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Direct Imaging of Functional Networks

Eric C. Wong

Abstract

In blood-oxygenation-level-dependent functional magnetic resonance imaging (fMRI), current methods typi-
cally acquire *500,000 imaging voxels at each time point, and then use computer algorithms to reduce this
data to the coefficients of a few hundred parcels or networks. This suggests that the amount of relevant informa-
tion present in the fMRI signal is relatively small, and presents an opportunity to greatly improve the speed and
signal to noise ratio (SNR) of the fMRI process. In this work, a theoretical framework is presented for calculating
the coefficients of functional networks directly from highly undersampled fMRI data. Using predefined func-
tional parcellations or networks and a compact k-space trajectory that samples data at optimal spatial scales,
the problem of estimating network coefficients is reformulated to allow for direct least squares estimation, with-
out Fourier encoding. By simulation, this approach is shown to allow for acceleration of the imaging process
under ideal circumstances by nearly three orders of magnitude.

Key words: arterial spin labeling (ASL); functional magnetic resonance imaging (fMRI); functional connectivity
magnetic resonance imaging (fcMRI); image reconstruction; pulse sequence design

Introduction

For over 30 years, magnetic resonance imaging (MRI)
has been built upon the principles of Fourier encod-

ing, and the reconstruction of uniform grids of voxels from
Fourier-encoded data. For medical diagnosis, images are typ-
ically evaluated by the human eye, and the generation of im-
ages with high and uniform spatial resolution is sensible.
However, for functional imaging of the brain, image data
are rarely evaluated by eye, and are instead analyzed using
a wide variety of computer-based methods to extract func-
tional signals and parameters of interest from these voxel
data. Data-driven methods, such as independent component
analysis (ICA) (Smith et al., 2012; Tian et al., 2013), and re-
lated methods detect features in the data that give clues as to
the functional organization of the brain, while strongly
model-driven approaches, such as dynamic causal modeling
(Friston et al., 2003), attempt to extract parameters of well-de-
fined models from the data. Other approaches, such as func-
tional parcellation (Craddock et al., 2012; Shen et al., 2013)
and graph theoretic approaches (Bullmore and Sporns, 2009;
van den Heuvel and Sporns, 2011; Zuo et al., 2012), seek to
characterize the relationships among brain parcels or nodes.

To date the imaging and processing sides of the functional
MRI (fMRI) workflow have been largely independent, and
the point of communication between these portions of the
process is the four-dimensional data set (three spatial dimen-
sions plus time) that is the typical output of the image acqui-
sition and reconstruction components. The size of this data

set is enormous, typically in the hundreds of millions of
data points, and yet, for most of the common processing pro-
cedures (outlined earlier), this data is typically reduced by
approximately three orders of magnitude by the estimation
of the blood-oxygenation-level-dependent (BOLD) signal
in a few hundred parcels, nodes, or networks.

This implies that the relevant information content present in
the fMRI signal is typically three orders of magnitude smaller
than the voxel count. This 1000-fold excess in data presents an
opportunity for dramatic increases in both imaging speed and
SNR efficiency. The high spatial resolution typically acquired
in fMRI is largely used to make sure that data are not assigned
to the wrong side of a sulcus, rather than because the resolu-
tion matches the size of the features of interest.

We point out here that the intermediate step of reconstruct-
ing voxels is not explicitly necessary, and postulate that the
rate of information extraction from the brain using fMRI and
other functional imaging methods can be dramatically acceler-
ated by estimating the parameters of the functional networks/
nodes directly, bypassing the reconstruction of voxels.

