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A classical interpretation of the Dirac-Van Vleck spin version of 

valence bond theory is used to obtain a classical model for electronic 

degrees of freedom within the valence bond framework. The approach is 

illustrated by deriving the explicit forms of the classical Hamiltonians, 

involving electronic and heavy particle degrees of freedom, for the H-H2, 

F-H2 , and 0-H2 systems. It is also shown how the initial conditions for 

both electronic and heavy particle degrees of freedom are chosen to carry 

out a classical trajectory simulation of collision processes. The 

attractive feature of this model is that it is as eaaily applicable 

to electronically non-adiabatic processes as it is to adiabatic ones. 



I, Introduction. 

1 During the last few years a theoretical approach to electronically 

non-adiabatic collision phenomena has been developed which treats the 

electronic degrees of freedom, as well as the nuclear degrees of 

freedom (i.e,, translation, rotation, and vibration), by classical 

mechanics. The advantage of such a model is that a classical trajectory 

simulation can be carried out which treats the dynamics of all degrees 

of freedom, the electronic transition and the nuclear motion, in a 

consistent way. The original motivation for this approach was the 

realization
2

•3 that models which do not treat electronic and heavy particle 

degrees of freedom on a dynamically consistent footing will fail to 

describe certain aspects of the process correctly. 

Even though these "totally classical" models are more dynamically 

consistent than others (except, of course, the totally quantum mechanical 

formulation, i.e., the rovibronic coupled~channel Schrodinger equation), 

they have the obvious shortcoming that they characterize the electronic 

degrees of freedom via classical rather than quantum mechanics. Since 

electrons· are usually considered to be highly quantum mechanical entities, 

it is not obvious that such an approach will be usefully accurate. 

Several applications, 1 however, have shown that these classical models 

can describe electronically inelastic processes essentially as well as 

ordinary classical trajectory approaches describe rotationally and/or 

vibrationally inelastic processes. It should be noted~ too, that the 

electrons themselves are not treated classically, but rather a classical 

degree(s) of freedom is introduced to model the collective electronic 



degrees of freedom responsible for the electronic states of interest. 

The purpose of this paper is to show how the chemical notion of 

valence bond theory can be given a classical interpretation and then 

used to construct a classical model for the electronic states of a 

molecular system. Although this approach to modeling electronic degrees 

of freedom by classical mechanics has some features in common with our 

earlier approaches, it is actually quite different. As will be seen, in 

this approach one never requires the Born~Oppenheimer potential energy 

surfaces ~ se they and all the non~adiabatic couplings between them 

are all contained implicitly in the classical valence bond model. One 

of the most promising aspects of this approach is that it provides a 

classical model for electronic degrees of freedom which incorporates all 

the chemically important features of valence bond theory, i.e., bond 

breaking and making, directed valence, etc. 

The key to constructing this classical analog to valence bond 

theory is the Dirac~Van Vleck4 spin model for electronic degrees of freedom. 

If the quantum mechanical version of this spin model is used to determine 

the electronic energy for fixed nuclear geometry (i.e., the Born~Oppenheimer 

potential energy surfaces), one obtains standard valence bond results, 

i.e., the familiar London equation5 if all the atoms are monovalent 

S-atoms (e.g., H
3
), the diatomics-in-molecules6 result if only one of 

the monovalent atoms has angular momentum (e.g., FH2), etc. Most important 

for present purposes, however, is that this Dirac~Van Vleck version of 

valence bond theory leads to a elegantly simple classical model for the 

electronic degrees of freedom, namely one takes the various spins and 

orbital angular momenta (vide infra) to be classical angular momenta; 

this will be clear below. 



Rather than attempt a more precise statement of the model, we 

developed it with several examples. Section II considers the simplest 

example, the H
3 

system; it also shows how the initial conditions of 

the classical spin (i.e., electronic) variables are chosen if one 

wishes to carry out a trajectory calculation within the usual quasi~ 

classical framework. The results of such a trajectory calculation using 

the classical valence bond model for the H + Hz + Hz + H reaction are 

presented in Section IIc, and the results are reasonably encouraging. 

Section III then shows how the model can be applied to more complex 

chemical systems, first the F~Hz system, and then a system involving a 

multivalent atom, O~Hz, 



II. The Model; Application to H3 . 

a. The Classical Hamiltonian and Equations of Motion 

The usual quantum mechanical version of the Dirac-Van Vleck4 spin 

model for electronic degrees of freedom is well known. It is essentially 

an alternate formulation of valence bond theory. Here we show how the 

classical version of this model is defined, taking as first example the 

simple case of three hydrogen atoms. 

