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ABSTRACT OF THE DISSERTATION

Improved Hydrologic Forecasting and Hydropower Planning In Data Scarce Regions Using

Satellite-Based Remote Sensing

by

Akash Koppa

Doctor of Philosophy in Civil Engineering

University of California, Los Angeles, 2019

Professor Mekonnen Gebremichael, Chair

The role of satellite-based remote sensing in improving hydrologic and water resources studies

in data-scarce regions is investigated. Specifically, the dissertation focuses on the develop-

ment of a 1) validation framework for remotely sensed precipitation and evapotranspiration

without the use of ground-based observations, 2) methodological framework for calibration

of large scale hydrologic models with multiple fluxes, and 3) a seasonal hydropower planning

framework for data-scarce regions. In the first part of the dissertation, a root mean square

error (RMSE)-based error metric capable of translating individual biasies in precipitation

and evapotranspiration onto the Budyko space is developed. It is shown that the frame-

work succeeds in arriving at the same conclusions as a traditional validation method. In the

second part, the value of incorporating multiple hydrologic variables such as evapotranspi-

ration, soil moisture and streamflow into model calibration is investigated. It is shown that

parameters which are insensitive to individual model responses can influence the trade-off

relationship between them. Finally, the potential of using remotely sensed precipitation and

evapotranspiration datasets in generating reliable seasonal reservoir inflow forecasts for hy-

dropower planning is investigated. Results highlight the importance of accounting for input

and parameter uncertainty in hydropower planning.
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CHAPTER 1

Introduction

1.1 Background and motivation

Hydropower is the largest source of renewable energy in the world, accounting for approxi-

mately 70 percent of the total power supply (Moran et al., 2018). However, the latter half

of the 20th century witnessed a steady decline in the number of operational hydropower

dams in regions such as North America and Europe (O’Connor et al., 2015). In contrast,

there has been a significant expansion of hydropower capacity, in the form of large and small

dams, in developing regions such as India (Sharma et al., 2013), China (Chang et al., 2010),

South East Asia (Stone, 2011), and Africa (Conway et al., 2015, 2017). The rapid increase

in hydropower capacity in these regions has been characterized by low capacity utilization

and inefficient operation of hydropower dams and cascades. One of the main reasons for the

low productivity of hydropower dams in developing regions is the lack of accurate forecasts

of inflow into reservoirs at various timescales. The inaccuracy of forecasts are a direct con-

sequence of the severe scarcity of reliable hydrologic measurements in these regions (Figure

1.1). The reduction in the number of rainfall and streamflow gages (Stokstad, 1999) seen in

recent years is expected to exacerbate the data-scarcity situation.

The primary objective of this dissertatation is to investigate the potential of satellite-

based remote sensing in mitigating the issue of data-scarcity in studies concerning hydrologic

modeling, forecasting, and hydropower optimization. Specifically, this dissertation aims to

improve seasonal hydropower planning in data-scarce regions by leveraging global satellite-

based remote sensing data products of hydrologic fluxes and storage variables. The disserta-

tion is primarily motivated by the fact that most water balance components can be monitored

1



by satellite-based remote sensing, including precipitation, evapotranspiration, soil moisture,

total water storage, and snow water equivalent (Lettenmaier et al., 2015). However, owing

to differences sensor types and retrieval algorithms, a large number of global data products

exists with varying accuracy in different topographies, geographies, and hydroclimates. For

example, a global evaluation of nine satellite-based precipitation (Beck et al., 2017) and

evapotranspiration (Miralles et al., 2016) datasets show a wide variance in the performance

of different datasets. Therefore, the central motivational question that the dissertation tries

to answer is: How can the wealth of satellite-based remote sensing datasets be utilized to

improve seasonal hydropower planning in data-scarce regions? An overview of seasonal hy-

dropower planning and its components is presented. In addition, an overview of challenges

specific to data-scarce regions is enumerated. Then, the specific research questions addressed

in this dissertation is detailed.

Figure 1.1: Spatial and temporal distribution of streamflow gage stations available in the

Global Runoff Data Centre (sourced from https://www.bafg.de/).
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1.2 Seasonal hydropower planning in data-scarce regions

Reservoir operations are managed at three distinct time-scales, serving different purposes:

1) long-term, 2) seasonal, and 3) real-time operations (Lund, 1996). Long-term studies

are for developing general guidance and targets for the operation of the reservoir system.

In the context of hydropower operations, it can be for deciding seasonal storage and re-

lease targets to achieve a certain hydropower target. These studies are carried out very

infrequently. Within the context of long-term operations, seasonal operation planning is

conducted monthly, semi-annually or annually to address shorter term conditions such as

monthly release and storage decisions to fulfill the objectives and constraints of the reser-

voir or reservoir system. Real-term operation studies address issues such as short-term

hydropower release, flood control, and water delivery requirements within thin the context

of seasonal operations. This dissertation is focused on improving hydropower operations at

seasonal time-scales using satellite-based estimates of hydrologic fluxes and storages.

A typical seasonal hydropower planning system consists of three main components or

sub-systems linked together, with each component performing a distinct function: 1) climate

system, 2) hydrology system, and 3) optimization system (Block, 2011). A visual representa-

tion of a seasonal hydropower planning system is presented in Figure 1.2. Seasonal forecasts

of meteorological variables, typically precipitation and temperature, are translated into sea-

sonal forecasts reservoir inflows using statistical or physically-based methods. The reservoir

inflow forecasts acts as an input into a reservoir optimization model which generates opti-

mized release decisions by maximizing a specified objective (for example, maximization of

hydropower). Based on the type of inflow forecasts used, the seasonal hydropower planning

can be deterministic or stochastic (Yeh, 1985).

In data-scarce regions, the lack of availability of reliable hydrologic information affects

the functioning of each of the three components of seasonal hydropower planning. In the

subsequent sections, an overview of each component is provided. More importantly, issues

specific to data-scarce regions which hinder the generation of reliable precipitation forecasts,

reservoir inflow forecasts, and optimization of hydropower at seasonal time-scales are iden-
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tified. In addition, the role of satellite-based remote sensing in improving each of the three

components of seasonal hydropower planning is discussed. Finally, the novel contributions

of the dissertation towards addressing the identified issues is detailed.

Figure 1.2: A representation of a seasonal hydropower planning system consisting of the

climate, hydrology and optimization components and their linkage.

1.2.1 Climate system

The primary objective of the climate system is generate reliable seasonal forecast of precipita-

tion. Seasonal forecasts of precipitation are generated by statistical and physcially-based ap-

proaches (Gerlitz et al., 2016). Statistical approaches try to exploit the relationship between

precipitation and large scale climate anomalies such as the El Nino-Southern Oscillation

(ENSO). This is especially true for tropical regions where ENSO governs the precipitation

variability (Ratnam et al., 2014; Krishnaswamy et al., 2015). In the northern hydroclimatic

regions such as Europe other climate anomalies such as the Indian Ocean Dipole (IOD)

and Pacific Decadal Oscillation are found to be more influential in the context of seasonal

precipitation forecasts (Eden et al., 2015). On the other hand physically-based forecasts
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are produced by process-based dynamic models of atmosphere, termed as general circulation

models (GCMs). These models solve fundamental equations which govern fluid dynamics

to simulate the climate system. Typically run on a coarse grid, these models parameterize

sub-grid scale processes such as convection. These models are used for seasonal foecasting by

using observations of the current state of the atmosphere as initial and boundary conditions.

Due to uncertainty in initial and boundary conditions, model parameter and physics, and

the chaotic nature of atmsophere (Lorenz, 1963), the reliability of seasonal forecast from dy-

namic models is low (Kumar et al., 2013). To account for the aforementioned uncertainties,

multi-model ensemble (MME) forecasting systems (refer to Chapter 4 for a detailed review

of different multi-model ensembles). The dissertation is focused on multi-model ensemble

seasonal forecasts of precipitation, rather than statistically generated foreacasts.

A number of postprocessing approaches are adopted improve the reliablity and accuracy

of dynamical forecasts. The basic principle of postprocessing is to develop statistical re-

lationships between forecasts and true climate represented by observations (Finnis et al.,

2012). Postprocessing approaches include forecast calibration using linear (Jia et al., 2010),

nonlinear regression (Zeng et al., 2011), and Bayesian methods (Herr and Krzysztofowicz,

2015). Postprocessing of multi-model ensemble forecasts include calibration and merging of

ensemble members using skill-based weighting schemes (Schepen et al., 2016) and Bayesian

model averaging (BMA) (Raftery et al., 2005). Irrespective of the postprocessing method-

ology adopted, the performance of these approaches depend on the quality of precipitation

observations used a representation of the true climate. This plays a particularly important

role in data-scarce regions where no reliable ground-based measurements of precipitation

data are not available. In such regions, satellite remote sensing-based precipitation datasets

can help address the data-scarcity issue. However, as hinted earlier, remotely sensed precipi-

tation is subject to large temporal and spatial uncertainty. Therefore, the selection of reliable

precipitation data is an important first step in improving the proliferation of remote sensing

datasets for hydrologic and water resources studies in data-scarce regions. In Chapter 2, this

dissertation attempts to address the issue of the selection of reliable remote sensing datasets
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in data-scarce regions.

1.2.2 Hydrology system

The objective of the hydrology component of the seasonal hydropower planning system is to

generate reliable reservoir inflow forecasts. Although several statistical approaches exist for

seasonal streamflow (or inflow) forecasting (Piechota et al., 1998; Souza Filho and Lall, 2003;

Gado Djibo et al., 2015), the dissertation focuses on dynamic methods utilizing physically-

based rainfall-runoff models. The roots of physically-based seasonal streamflow forecasting

can be traced to the development of the ensemble streamflow prediction (ESP) system by the

National Weather Service in the United States (Day, 1985). In this method, a hydrologic

model initialized with observed catchment conditions (such as snow water equivalent and

soil moisture) is forced by an ensemble of precipitation scenarios sampled from historical

data to produce probable realizations of future streamflow (or reservoir inflows). It is also

possible to force the hydrologic model with NWP-based ensemble forecasts of precipitation.

Irrespective of the forcing data, seasonal streamflow forecasting requires a robust model which

can represent the hydrological characteristics of the study catchments with a reasonable

degree of accuracy.

The setup of such a hydrologic model involves 1) accurately estimating model parameters

(Shi et al., 2008) and 2) accurately representating catchment initial conditions (Koster et al.,

2010). Chapter 4 presents a detailed discussion on sources of uncertainty in the hydrologic

model and their effect on streamflow forecasts. Accurate estimation of model parameters (or

calibration) requires reliable measurements of streamflow in the study region. In data-scarce

catchments the calibration of such hydrologic models presents an unique challenge as stream-

flow measurements are not available and no reliable estimates of river flow are available from

remote sensing-based sources (Lettenmaier et al., 2015). It is seen that calibration of hydro-

logic models can impact the accuracy of streamflow forecasts (Shi et al., 2008). Therefore,

the dissertation identifies calibration of hydrologic models as a major challenge in generat-

ing reliable streamflow foreacsts in data-scarce regions. Chapter 3 presents a methodological
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framework developed in this dissertation to identify reliable proxies for streamflow, such as

evapotranspiration or soil moisture, which can be used to calibrate the hydrologic models.

1.2.3 Optimization system

The reservoir inflow forecasts generated by combining ensemble seasonal precipitation fore-

casts and rainfall-runoff model is used as an input to the optimization system to produce

optimal release decisions to achieve a pre-determined objective (or objectives). The opti-

mization of a reservoir or a system of reservoirs can be a deterministic or stochastic problem

based on the nature of inflow forecasts used. As the dissertation uses an ensemble of seasonal

precipitation forecasts to generate reservoir inflows, the focus is on stochastic optimization.

In either case, optimization of reservoirs is formulated as a linear, nonlinear, or dynamic pro-

gramming problem which consists of maximizing or minimizing a set of objective functions

subject to a set of constraints (Labadie, 2004). Stochastic optimization is carried out under

the assumption that the inflow forecasts are not perfect. A generalized objective function in

stochastic optimization can be represented as

max
r
Eq[

T∑
t=1

αtft(st, rt, qt) + αT+1φT+1(sT+1)] (1.1)

where E = statistical expectation operator, rt = n-dimensional set of control or decision

variables during period t, T = length of the operational time horizon, st = n-dimensional

state vector of storage in each reservoir at the beginning of period t, ft(st, rt) = objective to

be maximized or minimized, φT+1(sT+1) = final term representing future estimated benefits

or costs beyond time horizon T , and αt = discount factors for determining present values of

future benefits or costs, q = inflows considered as random variables. Typically, the constraints

are based on preserving the mass balance of the system of reservoirs, maintaining explicit

lower and upper bounds of storage required for safe operation of the reservoirs. Additional

constraints in the context of hydropower optimization is to maintain the releases within the

capacity of turbines. The objective function and the constraints used in the dissertation

for maximization of hydropower in the study region is presented in Chapter 5. The specific
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issues involved in optimization of hydropower in data-scarce regions, the methodological

framework developed in this dissertation to overcome these issues is presented in Chapter 5.

1.3 Organization of the dissertation

The dissertation is divided into five chapters. Chapter 1 provides an introduction discussing

the background and motivation for the dissertation. Chapter 2 presents a novel valida-

tion framework for evaluating remotely sensed precipitation and evapotranspiration datasets

without the need for ground-based measurements. Chapter 3 presents a framework for cal-

ibration of large scale hydrologic by combining Bayesian and Pareto-optimality principles.

Chapter 4 uses the results from Chapter 2 and 3 to develop a seasonal hydropower planning

framework for data-scarce regions using remote sensing data, multi-model ensemble precip-

itation forecasts and stochastic programming. Finally, Chapter 5 discusses the overarching

conclusions drawn from the research carried out in the dissertation and proposes possible

new lines of inquiry in this research area.
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CHAPTER 2

A Framework for Validation of Remotely Sensed

Precipitation and Evapotranspiration Based on the

Budyko Hypothesis

2.1 Introduction

Advances in remote sensing have enabled continuous monitoring of water and energy fluxes at

spatial and temporal scales appropriate for a wide range of hydrologic applications (Letten-

maier et al., 2015), especially in ungauged basins (Lakshmi, 2004). However, these estimates

are subject to large uncertainties arising, primarily, from differences in retrieval algorithms

and sensor types (Kidd and Huffman, 2011; Gebregiorgis and Hossain, 2014). For example,

the Precipitation Intercomparison Project - 3 (PIP-3), which evaluated a number of satellite-

based precipitation products concluded that, in general, Passive Microwave (PMW) based

products are better than Infrared (IR) based products at shorter timescales (Adler et al.,

2001). It is also seen that the performance of data products vary considerably in space,

over different terrains. In a study by Hirpa et al. (2010), it was found that the Climate

Prediction Center Morphing Technique (CMORPH) dataset performed satisfactorily over a

complex terrain in Ethiopia whereas the same dataset failed to capture the temporal and

spatial variation of rainfall over an urban region in China (Chen et al., 2014). Therefore, the

use of remotely sensed data must be subject to comprehensive validation in the catchments

of interest.

But, validation efforts are often hindered by the lack of ground-based observations in

ungauged and data-scarce catchments. With substantial decline observed in in-situ pre-
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cipitation and runoff measurement networks across the globe (Stokstad, 1999; Lorenz and

Kunstmann, 2012), robust methodologies that can test the physical consistency of observa-

tional data using hydrologic principles can offer insight into their quality. Several studies

make use of physically-based hydrologic models to validate remote sensing data. These

studies are based on the hypothesis that any error in the input precipitation will result in

a commensurate error in the closure of water balance. An effort to carry out the water

balance of the Mississippi river basin using data exclusively from satellite remote sensing

revealed that biases in precipitation resulted in overestimation of runoff (Sheffield et al.,

2009). Stisen and Sandholt (2010) used a distributed hydrological model, calibrated using

observed discharge, to evaluate precipitation datasets derived from satellite-borne sensors

over a data-scarce catchment in Senegal. In addition to requiring streamflow observations,

the main drawback of such validation studies is the use of calibrated and over-parameterized

models which prohibit drawing meaningful conclusions regarding the dataset (Bitew and

Gebremichael, 2011).

In this study we address the issues of requiring concurrent streamflow observations, cal-

ibration and over-parameterization of models by invoking the Budyko hypothesis (Budyko,

1974) for validating remotely sensed water and energy balance components, specifically pre-

cipitation and evapotranspiration. The Budyko hypothesis is a semi-empirical model that de-

scribes the long-term combined water and energy balance of catchments. In recent years, the

hypothesis has witnessed widespread application in climate change (Greve et al., 2014), land

use change (Zhou et al., 2015) and ecohydrological (Gentine et al., 2012) studies. Through

this study we intend to rigorously test the applicability of the Budyko hypothesis to vali-

dation of observational data derived from remote sensing. Specifically, we intend to answer

the following questions: 1) Can the Budyko hypothesis be used to develop a data valida-

tion framework that does not require concurrent ground-based measurements? 2) How does

the validation framework compare with traditional methods of evaluation that make use of

in-situ measurements?
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Figure 2.1: a) MOPEX catchments in the United States classified according to aridity and

b) A representation of the Budyko space consisting of Fu’s curve with ω = 2.6 (Fu, 1981),

water and energy limits. The original definition of distance following Greve et al. (2014) and

the modified distances (MDm and MDo) are represented. Four cases of estimated (AI, EI)

points representing different precipitation biases are shown: Case 1 - Low positive bias, Case

2 - High positive bias, Case 3 - Low negative bias and Case 4 - High negative bias (Refer to

section 3.4).
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2.2 Study area and observational data

For the development and validation of the proposed framework, the Model Parameter Es-

timation Experiment (MOPEX) catchments, consisting of 438 small to medium size basins

spread across the United States are selected (Fig. 2.1a). For these catchments MOPEX

provides ground-based daily observations of precipitation (P), runoff (Q) and climatologi-

cal potential evapotranspiration (Ep) spanning 56 years (1948 to 2003) (downloaded from

ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/). The size of the catchments vary from 70

km2 to 10,000 km2. Based on continuous availability of data for at least 30 years, 393 out

of 438 catchments were selected for the development of the framework. Evapotranspira-

tion (E) is calculated as (P-Q) at annual time scales based on previous studies on MOPEX

catchments (Li et al., 2013; Greve et al., 2015).

