state.

“%- .’> 9 r 2
S1 and 829 the spins on the two hydrogen atoms, are coupled as in Section

IIb to form a singlet electronic state of st If the initial electronic
.2%,
state of the oxygen atom is 1D9 for example, then one would couple 53 and
S, to f ingl d 1, and T £ D i L., = |T.+L,| =
4 to form a singlet, and L, and L, to form a D state, i.e., Ly, = |Lg+L,| =
2; each of these couplings involves a classical Clebsch-~Gordan transformation
of the type discussed in Sections IIb and IITa. In this way one generates
all the initial conditions appropriate to an O(lb) + Hz(lZ) collision: by
the same methods one could generate the initial conditions for O(BP) + Hz(lz),
etc.
c. O-H
To determine the functions Vo(r), AVO(r)9 Vl(r)s and AVl(r) of
Eq. (3.14), which characterize the interaction of an s electron on hydrogen

with a p electron (hole) on oxygen, we apply the spin model to 0-H and choose

these functions so that the gquantum mechanical eigenvalues of the spin

Hamiltonian agree with the diatomic potential curves of OH, so far as is
possible. This is what has been done for the diatomic fragments of the HB

and FH, systems above, except that for these systems the process was so

2
trivial one took little note of it. For the present case, however, which
involves a multivalent atom, this process is more involved.
. . > o .
Thus in this section let (Sl’Ll) and (SZQLZ) denote the spin and
=S
orbital angular momentum of the two oxygen electrons (holes) and 83 the

spin of the hydrogen electron. The electronic Hamiltonian for OH is then

(ignoring spin-orbit coupling)
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Hg = Hp, & Hyy FHy o (3.18)
and from Section IIIb one has
_ e <> = 2 3
le = a, + al(Ll Lz) + aZ(Ll LZ) (3.19a)
B =V () +1° ¥ AV (0) + 12 AV ()]G -3 +3) (3,101
13 = Vole) F Ly, VG [AV () Ly AV () 105,255 +7) (3.19b)
B =V () +1° v () + 12 V. ()13 2+ . (3.19
23 = Volr 25 Vp (0 + AV, (x 25 BV (0 1(8,°55+5),(3.19¢)
where
L. =T, ef
1z lr
LZz = LZ ¥

To determine the quantum mechanical eigenvalues of this Hamiltonian a

matrix representation is constructed in the basis set

lL.m >|Lm >|S.m, >|S,m, >|S,m, >
1“‘1;1 2M, " 1P, 1R, TP ’

with L, = L = 1/2. It is convenient, though, to

1 2 1 3
replace i and m by the coupled variables L, ML, where
1 2

=1, 8 =8,=35

L o= | +EZ§

1
= + m
M le L,
Also, m_ and m are replaced by the coupled variables S, ., M 5

s 8 12 S

1 2 12
s.. = |8, +8,]

12 1 2
MS = mS + mS s
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cand then MS and ms are replaced by the total spin and its projection,
12 3
S and MS’
3 =3 el 3+ -+
S = ]sl2 +‘531 = lsl + 8, + 54
M, =M +m, =mn, +m, +m
) S12 S3 S1 SZ S3

The basis functions of this basis set are designated

>
|t >|s Mg 8, > ,
and are particularly convenient because the electronic Hamiltonian is

diagonal in S,MS9 and ML (and independent of Ms)e From Egqs. (3.18)

and (3.19) and standard angular momentum properties this Hamiltonian

matrix is
S ML LS
5 12 3 S(S+l) e ©
Ho ;.5 =8, 5., [E + 2V 4 (5 + SOAY )
L 51291‘512 L',L 812’812 0 0 4 2 0
+ 8 . + 3 av) <w |12 +12 iIMﬁ>
5! .8 1 4 1 ML 1z 2z

122712
+ bv, [<u'M |12 |1 ><sM st |8 o8 sm, s, >
3 <D My [Ly p 1L <SMg 57515, *5318Mg54 5

2 o =3
+ <L |1y, 1M ><sM81, |5, 08, [ sMgS, ,>] . (3.20)

Since the allowed values of (Lgslz) are (0,0), (1,1), and (2,0), this is

at most a 3 x 3 matrix; Egslz is the atomic energy of the oxygen in the

1S, SPy or lD state.