Let r 12 , r
13

, and r 23 be the internuclear distances for the three 

-+ 
hydrogen atoms and S., i=l,2,3 the spin of the electron on atom i. The 

1 

electronic Hamiltonian is taken to be the spin Hamiltonian for these three 

spins and is a sum of spin-dependent pair interactions between each of 

the electrons, 

(2.1) 

where 

(2.2) 

The operators in this quantum mechanical Hamiltonian are the spin 

operators for the three spins; the quantities V .. and ~V .. are numbers 
1] 1J 

which are functions of the internuclear distance r ..• and because of 
1] 

the equivalence of the three H atoms, 

V.. V(r .. ) 
1] 1J 

(2. 3a) 

I:J.V •• = I:J.V(r • .) 
1J 1J 

(2.3b) 



Choosing the functions V(r) and ~V(r) to be 

V(r) 1E(r) (2.4a) 

(2.4b) 

where 1E(r) and 3E(r) are the potential energy curves for the lowest 1E 

3 and E states of H2 , respectively, ensures that the correct diatomic 

electronic states are obtained if one of the atoms is removed to infinity. 

If one diagonalizes the spin Hamiltonian of Eq. (2.1) in the space of 

total spin 1/2 (a 2 x 2 matrix), the well-known London energy expression5 

is obtained for the ground state Born-Oppenheimer potential energy surface 

To proceed classically we use the above spin Hamiltonian but take 

the three spins to be classical spins. To have a complete classical 

Hamiltonian for nuclear and electronic degrees of freedom the nuclear 

kinetic energy must be added to this Hamiltonian. Within the overall 

center of mass of the three-atom system the conventional choice of nuclear 

+ 
variables is r, the relative coordinate between atoms 1 and 2, say, and 

+ R, the coordinate of atom 3 relative to the center of mass of atoms 1 and 

2: 

+ 
r = 

+ 
R 

+ + 
r2-rl 

+ + + + 
If p and P are the momenta conjugate to r and R, and m and ~ the 

(2.5a) 

(2.5b) 

corresponding reduced masses, then the classical Hamiltonian for the 

complete system is 



where 

+2 +2 
+++++ + + p p 

H(p,r,P,R,s
1

,s
2

,s
3

) =-- +--

+ + 1+ 
r 13 =R+2r 

2]J 2m 

(2.6) 

(2. 7) 

+ + + + 
The classical equations of motion for r(t), R(t), p(t), P(t), 

+ + + s1 (t), s2 (t) and s3 (t) are generated by the equations 

d + 8H 
dt r(t) =-dp (2.8a) 

:t R:<t) 
8H 

=~ 
()P 

(2.8b) 

d + 8H 
dt p(t) --::; 

Clr 
(2.8c) 

ddt P(t) 
ClH 

- aR: (2.8d) 

d + + x 8H 
dt Si(t) s. i 1,2,3 

1. 8$. 
1. 

(2. Se) 

and with the classical Hamiltonian of Eq. (2.6) these equations of motion 

are easily found to be 



where 

d + 
~r 

dt 

d + 
-R dt 

d + 
dt p 

+ 
p/m 

+ 
P/]J 

3 
~I: 
j=l 
j>fi 

(2. 9a) 

(2.9b) 

(2.9c) 

(2 '9d) 

i 1,2,3 (2.9e) 

+ + + + + 
Given initial conditions for r, R, p, P, and s .• i=1,2,3, Eq. (2,9) can 

1 

7 be integrated numerically with standard trajectory programs to determine 

the final values of these quantities. Section lib discusses the initial 

conditions appropriate to an H + H2 collision. 

Rather than characterizing the classical spins by their three 



+ 
cartesian components, L e. , S.- ::= 

l 
(S. ,s

1 
,S. ), one may alternatively use 

1x y :tz 
+ 

m. is the component of S. along a 
1 1 

space~fixed direction, and qi is the angle variable conjugate to it. 