2.3 Development of the validation framework

2.3.1 Budyko Space

The Budyko space is a two-dimensional space in which every point is described by two

dimensionless indices; Evaporative Index (E/P, abbreviated as EI) and Aridity Index (EP/P,

abbreviated as AI) (Fig.2.1). Physically, EI represents the partitioning of P into E in the

long-term whereas AI can be interpreted as a measure of the mean climate of the catchment

(Carmona et al., 2016). The original Budyko formulation (Budyko, 1974) relates AI to

EI through a non-parametric, nonlinear function that describes the long-term water-energy

balance of catchments. But, owing to observed deviations from the original Budyko curve

(Donohue et al., 2012; Istanbulluoglu et al., 2012; Porporato et al., 2004), several parametric

variations of the Budyko function have been formulated (Fu, 1981; Choudhury, 1999; Zhang

et al., 2004; Yang et al., 2008). In this study, Fu’s equation (Fu, 1981), a single parameter

Budyko function is made use of (Fig. 2.1). It is expressed as follows:

E

P
= 1 +

Ep

P
−
(

1 +

(
Ep

P

)ω) 1
ω

(2.1)
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In equation (3.6), the parameter ω has no analytic solution but various parameteriza-

tions have been proposed that relate ω to catchment characteristics such as vegetation, soil,

topography and location of catchments (Li et al., 2013; Xu et al., 2013).

The Budyko curve (Eq. 3.6) is constrained by the following water and energy limits:

E

P
= 1,

Ep

P
> 1 (water limit) (2.2)

E

P
=
Ep

P
,

Ep

P
< 1 (energy limit) (2.3)

Equation (2.2) implies that the water available for E is limited by P. Thus, the hypothesis

assumes that the contribution of catchment storage to water availability is negligible over

the long term. If the supply of water in the catchment is unlimited, E is constrained by

available energy in the form of Ep (Eq. 2.3). In summary, the Budyko space consists of

Budyko curve, based on catchment specific parameter ω, and the limits (Eq. 2.2 and 2.3).

2.3.2 Defining the error metric

In traditional data validation approaches, observational datasets are directly evaluated with

the help of statistical error metrics such as Mean Bias and Root Mean Square Error (RMSE).

Even when models are used to evaluate remote sensing datasets, the error in the dataset is

assessed by comparing model outputs, like runoff, with ground-based measurements using

similar error metrics. But using the Budyko function (Eq. 3.6) for validation requires the

projection of the three-dimensional space described by (P, E, Ep) onto the two-dimensional

Budyko space represented by (AI, EI). Therefore, the objective of this study is to develop

and test an error metric that can translate the individual errors in P, E and Ep to an

equivalent error in the Budyko space. For this, we use the Root Mean Square weighted

Error (RMSwE) metric developed by Greve et al. (2014) with suitable modifications. This

approach hypothesizes that the error in the (P, E, Ep) space is analogous to the euclidean

distance between the estimated (AI, EI) point (Fig. 2.1b), determined from satellite-based

estimates of (P, E and Ep), and the catchment specific Budyko curve (Original Distance in

Fig.2.1b). Physically, Original Distance (OD), as defined by Greve et al. (2014), represents
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the the combined error of precipitation and evapotranspiration datasets in representing the

long-term water and energy balance of the catchments. In addition, a weight that penalizes

the datasets that exceed the water and energy limits (Eq. 2.2 and 2.3) is introduced.

In this study, we set the value of the weight as unity based on the following arguments.

One of the main objectives of this study is to compare the proposed framework with tradi-

tional data validation methods which do not contain any additional weight or penalty terms

for exceeding water or energy limits. Therefore, comparing such an error metric with a metric

that is inflated by an extraneous penalty would not be logical. The developed error metric

may imply higher error in the P, E or Ep data than that would be implied by traditional

error metrics which may lead to erroneous conclusions regarding the quality of the dataset.

Hence, RMSEOD in the Budyko space, following Greve et al. (2014) is expressed as

RMSEOD =

√∑n
i=1(wi.Di)2

n
(2.4)

where the weight, wi = 1, n is the number of points in the Budyko space and Di or OD is

the euclidean distance (minimum) between the point i and the catchment specific Budyko

curve, RMSEOD is the RMSE metric as defined by Greve et al. (2014) in which the subscript

OD refers to the original definition of distance, D (refer to Fig. 2.1).

2.3.3 Estimating the error metric

Estimation of the RMSEOD metric (Eq. 2.4) for the MOPEX catchments involves the cal-

culation of the euclidean or the minimum distance, OD, between the estimated (AI, EI)

point determined using remote sensing data (Fig. 2.1) and the Budyko curve defined by Fu’s

equation (Eq. 3.6). Thus, OD, according to Greve et al. (2014) is given by

min
AI

OD =
√

(AIest − AI)2 + (EIest − EImod)2 (2.5)

where AIest and EIest are long-term average AI and EI estimated from remote sensing data,

EImod is modeled EI from Fu’s equation given by EImod = 1 + AI − (1 + (AI)ω)1/ω).

The following steps are followed to estimate the RMSEOD metric for the MOPEX catch-

ments. First, the parameter ω in Fu’s equation is estimated for each of the 393 MOPEX
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catchments under consideration following the method prescribed by Li et al. (2013). In this

method, ω is determined by minimizing the squared error between observed annual EI and

EI inferred from Fu’s equation (Eq. 3.6). Thus, the objective function is given by,

obj = min
∑
i

{EI iact − (1 + AI iact − (1 + (AI iact)
ω)1/ω)}2 (2.6)

where EIiact and AIiact are the average EI and AI estimated for the year i using observed data

from MOPEX catchments.

Next, the original distance, OD, is determined for all the 393 catchments using equation

(2.5). Finally, RMSEOD is estimated using equation (2.4).
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Figure 2.2: Sensitivity maps of the logarithm of 1) RMSEOD (Original Distance) and 2)

RMSEMDm (Modified distance). The red star represents RMSE value for no bias in either

precipitation or evapotranspiration. n is number of catchments in each hydroclimatic regime.

2.3.4 Sensitivity analysis of the error metric

We test the hypothesis that RMSEOD in the Budyko space is sensitive to individual biases in

the P and E estimates. For this, we setup a controlled sensitivity analysis experiment using
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the 393 MOPEX catchments. We first divide the Budyko space into three hydroclimatic

regimes based on AI; Humid (0 < AI < 1), Temperate (1 < AI < 2) and Arid (AI > 2)

(Sankarasubramanian and Vogel, 2003). Out of 393 catchments, 253 are humid, 111 are

temperate whereas 29 are arid (Fig. 2.1a). The observed P and E datasets provided by

MOPEX are artificially biased by fixed percentages (0, 25, 50 etc) and for each combination

of the biased P and E data, RMSEOD (Eq. 2.4) is determined for the defined aridity classes.

Then, the logarithm of the RMSEOD value for each combination of artificially biased P and

E data is plotted as a single pixel on the sensitivity map (Fig. 2.2). As the focus of the

study is on validation of P and E datasets, the sensitivity of the error metric to changes in

Ep was not considered

The sensitivity analysis results are interpreted using four cases - 1) Case I: Low positive

precipitation bias, 2) Case II: High positive precipitation bias, 3) Case III: Low negative

precipitation bias and 4) Case IV: High negative precipitation bias. These cases are rep-

resented in Figure 2.1. If the RMSEOD metric is sensitive to individual biases in P and E

values, then, ideally, the logarithm of RMSEOD values must be minimum at the center of

the sensitivity map (darker colors in Fig.2.2) and then gradually increase towards the edges

(lighter colors in Fig. 2.2). It is evident from the sensitivity map of RMSEOD (Fig. 2.2)

that when the precipitation is positively biased to a large degree (> 50%) the RMSE value

is very low, irrespective of the hydroclimatic regime (Case II in Fig. 2.1) . This is contrary

to expectation as RMSE value should increase with increasing bias in either P or E. The

reason for such a behavior is that the euclidean distance, D, in equation (2.4) is the minimum

distance between the Budyko curve and the estimated (AI,EI) point (Original Distance in

Fig. 2.1b). As a result, if the precipitation has a large positive bias, the estimated (AI, EI)

point moves towards the origin, or the humid region, of the Budyko space. In this region,

distance to the Budyko curve is observed to be considerably lower than in either temperate

or arid regions, thereby resulting in a very low RMSEOD value. This is seen in cases I, III

and IV as well in which the RMSEOD metric behaves as expected when the estimated (AI,

EI) point is not very close to the Budyko curve. Figure (2.2) also reveals that the RMSEOD
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metric is more sensitive to biases in P rather than E. This is expected as both AI and EI

feature P in their definitions, whereas changes in E only affect the evaporative index (EI).

2.3.5 Modification of the error metric

We address the issue of high precipitation values leading to low RMSE by modifying the

definition of the distance (D) in equation (2.4). Instead of determining the minimum distance

from the estimated (AI, EI) point to the Budyko curve, D is calculated as the distance

from the estimated (AI, EI) point to a point on the Budyko curve corresponding to the

observed long-term aridity index of the specific catchment (Modeled Modified Distance in

Fig. 2.1b). This modification preserves the aridity of the catchment which is violated by the

original definition of distance but it introduces an additional data requirement in the form

of the actual aridity index. The RMSE calculated using the modified definition of distance

is henceforth referred to as RMSEMDm, where MDm refers to modeled modified distance

calculated as

MDm =
√

(AIest − AIact)2 + (EIest − EImod)2 (2.7)

where EIest and AIest are the long-term average evaporative and aridity indices estimated

from remote sensing data, AIact is the actual AI determined using observed Ep and P data

available for the MOPEX catchments (described in Section 2). EImod is modeled EI from

Fu’s equation (Equation 3.6) as EImod = 1 + AIact − (1 + (AIact)
ω)1/ω.

Sensitivity analysis is performed on the RMSEMDm metric to test whether the new def-

inition can overcome the shortcomings of RMSEOD. In the sensitivity maps of RMSEMDm

(Fig. 2.2), very low values are found only around the pixel representing RMSEMDm for zero

bias in P and E. The positive and negative bias regions in the heat maps exhibit increasing

gradients from the center (point of no bias) towards the edges (points of maximum bias).

This behavior of RMSEMDm is essential if any error metric in the Budyko space is to re-

flect the errors in the individual estimates of P and E. Comparing the sensitivity maps of

RMSEMDm with that of the RMSEOD, it is quite apparent that the magnitude of error is

higher in all hydroclimatic regimes . As expected RMSEMDm is still more sensitive to biases
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in P rather than E. Across hydroclimatic regimes, RMSEMDm values in the arid region is

higher than in temperate or humid regions for the same percentage of bias. The biggest

improvement is seen in the humid regions, where insensitive regions in the RMSEOD heat

map now exhibit higher sensitivity.

2.3.6 Sensitivity of modified distance to ω and AI

Determining the modeled modified distance (MDm in equation 2.7), and thus the application

of the developed RMSEMDm error metric, requires estimates of both the Budyko parame-

ter, ω, and the long-term aridity index, AI, of the catchment. For data-scarce catchments

where no ground-based observations of P and E are available, estimates of ω and AI (AIact

in equation 2.7) have to be obtained from other sources. As stated earlier, several param-

eterizations are available for ω (Li et al., 2013; Xu et al., 2013) and for AIact, long-term

aridity index maps are available (Trabucco and Zomer, 2009). As these parameterizations

and estimates are subject to uncertainty, it is important to understand the importance of

accurately estimating ω and AIact to the determination of the developed RMSEMDm metric.

In this section, we answer the question: How sensitive is the modeled modified distance,

MDm, in equation 2.7 to changes in 1) ω and 2) AIact?

To answer the question, a theoretical experiment is setup in the Budyko space. First,

three estimated (AI, EI) points (AIest and EIest in equation 2.7) representing the remotely

sensed data are selected, one each in the humid (AIest = 0.5, EIest = 0,5), temperate (AIest

= 1.5, EIest = 0.5) and arid regions (AIest = 4, EIest = 0.5) of the Budyko space. To quantify

the effects of changes in ω, the value of the actual AIact is fixed at 0.5, 1.5 and 4 for humid,

temperate and arid regions of the Budyko space respectively. To quantify the sensitivity of

the modified distance (MDm) to changes in AIact, the value of ω is fixed at 2.6. Then, the

sensitivity analysis is carried out according to Saltelli et al. (2008). Specifically, we adopt

the stratified single parameter sampling strategy suggested by the authors. Accordingly, ω

is sampled at equal intervals in the range [1,6]. The range of ω is selected based on the

estimated ω values for the MOPEX catchments. AIact is sampled in a similar manner in the
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ranges [0,1] for humid, [1,2] for temperate and [2,6] for arid regions in the Budyko space.

2000 samples of ω and AIact are obtained to estimate the mean and variance of the resulting

distribution of modified distance, with variance being a measure of sensitivity.

Table 2.1 summarizes the results of sensitivity analysis. It is seen that irrespective of the

position of the estimated (AIest, EIest) point or the aridity region in which sensitivity analysis

is carried out, the variance of modified distance with varying AIact is orders of magnitude

higher than the variance in modified distance with varying ω. Therefore, modified distance

is more sensitive to changes in AI rather than ω. In absolute terms, changes in the Budyko

parameter does not seem to significantly affect the estimates of modified distance. Even

for AIact, the magnitude of the variance of the modified distance is higher in arid region

compared to the other regions. This is due to the fact that the range of aridity index in the

arid region is higher than the other regions and the non-linear nature of the Budyko curve.

Therefore, when applying the framework to data-scarce regions it is important to have more

reliable estimates of AI, especially if the catchment is in the arid region. Moreover, as the

variance magnitudes are not very high, the uncertainty in RMSEMDm estimates are relatively

low (except for arid catchments). It is to be noted that sensitivity analysis was carried out

for a number of different estimated (AIest, EIest) points in the Budyko space but the results

are similar to the results presented here.

2.3.7 Statistical significance test

The difference in RMSEMDm values between every combination of P and E datasets is

tested for statistical significance using a two-sample Student’s t-test (two-sided) (Snedecor

and Cochran, 1989). To apply the t-test a sample of 100 RMSEMD values are generated

for each combination of P and E datasets. The large sample size, N = 100, is to overcome

the requirement of normality for applying t-tests. Each of the 100 RMSEMDm values are

calculated by randomly selecting 150 catchments from the 393 MOPEX catchments. The

null hypothesis in this case is H0 : µi = µj, where µi and µj are the means of RMSEMDm

values of two different combinations of P and E datasets. For example, µ1 could be mean of
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Table 2.1: Variance and mean (in brackets) of the modified distance (MDm) for 1) Fixed

AIact and varying ω and 2) Fixed ω and varying AIact. Depending on the values of Estimated

(AIest, EIest) and actual AIact, 18 cases are presented. The fixed AIact values for humid,

temperate and arid regions are 0.5, 1.5 and 4 respectively. The fixed ω value is 2.6

I) Estimated (AIest = 0.5, EIest = 0.5) point in Humid region

Aridity Humid Temperate Arid

Fixed AIact and varying ω 0.012 (0.09) 1.0E-03 (1.06) 1.2E-04 (3.52)

Fixed ω and varying AIact 0.03 (0.32) 0.085 (1.05) 1.32 (3.53)

II) Estimated (AIest = 1.5, EIest = 0.5) point in Temperate region

Aridity Humid Temperate Arid

Fixed AIact and varying ω 4.3E-04 (1.01) 0.02 (0.33) 2.4E-04 (2.54)

Fixed ω and varying AIact 0.09 (1.02) 0.08 (0.42) 1.28 (2.55)

III) Estimated (AIest = 4, EIest = 0.5) point in Arid region

Aridity Humid Temperate Arid

Fixed AIact and varying ω 3.8E-05 (3.50) 1.9E-04 (2.52) 0.015 (0.41)

Fixed ω and varying AIact 0.09 (3.51) 0.08 (2.52) 0.24 (1.14)

RMSEMDm values of (TRMM, AVHRR) and µ2 could be mean for (TRMM, MODIS). The

threshold selected for statistical significance is α = 0.05.

2.4 Validating the framework

For validating the framework, several satellite-based P and E datasets are used. For P esti-

mates three datasets are chosen; Climate Prediction Center Morphing Technique (CMORPH)

(Joyce et al., 2004) (downloaded from http://rda.ucar.edu/datasets/ds502.0), Tropical Rain-

fall Measuring Mission (TRMM) 3B42RT (Huffman et al., 2007) and the Precipitation

Estimation from Remotely Sensed Information using Artificial Neural Networks - Climate

Data Record (PERSIANN) (Ashouri et al., 2015). Three evapotranspiration products are

used; Advanced Very High Resolution Radiometer (AVHRR) (Zhang et al., 2010) (from
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http://www.ntsg.umt.edu/project/et), MOD16 from the Moderate Resolution Imaging Spec-

trometer (MODIS) (Mu et al., 2007) (from http://www.ntsg.umt.edu/project/mod16) and

the Global Land Evaporation Amsterdam Model (GLEAM) (Miralles et al., 2011; Martens

et al., 2016) (from http://www.gleam.eu/). As the study focuses on validation of P and

E dataset, Ep is sourced only from GLEAM. As most of the remote sensing data span the

years 1998-2015, the MOPEX dataset was also extended from 2003 to 2015 using precip-

itation from Parameter-elevation Relationships on Independent Slopes (PRISM) (PRISM

Climate Group, Oregon State University, http://prism.oregonstate.edu) and river discharge

data from the United States Geological Survey.