Theory

The Human Connectome Project (HCP) (Smith, 2013;
Van Essen et al., 2012, 2013) is a good benchmark for
state-of-the-art fMRI methodology, as the imaging and pro-
cessing protocols that are emerging from that project are be-
coming de facto standards in the field. The HCP has pushed
MRI technology firmly up against some of the current
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limits on imaging speed and resolution. It has led the field in
advanced gradient technology to move through k-space as
fast as possible (Ugurbil et al., 2013), and has also pioneered
parallel acceleration methods, such as simultaneous multislice
imaging with blipped controlled aliasing in parallel imaging
(CAIPI) (Eichner et al., 2013; Setsompop et al., 2012), to
maximize imaging speed. For BOLD fMRI, whole-brain im-
aging at 2-mm isotropic resolution with subsecond temporal
resolution is now the standard (Ugurbil et al., 2013).

In a typical 2-mm isotropic whole-brain scan, *500,000
imaging voxels are reconstructed at each time point. How-
ever, from each of these imaging volumes, the information
extracted for most applications is contained in the coeffi-
cients of < 500 brain nodes or networks. So, why is so
much data collected?

One simple answer is that more data provide more degrees
of freedom, and the ability to estimate more parameters. This
is almost always true in the time domain. More time points, if
they are at least somewhat uncorrelated, provide more statis-
tical power, generating higher sensitivity and/or shorter scan
times. However, in the spatial domain, resolution comes at a
steep price in SNR. For a given voxel volume V and total
scan time T, SNR / V

ffiffiffiffi
T
p

(Edelstein et al., 1986). Here T
is the total time that the analog to digital converters of the
scanner are actively acquiring data; it is assumed that magne-
tization is prepared in a similar way, and the SNR refers to
the signal-to-thermal noise ratio. Now, suppose that the fea-
tures of interest in a particular scan are N times larger than V.
If the scan was adjusted so that the voxel volume matches the
features of interest, then the SNR per voxel would increase
by a factor of N for a given total scan time. This is partially
mitigated by the fact that for the higher-resolution scan, N
voxels can be summed to estimate the signal from the feature
of interest, but this only recovers a factor of

ffiffiffiffi
N
p

in SNR, as
the summation process increases the signal by a factor of N,
but also increases the noise by a factor of

ffiffiffiffi
N
p

. Thus, the final
SNR of the estimate of the signal in the feature of interest is
higher by a factor of

ffiffiffiffi
N
p

in the lower-resolution scan. As
noted previously, the features whose signals are ultimately
estimated (parcels, networks, or nodes) are typically 1000
times larger than our 2-mm isotropic voxels, and therefore
N = 1000 in the above calculations. Thus, the SNR is theoret-
ically up to

ffiffiffiffiffiffiffiffiffiffi
1000
p

� 30 times higher in a scan with feature-
matched resolution, and an increase in scan time by a factor
of 1000 in the 2-mm-resolution scan would be required to re-
cover this SNR by averaging!

A second reason that high spatial resolution can be useful
is that the brain is a spatially complex structure, and 2-mm
resolution is approximately what is required to reliably local-
ize the signal from each voxel to the correct location in gray
matter, without contamination across sulci. While this is a
valid anatomical consideration, the enormous cost in SNR
should be understood.

If the geometry of the networks or nodes present in a given
subject is known, then the data acquisition and reconstruc-
tion process can be reformulated as a function of the signal
in each network or node. The distribution of signal across
these networks/nodes is referred to here as network/node
maps or nMaps, to distinguish them from spatially uniform
voxel maps (i.e., conventional images). Example structures
of potential nMaps are shown in Figure 1. For parcels, the
value of one element in the nMap is the BOLD signal at

one time point, integrated over the spatial extent of the parcel
or node. The nMap for a set of networks is slightly different
in that it consists of coefficients or ‘‘weights’’ for the BOLD
signal associated with each of many potentially spatially
overlapping networks. For example, for networks identified
by ICA, the nth row of the nMap would be the time course
associated with the nth network component.

For a given k-space trajectory, the linear relationship be-
tween the nMap coefficients and the MR signal can be
expressed as a simple encoding matrix that is in general not
a Fourier matrix, but instead one derived directly from the
MR signal equations integrated over the arbitrarily shaped
networks or nodes. For a k-space trajectory (k) and nMap co-
efficients (x), the MR signal S can be expressed as follows:

S = Ax

where the elements of the encoding matrix A are

Aij =
Z

Vj

wj(r)eiki�rdV

Here the integral is over the volume Vj of the jth nMap
element, the weight wj is the relative weight of the element
over space, and i is indexes over the k-space points acquired.
For elements Vj that fall over a uniform Cartesian grid, A re-
duces to the Fourier encoding matrix.