+ 
Since the magnitude of the spin is conserved, the spin S. is completely 

1 

characterized by the pair of action~angle variables (m.,q.); specifically, 
l 1 

+ 
the cartesian components of S. are giveri in terms of the action~angle 

:t 

variables by
8 

.t I 2 i I YS. ~m. cosq
1 I l l 

Since 

+ s. 
l 

+ + s. ·s. 
1 J 

I 2 2' v's. ~m. sinq. 
1 1 1 

\ m. 
1 

/ 
(2.10) 

(2 .11) 

it is easy to express the classical Hamiltonian of Eq. (2.6) in terms of 

++++ 
the canonical variables (p,r,P,R,m

1
,q

1
,m2 ,q2 ,m3 ,q3), and their time 

dependence is determined by Hamilton's equations, i.e., Eqs. (2.8a)~ 

(2.8d), with (2.8e) replaced by 

++++ 
8H(p,r,P,R,m

1
,q

1
,m2 ,q2 ,m3 ,q3) 

++++ 
8H(p,r,P,R 

8m. 
1 

) 



-+ 
i=l,2,3. One can verify by direct calculation that, with Si and 

(m.,q.) related by Eq. (2.10), the equations of motion given by 
1. :1 

Eqs. (2.8e) and (2.8e') are identical. 
-+ 

Characterizing the spin s1 

by the two variables (mi,qi) rather than the three cartesian components 

(Si ,S. ,Si ) means that there is one less equation in the classical 
X l.Y z 

equations of motion for each spin; i~e .• Eq. (2.8a)~(2.8e) consists 

of 21 first order differential equations, whereas Eqs. (2.8a)~(2.8d) 

plus (2.8e') are only 18 first order differential equations. In 

practice, however, 18 is not sufficiently less than 21 to be significant, 

and since the equations of motion in terms of the cartesian spin 

variables are quite a bit simpler algebraically than the ones in terms 

of the action-angle variables, it is actually more convenient and 

efficient to carry out numerical trajectory calculations using the 

cartesian spin variables rather than the action~angle spin variables. 

As seen in the next section, though, the action-angle variables are 

necessary for specifying the appropriate initial values of the spins. 

b. Initial Conditions 

-++-+-+ 
Here we specify the initial conditions for the variables (p,r,P,R, 

-+ 1 
and Si, i=l,2,3) of Eq. (2.9) that are appropriate for an H + H2 ( E) 

collision within the standard quasi-classical model.
7 

Initial values for 

-+-+-+-+ 7 8 
the nuclear variables (p,r,P,R) are determined in the usual way, • so 

no further discussion regarding them is necessary. It remains to specify 

the appropriate initial values of the spin variables. 

1 If atoms 1 and 2 are the two that initially form H2 ( E), then 

-+ -+ s
1 

and s2 need to be coupled initially to form a resultant singlet spin 



state. This is accomplished by making a canonical transformation from 

the uncoupled action-angle variables (m
1

,q1 ,m2 ,q2) to the coupled action­

angle variables (s12 ,q5 ,m12 ,~ ), where 
12 12 

(2 .12) 

and where q8 and ~ are the angle variables conjugate to s12 and m12 . 
12 12 

This transformation is the classical equivalent of a Clebsch-Gordan 

9 transformation in quantum mechanics, and the appropriate expressions 

specifying this canonical transformation have been given before.
8 

For 

the singlet state the quantum mechanical values of s12 and m12 are s12 = 

m
12 

= 0, but we wish to retain the possibility that s
12 

may not be zero 

(see below). Thus specializing the general expressions to the case m12=0 

2 2 + + 
and s

1 
=S2 , the cartesian spins s1 and s2 are given in terms of the coupled 

action-angle variables by 

sinq sinq
8 ml2 12 

cos~ sinq
8 12 12 

cosq
8 
12 

(2.13a) 

• (2.13b) 
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The third spin, that of the free H atom, is given in terms of its 

action~angle variables by Eq. (2.10); setting m3 = 1/2 and since 

2 2 
s3 sl • this becomes 

/ 2 I 

! 
1 

sl ~ 4 cosq3 

+ ,---zr 
s3 -(s

1 
~ 4 sinq

3 
(2.13c) 

\ 1 ) 2 

The question now arises as to the values for s1
2 

and the initial 

value of s
12 

in Eq. (2.13). The quantum mechanical values are obviously 

0(0 + 1) = 0 (2.14) 

but it is well~known in classical/semiclassical folklore that a Langer~ 

modification to the magnitude of angular momenta usually gives better 

8 10 results. • The Langer~modified values are 

1 

cs2 ) 
12 Langer 

(2.15) 

and if these values are used then the fraction 3/4 in Eqs. (2.6) and (2.9) 

must be replaced by 7/8 so that the initial vibrational potential for H
2 

is 1L:(r). 



With s
1 

and s12 given by Eq. (2.15), the angle variables qs , 
12 

qm , and q3 are chosen by Monte Carlo, i.e., as 2n x (random number), and 
12 

Eq. (2.13) then gives the quasiclassical initial conditions for the Cartesian 

spin variables. The classical equations of motion, Eq. (Z.9), can then be 

integrated by standard methods. 

c. in 3d 

One does not believe that electronically non-adiabatic effects are 

important in collisions of ground state H and Hz until very high collision 

energies, and this fact can be used to provide a first numerical test of 

the classical valence bond model described above. 