2.4.1 Validation in the Budyko space

To validate the framework, RMSE metric in the Budyko space modeled using Fu’s equation

( RMSEMDm) is compared against RMSE metric in the Budyko space calculated using

observed data (RMSEMDo), to see whether both the metrics lead to similar conclusions

regarding the quality of datasets under consideration. RMSEMDo is calculated using equation

2.4, but the distance, D, is the observed modified distance (MDo) between the estimated

(AIest, EIest) point and the actual (AIact, EIact) point (Fig. 2.1) given by

MDo =
√

(AIest − AIact)2 + (EIest − EIact)2 (2.8)

To determine the estimated (AIest, EIest) point, the long-term annual average estimates

of P and E are determined from the aforementioned satellite-based products. To determine

RMSEMDm, the actual AI (AIact in equation 2.7) is calculated using Ep from the MOPEX

dataset and P from the MOPEX dataset. To determine RMSEMDo, the actual (AIact, EIact)

point (equation 2.8) is calculated using the extended MOPEX dataset.

It is evident that the developed error metric using Fu’s equation (RMSEMDm) compares

well with the observed RMSEMDo metric in characterizing the combined error in P and E

datasets (Fig. 2.3) in all hydroclimates. The agreement between RMSEMDm and RMSEMDo

is quite apparent in the scatter plot of observed and modeled distances (Fig. 2.4). Except for
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Figure 2.3: Bar Plots of RMSEMDm and RMSEMDo values for different combinations of P

and E datasets and for all hydroclimatic regimes. The three panels correspond to the three

satellite-based Precipitation products.

a few catchments in the arid and humid regions, the distances are well correlated. Analyzing

RMSEMDo values determined using ground-based measurements of P and E (Fig. 2.3) for all

the hydroclimatic regimes combined, it is seen that the (P, E) combination that exhibits the

least error is (TRMM, AVHRR). A similar conclusion is reached by the proposed Budyko

hypothesis-based validation framework (Fig. 2.3). As seen earlier, RMSEMDm exhibits

different sensitivity in different hydroclimates. To test whether the conclusion regarding the

best combination of (P, E) dataset holds true for different hydroclimates, we determine the

RMSEMDm and RMSEMDo statistics separately for humid, temperate and arid catchments.

The results show that both metrics point to (TRMM, AVHRR) as the best combination

across all hydroclimates. As far as the poorest performing (P, E) datasets are concerned,
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Figure 2.4: Scatter plots of observed modified distance (X-axis) versus modeled modified

distance (Y-axis) for the MOPEX catchments and for all combinations of remotely sensed

P and E datasets.

RMSEMDm and RMSEMDo metrics agree that (CMORPH, MODIS) combination fails to

represent the combined water and energy balance of the study catchments. CMORPH seems

to have high errors, especially in humid catchments (Fig. 2.3). On closer examination of

the distribution of (AI, EI) points in the Budyko space for CMORPH, it is seen that in a

number of catchments, the water and energy limits are exceeded by a large margin, mainly
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Figure 2.5: Bar Plots of RMSET (Traditional RMSE) values for different P and E datasets

and for all hydroclimatic regimes.

due to severe underestimation of precipitation. MODIS combined with P datasets results in

higher RMSEMDm values compared to either GLEAM or AVHRR.

2.4.2 Validation with traditional RMSE

In general, the proposed error metric is seen to be capable of identifying the best performing

combination of P and E datasets in the Budyko space. But it is also important to understand

how the developed RMSEMDm metric compares with traditional RMSET metric for several

reasons. First, it is essential to analyze whether combining P and E datasets, as is done

in the Budyko space, substantially differs from evaluating P and E separately, as is done

traditionally. Secondly, RMSEMDm is seen to be less sensitive to changes in E compared

to changes in P. To understand the effect of combining P and E datasets and the reduced

sensitivity of the error metric to E, we compare RMSEMDm to traditional RMSET values
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(Fig.2.5). The long-term average from the extended MOPEX dataset and the satellite based

estimates of P and E are used to determine RMSET of individual datasets across all the

hydroclimatic regimes.

As far as the best (TRMM and AVHRR) and the worst (CMORPH and MODIS) per-

forming P and E datasets are concerned, the RMSET metric agrees with the developed

framework. Therefore, combining P and E datasets in the Budyko space does not seem to

have substantial effect on ranking the P and E datasets. But, it is seen that RMSEMDm

does indeed suppress the biases in E datasets. For example, MODIS is seen to have a very

high RMSET error in the arid region, but combining MODIS and CMORPH in the Budyko

space, the error is comparable to other combinations in magnitude. Next, disaggregating

the catchments according to AI reveals certain differences between RMSEMD and RMSET

metrics (Fig. 2.3 and 2.5). For example, if RMSEMDm is followed, the (TRMM, AVHRR)

combination performs best in humid catchments. But RMSET for TRMM is minimum in

arid catchments and AVHRR is seen to be better in temperate regions than in either humid

or arid catchments. This behavior is primarily due to the fact that the distance, D, in humid

regions are relatively small for the same magnitude of error in (P, E, Ep) compared to dis-

tance in arid and temperate regions (Fig. 2.2). Therefore, care must be taken in comparing

RMSEMDm values calculated in different regions of the Budyko space.

2.4.3 Statistical significance of the results

Owing to a large combination of P and E datasets, only a summary of the results of the

statistical significance tests is presented here. Except a few exceptions, the difference in

RMSEMDm values between all combinations of P and E datasets are seen to be significant

with a p-value less than 0.05. The exception involves the AVHRR and GLEAM evapo-

transpiration datasets where the difference in RMSEMDm values is statistically insignificant

when AVHRR and GLEAM are combined with the same P dataset (For example, p-value

is greater than 0.05 between TRMM-AVHRR and TRMM-GLEAM). This is also seen in

figure (2.5) where the traditional RMSET values are close to each other. The results of
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statistical significance tests show that despite being relatively more insensitive to biases in

E, the RMSEMDm metric can represent these biases given that their magnitude is high.

For example, the difference between TRMM-GLEAM and TRMM-MODIS combinations is

significant.

2.5 Applying the framework to a data-scarce catchment

We demonstrate the application of the proposed framework to a catchment in which no

ground-based measurement of P and E are available. The steps involved in determination of

the Budyko parameter (ω), the modified distance, D and the RMSEMDm error metric using

publicly available data are detailed.

The study area selected for applying the framework is the Omo Gibe river basin in East

Africa. As all the satellite-based P and E products are gridded, we divide the catchment

into regular grids of resolution 0.25o x 0.25o. Thus the Omo Gibe basin, with an area of

80,000 km2, is divided into 592 grids and all the six satellite-based P and E products are

interpolated onto the grids using nearest-neighbor interpolation.

Next step is to determine the Budyko parameter, ω, for each of the 592 grids. For this

we use the parameterization developed by Xu et al. (2013). Specifically, we make use of the

following multiple linear regression (MLR) model developed for small catchments.

ω = 5.05722− 0.09322lat+ 0.13085CTI + 1.31697NDV I + 0.00003A− 0.00018elev (2.9)

where lat is the latitude of each of the grid points in degrees, A is grid resolution in km2, CTI

is compound topographic index (Beven and Kirkby, 1979), NDV I is the Normalized Differ-

ence Vegetation Index and elev is elevation of the grids in meters. In equation (2.9) the topo-

graphic variables (lat, elev and CTI) were determined using the Hydro-1K dataset (Lehner

et al., 2006) (downloaded from http://hydrosheds.cr.usgs.gov/dataavail.php), NDV I is de-

rived from the Global Inventory Modeling and Mapping Studies (GIMMS) AVHRR NDVI3g

dataset (https://nex.nasa.gov/nex/projects/1349/).

Determination of RMSEMD requires the knowledge of long-term AI of the catchments.
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It is to be noted that only a climatological estimate of AI of the study catchment is required

and not concurrent observations corresponding to the study period. AI of the 592 grids

are derived from the Global Aridity Index dataset (spatial resolution of 1km) developed

by Trabucco and Zomer (2009) (from http://www.cgiar-csi.org/data/global-aridity-and-pet-

database). Next the distance, D, in equation (2.4) is determined. For this the satellite-based

estimates of (P, E, Ep) are mapped onto the Budyko space. Then, the distance, MDm is

calculated using equation (2.7) and RMSEMDm metric is determined using equation (2.4).

The RMSEMDm metric is determined for all combinations of P and E datasets (Eq. 2.4):

0.135 (CMORPH, AVHRR), 0.149 (CMORPH, GLEAM), 0.876 (CMORPH, MODIS), 0.132

(PERSIANN, AVHRR), 0.147 (PERSIANN, GLEAM), 0.53 (PERSIANN, MODIS), 0.133

(TRMM, AVHRR), 0.139 (TRMM, GLEAM) and 0.462 (TRMM, MODIS). It is apparent

that the MODIS E dataset performs the poorest among the E datasets. Unlike in the

MOPEX catchments, all the RMSEMDm values of all the three P datasets under consideration

are close to each other, especially when combined with AVHRR and GLEAM E estimates. In

summary, the best precipitation products according to the developed framework are TRMM

and PERSIANN (PERSIANN-CDR). As far as the best E dataset is concerned AVHRR

is seen to have the least bias. The combination that shows the largest deviation from

the Budyko curve is (CMORPH, MODIS). The results from the developed framework are

compared with past studies which validate satellite products for Ethiopian river basins.

Romilly and Gebremichael (2011) and Hirpa et al. (2010) concluded that TRMM 3B42RT

outperforms CMORPH in Ethiopian basins. As both the aforementioned studies evaluate

the PERSIANN-CCS product and not the PERSIANN-CDR multi-satellite product used in

the present study, the result from the developed framework for PERSIANN could not be

validated with past studies.

It is to be noted here, that the methodology presented here is just one of the ways

in which this framework can be applied. This application assumes that no ground-based

measurements of P and E for the study period is available. But in data-scarce catchments,

where some historical data is available, the Budyko parameter ω and aridity index, AI, can
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be estimated using the methods presented in the paper for MOPEX catchments.

2.6 Conclusions, limitations and future work

Hydrologic studies in data-scarce regions use remotely sensed precipitation as meteorolog-

ical forcing and satellite-based estimates of evapotranspiration for data assimilation. But

remotely sensed P and E datasets exhibit large uncertainty requiring comprehensive val-

idation for the area of study. This study addresses this important issue by developing a

validation framework that tests for the physical consistency of remotely sensed P and E

datasets without the use of concurrent ground-based measurements. A RMSE-based error

metric is developed and comprehensively tested to see whether the metric can translate in-

dividual biases in P and E datasets onto the Budyko space. Results show that the proposed

validation framework is capable of arriving at the same conclusions as traditional validation

methodologies regarding the quality of P and E datasets. The application of the developed

framework to a data-scarce catchment using publicly available topographic, vegetation and

aridity information is also presented. In contrast to previous validation studies that employ

complex distributed hydrological models, the use of the single parameter Budyko function

highlights the effectiveness of using simple water and energy balance principles in validation

of observational data.

Owing to the limitations of the original Budyko formulation, the developed framework can

only test whether the combination of P and E datasets can describe the long-term combined

water and energy balance of catchments. This implies that the developed RMSEMDm metric

characterizes the bias in P and E datasets and not the variance. Recent studies have focused

on extending the Budyko hypothesis to sub-annual timescales (Greve et al., 2016; Zhang

et al., 2008). Therefore, future work involves the extension of the framework to validation

of P and E datasets at monthly and daily time-scales, which is crucial for characterizing the

variance and also for hydrologic applications such as streamflow forecasting and reservoir

operations. In addition, it is assumed that in the long-term, storage in the catchment is

negligible. Therefore, care must be taken when applying the framework in catchments which
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have long-term storage such as snow, ice or reservoirs and also in small catchments where

storage influences water availability. It is seen that the RMSEMDm metric is more sensitive

to biases in P rather than E. Therefore, care must be taken in interpreting the error metric

when the focus of a study is solely on evaluating E datasets which are relatively close to each

other. But E datasets can be still be effectively evaluated using the framework if accurate

estimates of P are available and the focus of the study is to validate only E datasets

It is to be noted here that the developed framework does not require concurrent ob-

servations of precipitation and evapotranspiration for validating remote sensing data. But

the application of this framework to a data-scarce region requires reliable estimates of AI,

which could be sourced from non-concurrent ground-based measurements, as was done in

this study. Although a large sample of catchments, representing a wide range of aridities,

have been used in the study, we encourage researchers to validate the robustness of the devel-

oped framework in other geographies having different topographic, hydrologic and climatic

characteristics.
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CHAPTER 3

Calibration of Large Scale Hydrologic Models with

Multiple Fluxes: The Necessity and Value of a Pareto

Optimal Approach

3.1 Introduction

The widespread use of large scale hydrologic and land surface models (LSMs) in snow (Chris-

tensen and Lettenmaier, 2007; Li et al., 2017), drought (Leng et al., 2015; Sheffield et al.,

2004), and climate change (Middelkoop et al., 2001; Cuo et al., 2013) studies necessitates

critical examination of the adopted calibration methodologies. The general approach of cal-

ibrating the models with measurements of a single flux, typically streamflow, is considered

inadequate for such studies that require other water balance components to be simulated

accurately. Rakovec et al. (2016b) evaluate the performance of the mesoscale hydrologic

model (mHM) calibrated with streamflow (SF) against observed evapotranspiration (ET),

soil moisture (SM), and total water storage (TWS). The study concludes that calibrating

hydrologic models with only streamflow may not be sufficient for accurate simulation of

other water balance components. Wanders et al. (2014) calibrate the LISFLOOD hydro-

logic model with remotely sensed soil moisture datasets. The results of the study show that

calibrating the hydrologic model with only soil moisture negatively affects the accuracy of

the corresponding streamflow simulation (compared to streamflow-calibrated model results).

López López et al. (2017) confirm the findings of the other studies; calibrating a hydrologic

model with only ET or SM adversely affects the accuracy of streamflow simulation compared

to streamflow-calibrated model results. In Zink et al. (2018), a land surface model calibrated
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with land surface temperature leads to higher errors in streamflow simulations compared to

a streamflow-calibrated model.

Incorporating multiple fluxes into the calibration process has emerged as a consensus

solution to address the adverse effects of single objective calibration. A number of different

methods have been employed to calibrate hydrologic and land surface models with multiple

fluxes, including stepwise calibration (Sutanudjaja et al., 2013; López López et al., 2017),

ensemble Kalman filter (Wanders et al., 2014), and simultaneous calibration by combining

objective functions (Rientjes et al., 2013; Rakovec et al., 2016a; Zink et al., 2018). Irrespective

of the calibration strategy adopted, all the studies report improvements in the simulation

of the added flux or storage component while maintaining the accuracy of the primary

variable of interest. The improvements are also consistent across different water balance

components incorporated into calibration, including evapotranspiration (Rientjes et al., 2013;

López López et al., 2017; Zink et al., 2018), soil moisture (Sutanudjaja et al., 2013; Wanders

et al., 2014), and total water storage (Rakovec et al., 2016a). Although the enumerated

studies provide evidence in favor of multivariate calibration, we identify shortcomings in

these approaches that hinder comprehensive quantification of the value of incorporating

additional fluxes.

First, multivariate calibration studies do not define any limits of acceptability or error

thresholds to determine whether the model can simultaneously reproduce the incorporated

fluxes to a sufficient degree of accuracy. To illustrate the importance of defining limits of

acceptability, consider the results of Rakovec et al. (2016a) wherein the addition of TWS

estimates into calibration along with streamflow reduce the root mean square error (RMSE)

of TWS simulations at negligible cost to the accuracy of streamflow simulation. A closer

analysis of the results reveals that despite reduction in the RMSE of TWS, the absolute value

of RMSE is still significantly large (Figure 3. in Rakovec et al. (2016a)); whereas the RMSE

of standardized anomalies of streamflow has a median of approximately 0.5, the RMSE of

TWS is approximately 0.8 (reduced from 0.9 for the SF-calibrated model). Without defining

a threshold for acceptable error, it is difficult to assess whether the reported reduction in
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TWS error is sufficient evidence to conclude that the incorporation of an additional flux

actually improves the realism of the model.

Second, most studies consider the relationship between different fluxes to be comple-

mentary but all the results, with the exception of Wanders et al. (2014), point towards a

trade-off relationship. By definition, a complementary relationship would mean that in-

corporation of additional fluxes improves the accuracy of all the incorporated fluxes. The

objective functions of calibration and the calibration methodologies (such as stepwise cali-

bration) are constructed to reflect the assumption of a complementary relationship. Even in

Wanders et al. (2014) the improvement in SF accuracy when SM is incorporated, compared

with a streamflow-calibrated model, is limited to small catchments. In addition, the results

of multivariate calibration rarely are compared with results of models calibrated only with

the additional flux. Such a comparison would help in quantifying the potential trade-offs in

simulating the two fluxes accurately. For example, in Rakovec et al. (2016a) the model is

not calibrated with only TWS, which would help understand the trade-off in TWS accuracy

required to achieve acceptable SF accuracy. In studies where all the calibration cases are

reported, there are significant trade-offs among the different fluxes considered for calibration

(Rientjes et al., 2013). Even in Zink et al. (2018), where the objective function is designed

to produce a compromise solution between the SF and ET fluxes, there is no discussion of

either the magnitude of trade-off in the accuracy of ET or of whether such trade-offs are

within acceptable limits.