Our goal is to estimate the elements of the nMap directly
from undersampled MR data, and hypothesize that this can
dramatically increase the SNR of the estimates of the activa-
tion waveforms.

FIG. 1. The nMap is a construct that describes the coeffi-
cients of parcels, nodes, or networks over time. Network im-
ages adapted from Malaak et al. (2012).
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Simulation

An example of direct estimation of nMap data from under-
sampled k-space data is shown in Figure 2 and compared
with conventional estimation. In this example, a 288-parcel
Yale atlas (Shen et al., 2013) was sampled at 2-mm isotropic
resolution and used as a template. A range of BOLD signal
values was assigned to each parcel, and Gaussian noise
was added at a level such that in the image domain the aver-
age contrast-to-noise ratio (CNR) in each 2-mm voxel was 1.
For BOLD imaging, a CNR that is on the order of unity is
typical. For the conventional estimation, images were recon-
structed by Fourier transform, and signals were averaged
across the voxels of each parcel, yielding an estimate of
the mean signal in each parcel. These values correspond to
the values in one column of the nMap.

For direct nMap estimation, a small subset of 1500 of the
noisy k-space data points were selected, representing an
undersampling factor of 500, as shown. For this simulation,
an efficient three-dimensional (3D) gradient trajectory was
designed with low curvature throughout, so that the trajec-
tory can be traversed quickly when subject to gradient slew
rate constraints, and with a relatively incoherent aliasing pat-
tern. The trajectory is shown in Figure 3, and is composed of
approximately semicircular arcs extending from pole to pole,
and intersects the points of a Fibonacci spiral at the equator.

In this example, direct estimation of the nMap from 0.2%
of the fully sampled data resulted in an RMS error that was
76% higher than that of the conventional estimation. In our
initial testing, we found that the direct estimate always has
higher error than the conventional estimate, which is sensible
since it uses a subset of the same data. However, this in-
creased error would be compensated by three averages of
the 500 · undersampled data, which still leaves an under-
sampling factor of over 150 · , with the same net error.

We also performed similar simulations at CNR values of
0.2 and 5.0 for the 2-mm data (Fig. 4), and found similar re-
sults; that is, the increase in SNR with direct estimation of
the nMap was *12 · , and the optimal size of the sampled
patch of k-space corresponded to a point spread function
(PSF) that roughly coincides with the parcel size.

We noted previously that when the voxel volume is N times
smaller than the features of interest, there is a

ffiffiffiffi
N
p

penalty in
SNR for a given total scan time. In this example, the effective
imaging resolution of the undersampled data, as measured by
the width of the PSF (the FT) of the sampling pattern, was
about 20 mm, which is approximately the average size of
the parcels. Thus, the undersampled data were approximately
matched in resolution to the features of interest. The parcels
had an average volume of *500 of the 2-mm voxels, and
the direct nMap method should therefore have an SNR advan-
tage of approximately

ffiffiffiffiffiffiffiffi
500
p

� 22. We noted earlier that the
direct nMap method has a 150 · advantage in scan time
over the fully sampled conventional scan. This translates
into an SNR advantage of approximately

ffiffiffiffiffiffiffiffi
150
p

� 12, which
is large, but it is clearly < 22. Residual inefficiency may
come from the fact that the parcel size does not match the im-
aging PSF exactly, and that the encoding matrix is not per-
fectly conditioned. The condition number for the encoding
matrix in the aforementioned example was 2.5.

FIG. 2. Conventional functional magnetic resonance im-
aging versus direct calculation of the nMap.