Thus the conventional (i.e., electronically adiabatic) quasiclassical 

treatment of the H + Hz reaction
11 

considers it to be classical motion on 

the lowest Born-Oppenheimer potential surface. This potential surface is 

the lowest quantum mechanical eigenvalue of the electronic Hamiltonian (for 

fixed nuclear positions), and with the Hamiltonian of Eq. (2.1)-(2.2) this 

is, as noted above, the London expression 

(2.16) 



where V and 6V are given by Eq. (2.4). A standard quasiclassical trajectory 

calculation
7 

for the H + H
2 

+ H
2 

+ H reaction with this potential surface 

thus provides what we consider to be the "correct" classical result for 

lZ 
this system and which we would expect to be in reasonably good agreement 

with the quantum mechanical results for this surface. 

The classical valence bond model, on the other hand, proceeds as 

described in Section IIb: The classical equations of motion, involving 

the spin (i.e., electronic) variables as well as the nuclear coordinates 

and momenta, i.e., Eqs. (Z.9), are integrated numerically with the initial 

conditions given by Eqs. (Z,l3) and (Z.l5), As noted in the Introduction, 

this approach does not involve the Born-Oppenheimer potential energy 

surface but rather uses the classical valence bond (i.e., spin) Hamiltonian 

directly. Thus no assumption of electronic adiabaticity is incorporated, 

and if the actual electronic dynamics is approximately adiabatic (as we 

expect it to be for H + Hz)• this must follow from the classical mechanics 

of the electronic (i.e., spin) degrees of freedom. 

Standard Morse and anti-Morse functions were used to represent the 

1r and 
3r potential curves of Hz• 

(Z.16a) 

3E(r) 
-2S (r-r ) -S (r-r ) 

= D3[e 3 0 + 2e 3 0 ] (2.16b) 

with parameters 

Dl 0.1744 hartree, D3 "' 0.1360 hartree 

1\ 1.04435 
-1 s3 1.032 ao 

-1 
"" ao 

ro "" 1.40083 ao 
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This gives an adiabatic barrier height of 11.1 kcal/mole at r = 1.76 a
0

, in 

reasonable agreement with the accurate value 9.8 kcal/mole also at r = 1.76 a
0

• 

For the present test purposes we are not particularly concerned with 

representing the true H
3 

potential surface extremely accurately. 

Figure 1 shows the cross sections as a function of initial 

translational energy for reaction (R), 

and also for collisional dissociation (D), 

H +Hz+ H + H + H 

(2.17a) 

(2.17b) 

The solid curves are the results of the conventional quasiclassical 

calculation on the London potential surface, presumably the "correct" 

values, and the broken curves the results of the quasiclassical 

calculation with the classical valence bond (i.e., spin) Hamiltonian. 

We consider these results to be reasonably encouraging; other than 

the threshold region of the reactive channel the classical valence bond 

model describes the overall energy dependence of these cross sections 

quite well. The problem with the reactive threshold seems to stem from 

the fact that the correct threshold behavior is determined almost entirely 

by the adiabatic barrier height, and even though the classical spins do 

evolve essentially adiabatically, the classical adiabatic electronic 

(i.e., spin) energy in the transition state region does not approximate 

the quantum mechanical adiabatic electronic energy well. It is not clear, 

of course, whether this difficulty with threshold is typical of this model 

or not, a question that can only be settled by further applications. It 



should be kept in mind, too, that this classical valence bond model is 

being developed for systems which, unlike H + H2 , do involve electronic 

non-adiabaticity in an essential way, i.e., for processes which involve 

several, maybe many, different electronic states. 



III. Further Applications. 

In this section we show how the Dirac-Van Vleck spin formulation of 

valence bond theory can be applied to some more interesting molecular 

systems, thus yielding classical models for the electronic degrees of 

freedom in these systems. 

a. 