Third, the trade-off relationship among the simulated fluxes implicit in the results of

multivariate calibration studies may be a consequence of deficiencies in model structure

and parameterizations (Fenicia et al., 2007; Hogue et al., 2006). However, in the calibration

strategies adopted in most studies, including the assumption of a complementary relationship

among the fluxes, combining objectives and lack of a definition of error thresholds prevent

any meaningful diagnoses of the model. For example, the limitations of the stepwise cal-

ibration methodology for identifying deficiencies in model structure and parameterizations

is well known (Fenicia et al., 2007). Additionally, most multivariate calibration studies are
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deterministic and hence are inappropriate for studying the dierences in optimal parameter

sets between univariate and multivariate calibration cases, as they do not address the issue

of equifinality (Beven, 1996, 2001). Even in studies that use stochastic methods such as

ensemble Kalman filter (Wanders et al., 2014), there is little discussion on how parameters

behave between different calibration cases.

In this study, we combine a formal Bayesian calibration approach with the concept of

Pareto optimality to address the issues detailed above. We utilize a formal Bayesian calibra-

tion approach to define the limits of acceptability or error thresholds in order to distinguish

between behavioral and non-behavioral solutions (Beven, 2006; Vrugt et al., 2009b) for each

of the incorporated water balance components. Behavioral solutions are model parameter

sets that result in errors that are within a defined threshold or limit with respect to a spe-

cific simulated response (for example ET or SM). If a trade-off relationship does exist among

the incorporated fluxes, as opposed to a complementary relationship, the concept of Pareto

optimality would help in understanding the extent to which the accuracy of a particular flux

can be improved without affecting, to an unreasonable degree, the accuracy of other fluxes.

In addition, Pareto optimal solutions are unbiased by any subjective weights given to any

particular flux or storage component over another, unlike simultaneous calibration strategies

(Gupta et al., 1998). Hence, we use Pareto optimality-based calibration to create a set of

non-dominated solutions that characterize the trade-offs among the incorporated variables.

We develop a multivariate calibration framework that combines behavioral solutions from

Bayesian calibration and multivariate calibration solutions to address the following research

questions: 1) Does incorporation of multiple fluxes into calibration produce parameter dis-

tributions that are behavioral with respect to all fluxes considered for calibration? 2) For a

given large scale hydrologic model, what is the extent of trade-off, if any, in accurate sim-

ulations of multiple fluxes considered for calibration? 3) Can behavioral and multivariate

calibration solutions help identify deficiencies in hydrologic model parameterization that lead

to trade-offs in the accurate simulations of multiple variables?
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3.2 Methodology

3.2.1 Conceptual framework

Consider a hydrologic model,

O = µ(θ, I) (3.1)

where O is a matrix consisting of model output or responses (such as evapotranspira-

tion, soil moisture, streamflow etc.), I is a matrix consisting of model input (meteorological

forcings such as precipitation, air temperature, etc.), and µ represents the mathematical

structure of the hydrologic model, typically a deterministic or stochastic function such that

µ : I 7→ O; θ is a vector of model parameters (Kavetski et al., 2006). Given a matrix of

observations, Ô, a measure, L, can be defined as

L(E(θ) = O(θ)− Ô) = S (3.2)

where E is the error residual matrix, L is a measure or metric that preserves the infor-

mation contained in the residuals (such as mean absolute error or root mean square error),

and S ∈ (−∞,∞) is some scalar quantity that represents the value of L.

Assuming that the model structure (µ) and the upper and lower limits of the parameters

(θ) are fixed, feasible bounds for equation 3.2, termed as objective space, can be defined

(Gupta et al., 1998) (a conceptual representation of a feasible objective space for two ob-

jectives (L1 and L2) is shown in Figure 3.1.). In traditional model calibration, an optimal

parameter set, θ∗, is identified by minimizing equation 3.2 (L∗1 = L(θ∗1) and L∗2 = L(θ∗2) are

the optimal values for objective 1 and 2 in Figure 3.1). Using formal or informal Bayesian

approaches, it is also possible to identify sets of parameters, θb, that result in behavioral so-

lutions, based on a defined cut-off threshold (Vrugt et al., 2009b) (Lb
1 = L(θb1) are behavioral

solutions for objective 1, represented by the objective space to the left of cutoff threshold

e1 and Lb
2 = L(θb2) are the behavioral solutions for objective 2, represented by the objective
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space below e2 in Figure 3.1). To quantify the trade-offs between multiple objectives (L1

and L2 in this example), the concept of Pareto-optimality can be used. This results in a

set of parameters, θp, that give rise to non-dominated or Pareto-optimal solutions for the

objectives considered (Lp
1,2 = L(θp1,2) are the Pareto-optimal solutions for two objectives,

represented by the points along the red line in Figure 3.1).

In this study, the measure L the is root mean square error (RMSE) and the model

responses, O, considered for calibration are evapotranspiration (ET), soil moisture (SM) and

streamflow (SF). To address the first research question, we test the following hypothesis:

Lp,b
1,2,..n = Lp

1,2,..n ∩ (Lb
1 ∩ Lb

2... ∩ Lb
n) 6= ∅ (3.3)

where Lp
1,2,..n is the non-dominated or Pareto-optimal solutions for n objectives, (Lb

1 ∩

Lb
2... ∩ Lb

n) is the intersection of behavioral solutions for n objectives (blue space in Figure

3.1 for two objectives), Lp,b
1,2,..n are solutions that are both non-dominated and behavioral

with respect to the n-objectives (blue points in Figure 3.1) and ∅ represents an empty set.

In other words, for incorporation of multiple fluxes in hydrologic model calibration to be

considered valuable, it should be possible to identify a set a of parameters that result in

both Pareto-optimal and behavioral solutions for all the fluxes considered in calibration.

We note that in defining the hypothesis, we have considered only non-dominated or Pareto-

optimal solutions in the multi-objective space (blue points in Figure 3.1). However, any

solution within the behavioral limits, non-dominated or dominated, can be considered as

valid multivariate calibration solution. In such cases, the hypothesis to be tested reduces to

Lb
1 ∩ Lb

2... ∩ Lb
n 6= ∅. In other words, the intersection of behavioral solutions for n objectives

in the multi-objective space (blue space in Figure 3.1) must be a non-empty set.

In this study, we only focus on the Pareto optimal solutions to test the hypothesis (Equa-

tion 3.3) and analyze the trade-off among accurate simulations of multiple fluxes. In addi-

tion, the behavioral solutions from Bayesian calibration and the Pareto optimal solutions are

discrete (unlike the representation in Figure 3.1). Therefore, the probability of finding an

intersection between the two is extremely low. Hence, the non-dominated solutions, Lp
1,2,..n,
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that lie within the error thresholds or limits of acceptability {e1, e2, ...en} are considered as

Lp,b
1,2,..n (Figure 3.1 provides an example for two objectives). We test the above hypothesis

for different pairs of model responses (n = 2): 1) evapotranspiration and soil moisture (ET-

SM), 2) evapotranspiration and streamflow (ET-SF), and 3) soil moisture and streamflow

(SM-SF).

Figure 3.1: Conceptual framework of the methodology adopted in this study (adapted from

Efstratiadis and Koutsoyiannis (2010)).

3.2.2 Defining limits of acceptability for individual model responses

To define the limits of acceptability, e1 and e2, we adopt a formal Bayesian approach to

derive the posterior distribution of model error (RMSE) and parameters for individual model
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responses (ET, SM, and SF). Specifically, we utilize the Differential Evolution Adaptive

Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) scheme (Vrugt et al., 2009a,

2008) that has been applied to Bayesian or uncertainty-based calibration of hydrologic (Shafii

et al., 2014) and hydrogeologic (Laloy et al., 2013) models. There is a specific reason for using

DREAM in this study. Unlike informal Bayesian approaches such as Generalized Likelihood

Uncertainty Estimation (GLUE) (Beven and Binley, 1992), the definition of cutoff thresholds

to distinguish behavioral solutions is not subjective. Instead of rejecting solutions based

on a subjectively defined threshold, DREAM uses a formal likelihood function to assign

probabilities to all the solutions that form the final converged posterior distribution. As a

result, a specific quantile of the sampled probability distribution can be considered the cutoff

threshold for distinguishing behavioral solutions (Vrugt et al., 2009b).

In this study, we assume no apriori knowledge about the value of error (RMSE) thresh-

olds for any of the model responses (ET, SM, and SF). Instead, we determine a set of limits

of acceptability corresponding to 10%, 25%, 50%, 75%, 90%, 95% and 99%, quantiles from

the posterior distribution of RMSE, derived using DREAM for ET, SM, and SF. Note that

the likelihood function in DREAM considers error residuals and not RMSE to determine the

posterior distribution of parameters. Recent advances such as approximate Bayesian com-

putation has enabled the use of summary statistics and error metrics (such as RMSE) for

diagnostic model calibration (Vrugt and Sadegh, 2013; Sadegh and Vrugt, 2014) and evalua-

tion (Gupta et al., 2008). We do not use these methods in this study, as they require apriori

definition of the limits of acceptability, similar to GLUE. We note that the DREAM solu-

tions in this study are derived using residual and likelihood-based fitting methods, whereas

the Pareto optimal solutions are derived using RMSE as the objective function (described

below).

3.2.3 Pareto optimal solutions for combination of model responses

The value of using the concept of Pareto optimality for calibration of hydrologic models is

well documented (Gupta et al., 1998). Studies have focused on identifying the best objec-
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tive functions for improving streamflow calibration (Efstratiadis and Koutsoyiannis, 2010),

developing systematic multi-objective calibration frameworks (Madsen, 2003) and analyzing

the resulting Pareto fronts (Khu and Madsen, 2005). Multi-objective methods have been

applied at small scales to constrain land surface model parameters (Gupta et al., 1999) and

evaluate model performance and parameter behavior (Hogue et al., 2006) using multiple

fluxes. However, the utility of such an approach for multivariate calibration and diagnosis of

large scale hydrologic models has received relatively less attention. In this study, we use A

Multi-Algorithm Genetically Adaptive Multiobjective (AMALGAM) algorithm (Vrugt and

Robinson, 2007) and RMSE as the objective function to derive non-dominated solutions for

the following combinations of model responses: 1) ET and SM (ET-SM), 2) ET and SF

(ET-SF), and 3) SM and SF (SM-SF).

3.2.4 Hypothesis testing, trade-off analysis, and model diagnosis

To understand whether the models can accurately simulate multiple water balance compo-

nents, we combine the behavioral solutions from DREAM and the Pareto optimal solutions

from AMALGAM as detailed above. Specifically, we test the hypothesis defined in Equation

3; the set of non-dominated solutions derived for different combinations of fluxes (ET-SM,

ET-SF, and SM-SF) is a non-empty set for a particular behavioral limit (10%, 25%, 50%,

75%, 90%, 95% and 99% quantiles from the posterior distribution of RMSE). If a particular

combination of fluxes has at least one Pareto optimal point within a stricter definition of

error threshold compared to another combination, then the model is better at simulating the

former combination of fluxes together. For example, consider that the ET-SM combination

has at least one Pareto optimal solution within the 50% quantile error thresholds. On the

other hand, consider that the ET-SF combination has at least one Pareto optimal solution

within the 25% quantile error thresholds. In such a case, it can be concluded that it is

valuable to incorporate ET and SF together compared to ET and SM.

To study the trade-off in the accuracy of the simulated model responses, we analyze

the Pareto front qualitatively and quantitatively. Qualitatively, a well-defined Pareto front
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implies that the incorporated model fluxes exhibit a trade-off relationship as opposed to a

complementary relationship. Quantitatively, the range of the objectives and the slope of the

Pareto-front can help compare different Pareto fronts in order to understand the trade-off

relationship between the different combinations of fluxes. Specifically, we define magnitude

of trade-off as the increase in the error of a specific model response required to affect a unit

decrease in the error of the additional flux. We calculate and compare the average, maximum,

and minimum magnitude of trade-off for each of the three multivariate calibration cases from

the slopes of the Pareto front.

To diagnose the reasons for trade-offs in accuracy among different model responses, we

study the differences in model parameter distributions among 1) behavioral solutions of

individual responses, 2) behavioral solutions of individual model responses and behavioral

Pareto optimal solutions, and 3) behavioral solutions of individual responses and Pareto

optimal solutions that are not behavioral for any model response. We compare the empirical

cumulative distribution functions (ECDFs) and quantiles of parameters to help identify

parameters that most affect model behavior when additional fluxes are incorporated. We

quantify the difference between the PDFs of the parameters using Hellingers distance, H, a

statistical distance measure defined as

H(P,Q) =
1√
2

√√√√ k∑
i=1

(
√
pi −
√
qi)2 (3.4)

where, P = (p1, p2, ...pk) and Q = (q1, q2, ...qk) are discrete probability distributions. We

determine the Kolmogorov-Smirnov (KS) test statistic to compare the ECDFs of different

parameter distributions. The KS test statistic determines the maximum distance between

two ECDFs. In addition, we examine how well the objective functions in the Pareto optimal

solutions are correlated with the corresponding parameter sets. This will help us map the

changes in parameter values along the Pareto front and identify parameters that influence

the trade-off relationship between the objectives.
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3.3 Experiment design

3.3.1 Study area and time period

To simulate large-scale hydrologic studies, we choose the Mississippi basin in the United

States as the study region. The basin covers an area of about 3.3 million sq. km. and six

USGS HUC-2 (Hydrologic Unit Code) basins (Figure 3.2). The average temperature over

the basin is about 12oC and the annual average rainfall is estimated as 800mm (Cai et al.,

2014). Cai et al. (2014) also classify the Ohio and Tennessee regions as wet regions, the

Missouri basin as dry and the Upper Mississippi region as a transitional region between wet

and dry. We use historical data from the year 2004 for calibration and data from the year

2005 for validation. Employing a monthly time step, 72 streamflow data points and around

63000 ET and SM data points are used for calibration. The reasons reasons for selecting

a single year for calibration and validation of the model are two-fold: 1) The study is a

calibration experiment that does not seek to produce the best-performing hydrologic model

for the Mississippi Basin. Rather, the primary aim is to rigorously test whether large-scale

hydrologic models can behaviorally simulate multiple fluxes and study the reasons behind the

trade-offs, if any, between accurate simulation of multiple fluxes. 2) The forward hydrologic

model used in the study is computationally expensive.

3.3.2 Observational data

To simulate studies that use a sparse network of streamflow gauges for the calibration of

hydrologic models, we use the computed monthly runoff for the six HUC-2 basins sourced

from USGS. For calibrating the hydrologic model with remotely sensed ET, we use monthly

estimates from the Global Land Evaporation Amsterdam Model (GLEAM) (Martens et al.,

2016). We select GLEAM ET based on the findings of Koppa and Gebremichael (2017) in

which GLEAM, AVHRR and MODIS ET datasets were ranked using a framework based on

the Budyko hypothesis, a semi-empirical model that describes long-term water and energy

balance of catchments (Budyko, 1974). The spatial resolution of the GLEAM dataset is
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Figure 3.2: A map of the Mississippi basin showing the six USGS HUC-2 basins.

0.25o x 0.25o. We use monthly soil moisture estimates from ESA-CCI (Dorigo et al., 2017)

for calibrating the hydrologic model with SM. The ESA-CCI dataset is selected based on

the availability of data for the study period. The spatial resolution of the ESA-CCI dataset

is 0.25o x 0.25o. We note that the ESA-CCI soil moisture measurements correspond to the

top 5 cm of the soil layer, but the top soil layer of the hydrologic model (detailed below) is

10 cm. Although the unit of measurement is m3/m3, this difference in soil layer depths may

lead to systematic bias and needs to be corrected. We adjust the values of simulated soil

moisture to match the statistics of the observed dataset based on López López et al. (2017)

as

SM ′
sim =

σSMobs

σSMsim

∗ (SMsim − SMsim) + SMobs (3.5)

where SM ′
sim is the scaled simulated soil moisture, σSMobs

and σSMsim
are the standard

deviations of the observed and simulated soil moisture, SMsim is the simulated soil moisture

to be scaled, SMobs, and SMsim are the means of the observed and simulated soil moisture.
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Remotely sensed hydrologic fluxes such as precipitation, ET and SM are subject to large

uncertainties due to differences in retrieval algorithms and sensors (Kidd and Huffman, 2011;

Gebregiorgis and Hossain, 2014), thus necessitating the need for validating the chosen ET

and SM datasets with ground-based measurements. We compare the GLEAM estimates with

ground-based flux tower measurements from the Ameriflux network (https://ameriflux.lbl.gov/).

A scatter plot of GLEAM versus Ameriflux ET for 2004 shows that GLEAM is capable of

representing the ET flux in all the sub-basins to a fair degree of accuracy (Figure 3.3a).

The RMSE of GLEAM data is estimated to be 21.4 mm/month. For validating ESA-CCI

SM data, we make use of near-surface soil moisture measurements from the TAMU North

American Soil Moisture Database (NASMDB) (Quiring et al., 2016). For the study period,

SM sensors from only three of the six sub-basins are available. The scatter plot (Figure

3.3b) shows that remote sensing data overestimates the observed soil moisture in the Lower

Mississippi Region. The RMSE value for ESA-CCI SM is 0.12 m3/m3.