FIG. 3. Three-dimensional (3D) K-space trajectory that
provides a smooth 3D path, and incoherent aliasing patterns.
The trajectory consists of semicircular arcs extending from
pole to pole, with a Fibonacci spiral pattern at the intersec-
tion with the equatorial plane.
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Discussion

At this point in time, the core limitation in fMRI is still pri-
marily SNR, rather than spatial or temporal resolution. Even
for the relatively low resolution of several hundred networks
or nodes, fMRI data are typically averaged not only across
experiments, but often across subjects to provide statistically
reliable information. With potential gains of two to three or-
ders of magnitude in scan time for a given SNR, the direct-
mapping approach may be able to enable a transformative
step from multisubject averaging to near real-time in a single
subject. This would in turn not only increase efficiency, but
also allow for the study of much more complex and dynamic
thought and behavior. Even within a single subject, a gain in
SNR efficiency would allow for shorter scan times and/or the
exploration of more or more subtle tasks. The nMap ap-
proach can be applied to either connectivity- or task-based
experiments, limited primarily by the circumstances under
which the network mappings used are expected to be valid.

The currency of higher SNR can also be spent to simulta-
neously acquire images with multiple forms of contrast. One
possibility is to acquire multiple echoes, which can be used
to separate BOLD from non-BOLD sources of contrast
(Kundu et al., 2012, 2013). Another is to acquire BOLD
and CBF contrast, which can be used to estimate CMRO2

and provide a more quantitative measure of brain metabo-
lism (Blockley et al., 2013; Davis et al., 1998; Griffeth
et al., 2013; Simon et al., 2013).

In the aforementioned SNR analysis, the calculated noise is
thermal, rather than physiological, and is therefore not spa-
tially encoded. In practice, both classes of noise are often im-
portant, and indeed the physiological sources of noise, such as
subject motion, and cardiac- and respiratory-related modula-
tions, tend to be dominant at lower spatial resolution (higher
SNR). Physiological noise should therefore dominate the
noise in nMap imaging. However, the higher temporal resolu-
tion afforded by the nMapping approach will also enable the
use of a temporal sampling rate that is much higher than the
cardiac frequency, and should therefore also allow for more
effective removal of these noise sources in postprocessing.

In these examples, estimation of the nMap coefficients
from the data was trivial, both conceptually and computa-
tionally, as it involved a direct least squares solution to the
overdetermined set of equations, and the size of the problem
(*2000 · 300) was small enough that it could be solved
using a simple pseudo-inverse of the encoding matrix in
less than one second. We note that even with multichannel

RF coil acquisition, the problem is likely to be small enough
that direct least squares solutions are easy to compute.

One important feature of the proposed framework is the
dependence upon the size of the features of interest. In our
example (Fig. 2), the nMap had 288 parcels, each composed
of *500 two-millimeter voxels, leading to a potential for ac-
celeration by a factor of 150. This potential acceleration fac-
tor decreases with decreasing feature size, and vanishes
when the feature size equals the nominal imaging resolution.
However, we anticipate that significant increases in SNR are
still available at relatively high resolution, and the resolution
limits of this approach are important to characterize. It is also
important to note that while a few hundred nodes or networks
are at the low end of the resolution spectrum, it is still a larger
number than most analysis methods are currently consider-
ing. Detailed understanding of the workings of several hun-
dred components in the dynamic human brain in single
subjects would already represent a dramatic breakthrough
in the study of brain function, and high-quality data at this
resolution are therefore highly desirable.

While the potential gains in SNR efficiency described here
are large, the implementation of this approach will certainly
introduce nonidealities that will reduce the achievable gains
in real-world applications. The most obvious sources of these
nonidealities are (1) the requirement of good estimates for
the geometry of the parcels or networks, and (2) the presence
of non-BOLD, non-Gaussian sources of signal fluctuations in
the data, such as motion and pulsations. The development of
methods to characterize and address these effects will likely
be an important task in the initial implementations of the
nMapping concept proposed here. To address motion, we
note that motion parameters can be estimated from the data
itself and used to correct the data as a first preprocessing
step. The detection of at least rigid motion parameters can
be done with very high accuracy using low k-space data,
as evidenced by the low-resolution nature of many motion
navigator schemes (Maclaren et al., 2013). After motion cor-
rection, we expect that the high temporal resolution nature of
the data should be helpful in detecting cardiac- and respira-
tory-related waveforms with high accuracy for use as regres-
sors in subsequent analysis.