Interest in the reaction F + H2 was the initial motivation for 

1 
developing classical models for electronic degrees of freedom, so it 

is of special concern to see how the present classical valence bond model can 

be applied to it, 

+ + 
Let s

1 
and s2 be the spins of the electrons on each of the two H 

+ 
atoms, and s

3 
the spin of the electron (hole) on the F atom; electron 

3 (actually an electron hole) is a p~orbital~~i.e., F is a atom--so 

that it also has an orbital angular momentum L, of magnitude 1. Just as 

for the H3 system of Section IIa, the classical electronic Hamiltonian 

for F-H2 is taken to be the spin Hamiltonian which is a sum of pair 

interactions between all the valence electrons (and electron holes): 

(3.1) 

H
12

, interaction between the electrons on the hydrogen atoms, is the same 

as that of Section II, i.e., 

(3. 2) 

where VH and ~VH are given by Eq. (2.4) in terms of the 
1~ and 

3
L 

2 2 
potential curves of H2. H13 and H23 of Eq. (3.1), i.e., the inter-

action between the electrons on each of· the two H atoms and the electron 
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(hole) on the F atom, has this same form with the generalization that 

V and ~V now depend on the orbital angular momentum of the electron 

(hole) on the F atom--

(3, 3a) 

(3.3b) 

where we have noted that due to the diatomic symmetry the interaction 

+ 
can actually depend only on the component of L along the relevant 

diatomic axis. 

+A +A 
The functions VHF(r,L•r) and ~VHF(r,L•r) of Eq. (3.3) are determined, 

as before, by the singlet and triplet H-F potential curves [cf. Eq. (2.4)], 

and their dependence on the projection 
+ A 

orbital angular momentum, L•r, 

by the~ and IT potential curves; i.e., 

(3.4a) 

(3.4b) 

where v0 , v1, ~v0 , and ~v. are given in terms of the HF potential curves by 

v
0 

(r) = ~HF(r) (3 ,Sa) 

v
1

(r) = 1 
- ~HF(r) ITHF(r) (3.5b) 

LW0(r) = ~HF(r) ~HF(r) (3 .5c) 

t1v
1 

(r) 3 1 
(r) - [32:HF (r) 1 

~F(r) - ~F - LHF(r)] (3.5d) 



(
+ A 2 

Thus when L•r) = 0 the interaction is determined by the ~ potentials, 

and Eq. (3.4) gives 

+A 2 
and when (L•r) = 1 the interaction is determined by the TI potentials, 

and Eq. (3.4) becomes 

Ths interpolative nature with respect to m1 = L•f, i.e., E + (TI~~)~2 , 

is the same dependence that has appeared in our earlier classical 

1 models. 

Using Eq. (3.4) in Eq. (3.3) completely specifies the electronic 

Hamiltonian. If one takes this to be a guantum mechanical Hamiltonian, 

+ + + + 
with s

1
,s2,s

3
, and L being operators, then one can show that this spin 

Hamiltonian is completely equivalent to the diatomics~in~molecules (DIM) 

Hamiltonian if only the lowest 
1z and 

3~ states of H2 and the lowest 

1 3 1 3 
~. Z, IT, and IT states of HF are used. That is, the matrix of this spin 

Hamiltonian in the basis js1m8 > js2m8> js3m8 > IL~>, where s1=s 2=s 3=}, 
1 2 3 

1~1, is identical to the DIM matrix. (This 2 x 2 x 2 x 3 = 24 dimensional 

matrix factors considerably; for states of 2A' symmetry, for example, one 

has a 4 x 4 matrix, and for 2A" states a 2 x 2 matrix.) 
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To obtain a classical model for the electronic degrees of freedom 

of the FH2 system, however, we proceed as in Section II and take the 

+ + + + 
spins s

1
,s2 ,s3 , and the orbital angular momentum L to be classical angular 

momenta and Eqs. (3.1)-(3.5) thus define the classical electronic 

Hamiltonian as a function of the nuclear coordinates. Again within the 

overall center of mass system, the nuclear variables are chosen as in 

+ + 
Eq. (2.5), i.e., r is the H-H relative coordinate and R the coordinate of 

F relative to the center of mass of H2 . Adding in the nuclear kinetic 

+ + 
energy and the spin~orbit interaction between L and s

3 
on the fluorine 

atom, the complete classical Hamiltonian for the F-H
2 

system is given 

explicitly by 

+ 
with rij still given by Eq. (2. 7) and v

0
, v

1
, tw

0
, and t,v

1 
by Eq. (3.5). 
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The classical equations of motion are generated as before, by Eq. 

(2.8) with the additional equation for L, 

d -+ dt L(t) = (3. 7) 

Again, it is possible to express the Hamiltonian in terms of the action~ 

angle variables of all the angular momenta, (m1 ,q1) • (m2 ,q2). (m3 ,q3) • 

(~,q ), and generate equations of motion for them. Although this leads 
~ 

to fewer first order differential equations, the resulting equations are 

sufficiently more complex (involving trignometric functions and square 

roots) that computation with the cartesian form of the spins is probably 

more desirable. 