As these satellite-based datasets are used together in multivariate calibration, we quantify

the error in the closure of water balance (Figure 3.3c and 3.3d). First, we compare the annual

ET over the six HUC-2 catchments in the study area with the difference between precipitation

(P) and runoff (Q) for the years 2000-2009. From Figure 3c, it is evident that the errors

in the closure of water balance are quite low for most of the catchments. The exceptions

are three years in the Lower Mississippi and Tennessee regions in which inter-annual storage

(soil moisture and groundwater) changes may play an important role. Importantly, the water

balance closure errors for the calibration and validation periods are low across all the regions,

including the Lower Mississippi and Tennessee regions. The mean annual water balance

closure error from observational datasets (P - ET - Q), averaged over the entire Mississippi

basin, is about 108 mm/year (9 mm/month). When the water balance components are

summed over the entire basin, the water balance closure error is approximately 640 mm (53

mm/month). We also make sure that the observational datasets do not exceed catchment-

scale water and energy limits as described by the Budyko hypothesis. In this study we

make use of Fus equation [Fu, 1981], a single parameter Budyko function that relates the
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evaporative index (E/P) and the aridity index (Ep/P, Ep is potential ET) as

E

P
= 1 +

Ep

P
−
(

1 +

(
Ep

P

)ω) 1
ω

(3.6)

where ω is the Budyko parameter that has no analytic solution. We use a generally

accepted representative value of 2.6 in equation 3.6 to construct the Budyko curve (red line

in Figure 3.3d). It reveals that catchments are closely clustered around the Budyko curve,

except for the Missouri region, and are within the energy and water limits (dotted lines in

Figure 3.3d ).

3.3.3 Setup and validation of the hydrologic model

To replicate studies that use spatially distributed models, we choose the Noah-MP (Multi-

Parameterization) Land Surface Model (LSM) (Niu et al., 2011), driven through NASAs

Land Information System (LIS) (Kumar et al., 2006). The Noah-MP model builds on the

original Noah LSM by incorporating a dynamic groundwater model, improved representation

of vegetation canopy and snow pack. Cai et al. (2014) provide a detailed description and a

comprehensive evaluation of the model over the Mississippi river basin. All the static input

datasets required for running the Noah-MP model are sourced from NASAs LIS data portal

(https://portal.nccs.nasa.gov/lisdata). The important static input datasets are the land

cover map, sourced from USGS; the soil texture map from STATSGO, sourced from USDA;

and the elevation map from GTOPO30, sourced from USGS. Albedo, greenness fraction

and temperature are sourced from NCEP reanalysis. The meteorological forcings required

by the Noah-MP model include precipitation, air temperature, surface pressure, specific

humidity, wind speed, and radiation. All meteorological forcings are derived from Global

Data Assimilation System (GDAS) from the Environmental Modeling Center (EMC) of the

National Center for Environment Protection (NCEP) (Derber et al., 1991). The spatial

resolution of the dataset is 0.47o x 0.47o. The meteorological inputs are interpolated onto

the model grid using bilinear interpolation. To minimize the adverse effects of mismatch

in the spatial resolution of the model and observations (Samaniego et al., 2010, 2017), the
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Figure 3.3: Scatter plots of a) GLEAM ET vs Ameriflux measurements (top right panel);

b) ESA-CCI soil moisture vs TAMU NASMDB measurements (bottom panel) for 2004; c)

annual GLEAM ET vs Annual Precipitation (P) - Runoff (Q) for the years 2000-2009 (bottom

left). The errors for the calibration and validation years (2004 and 2005) are highlighted by

black and brown bounding boxes respectively; and d) the Budyko space (Evaporative index

vs Aridity index) averaged over the years 2000-2009 for the six catchments. The red line

is the ideal catchment water-energy balance as represented by the Budyko hypothesis. The

dotted lines represent the water (horizontal line) and energy (diagonal line) limits (bottom

right).

Noah-MP model is set-up for the Mississippi river basin at a spatial resolution of 0.25o x

0.25o (similar to the resolution of GLEAM ET and ESA-CCI SM). The Noah-MP model is

spun-up for a period of 68 years by looping through the year 2003 until the groundwater and
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soil moisture storage reach equilibrium. The model time step is three hours. The number

of soil layers in the model is four with thicknesses 10cm, 30cm, 60cm and 100cm. Specific

Noah-MP model physics options selected for dierent processes are detailed in Table 3.1.

The Noah-MP model contains 71 standard parameters (present in user-defined tables)

and 139 hard-coded parameters (present in the model code). The Noah-MP model output

has been found to be sensitive to about two-thirds of the 71 standard parameters (Cuntz

et al., 2016). As the study is a calibration experiment involving multiple calibration cases,

we keep the parameter dimension of the calibration problem manageable by selecting five

of the most sensitive parameters from the Cuntz et al. (2016) study. The selected param-

eters are two surface runoff-related parameters (REFDK and REFKDT), the exponent in

the Brooks-Corey equation (BB), soil porosity (MAXSMC), and hydraulic conductivity at

saturation (SATDK). Of the five parameters, BB, MAXSMC, and SATDK are related to soil

texture. As there are twelve soil texture classes, the total number of parameters selected for

calibration in the Noah-MP hydrologic model is 38 (Table 3.2 presents a detailed breakdown

of the parameters with maximum and minimum values used for calibration). We select the

minimum and maximum values of the parameters from literature (MAXSMC and SATDK

values from Cai et al. (2014), BB and REFDK values from Cosby et al. (1984), and RE-

FKDT values from Mendoza et al. (2015)). We adjust the minimum and maximum values

to improve the rate of convergence of the calibration algorithms.

To ascertain whether the Noah-MP model and the parameters considered for calibration

can simulate ET, SM, and SF accurately, we validate the model for the year 2005. For this,

we select a parameter set from the DREAM solutions that results in the lowest RMSE value

for each of the model responses (ET, SM, and SF). We present a time series comparison of

observed and simulated monthly ET, SM, and SF for the six HUC-2 sub catchments (Figure

3.4a). When the Noah-MP model is calibrated with GLEAM ET (top panel), it is evident

that the model performs very well in simulating the observed ET values and seasonality.

One exception is the underestimation of ET in the summer months for all regions except

the Ohio region. The results are consistent across the six HUC-2 hydrologic regions in the
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calibration (first 12 data points) and validation time periods (remaining 12 data points).

The close match between modeled and observed ET is reflected in the scatter plots of the

annual totals of ET as well (Figure 3.4b). Relatively higher variance is observed in the SM

results when the Noah-MP model is calibrated with ESA-CCI soil moisture (middle panel).

The simulated soil moisture for all the regions is quantitatively consistent with the observed

SM values for the top soil layer. However, we see some discrepancy in the seasonality of soil

moisture between the simulated and observed soil moisture; it is especially pronounced in the

last six months of 2005 in the Tennessee region (middle panel, fifth column) and the first few

months of 2004 in the Arkansas-White-Region (middle panel, first column). In the Missouri

region (middle panel, third column), the model simulates the observed seasonality but is

unable to capture the peaks in the observed SM perfectly. In the Upper Mississippi region

(middle panel, sixth column), the model has difficulty in simulating the timing of the troughs

(May and June of 2004 and 2005) seen in the observed SM. Similar to the ET results, the

annual average SM consistently matches the observed values for all six HUC-2 basins (Figure

3.4b). The results for streamflow simulated by the SF-calibrated Noah-MP model present

a more consistent picture (bottom panel). They show that the model generally performs

well for all six HUC-2 catchments. However, similar to soil moisture results, there are some

inconsistencies in simulating the seasonality of the last six months of 2005, especially in the

Arkansas-White-Red (bottom panel, first column), the Ohio (bottom panel, fourth column)

and the Upper Mississippi (bottom panel, sixth column) regions. The model also performs

well in the Lower Mississippi and Missouri regions, but the peaks are higher in 2004 (June

and July) compared with the observed streamflow time series. At annual timescales, the SF-

calibrated Noah-MP model overestimates SF for the year 2005 in the Ohio basin (June to

October 2005). We see that the errors in evapotranspiration and streamflow are comparable

to the results of the Ma et al. (2017) study. For the six HUC-2 sub-basins considered in this

study, Ma et al. (2017) report a RMSE of about 10 mm/month, whereas the RMSE in this

study is about 18mm/month. The average RMSE of ET, calculated over the entire US by

Ma et al. [2017], is about 10 mm/month, which matches the RMSE of the time series of ET

presented in Figure 4 (about 10mm/month). We note that the Ma et al. (2017) study does
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not calibrate the Noah-MP model.

Table 3.1: Noah-MP model physics options

Model Physics Selected Physics Option

Vegetation model Use table Leaf Area Index (4)

Canopy stomatal resistance Ball-Berry (1) (Ball et al., 1987)

Soil moisture factor for stomatal resistance Original Noah (1) (Chen et al., 1997)

Runoff and groundwater TOPMODEL with groundwater (1) (Niu

et al., 2007)

Surface layer drag coefficient Original Noah (2) (Chen et al., 1997)

Frozen soil permeability Linear effects, more permeable (1) (Niu and

Yang, 2006)

Radiation transfer Modified two-stream (1) (Yang and Friedl,

2003)

Snow surface albedo CLASS (2) (Verseghy et al., 1991)

Rainfall and snowfall Partitioning Jordan Scheme(1) (Jordan, 1991)

Lower boundary of soil temperature Original Noah (2) (Chen et al., 1997)

Snow and soil temperature time scheme Semi-implicit (1)

Super-cooled liquid water No iteration (1) (Niu and Yang, 2006)

a The number in the brackets represents the internal Noah-MP model code for the selected

physics option

3.3.4 Setup of DREAM and AMALGAM algorithms

DREAM is a multi-chain Markov chain Monte Carlo (MCMC) simulation algorithm that

automatically tunes the scale and orientation of the proposal distribution en route to the

target distribution. It is designed for increasing the sampling efficiency of complex, high-

dimensional parameter spaces, while maintaining detailed balance and ergodicity (Vrugt,

2016). In this study, we use the MT-DREAM (ZS) version of DREAM, which utilizes multi-
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Table 3.2: Details of Noah-MP parameters for calibration

Parameter Total Parameters Units Minimum Maximum

REFDK 1 m/s 1.4e-06 6.5e-06

REFKDT 1 No Units 1.0 5.0

BB1 - BB12 12 No Units 0.5 12.0

MAXSMC1 - MAXSMC12 12 No units 0.1 0.7

SATDK1 - SATDK12 12 m/s 2.0e-06 7.03-02

a Soil texture classes for BB, MAXSMC and SATDK (from 1 - 12):

Sand, Loamy sand, Sandy loam, Silt loam, Silt, Loam, Sandy clay loam, Silt clay loam,

Clay loam, Sandy clay, Silty clay and Clay.

try sampling (MT), snooker updating and sampling from an archive of past states to improve

the rate of convergence and make use of parallel computing resources. Specific configuration

options and parameters of the MT-DREAM (ZS) algorithm used in this study are detailed

in Table 3.3. We select the Laplacian likelihood based on the findings of Schoups and Vrugt

(2010); residual errors in rainfall-runoff models of humid basins, like the Mississippi basin

(In Figure 3.4d, most basins are within aridity index of 1.0), are better represented by

a Laplacian distribution than a Gaussian distribution. The likelihood function is used to

summarize the distance between the model simulations and the corresponding observations.

For ET and SM variables, error residuals determined at all 0.25o x 0.25o grid cells and time

steps (monthly) across the entire Mississippi river basin (all six HUC-2 basins together) are

used to determine the likelihood function. Similarly, SF error residuals are determined using

simulated and observed runoff at all six HUC-2 basins and all months of the calibration

period. On a workstation with 16 processors, MT-DREAM (ZS) required approximately 16

days (14500 iterations) to converge to a solution for each of the model responses (ET, SM,

and SF), with each iteration of the Noah-MP model taking around 20 minutes to complete.

The multi-objective calibration algorithm, AMALGAM, combines the strengths of mul-

tiple evolutionary algorithms to improve the speed and efficiency of finding the Pareto op-
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Figure 3.4: a) Time series plots of a) ET-calibrated model ET (red) and GLEAM observed

ET (black) in mm/month (Top panel), b) SM-calibrated model SM (red) and ESA-CCI

observed SM (black) in m3/m3 (Middle panel) and c) SF-calibrated model SF (red) and

observed HUC-2 runoff (black) in mm/month (Bottom panel) for the six HUC-2 sub-catch-

ments of the Mississippi basin. The first 12 months correspond to the calibration period of

2004 and the next 24 months correspond to validation years 2005; and b) Scatter plot of

annual modeled ET, SM and SF and observed values for the calibration and validation years

over the six HUC-2 basins.

timal solutions for multi-objective optimization problems (Vrugt and Robinson, 2007). In

the current implementation, four search algorithms are run simultaneously in AMALGAM:

differential evolution (Storn and Price, 1997), particle swarm optimization (Kennedy and

Eberhart, 2001), adaptive Metropolis (Haario et al., 2001), and NSGA-II (Deb et al., 2002).

In AMALGAM, offspring creation is adaptive; the best performing algorithms in the present

generation are weighted more in the creation of offspring for the next generation. Specific
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configuration options and parameter values of the AMALGAM algorithm used in this study

are detailed in Table 3.3. As stated in the methodology section, the objective function is the

root mean square error metric. For ET and SM, RMSE is estimated by calculating the error

between the modeled and the observed quantities at each 0.25o x 0.25o grid cell inside the

entire Mississippi river basin and at each time step (each month of the year 2004). For SF,

error residuals calculated for all six HUC-2 basins and twelve months are used for estimating

RMSE. In other words, the calibration of the Noah-MP model is carried out for the entire

Mississippi river basin using a single objective function (Laplacian likelihood in the case of

DREAM and RMSE in the case of AMALGAM) and not for the individual HUC-2 basins.

On a 16-processor workstation, each of the three multi-objective calibration scenarios (ET

and SM, ET and SF, SM and SF) required around 10 days (9000 iterations) to arrive at the

final Pareto front.

Table 3.3: MT-DREAM (ZS) and AMALGAM configuration

DREAM Option Specified Option

Number of generations 600

Number of Markov chains 3

Number of forward model parameters 38

Number of crossover values 3

Number of Multi-tries 4

Number of chain pairs proposal 1

Likelihood function Laplacian likelihood

AMALGAM Option

Population size 150

Number of generations 60

Number of objective functions 2

Sampling strategy Latin Hypercube

a Note: All other MT-DREAM (ZS) and AMALGAM parameters are set to default values
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3.4 Results and discussions

To help understand the impact of calibrating the Noah-MP model with a single water balance

component (ET, SM, and SF) on other model responses and to define the limits of accept-

ability, we first present the results of the posterior distributions of model errors (RMSE) from

DREAM. We then test the central hypothesis of this study (equation 3.3) by combining the

limits of acceptability and the multivariate calibration solutions from AMALGAM. Next, we

address the second research question by analyzing the trade-offs among accurate simulations

of ET, SM, and SF as represented by the Pareto fronts. Finally, we show how the developed

multivariate calibration framework can help diagnose deficiencies in model parameterization.

3.4.1 Posterior distributions of model errors

We present the posterior distribution of model response errors (RMSE) using probability

density and empirical cumulative distribution functions (PDF and ECDF) (Figure 3.5). The

PDFs and CDFs of three model responses (ET (top panel), SM (middle panel) and SF

(bottom panel)) are constructed for three calibration objectives: ET (green), SM (orange)

and SF (blue). First, we analyze the impact of calibrating the Noah-MP hydrologic model

with only streamflow (blue) on ET (top panel) and SM (middle panel). Our results confirm

the findings of previous studies: calibrating a hydrologic model with only SF adversely affects

the accuracy of other model responses (Rakovec et al., 2016a,b). While the 50% quantile of

the ET error increases by about 15 mm/month, the SM error increases by around 0.1 m3/m3.

The same conclusion can be extended for univariate calibration with other variables (ET and

SM). For example, when the Noah-MP model is calibrated with SM (orange), the errors in

ET (top panel) and SF (bottom panel) are very high. Some results stand-out from Figure

3.5: 1) The error distribution of SF produced with the ET-calibrated model is close to the

error distribution of SF from the SF-calibrated model (green and blue plots in bottom panel).

This finding reinforces the results of previous studies that use ET for calibration (Immerzeel

and Droogers, 2008; López López et al., 2017; Zink et al., 2018). However, the absolute
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difference between the 50% quantiles is still around 20 mm/month, indicating a significant

impact on SF accuracy due to univariate calibration of the model with ET; 2) Similarly,

SF-calibration seems to produce lower errors for SM compared to ET (middle panel) but the

absolute errors are still very high; 3) Neither SM nor SF calibration can simulate ET with

reasonable accuracy, as seen by the disparate error distributions (top panel). In fact, both SM

and SF produce similar error distributions for ET, evident by the ECDFs (blue and orange).

For comparison, the RMSE of ET and SF are higher than the mean monthly water balance

closure error seen in the observational dataset (about 9 mm/month). Therefore, the RMSE

values of ET and SF are not significantly biased by the errors in the observational datasets,

as represented by the water balance closure error. We derive the limits of acceptability for

ET, SM, and SF from the posterior distributions of RMSE. The error thresholds are defined

at 10%, 25%, 50%, 75%, 90%, 95% and 99% quantiles (Table 3.4). The table shows that

the range of the quantiles is quite low for ET (about 4 mm/month between the 10% and

95% quantiles) and SM (about 0.02 m3/m3 between the 10% and 95% quantiles). This is

reflected in the well-defined posterior distributions of ET and SM errors when the model is

calibrated with ET (Figure 3.5, green, top panel) and SM (Figure 3.5, orange, middle panel).

In the case of SF, the difference between the 10% and 95% quantiles is about 17 mm/month.