The matrices of the angular momentum operators in Eq. (3.20) can
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be calculated by standard angular momentum methodology,9 so it is a
straight-forward procedure to construct this Hamiltonian matrix and
find its eigenvalues for the various allowed values of the good quantum

numbers S’ML° We thus simply summarize the results here:

bee 3
L = EO( P) + zvo + zvl + ZAVO + ZAvl (3.21a)

z = EO(BP) + zvo + zvgL + %ﬁ Avo + % AVI (3.21b)
22:+ :—% [EO(lD) + Eo(ls)] + 2V, + v, o+ -3— Avo + -g} Avl
1 1
R S);EO( 2y + % (5, (9)-E (D) 1 (v, + 5 AV)
+ (v, + 2 )7 (3.21c)
41‘{ = B (BP) + 2V 4+ V. + 20V 4+ AV (3.21d)
0 0 1 0 1

2 = %{EO(BP) + Eo(ln)] 20,V + Y, +é= vy

£ 3 1, ('D-E )+ avy + 2 av 1P+ 2av 2 (510
ZA = EO(lD) + zvo + zvl + gi- Avo + % Avl (3.21¢)

2
where 42, I, ete., corresponds to (S)ML} = 63,0)9 (%-91)9 etc,

Eq. (3.21) expresses the eight valence potential curves of OH in terms of
only four functions of r. This is a non~trivial test of the valence bond
model even here at the diatomic level; i.e., is it possible to choose four
functions Vo(r)s Vl(r)s AVO(r), and AVl(r) so that Eq. (3.21) accurately
represents the eight true valence potential curves of OH. The answer is

e ; 13 . ,
affirmative, to a very good approximation.
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With the four functions Vo(r), Vl(r), AVO(r), and AVl(r) which
characterize the interaction between a hydrogen s-electron and an oxygen
p-electron (hole) thus determined, the valence bond spin Hamiltonian for

the O»HZ system, Eq. (3.17), is now completely defined.
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v, Concluding Remarks.

The classical valence bond model developed in this paper is the
boldest approach yet attempted for modeling electronic degrees of freedom
classically. Even the intimate chemical features of bonding are characterized
classically. The approach completely obviaﬁes the Born=-Oppenheimer (i.e.,
electronically adiabatic) approximation by following the classical mechanics
of the electronic (i.e., spin) degrees of freedom along with the nuclear
motion. A classical trajectory simulation using this model can thus deal
as easily with electronically non-adiabatic processes as with adiabatic
ones.

It dis difficult to prediet how quantitatively accurate the model will
be. The application in Section IIc to the H + HZ reaction is reasonably
encouraging. Calculations for F + HZ’ including spin-orbit coupling, should
certainly be possible and will be an Important test of the approach. The
0+ Hz collision system, as described in Sections IIIb,c is an even more
challenging application because of the three electronic states of oxygen
that are involved. These calculatiors should also be possible.

Finally, we note as an aside that the analysis in Sections II1Ib,c
has suggested to us a semiempirical valence bond (SEVB} model for quantum
chemistry, 1.e., for Born-Oppenheimer potential energy surfaces, Thus
one can determine quantum mechanical Born-Oppenheimer potential surfaces
for the polyatomic OHZ system by finding the eigenvalues of the quantum
mechanical version of the spin Hamiltonian for OHZ, Eq. (3.17) minus the
nuclear kinetic energy terms, where the various functions of atom-atom
distances are determined from the diatomic fragments as in

Section I1Ic. For the H3 and FHZ examples this approach is identical to
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the London and DIM models, respectively, but when one of the atoms involved
is multivalent, as in OHZs this SEVB model is different and, moreover,
seems to have some important advantages. First, it is more economical

than DIM; t.e., there are eight valence potential curves of OH, which are
all independent parameters in the DIM approach, whereas the SEVB model
involves only four parameters for this case. Also, the SEVB model

involves no indeterminant "mixing parameters" that appear in DIM when

multivalent atoms are involvedeéslé

Preliminaxry results13 for OHZ are
very encouraging, and further workl5 is in progress pursuing the possibilities

of this SEVB approach as an approximate quantum chemistry model.
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Figure Caption

Cross sections as a function of initial translational energy for the
reaction (R) H + HZ(V§j:O) -+ Hz + H and the collisional dissociation (D)
"+ Hz(v:j:O) + H + H+ H. The solid curves are the results of the
conventional quasiclassical model using the lowest Born-Oppenheimer
potential surface, and the broken lines the results given by the

classical valence bond model; see text. The error bars indicate the

usual Monte Carlo estimates of statistical error.
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