Within the standard quasi-classical model, initial conditions for 

-+-+-+-+ 
the nuclear variables (p,r,P.R) are again given in the usual way, and 

-+ -+ 
initial conditions for the spins s

1 
and s

2 
of the H atoms are the same 
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+ + 
as in Section IIb [i.e., Eq. (2.13)]; i.e., s1 and s2 are coupled 

initially to form a singlet spin state of H2 . The spin and orbital 

+ + 
angular momentum of the F atom, s3 and L, must be coupled initially 

to form an eigenstate of total electronic angular momentum of the 

fluorine atom, and this is again the classical version of a Clebsch-

Gordan transformation. Thus the uncoupled action~angle variables of 

+ + s3 and L, (m
3

,q3) and (~·~),are replaced by the coupled action-angle 
L 

variables (j,q.) and (m.,~ ), where 
J J j 

j = IS3+L+I (3.8a) 

(3.8b) 

with q. and ~ their conjugate angle variables, and in terms of the 
J • 

J + + 8 
coupled action~angle variables s3 and L are given by 

cosqm. cosqj - j sin~. sinq. 
J J J 

+ 
L = A sin~ cosq. + j cos~. sinq. 

+ 

j J J J 

12 2 1 

/j -m. cosq. 
J J 

-~ 
If'" ~m.'"" cosq 

J m. 
J 

~. 
lj ""~m.... s1.n~ 

J j 

m. 
J 

same as above with A+ -A and (j
2 +L2

-s 2
)-+ 

3 

(3. 9a) 

(j2+s/~L2) 

(3.9b) 
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where 

(3.9c) 

Within the usual Monte Carlo procedure the angle variables qo and ~ ~ 
J j 

as well as q8 and ~ for the spins 
12 12 

of H2 , are chosen as 2TI x (random 

numbers). 

F h 0 d f h 1 L2 d . 2 0 

• b bl or t e magn1tu es o t e angu ar momenta an J lt 1s pro a y 

desirable also to make a Langer modification. If the initial state of F 

is the electronically excited state 2P
112

, for example, then the quantum 

mechanical values for L2 and the initial values of j
2 are 

(3.10a) 

2 
(L ) QM 1(1 + 1) 2 (3.10b) 

while the preferred Langer-modified values are 

(j
2
)Langer (3.lla) 

(3.llb) 

There is no Langer modification to projection quantum numbers so that mo = 
J 

1 + 1 . 0 0 11 d s 2 s 2 or -2 1n1t1a y, an = ~ 2 1 2 

Section IIb, i.e., by Eq. (2.15). 

b. 0-H 
~z 

s3
2 

and s12
2 

are still given as in 

To show how the model can be extended to deal with atoms involving 

more than one valence electron (or electron "hole") we consider the O+H2 
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system. 

-? -? 
Let s

1 
and s2 be the spins of the electrons on the two hydrogen 

+ + + + 
atoms and (s

3
,L3) and (s4 ,L4) be the spin and orbital angular momenta for 

the two oxygen electrons (holes). The Dirac-Van Vleck spin model takes 

the Hamiltonian to be the sum of all pair interactions between the valence 

electrons (and holes), so in this case one has 

where H .. is the interaction between electrons i and j. 
lJ 

(3.12) 

Each pair interaction H .. in Eq. (3.12) has the same form as in 
lJ 

Section II, 

H .. 
lJ 

+ + 3 = V4 J. + /::,V .. (S.•S.+-4 ) 
... l.J :1 J 

(3 .13) 

where Vij and l::,Vij are functions of the distance between the atoms on 

which electrons i and j are situated and also the orbital angular momenta 

+ + 
of electrons i and j, Li and Lj. if these are non-zero. Thus H12 , the 

interaction between the electrons on each of the H atoms, is still given 

by Eq. (3.2). H13 , H14 • H23 and H24 are the interactions between an 

electron on one of the H atoms and one of the p-electrons (holes) on 

oxygen and are thus of the same form as for the H-F interaction in 

Eqs. (3.3) and (3,4); i.e., 

with 

H .. 
lJ 

(3.14) 
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for 

,j) = (1,3), (1,4), (2,3), (2,4) 

The four functions v0(r), v1 (r), ~v0 (r), and ~v1 (r) are determined by 

the diatomic potential curves of OH, but this is more complicated than 

for the HF case treated in Section IIIa and is deferred to the next 

section. 