This discrepancy maybe due to the higher number of data points available for calibrating

ET and SM (spatially distributed observations) compared to SF (point data).
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Figure 3.5: A comparison of the posterior probability density functions (PDF) and empirical

cumulative distribution functions (ECDF) of root mean square errors of a) evapotranspira-

tion (top panel), b) soil moisture (middle panel) and c) streamflow (bottom panel) when the

model is calibrated using DREAM with ET (green), SM (orange) and SF (blue). Vertical

lines in the PDFs represent 50% quantiles of RMSE. For comparison, the mean annual water

balance closure error from the observational datasets (P - Q - ET) is around 108 mm (9

mm/month). Note: The RMSE values of ET and SM are determined from error residuals

calculated at all grid cells of the model domain. The RMSE values of SF are determined

using error residuals from all the six HUC-2 regions.
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Figure 3.6: Pareto fronts of root mean square errors of a) ET and SM, b) ET and SF and

c) SM and SF with limits of acceptability represented by 10%, 25%, 50%, 75%, 90%, 95%

and 99% quantiles of the posterior distribution of the error (from DREAM). For comparison,

the mean annual water balance closure error from the observational datasets (P - Q - ET)

is around 108 mm (9 mm/month). The non-dominated or Pareto optimal solutions are

represented by red stars. Note: The RMSE values of ET and SM are determined from

error residuals calculated at all grid cells of the model domain. The RMSE values of SF are

determined using error residuals from all the six HUC-2 regions.
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Table 3.4: Limits of Acceptability for ET, SM and SF derived from posterior distributions

of RMSE

Quantile ET (in mm) SM (in m3/m3) SF (in mm)

10% 26.1 0.098 22.7

25% 26.5 0.101 24.9

50% 26.9 0.104 28.1

75% 27.6 0.107 32.0

90% 29.0 0.108 37.30

95% 30.6 0.126 40.42

99% 47.9 0.132 58.00

3.4.2 Hypothesis testing using DREAM and AMALGAM solutions

To address the first research question, we test the hypothesis that the intersection of behav-

ioral (from DREAM) and non-dominated solutions (from AMALGAM) is a non-empty set

(Equation 3). We present the Pareto fronts of the RMSE of different combinations of model

responses (ET-SM, ET-SF, SM-SF) along with different limits of acceptability (Table 43.4)

in Figure 3.6. As stated in the methodology section, multivariate calibration with evolu-

tionary algorithms such as AMALGAM may result in Pareto fronts with lesser numbers of

non-dominated solutions compared with the initial population size. In this study, we focus

only on the Pareto optimal solutions (red stars in Figure 3.6). The non-dominated or Pareto

optimal solutions are also used to analyze the Pareto fronts and quantify the trade-offs (next

section). We present the number of Pareto optimal solutions of different combinations of

model responses that lie within specific RMSE thresholds in Table 3.5.

For the combination of ET and SM model responses (Figure 3.6a), we see that the

hypothesis (equation 3.3) fails for all defined error thresholds except for the 95% and 99%

quantiles (Table 3.4 for specific values). Even at the 95% quantile, where the ET and SM

error thresholds are quite high (30.6 mm/month for ET and 0.126 m3/m3 for SM), only 12
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points in the multivariate space can be classified as behavioral. We note that the points

near the tails of the Pareto front are well within individual error thresholds of ET and SM.

Therefore, we conclude that the Noah-MP model is unable to simultaneously simulate both

ET and SM with reasonable accuracy. Even though the incorporation of ET and SM can

improve the errors in both the variables, it does not result in improving the realism of the

model itself, lending credence to assertion that the relationship between ET and SM may

not be complementary. The results are consistent with those of univariate calibration using

DREAM, wherein the distributions of the ET- and SM- calibrated model responses have

considerable discrepancies between them (compare ET-calibrated ET and SM-calibrated ET

(top panel of Figure 3.5) and SM-calibrated SM and ET-calibrated SM (middle panel of

Figure 3.5)).

In contrast to ET and SM, the model performs very well in simulating both ET and SF

accurately (Figure 3.6b). Even at a stricter error threshold of 50% quantile of individual

ET and SF errors (Table 3.4), around 12 points out of the 29 Pareto optimal points can be

classified as behavioral (Table 3.5). At the error threshold of the 95% quantile, all 29 Pareto

optimal solutions are behavioral. This, along with the fact that the range of errors in the

Pareto front is quite small, shows that the relationship between ET and SF can be considered

complementary. In other words, the incorporation of ET into SF calibration can improve

ET simulation while maintaining the accuracy of SF within reasonable error thresholds. As

seen in Figure 3.5, the presence of a complementary relationship between ET and SF is

hinted in the posterior distributions (PDF and ECDF) of ET and SF errors (SF-calibrated

SF (blue) and ET-calibrated SF (green) in the bottom panel). This result also provides

support for studies that incorporate ET and SF into calibration, such as Zink et al. (2018),

where incorporation of ET improved ET error by 8% while the NSE of SF reduced by 6%

(which could be within the limits of acceptability).

For the combination of SM and SF fluxes, the hypothesis fails for the lower error thresh-

olds (10% to 50% quantiles). At higher quantiles (75% and greater), where the absolute

value of the SF error threshold is greater than 32 mm/month (Table 3.4), relatively more
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Pareto optimal solutions are classified as behavioral compared to the ET-SM combination.

This relative improvement in performance also is reflected in the posterior distribution of

individual model response errors (middle panel in Figure 3.5). We see that the error dis-

tribution of SF-calibrated SM (blue) is closer to the SM-calibrated SM (orange), compared

with the ET-calibrated SM (green). This, combined with the results of the ET-SM Pareto

front, shows that incorporation of a storage component such as SM may not lead to im-

proved model performance for multiple fluxes compared with the incorporation of ET. The

performance of the SF-SM combination is in line with the findings of ??, where there are

improvements in SF and SM performance when SM is incorporated into calibration. This

also highlights the advantages of defining limits of acceptability and casting multivariate

calibration as a trade-off problem. Similarly, the results show the drawbacks of assuming a

complementary relationship between the model responses. For example, in Rakovec et al.

(2016a), the incorporation of TWS improves the RMSE (normalized) of TWS from 0.9 to

0.8 with low impact to SF performance. However, without the specification of an error

threshold, it cannot be determined whether the RMSE of 0.8 is behavioral. In other words,

the solution may lie on the Pareto front but may still be outside the limits of acceptability.

Therefore, the realism of the model may not have improved to a sufficient degree due to the

incorporation of an additional flux.

3.4.3 Understanding the trade-offs using Pareto fronts

The results of the hypothesis tests could be a consequence of the nature of trade-offs between

the objectives of multivariate calibration, as represented by the Pareto fronts (Figure 3.6). In

this section, we address research question 2 and diagnose the results of hypothesis testing. We

analyze the characteristics of the trade-offs in accurately simulating the three combinations

of model responses incorporated into calibration - 1) ET-SM, 2) ET-SF, and 3) SM-SF. A

visual analysis of the Pareto fronts (Figure 3.6) reveals that the ET-SM and SM-SF fronts are

relatively well defined compared to the ET-SF Pareto front. The ill-defined ET-SF Pareto

front could be an indication that the relationship between ET and SF is complementary, as
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Table 3.5: Breakdown of Pareto optimal solutions into behavioral solutions based on different

limits of acceptability for ET-SM, ET-SF and SM-SF combinations

Quantile
ET and SM

(N = 123)

ET and SF

(N = 29)

SM and SF

(N = 74)

10% 0 0 0

25% 0 0 0

50% 0 12 0

75% 0 25 0

90% 0 29 12

95% 12 29 27

99% 86 29 58

N represents the total number of Pareto optimal

solutions derived from AMALGAM using an

initial population of 150

opposed to a trade-off relationship. We compare the number of non-dominated solutions in

the multivariate space to test whether these numbers reflect the conclusions of the visual

analysis. We see that the ET-SM front has the highest number of non-dominated solutions

(123 solutions), followed by SM-SF (74 solutions), and then ET-SF (29 solutions). The higher

number of non-dominated or Pareto optimal solutions in the ET-SM front can also indicate a

strong trade-off relationship between the ET and SM model responses compared with other

combinations. This qualitatively seems to confirm the conclusions drawn from testing the

central hypothesis of this study. First, it is consistently more difficult to accurately simulate

ET and SM together compared with other combinations. On the other end of the spectrum,

the ET and SF fluxes are more complementary to each other, considering 1) the ill-defined

shape of the Pareto front and 2) the lesser number (29) of Pareto optimal solutions. In the

case of SM and SF model responses (Figure 3.6c), the higher accuracy of the SF-calibrated

hydrologic model in simulating SM compared with an ET-calibrated model (middle panel in

Figure 3.5) translates to a lesser number of non-dominated solutions compared with the ET
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and SM combination.

However, the number of Pareto optimal solutions is not a quantitative measure of the

trade-off between the fluxes, as they depend on the optimization algorithm used. Next, we

analyze the accuracy trade-offs in simulating the combination of model responses quantita-

tively. First, we compare the range of the objective functions in each of the three multivariate

calibration cases. In the case of ET and SF, the range of the two objectives is very small

compared with other combinations. For example, the RMSE of ET flux ranges from 25.5

mm/month to 41.7 mm/month in the ET-SM combination, whereas in the ET-SF combina-

tion the range is between 22.5 mm/month and 28.9 mm/month. Similarly, the range of SF in

the ET-SF combination (25.2 to 34.1 mm/month) is lower than in the SM-SF combination

(24.1 to 81.3 mm/month). Also, the SM range is lower in the SM-SF combination (0.07

to 0.14 m3/m3) compared to the ET-SM combination (0.08 to 0.24 m3/m3). Lower ranges

of the objectives in the ET-SF combination imply that both ET and SF can be simulated

together to a reasonable degree of accuracy. Lower ranges also may point toward a lower

trade-off between two objectives. However, due to differences in the units of the objective

functions and dierent ranges across the three Pareto fronts, more analysis is required to draw

conclusions.

Finally, we compare the magnitude of trade-offs (defined in the methodology section)

across the Pareto fronts of the three calibration cases (ET-SM, ET-SF, and SM-SF). To

enable comparison of the trade-offs across the three Pareto-fronts, we normalize the errors

in each of the model responses (ET, SM, and SF) by the maximum error, determined over

all three combinations. To derive the trade-off matrix (Table 3.6), we fit a second-degree

polynomial to the non-dominated points (red stars in Figure 3.6) of the three combinations

of model responses - ET-SM (R2 = 0.92), ET-SF (R2 = 0.82), and SM-SF (R2 = 0.96).

Next, we divide the Pareto fronts into 15 equally spaced segments. We then calculate the

average, maximum and minimum trade-offs from either the slopes or the inverse of the slopes

of the 15 segments for each combination of the three model responses. For the combination

of ET and SM (first row, second column in Table 3.6), the average increase in the error of ET
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required to affect a unit decrease in the error of SM is 2.0 units. For the same improvement,

the SF error trade-off is only 0.7 units, implying a larger trade-off in the ET-SM combination

compared with the SM-SF combination for soil moisture. Confirming this conclusion, we see

that the average trade-o in ET accuracy required to improve SF is much lower than the

trade-off required to improve SM. It is interesting to note that there is a higher trade-off in

SF accuracy to achieve a unit improvement in ET compared to the trade-o in SM accuracy

to achieve the same improvement in ET (first column in Table 3.6). However, as Figure 3.6

shows, more ET-SF multivariate calibration solutions are behavioral compared to ET-SM

solutions, and the range of errors is much lower in the ET-SF combination.

Table 3.6: Average, minimum and maximum trade-offs for combinations of ET, SM and SF

model responses (minimum and maximum values are within parentheses)

ET SM SF

ET - 2.0 (0.5, 7.5) 0.3 (0.08, 0.9)

SM 0.5 (0.1, 2.0) - 1.0 (0.24, 2.9)

SF 2.0 (1.1, 12) 0.7 (0.35, 4.2) -

3.4.4 Model diagnosis

Unlike deterministic calibration where a single optimal parameter set is derived, the multi-

variate calibration framework developed in this study enables the examination of parameter

behavior among multiple calibration objectives. Hogue et al. (2006) demonstrated the advan-

tages of Pareto calibration for studying model performance and parameter behavior. In this

study, we explore the advantages of combining behavioral solutions from Bayesian calibration

and Pareto optimal solutions from multivariate calibration for model diagnosis. The objec-

tive is to identify parameters that can explain the significant trade-offs in accuracy among

the multiple fluxes incorporated into calibration. Specifically, we try to investigate the rea-

sons behind the higher magnitude of trade-offs in the ET-SM and ET-SF cases. We first

compare the posterior probability distributions of calibrated parameters for the univariate
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calibration cases (ET, SM, and SF) to identify the parameters that govern the performance

of the Noah-MP model with respect to the ET, SM, and SF responses. Figure 3.7 presents

a comparison of the ECDFs of the five parameters considered for calibration in this study -

REFDK, REFKDT, BB, MAXSMC and SATDK. We note that the ECDFs for parameters

BB, MAXSMC and SATDK have been constructed by aggregating parameter solutions from

all 12 soil classes (Table 3.2). To keep the analysis consistent with multivariate calibration

results (presented later), we only consider behavioral solutions that are within a threshold of

the 50% quantile. The ECDFs of the runoff parameters, REFDK and REFKDT, explain the

performance of the Noah-MP model with respect to streamflow for different univariate cali-

bration cases. We see that the ECDFs of both REFDK and REFKDT for the SM-calibrated

model (orange) are quite different from the SF-calibrated model (blue), leading to relatively

poor performance (Figure 3.5). We see that the REFDK parameter distribution from the

ET-calibrated model (green) is closer to the REFDK parameter distribution from the SF-

calibrated model (blue) compared to the SM-calibrated model (orange). On the other hand,

the REFKDT parameter distributions from the ET-calibrated and SM-calibrated models

are considerably different from the SF-calibrated model. This shows that the relatively bet-

ter performance of the ET-calibrated model for the SF flux compared to the SM-calibrated

model is more influenced by the REFDK parameter.

We quantify these differences between the parameter PDFs using the Hellingers distance

for PDFs (equation 3.4), and the distance between their ECDFs using the Kolmogorov-

Smirnov (KS) test statistic. The distance measures are presented in the form of a heat map in

which each grid cell represents the statistical distance between the corresponding parameter

distributions (Figure 3.8). For example, the first grid cell in the first panel of Figure 3.8a

represents the Hellingers distance between the PDFs of the REFDK parameter generated

from the ET-calibrated model (first column) and the SF-calibrated model (first row). The

three rows in each panel correspond to the univariate calibration objectives (ET, SM, and

SF), and the six columns correspond to both the univariate and multivariate calibration

objectives (ET-SM, ET-SF, and SM-SF). We see that the Hellingers distance between the
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REFDK distributions generated from the ET-calibrated model and the SF-calibrated model

(third column and third row) is less than the distance between the distributions generated

from the SM-calibrated model and the SF-calibrated model (third column and second row).

This difference is more pronounced in the KS statistic heat map (Figure 3.8b). As far as ET

is concerned, the inability of both the SM- and SF-calibrated models to accurately simulate

ET can be attributed to differences in the posterior distributions of the BB and MAXSMC

parameters. As pointed out by Cuntz et al. (2016), the runoff parameters also can influence

the ET (and SM) results, as they affect the models water balance. This fact is evident in the

case of SM performance, for which the parameter distributions from both the SM-calibrated

and SF-calibrated models for BB, MAXSMC and SATDK are similar. However, there is a

large difference in the distributions of the runoff parameters, REFDK and REFKDT (Figure

3.8).

The analysis of posterior distributions of parameters from univariate calibration presented

above agrees with the results of sensitivity analysis of the Noah-MP model parameters Cuntz

et al. (2016). As land surface models are highly complex in terms of parameterization, the

same conclusions may not hold when multiple fluxes are incorporated into calibration. We

calculate the correlation between the objective functions (RMSE) for the combinations of

model responses (ET-SM, ET-SF, and SM-SF) and the corresponding parameters (REFDK,

REKDT, BB, MAXSMC, and SATDK). In other words, we map the behavior of the pa-

rameters along the Pareto front. From Table 3.7, it is clear that most parameters show

opposite correlation for the pair of objectives. For the combination of ET and SM objec-

tives, parameters REFDK and BB show strong correlation with both ET (positive) and SM

(negative) errors. This may indicate that these parameters are more responsible for the

higher trade-off in accuracy (slope of the Pareto curve) between ET and SM seen in Figure

3.6. Most parameters have almost equal magnitude (but different signs) of correlation with

the objective functions, except for REFKDT. In the ET-SF combination, it is clear that

the magnitude of correlation between the objective functions and the parameters are sig-

nificantly lower than the correlations for the ET-SM combination. This clearly reflects the
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lesser trade-off and better simultaneous simulations of ET and SF compared with ET and

SM. It is interesting to note the higher correlation for the REFDK parameter compared with

REFKDT, considering that the difference between the ET-calibrated and SF-calibrated RE-

FKDT parameters was higher than the REFDK parameter. This shows that the parameters

that govern model performance for individual fluxes may not correspond to the parameters

that affect the trade-off among the combination of fluxes. Also, it highlights the advantage

of employing Pareto-based calibration. A similar conclusion can be drawn when SM and SF

are combined; we see that the trade-offs are governed by BB and MAXSMC parameters and

not the REFDK or REFKDT variables that govern the performance of SF.