Potential methods to define the geometry of the nMap

Parcellation from standard atlases. This is perhaps the
most straightforward source for the definition of the nMap,

FIG. 4. Relative performance of
conventional reconstruction and nMap
estimation at three levels of contrast-
to-noise ratio (CNR).
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though it is also likely the least accurate in terms of identify-
ing brain regions that are truly homogeneous and well delin-
eated in an individual subject. An atlas was used in the
aforementioned example, but was assumed to be perfect. A
test of this approach would be to use real fully sampled
human data, and compare the measured functional activity
to that calculated using the nMap approach with a fixed
atlas and undersampled data. Conversely, this might also
be a good way to compare the validity of different atlases.

Networks from ICA. Spatial ICA has historically been
one of the most popular methods for detecting resting-state
networks from fMRI data. A straightforward application in
the context of nMap imaging is to use ICA on fully sampled
data sets to determine the network structure for an individual,
and subsequently assume that structure in the construction of
the nMap bases and collect high-speed, high SNR data under
those constraints.

Anatomical constraints. The use of purely anatomical
constraints from high-resolution anatomical scans is another
relatively straightforward application of the proposed meth-
odology. One potential implementation of interest may be
the use of anatomy to constrain the signal to gray matter.
It has been shown that the width of the 2D PSF of the BOLD
signal along the cortical surface at 3T is *4 mm (Parkes
et al., 2005). In the HCP processing stream, the cortical surface
and deep gray matter are described using *90,000 ‘‘grayordi-
nates’’ at 2-mm resolution. This implies that at 4-mm sampling
along the cortical surface, there are*22,500 parcels, each with
dimensions 4 · 4 · 3 mm3 (3 mm is the approximate cortical
thickness). If combined with parallel acquisition, then there
may be enough data in a single 3D scan to estimate this
nMap, and the possibility of single-shot nMapping of the
whole brain at the resolution of the BOLD PSF would make
an exciting goal.

Adaptive geometry. The use of a priori networks or nodes
in the construction of the nMap basis may result in a poor fit to
the data due to inaccuracy of the a priori information. Because
the system is overdetermined, it may be possible to allow the
data to adjust the geometry of the networks/nodes. A simple
means of doing this would be to parameterize the geometry,
and iteratively adjust these parameters to improve the quality
of the fit to the data.

In the aforementioned examples, only spatial sparsity is
exploited, and no use is made of sparsity in the temporal do-
main, such as that generated by temporal correlations. How-
ever, it is known that fMRI data are in fact sparse in the
spatial-temporal domain, as demonstrated in the approximate
low-rank nature of fMRI data in the K-T domain (K-T
FASTER) (Chiew et al., 2013). In this approach, no basis
functions are chosen to describe either spatial or temporal
patterns, but low rank of the K-T matrix is assumed, and
used to complete undersampled data. The nMap, as defined
earlier, which has dimensions of network/node index and
time, may also be of low rank, and the use of matrix comple-
tion methods may allow for further acceleration.

Finally, we note that similar concepts could apply to con-
strained reconstruction of nMaps from positron emission to-

mography (PET), magnetoencephalography (MEG), and
electroencephalography (EEG) data, with the idea that prede-
fined networks might in some cases bring the source recon-
struction problem in these methods from underdetermined
to overdetermined regimes.

Conclusions

We have introduced here the theoretical framework for di-
rect imaging of brain networks. This approach is shown to
have the potential to provide an order of magnitude increase
in network imaging SNR, and thereby provide access to de-
tailed dynamic imaging of complex brain activity in single
subjects.
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