The remaining pair interaction, H34 • is that between the two 

electrons (holes) on oxygen. It is also of the general form of Eq. (3.13) 

(3.15) 

and since the two electrons are on the same center, the functions v0x 
and ~VOx are independent of nuclear geometry and thus characteristic of 

the isolated oxygen atom. Because of spherical symmetry of the atom, 

+ + 
v0x and ~VOx can be functions only of 13 •14 , and since the electrons 

(holes) are in p orbitals there can be no higher than quadratic powers 

(3.16a) 

(3.16b) 

Because the two electrons are equivalent, however, ~VOx= 0--i.e., there 

is no exchange interaction between equivalent electrons--so that b
0 

= b1 

b2 = 0. The three constants a0 , a1 , and a2 are then determined from the 
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energies of the 3P, 
1n, and 

1s states of oxygen. 

The electronic Hamiltonian of Eq. (3.12) is now completely specified 

once the prescription is given for determining the four functions v
0

, ~v0 , 

v1 , and ~v1 in Eq. (3.14); this is considered in the next section. Taking 

+ + + + + + 
all the spins, s

1
, s 2 , s3 and s4 , and orbital angular momenta, 1

3 
and 14 , 

to be classical angular momenta and adding the nuclear kinetic energy to 

this classical electronic Hamiltonian as in the previous sections, one 

obtains the classical Hamiltonian for the complete O~H2 system: 

+2 +2 
+++++ + + + + + p £_ 

H(P,R,p,r,s1 ,s2 ,s3 ,s4 ,13 ,14) = 2~ + Zm 

(3,17) 

where r 12 , the H-H separation, and r 13 and r 23 are defined in terms of 

+ + 
rand R by Eqs, (2.5) and (2.7). To include the effects of spin-orbit 

~ 4 ~ ~ 

coupling in the oxygen atom one would add a term proportional to (13+14) ·(S3+s4) 

to Eq. (3.17), 

Initial conditions for the classical trajectories of an 0 + H2 
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collision are specified, as in the previous sections, by coupling the 

various angular momenta to correspond to the appropriate initial state. 

+ + s
1 

and s2 , the spins on the two hydrogen atoms, are coupled as in Section 

IIb to form a singlet electronic state of H
2

• If the initial electronic 

L ~ 
state of the oxygen atom is -u, for example, then one would couple s3 and 

+ + + s4 to form a singlet, and 1
3 

and 14 to form aD state, i.e., 134 = 
2; each of these couplings involves a classical Clebsch-Gordan transformation 

of the type discussed in Sections IIb and IIIa. In this way one generates 

all the initial conditions appropriate to an 0(1D) + H2(1L) collision; by 

the same methods one could generate the initial conditions for 0(3P) + H2(1L), 

etc. 

c. 0-H 

To determine the functions v
0

(r), ~v0 (r), v1 (r), and ~v1 (r) of 

Eq. (3.14), which characterize the interaction of an s electron on hydrogen 

with a p electron (hole) on oxygen, we apply the spin model to 0-H and choose 

these functions so that the quantum mechanical eigenvalues of the spin 

Hamiltonian agree with the diatomic potential curves of OH, so far as is 

possible. This is what has been done for the diatomic fragments of the H3 

and FH2 systems above, except that for these systems the process was so 

trivial one took little note of it. For the present case, however, which 

involves a multivalent atom, this process is more involved. 

+ + + + 
Thus in this section let (S

1
,1

1
) and (S2 ,12) denote the spin and 

+ 
orbital angular momentum of the two oxygen electrons (holes) and s3 the 

spin of the hydrogen electron. The electronic Hamiltonian for OH is then 

(ignoring spin~orbit coupling) 



(3 .18) 

and from Section IIIb one has 

(3.19a) 

where 

~ 

11z = 1 ·r 1 

~ 

1 2z 
= 1 ·r 2 

To determine the quantum mechanical eigenvalues of this Hamiltonian a 

matrix representation is constructed in the basis set 

with 11 = 12 = 1, s1 = s2 = s3 = 1/2. It is convenient, though, to 

replace ~ and ~ by the coupled variables L, Mt• where 
1 2 

.~ ~ J 
L "' aLl + Lzl 

Also, m and m are replaced by the coupled variables s
12

, M
8 

, 
8 1 s2 12 
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and then M8 12 
and m are replaced by the total spin and its projection, 

s3 

The basis functions of this basis set are designated 

and are particularly convenient because the electronic Hamiltonian is 

diagonal in S,M8 , and Mt (and independent of M8). From Eqs. (3.18) 

and (3.19) and standard angular momentum properties this Hamiltonian 

matrix is 

s.Mt 
H 'S' S L 12'1 12 

(3.20) 

Since the allowed values of (L,s12) are (0,0), (1,1), and (2,0), this is 

at most a 3 x 3 matr~x; E~812 is the atomic energy of the oxygen in the 

1 or D state. 