Next, we compare the parameter distributions of behavioral multivariate calibration so-

lutions of the ET-SF combination with parameter distributions of models calibrated with

only ET and SF. Behavioral solutions with respect to both incorporated model responses

are derived at the 50% quantile threshold (Table 3.4). As the number of ET-SF Pareto

optimal solutions within the 50% behavioral threshold are few (12), we use both the Pareto

optimal and dominated solutions (40) to derive the ECDFs of the five parameters. We note

that the forty Pareto optimal and dominated solutions used for deriving the parameter dis-

tributions are behavioral (within 50% error quantile), and therefore can be considered as

valid multivariate calibration solutions. In addition, we stress here that, unlike DREAM,

the parameter distributions derived from multivariate calibration are not true posterior dis-

tributions. Therefore, we intend to use the analysis of parameter distributions from only

as a tool to investigate difference in parameter values between univariate and multivariate

calibration solutions. First, we compare the distance between behavioral ET-SF and SF-

calibrated solutions. We see that the parameter distribution of the REFKDT parameter in

the ET-SF calibrated model is much closer to the REFKDT distribution in the SF-calibrated

model (fifth column and first row in Figure 3.8) compared with the REFKDT distribution in

the ET-calibrated model (fifth column and third row in Figure 3.8). However, the Hellingers

distance and KS statistic between the ET-calibrated and SF-calibrated models (first column

and first row in Figure 3.8) for the REFDK parameter is smaller compared to the distance
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between behavioral ET-SF solutions and the SF-calibrated model (fifth column and first row

in Figure 3.8). In fact, the incorporation of ET and SF into the calibration only improves

the REFKDT parameter distribution, and all other parameters show greater distances com-

pared with parameters derived from models calibrated with only ET or SF. This shows

that the surface runoff parameter, REFKDT, is very dominant in governing the behavioral

simulation of both the ET and SF fluxes. Finally, we try to determine the reasons for the

poor combined simulation of the ET-SM and SM-SF variables. To do this we compare the

multivariate calibration solutions from the ET-SM and SM-SF calibration cases that are not

behavioral with respect to any of the individual fluxes in models calibrated with only the

individual fluxes (ET, SM, and SF). Considering the case of the ET-SM combination, we see

that the incorporation of both the ET and SM responses reduce the distances between the

distributions of parameters that govern ET (fourth column and third row for BB, MAXSMC

and SATDK in Figure 3.8) compared with the SM-calibrated model (fourth column and

second row for BB, MAXSMC and SATDK in Figure 3.8). However, the distributions of the

REFDK variable, which seem to influence the trade-off in accuracy between the ET and SM

variable (Table 3.7), deviate significantly from the SF-calibrated model (compare Hellingers

distance between the ET-SM combination and SF, and the ET-SM combination and ET

for the REFDK parameter in Figure 3.8). This shows that a surface runoff parameter such

as REFDK can influence the combined simulation of ET and SM. We can draw a similar

conclusion in the case of SM-SF, where the incorporation of SM and SF improves the perfor-

mance of the runoff parameters (REFDK and REFKDT) compared with the SM-calibrated

model. However, the parameter that seems to influence the trade-off more, MAXSMC, shows

degradation compared with the SM-calibrated model. It is interesting to note that the com-

bination of SM and SF adversely affects a soil moisture parameter, even though SM has been

incorporated.
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Figure 3.7: Empirical cumulative density functions (ECDF) of calibrated Noah-MP pa-

rameters for univariate (ET, SM, and SF) and multivariate (ET-SM, ET-SF, and SM-SF)

objectives. For the ET, SM, SF, and ET-SF objectives, the solutions within the error thresh-

old of the 50% quantile are used to construct the PDFs and ECDFs of the parameters. For

the ET-SM and SM-SF solutions that are not behavioral for both, model responses at the

50% quantile error threshold are used.
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Figure 3.8: a) Hellingers distance between PDFs of the calibration parameters for different

calibration objectives and b) the Kolmogorov-Smirnov test statistic between the ECDFs of

calibration parameters for dierent calibration objectives. For the ET, SM, SF and ET-SF

objectives, the solutions within the error threshold of the 50% quantile are used to construct

the PDFs and ECDFs of the parameters. For ET-SM and SM-SF solutions that are not

behavioral for both, the model responses at the 50% quantile error threshold are used.
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Table 3.7: Correlation between objective functions (RMSE) and Noah-MP model parameters

(REFDK, REFKDT, BB, MAXSMC and SATDK) for three multivariate calibration cases

(ET-SM, ET-SF and SM-SF)

Objectives REFDK REFKDT BB MAXSMC SATDK

ET and SM (-0.57, 0.62) (0.50, -0.16) (-0.37, 0.27) (-0.32, 0.17) (0.12, -0.05)

ET and SF (-0.27, 0.24) (0.09, -0.02) (-0.17, 0.17) (0.04, -0.07) (-0.17, 0.18)

SM and SF (-0.15, 0.13) (-0.02, 0.12) (0.24, -0.28) (-0.21, 0.20) (0.13, -0.10)

a The numbers in the brackets represent correlation of the parameters with

objective functions 1 (ET in first row) and 2 (SM in first row) respectively

b For the BB, MAXSMC and SATDK parameters the median correlation

from the 12 soil classes are presented

3.5 Conclusions and future work

With the rise in availability of satellite-based measurements of hydrologic fluxes (Lettenmaier

et al., 2015), multivariate calibration is widely seen as a promising solution for improving

the performance and realism of large scale hydrologic models. However, most multivari-

ate calibration studies do not formally define any acceptable error thresholds to help one

conclude whether incorporation of additional fluxes into calibration improves either the per-

formance or the realism of a hydrologic model. In addition, apriori assumptions such as

complementary relationships between the different fluxes and deterministic calibration ap-

proaches hinder rigorous testing and diagnosis of hydrologic models, as called-for by Beven

(2018). In this study, we develop a framework for multivariate calibration by combining

Bayesian and Pareto optimality-based calibration methodologies. This framework can be

used to test whether models simultaneously can simulate multiple fluxes accurately by ac-

cepting or rejecting parameter solutions based on a defined error threshold. Applying the

framework to a large scale distributed hydrologic model (Noah-MP), we find that the model

simulates different combinations of fluxes (ET and SM, ET and SF, and SM and SF) with
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varying degrees of acceptability. While ET and SF can be simulated accurately, we find

that accurately simulating either ET or SF along with SM is associated with significant

trade-offs. Analyzing the trade-offs between the model responses (Table 3.6), we find that

the higher trade-offs are mainly due to the fact that ET cannot be simulated accurately by

calibrating the model with the other fluxes. However, calibrating the model with ET pro-

duces lower error for SF (Figure 3.5). This highlights the advantage of using a Pareto-based

calibration approach, which does not assume any subjective weights in its objectives. Unlike

deterministic calibration methodologies, we use parameter distributions from DREAM and

AMALGAM to identify the parameters that cause significant trade-offs in accuracy between

simulated fluxes. In addition to sensitive parameters that influence the behavioral simulation

of model responses, we identify parameters that influence the trade-offs. For example, in the

case of the Noah-MP model tested in this study, we see that the runoff parameter REFDK

and the exponent in the Brooks-Corey equation (BB) influence the trade-off between ET

and SM. This not only shows the advantages of framing multivariate calibration as a Pareto

optimality problem but also highlights the fact that relatively insensitive parameters (such

as REFDK for ET and SM) can exert a big influence on the accurate simulation of multiple

fluxes.

We note that the results and conclusions we present in this study are for a specific combi-

nation of hydrologic model, input datasets, observational data and model parameters. For a

different hydrologic model or calibration approach, the value of incorporating different fluxes

and the relationship between them may be different. For example, the time period considered

for calibration is one year and the study area is the Mississippi river basin. The calibrated

parameters may not be applicable to a river basin with different physical characteristics and

hydroclimatic conditions. The higher errors in the simulated fluxes (Figure 4) may be due

to the chosen calibration period of one year. This is especially true for streamflow, as only

72 data points (six basins and 12 months) were used for calibration as opposed to around

60,000 data points (all the grid cells) for ET and SM. Increasing the calibration period or

the number of parameters may lead to improved accuracy in the simulation of the fluxes,

68



and hence lower behavioral thresholds and improved Pareto optimal solutions. However, the

multivariate calibration framework developed in this study is model- and data-independent

and can be used to analyze the value of every flux under consideration. Future work involves

extending the current study in several ways. First, we wish to incorporate more than two

fluxes into the calibration to see if it changes the nature of trade-offs. For example, in the

case of ET and SM, it would be interesting to see if incorporating SF reduces the overall

trade-offs in accuracy among the fluxes. As REFDK is a runoff-related parameter that af-

fects the trade-off between ET and SM, incorporating SF could lead to better discovery of

REFDK. Second, incorporating estimates of total water storage (TWS) could yield better

performance than the near-surface soil moisture estimates used in this study. Third, ap-

plying the developed framework to different hydrologic models and conducting inter-model

comparison studies would help in model selection. Finally, the developed framework can help

in the development, testing and diagnosis of new hydrologic models and model hypotheses

from a multivariate perspective.
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CHAPTER 4

Seasonal Hydropower Planning For Data Scarce

Regions Using Multi Model Ensemble Forecasts,

Remote Sensing Data, and Stochastic Programming

4.1 Introduction

Multistage stochastic programming with recourse models, widely used for the optimization of

reservoir operations at seasonal time scales (Yeh, 1985), utilize scenario trees to incorporate

the uncertainty in future inflows (Uysal et al., 2018). Scenario trees are generally constructed

using statistics from reliable long-term streamflow records (Trezos and Yeh, 1987) or ensem-

ble streamflow predictions (Alemu et al., 2011). In data scarce regions, such as sub-Saharan

Africa which has witnessed exponential growth in installed hydropower capacity (Conway

et al., 2015, 2017), scenario generation methods based on historical streamflow observations

are ineffective owing to unreliable and inadequate streamflow records. At shorter lead times,

streamflow forecasts generated by forcing calibrated hydrologic models with ensemble pre-

cipitation forecasts from numerical weather prediction (NWP) models have been used to

construct inflow scenario trees (Lee et al., 2008; Saavedra Valeriano et al., 2010; Wang et al.,

2012). At seasonal time scales, scenario trees are valuable as streamflow forecasts have

large uncertainty due, mainly, to lack of skill in long-lead precipitation forecasts (Shukla

and Lettenmaier, 2011). However, the development of ensemble climate prediction systems

has resulted in improved forecasts of precipitation at seasonal time scales (Lavers et al.,

2009). While the combination of seasonal precipitation forecasts and hydrologic models

has the potential to generate inflow scenarios in data scarce regions (Block et al., 2009), it
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does not completely obviate the need of streamflow observations. Streamflow measurements

are required for calibrating hydrologic models. For the calibration of hydrologic models,

satellite-based observations of water balance components, such as evapotranspiration (ET),

soil moisture (SM), snow water equivalent (SWE), and total water storage (TWS) (Letten-

maier et al., 2015), can potentially be considered as proxies for streamflow. In this study,

we propose and test a framework for seasonal hydropower planning in data scarce regions

where streamflow measurements are either unreliable or unavailable. Specifically, our re-

search focuses on 1) the development of a scenario generation methodology that combines

ensemble seasonal precipitation forecasts, spatially distributed hydrologic models as well

as satellite-based estimates of hydrologic variables and 2) the reformulation of the classi-

cal stochastic programming with recourse model to take into account the uncertainties in

seasonal forecasts.

Reservoir inflow scenarios generated from hydrologic models can take into account three

primary sources of uncertainty - 1) the uncertainty in precipitation forecasts (Shukla and

Lettenmaier, 2011), 2) the uncertainty in the estimates of initial hydrologic conditions (such

as snow water equivalent and soil moisture) (Koster et al., 2010; Mahanama et al., 2008)

and 3) the uncertainty in model parameters (Demirel et al., 2013). Multi model ensembles

(MME) are widely used for characterizing the uncertainty in precipitation forecasts, arising

primarily from model physics and initial atmospheric conditions (Krishnamurti et al., 2016;

Shrestha et al., 2015). For seasonal climate forecasts, a number of MMEs developed in the

past decade such as DEMETER (Palmer et al., 2004), ENSEMBLES (Weisheimer et al.,

2009), the North American Multi Model Ensemble (NMME) (Kirtman et al., 2014), and the

NCEP Climate Forecast System (CFSv1 and CFSv2) (Saha et al., 2006, 2014) have shown

promise. For example, the NCEP CFSv2 MME forecasts precipitation with reasonable ac-

curacy at shorter leads (1-2 months) over different hydroclimatic regions (Yuan et al., 2011;

Siegmund et al., 2015). Studies evaluating the forecast capability of NMME conclude that

the ensemble members have a realistic spread and, in general, the ensemble mean outper-

forms the individual members (Becker and van den Dool, 2016; Becker et al., 2014; Cash
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et al., 2017). Remotely sensed SM and SWE datasets can be used to characterize the un-

certainty in the estimates of initial hydrologic conditions. Techniques such as the ensemble

Kalman filter (EnKF) have found widespread use for soil moisture (Yatheendradas et al.,

2012) and SWE (Alvarez-Garreton et al., 2016) data assimilation. In the absence of reliable

streamflow records, the potential of remotely sensed ET and SM observations in charac-

terizing the model parameter uncertainty needs to be explored. A number of calibration

studies have quantified the value of using ET and SM datasets for informing streamflow sim-

ulations. Wanders et al. (2014) calibrated the LISFLOOD hydrologic model with remotely

sensed SM from AMSR-E, SMOS, and ASCAT data. The results of the study show improved

streamflow performance compared to an uncalibrated model. In a similar study that used

satellite-based ET measurements for calibrating the SWAT hydrologic model, streamflow

simulations improved over the base model (Immerzeel and Droogers, 2008). It has been

shown that multivariate calibration using both ET and SM datasets can provide substantial

improvements in the accuracy of streamflow simulations compared to single objective cali-

bration (López López et al., 2017). In this study, we use evapotranspiration as a proxy for

streamflow in calibrating the hydrologic model. We use a Bayesian calibration methodology

to quantify the impact of model parameter uncertainty on the optimal release policies.

The classical formulation of a stochastic programming with recourse model considers the

first stage to be deterministic and the subsequent stages to be stochastic (Yeh, 1985). In

other words, it is assumed that a single deterministic inflow forecast is sufficiently accu-

rate for the first stage. This assumption is valid when the optimization horizon is short

(0-10 days) and the inflow forecast uncertainty is low, as seen in a number of studies. For

example, Xu et al. (2014) consider the inflow forecast at the first stage to be sufficiently ac-

curate in developing a Bayesian hydropower optimization model with a horizon of 5 and 10

days. In another study, precipitation forecasts from a deterministic NWP model were used

to generate streamflow forecasts for the first stage and for the second stage a 30-member

multi-model ensemble was used (Wang et al., 2012). Even when the planning horizon is

seasonal to inter-annual, the first stage (month) inflow is assumed to be deterministic and
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the optimal release is continuously updated when more observations of the current months

inflow become available (Kim and Palmer, 1997). For example, Etkin et al. (2015) develop

and test a stochastic decision support tool for seasonal multipurpose reservoir operation in

which the immediate stage is deterministic. In data-scarce catchments where streamflow

measurements are not available and the accuracy of seasonal streamflow forecasts cannot be

reliably quantified, the assumption of deterministic first/immediate stage fails. Sguin et al.

(2017) compare scenario trees of varying complexities 1) Full scenario tree with first stage

deterministic, 2) scenario tree with only the median scenario at all stages and 3) scenario

fan and conclude that, for hydropower planning, stochastic scenarios (scenario tree or fans)

are preferable over deterministic scenarios. In this study, we reformulate the stochastic pro-

gramming with recourse model for hydropower planning to take into account the uncertainty

in seasonal reservoir inflow forecasts at the first/immediate stage. In summary, we address

the following research questions: 1) Can seasonal precipitation forecasts combined with re-

motely sensed ET observations generate reliable reservoir inflow scenarios in the absence

of streamflow observations? 2) How do uncertainties in precipitation forecasts and model

parameters impact seasonal reservoir inflow forecasts, and hence hydropower production? 3)

To what extent does incorporation of inflow uncertainty in the first/immediate stage of a

stochastic programming with recourse model affect the release policy, and hence hydropower

production?

4.2 Methodology

Consider a cascade of R reservoirs. Let the seasonal hydropower planning horizon be T

months, which is divided into T stages (each stage is one month). Let the monthly time

period be t, t = 1, 2, ...T . In a multistage stochastic programming with recourse model, at

the beginning of each time period t, a reservoir inflow scenario tree or fan is constructed to

represent possible future inflows into the reservoir. These scenario trees are used as an input

to an optimization model that minimizes or maximizes the expected value of a specified

objective function. In this study, we adopt a rolling horizon scheme, in which the optimal
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release decisions are adopted only for the immediate stage (t). Then, the planning horizon

is rolled forward (t = t + 1), the reservoir inflows are reforecast, and the hydropower is

re-optimized. This process is repeated until the end of the planning horizon (t = T ). In the

classical formulation of a stochastic programming with recourse model, the scenario trees

or fans are constructed in such a way that the immediate stage is deterministic. Note that

t starts from 1, i.e., the beginning of the first month and moves forward with a rolling

horizon of T . Due to higher uncertainty in seasonal forecasts of inflows in catchments

where streamflow observations are not available, this assumption may not hold. In our

study we evaluate three different scenario tree structures (Figure 4.1) and their impact on

hydropower production in data scarce regions 1) a single deterministic forecast (DET), 2)

a scenario fan, but the first stage is deterministic (SPWR-D) and 3) a scenario fan with all

stages stochastic (SPWR-S). Irrespective of the scenario structure, we combine a spatially

distributed hydrologic model with multi model ensemble (MME) precipitation forecasts from

NWP models to generate reservoir inflow forecasts. We first describe the challenges in

generating reliable inflow forecasts in data scarce regions. Then we detail the approach used

to generate the deterministic forecast (DET) and the scenario fans (SPWR-D and SPWR-S).

To generate reliable reservoir inflow forecasts in catchments where streamflow measure-

ments are not available, we use evapotranspiration (ET) as a proxy for streamflow (SF). The

selection of ET as a proxy for SF is motivated by the findings of several previous studies

which conclude that incorporating ET, in the absence of SF observations, into calibration

improves the accuracy of SF compared to an uncalibrated model (Immerzeel and Droogers,

2008; López López et al., 2017; Zink et al., 2018). Several previous studies have tested the

validity of combining hydrologic models and ensemble precipitation forecasts for generating

inflow forecasts for reservoir optimization at different time scales. For example, Lee et al.