The matrices of the angular momentum operators in Eq. (3.20) can 
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9 be calculated by standard angular momentum methodology, so it is a 

straight-forward procedure to construct this Hamiltonian matrix and 

find its eigenvalues for the various allowed values of the good quantum 

numbers S•ML· We thus simply summarize the results here: 

(3,2la) 

(3 ,.2lb) 

4rr = E0 (3P) + 2v0 + v1 + 26v
0 

+ 6v
1 

(3, 2ld) 

2rr "" L [E (
3

P) + E (
1n)] 2 1 

2 o o + vo + vl + vo + 2 vl 

(3, 2le) 

(3.21£) 

where 
4

.:::; • 
3 1 

etc., corresponds to (SJMJ = (2,0), (2,1), etc, 

Eq. (3.21) expresses the eight valence potential curves of OH in terms of 

only four functions of r. This is a non-trivial test of the valence bond 

model even here at the diatomic level; i.e., is it possible to choose four 

represents the eight true valence potential curves of OH. The answer is 

"'f. . 13 d . . ar 1rmat1ve, to a very goo approx1mat1on. 



With the four functions v
0
(r), v

1
(r), nv

0
(r), and nv

1
(r) which 

characterize the interaction between a hydrogen s~electron and an oxygen 

p-electron (hole) thus determined, the valence bond spin Hamiltonian for 

the O~H2 system, Eq. (3.17), is now completely defined. 
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IV. Concluding Remarks. 

The classical valence bond model developed in this paper is the 

boldest approach yet attempted for modeling electronic degrees of freedom 

classically. Even the intimate chemical features of bonding are characterized 

classically. The approach completely obviates the Born~Oppenheimer (i.e., 

electronically adiabatic) approximation by following the classical mechanics 

of the electronic (i.e., spin) of freedom along with the nuclear 

motion. A classical trajectory simulation using this model can thus deal 

as easily with electronically non-adiabatic processes as with adiabatic 

ones. 

It is difficult to predict how quantitatively accurate the model will 

be. The application in Section lie to the H + H2 reaction is reasonably 

encouraging. Calculations for F + H2 , including spin~orbit coupling, should 

certainly be possible and will be an important test of the approach. The 

0 + H2 collision system, as described in Sections IIIb,c is an even more 

challenging application because of the three electronic states of oxygen 

that are involved. These calculatiomshould also be possible. 

Finally, we note as an aside that the analysis in Sections IIIb,c 

has suggested to us a semiempirical valence bond (SEVB) model for quantum 

chemistry, i.e., for Born~Oppenheimer potential energy surfaces. Thus 

one can determine quantum mechanical Born~Oppenheimer potential surfaces 

for the Eolyatomic OH2 system by finding the eigenvalues of the quantum 

mechanical version of the spin Hamiltonian for OH2 , Eq. (3.17) minus the 

nuclear kinetic energy terms, where the various functions of atom-atom 

distances are determined from the diatomic fragments as in 

Section IIIc. For the H
3 

and FH2 examples this approach is identical to 
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the London and DIM models, respectively, but when one of the atoms involved 

is multivalent, as in OH2 , this SEVB model is different and, moreover, 

seems to have some important advantages. First, it is more economical 

all independent parameters in the DIM approach, whereas the SEVB model 

involves only four parameters for this case. Also, the SEVB model 

involves no indeterminant "mixing parameters" that appear in DIM when 

multivalent atoms are involved. 6 •14 Preliminary results13 for OH2 are 

very encouraging, and further work15 is in progress pursuing the possibilities 

of this SEVB approach as an approximate quantum chemistry.model. 
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Figure Caption 

Cross sections as a function of initial translational energy for the 

reaction (R) H + H2(v=j=O) ~ H2 +Hand the collisional dissociation (D) 

H + H2(v=j=O) ~ H + H + H, The solid curves are the results of the 

conventional quasiclassical model using the lowest Born-Oppenheimer 

potential surface, and the broken lines the results given by the 

classical valence bond model; see text, The error bars indicate the 

usual Monte Carlo estimates of statistical error, 



-38-

-

c: 
w 

c 
c: 
0 -c 
en 
c: 
c 

0 
0 
LO 
M ,._, 

' N 
.-1 
o 
co 

-' 
00 
>< 