(2008) use the rainfall-runoff forecasting system (RRFS) hydrologic model to translate de-

terministic and ensemble precipitation forecasts from the Korean regional and global data

assimilation systems (RDAPS and GDAPS) into reservoir inflow forecasts at 1-day to 10-

day lead times. In another study, a thirty-member reservoir inflow ensemble is generated
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for short-term (8-day lead time) reservoir optimization by using precipitation forecasts from

deterministic NWP models and perturbed quantitative precipitation forecasts (QPFs), and

the WEB-DHM hydrologic model (Wang et al., 2012). Etkin et al. (2015) construct a multi

stage inflow scenario tree using the ABDC rainfall-runoff model and precipitation scenarios

derived from historical data for a planning horizon of one year. In all these studies, NWP

model-based precipitation forecasts are used at sub-seasonal time scales. In addition, the hy-

drologic model is calibrated and/or validated using gauge-based measurements of streamflow.

In our study, we use satellite-based ET estimates for calibrating and validating a hydrologic

model, which is then used to generate reservoir inflow forecasts at seasonal time scales. In

addition, to quantify the model parameter uncertainty, its impact on the inflow forecasts,

and hence the hydropower, we adopt a formal Bayesian calibration approach to derive the

posterior probability distribution of model parameters. Specifically, we utilize the Differen-

tial Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo Scheme (MCMC)

scheme (Vrugt et al., 2009a, 2008), which has been extensively used to quantify parameter

uncertainty in hydrologic (Shafii et al., 2014) and hydrogeologic models (Laloy et al., 2013).

First, the hydrologic model is calibrated using the DREAM algorithm to derive the poste-

rior distribution of model errors. Next, we define a limit of acceptability or error threshold

to distinguish between behavioral and non-behavioral solutions (Beven, 2006). Behavioral

solutions are model parameter sets, derived from calibration, that result in errors that are

within an acceptable limit (error threshold) for a specific model output (ET in this study).

We use the model parameter set with the least model error for generating inflow scenarios.

The remaining behavioral model parameter sets are then used to quantify the uncertainty

in ET and SF forecasts due to uncertainty in model parameters. We describe the setup,

calibration and validation of the hydrologic model used in our study, and the configuration

of the DREAM calibration algorithm in the next (experiment design) section. To generate

the deterministic forecasts in the DET and SPWR-D scenarios (Figure 4.1), we use Bayesian

Model Averaging (BMA) to calibrate ensemble precipitation forecasts. Then, the calibrated

deterministic precipitation forecast is used an input into the calibrated hydrologic model to

generate the deterministic inflow forecast. BMA is a statistical approach to post processing
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forecast ensembles generated from multiple statistical (Hoeting et al., 1999) or dynamical

models (Raftery et al., 2005). BMA of a forecast ensembles results in a calibrated and sharp

predictive probability density function (PDFs), represented as a weighted averaged of the

PDFs of the ensemble members. Following Sloughter et al. (2007), the BMA predictive PDF

can be mathematically represented as

P (x|f1, f2, ..., fn) =
N∑

n=0

ωncn(x|fn) (4.1)

where ωn is the posterior probability of ensemble forecast member fn being the best

one, determined in the calibration or training period using observed or reference data of the

hydrologic variable under consideration x (for example, precipitation or evapotranspiration),

cn(x|fn) is the conditional PDF associated with the ensemble forecast fn of the hydrologic

quantity x. For variables such as temperature, the conditional PDF can assumed to be

normally distributed (Raftery et al., 2005), but a gamma distribution is more appropriate

for precipitation (Sloughter et al., 2007), evapotranspiration (Khanmohammadi et al., 2018),

and streamflow (Vogel and Wilson, 1996). In our study, we use a mixture of point mass at zero

and a gamma distribution as the conditional PDF (Sloughter et al., 2007). We determine

the BMA weights (ωn) of ensemble precipitation members using satellite-based estimates

of precipitation. To calibrate the ensemble precipitation forecasts (determine the BMA

weights), we define a calibration period which precedes the hydropower planning horizon.

The length of the calibration period is equal to the length of the planning horizon. In

other words if the planning horizon starts from month t and ends at month T , the BMA

calibration period starts from the month t− T and ends at month t− 1. We adopt a rolling

scheme similar to the optimization model, wherein we recalculate the BMA weights at every

stage of the stochastic programming with recourse model, by moving the calibration period

forward by one month. The deterministic forecasts for the DET and SPWR-D scenario

structures are then generated as the weighted average of the ensemble precipitation forecast

members under consideration. The deterministic forecasts are then used as an input into the

hydrologic model to generate the deterministic reservoir inflow forecast. Figure 4.2 shows
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the flow charts of the proposed methodology for seasonal hydropower planning in data scarce

regions using the DET, SPWR-D and SPWR-S reservoir inflow scenarios.

Figure 4.1: A visual representation of three scenario fan structures A) A single deterministic

forecast (DET), B) first stage deterministic and the rest stochastic (SPWR-D) and C) all

stages stochastic (SPWR-S).
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Figure 4.2: Flow chart for seasonal hydropower planning using a) DET and SPWR-D and

b) SPWR-S reservoir inflow scenario structures. The precipitation forecasts, observational

datasets, hydrologic model, and optimization algorithm used in the case study are mentioned

in parenthesis.

4.3 Experiment design

4.3.1 Study area and time period

The seasonal hydropower planning framework developed in this study is tested in the Omo-

Gibe river basin in East Africa (Figure 4.3). Spanning an area of 79,000 km2, the river

basin is spread across countries of Ethiopia and Kenya, and the outlet of the basin is at

Lake Turkana. The elevation ranges from about 700 m to 3,100 m. The average rainfall in

the basin is about 1,150 mm with a humid north and arid south. The annual temperature

varies between 17 oC and 29 oC (Chaemiso et al., 2016). In terms of hydropower capacity,

the study area consists of three power plants in operation (Gilgel Gibe I, II and III) and

two planned hydropower plants (Gilgel Gibe IV and V). Table 4.1 presents the details of

the hydropower plants. To test the proposed framework we use a cascade of two reservoirs,

consisting of Gibe I and Gibe III. Inflows to the reservoirs are forecasted eight months in
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advance, and the planning horizon is assumed to be eight months. The system is optimized

with an eight-month rolling horizon. To test the framework, we select February 2005 to

September 2005 as the planning horizon. We calibrate the hydrologic model for the year

2004 using satellite-based estimates of ET.

Figure 4.3: The Omo-Gibe river basin consisting of a cascade of five reservoirs, located in

East Africa. The countries presented constitute the East African Power Pool (EAPP).

4.3.2 Observational and forecast data

In the study area (Omo-Gibe river basin), we use monthly estimates of ET from the Global

Land Evaporation Amsterdam Model (GLEAM) (Martens et al., 2016) as observational

data for calibrating the hydrologic model. Specifically, we use the GLEAM v3 ET dataset

which assimilates remotely sensed soil moisture and vegetation optical depth from multiple

satellites. The spatial resolution of the GLEAM dataset is 0.25o x 0.25o. Similarly, the pre-

cipitation input for calibrating the hydrologic model in the Omo-Gibe basin is the Tropical

Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) (Huff-
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Table 4.1: Details of the five hydropower reservoirs in the Omo-Gibe river basin

Reservoir Name Start of Opera-

tion

Hydropower Ca-

pacity

Maximum Stor-

age

Gilgel Gibe I 2004 210 MW 840 Mm3

Gilgel Gibe II 2010 420 MW 0.15 Mm3 (Run-of-

river)

Gilgel Gibe III 2015 1870 MW 13700 Mm3

Gilgel Gibe IV Planned 1450 MW -

Gilgel Gibe V Planned 600 MW -

man et al., 2007). Specifically, we utilize the real time version (TMPA 3B42RT). The spatial

resolution of TMPA 3B42RT dataset is 0.25o x 0.25o and the temporal resolution is three-

hourly. We select GLEAM ET based on the findings of Koppa and Gebremichael (2017) in

which multiple satellite-based ET and precipitation datasets were ranked using a framework

based on the Budyko hypothesis (Budyko, 1974).

For generating the seasonal reservoir inflow forecasts, we use the ensemble seasonal precip-

itation forecasts from the North American Multi-model Ensemble (NMME) (?). The NMME

consists of nine partner models with the number of ensemble members in each model varying

from six to twenty eight. Out of the nine models we select the following three models: 1)

Goddard Earth Observation System version 5 (GEOS-5) (Borovikov et al., 2017), 2) Third

generation Canadian Coupled Global Climate Model (CanCM3) (Merryfield et al., 2013),

and 2) Fourth generation Canadian Coupled Global Climate Model (CanCM4) (Merryfield

et al., 2013). With ten ensemble members for each model, our study uses a total of thirty

ensembles from three models. The hindcasts of NMME are available for the time period

1981-2010. The spatial resolution is 1.0o x 1.0o and the temporal resolution is daily.
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4.3.3 Hydrologic model: setup, calibration and model parameter uncertainty

To translate the NMME precipitation forecasts into reservoir inflow forecasts, we choose the

Noah-MP (Multi-Parameterization) Land Surface Model (LSM) (Niu et al., 2011), driven

through NASAs Land Information System (LIS) (Kumar et al., 2006). The Noah-MP model

builds on the original Noah LSM by incorporating a dynamic groundwater model, improved

representation of vegetation canopy and snow pack. All the static input datasets required

for running the Noah-MP model are sourced from NASAs LIS data portal. The impor-

tant static input datasets are the land cover map, sourced from USGS; the soil texture

map from STATSGO, sourced from USDA; and the elevation map from GTOPO30, sourced

from USGS. Albedo, greenness fraction and temperature are sourced from NCEP reanaly-

sis. The meteorological forcings required by the Noah-MP model include precipitation, air

temperature, surface pressure, specific humidity, wind speed, and radiation. Barring TRMM

precipitation, all meteorological forcings are derived from the Global Data Assimilation Sys-

tem (GDAS), sourced from the Environmental Modeling Center (EMC) of the National

Center for Environment Protection (NCEP) (Derber et al., 1991). The spatial resolution of

the dataset is 0.47o x 0.47o. The Noah-MP model is set up at a spatial resolution of 5km

x 5km. The meteorological inputs, including the forecasts, are interpolated onto the model

grid using bilinear interpolation. The model is spun-up for a period of 68 years by looping

through the year 2003 until the groundwater and soil moisture storage reach equilibrium.

The model time step is three hours. The number of soil layers in the model is four with

thicknesses 10cm, 30cm, 60cm, and 100cm. Specific Noah-MP model physics options selected

for different processes are detailed in Table 3.1.

The Noah-MP model contains 71 standard parameters (present in user-defined tables)

and 139 hard-coded parameters (present in the model code). The Noah-MP model output has

been found to be sensitive to about two-thirds of the 71 standard parameters (Cuntz et al.,

2016). As the study is a calibration experiment involving multiple calibration cases, we keep

the dimension of the calibration problem manageable by selecting five of the most sensitive

parameters from the Cuntz et al. (2016) study. The selected parameters are two surface runoff
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related parameters (REFDK and REFKDT), the exponent in the Brooks-Corey equation

(BB), soil porosity (MAXSMC), and hydraulic conductivity at saturation (SATDK). Of the

five parameters, BB, MAXSMC, and SATDK are related to soil texture. As there are twelve

soil texture classes, the total number of parameters selected for calibration of the Noah-

MP hydrologic model is 38 (Table 3 presents a detailed breakdown of the parameters with

maximum and minimum values used for calibration). The minimum and maximum values

of the parameter ranges are selected from literature (MAXSMC and SATDK ranges from

Cai et al. (2014), BB and REFDK ranges from Cosby et al. (1984), and REFKDT range

from Mendoza et al. (2015)). The minimum and maximum values are adjusted to improve

the rate of convergence of the calibration algorithms.

To calibrate the hydrologic model and quantify the uncertainty in reservoir inflow fore-

casts due to uncertainty in model parameters, we use the DREAM algorithm. DREAM is

a multi-chain Markov chain Monte Carlo (MCMC) simulation algorithm that automatically

tunes the scale and orientation of the proposal distribution en route to the target distri-

bution. It is designed for increasing the sampling efficiency of complex, high-dimensional

parameter spaces, while maintaining detailed balance and ergodicity (Vrugt, 2016). In this

study, we use the MT-DREAM (ZS) version of DREAM which utilizes multi-try sampling

(MT), snooker updating and sampling from an archive of past states to improve the rate

of convergence and can make use of parallel computing resources. Specific configuration

options and parameters of the MT-DREAM (ZS) algorithm used in this study are detailed

in Table 4. We select the Laplacian likelihood based on the findings of Schoups and Vrugt

(2010); residual errors in rainfall-runoff models are better represented by a Laplacian dis-

tribution than a Gaussian distribution. The likelihood function is used to summarize the

distance between the model simulations and the corresponding observations. In the absence

of streamflow observations, we use satellite-based estimates of ET to calibrate the hydrologic

model for the year 2004. Specifically, error residuals determined at all of the 5km x 5km

grid cells and time steps (monthly) over the entire Omo-Gibe river basin. On a workstation

with 16 processors, MT-DREAM (ZS) required around 12,000 iterations to converge to a

82



solution.

4.3.4 Hydropower optimization model

In this study, the formulation of the hydropower optimization model is based on HIDROTERM,

a nonlinear programming optimization model previously developed for planning the oper-

ation of the Brazilian hydrothermal system (Zambon et al., 2012a). The model, originally

deterministic, was modified to solve the multi-stage stochastic programming with recourse

model for our study (Zambon et al., 2012b). The objective function is represented by:

minZH =
∑
s

∑
t

{pSdtt(Dt −
∑
i

Pi,s,t)
2} (4.2)

where: i = hydropower plant/reservoir index; dtt = time period duration (106 s); s =

scenario index; t = time period index; ps = probability associated with each scenario; Pi,s,t =

power production (MW); Dt = objective demand, usually the total demand minus the fixed

generation, though it can be defined arbitrarily by the user (for example, as the maximum

installed power capacity MW); ZH = model objective (106 s.MW2).

The model minimizes the expected value of the quadratic departures from the demand

so that the hydropower production will follow the specified demand variations. The model

is subject to the following additional set of constraints: total release is a summation of the

power release (turbine) and non-power release (spill); continuity equation for the storage

reservoirs, including evaporation losses; bounds for storage, releases and power production;

water head as difference from reservoir forebay and tailrace water levels; power production

as function of water head and power release; reservoir level-area-storage curves. The deter-

ministic equivalent of the stochastic model is solved by nonlinear programming (NLP) using

the General Algebraic Modeling System package (GAMS, 2018) and considers individual

hydropower plants. The deterministic scenario (DET) has 32 decision variables and 320

constraints. The SPWR-D scenario has 844 decision variables and 8720 constraints. The

SPWR-S scenario has 960 decision variables and 9600 constraints. The execution times of
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each optimization run for DET, SPWR-D, and SPWR-S scenarios are on an average 0.28

seconds, 1.65 seconds, and 2.01 seconds respectively.

4.4 Results and discussion

First, we validate the seasonal precipitation hindcasts from NMME using the satellite-based

TRMM dataset. Next, we validate the calibrated Noah-MP hydrologic model with remote

sensing- based ET estimates from GLEAM. We then present the seasonal hydropower plan-

ning results derived from HIDROTERM. Finally, we quantify the uncertainty in optimal

reservoir power release decisions and hydropower arising due to uncertainty in model param-

eters.

4.4.1 Validation of the NMME precipitation forecasts

To validate the 30-member seasonal ensemble precipitation forecasts from NMME, we use the

TRMM remotely sensed precipitation estimates. Figure 4.4 presents a time series comparison

of different precipitation forecast models with the observed data. We also present Taylor

diagrams (Taylor, 2001) to represent the root mean square error (RMSE), correlation with

observations and standard deviation of different forecast models (Figure 4.5). We see that

the thirty ensemble members, represented by the 5% and 95% quantiles (grey lines in Figure

4.4), encompasses the observed data (dashed black lines in Figure 4.4) up to lead times of

three months (lead time 1-3). The months of March, May, October, and November of the

year 2005 (validation time period) are the exceptions. It is seen that all the raw ensemble

members underestimate the precipitation for the month of May 2005 and over estimate

precipitation for the months of October and November of the same year. In addition, we

see that the difference between 5% and 95% quantiles increases with increase in lead time.

This is expected as the uncertainty in the initial and boundary conditions driving the NWP

models is higher at longer lead times. At lead times longer than 4 months (lead times 4-

8), the raw ensemble members considerably over estimate the precipitation observed in the

84



second half of the year 2005. To understand the differences in performance among the three

NMME models under consideration (CanCM3, CanCM4, and GEOS-5), we compare the

average of the ten constituent members. The stochastic programming with recourse model

implemented in this study uses forecasts that are updated at the start of each month and

the release decisions are implemented only for the immediate stage. Therefore, we focus

on the performance of the forecasts at shorter lead times. At lead times of 1-3 months, we

see that the CanCM4 model consistently outperforms the other two models (Figure 4.4 and

4.5). Both the CanCM3 and GEOS-5 models overestimate the precipitation in the second

half of 2005 (validation time period). This is especially true for the lead time 1-month

where the CanCM4 model exhibits lower RMSE and higher correlation with the observed

data (Figure 4.5). Additionally, at lead time1, the CanCM4 model is able to capture the

two peaks in the observed precipitation of the year 2005. Between CanCM3 and GEOS-

5, GEOS-5 significantly underestimates the peaks in 2005. At longer lead times, CanCM4

model performs relatively poorly compared to the other models. As expected the forecast

accuracy of all the models deteriorates with increasing lead times.

Finally, we compare the simple mean and Bayesian model average of all the 30 ensemble

members with the individual models. We see that the ensemble BMA outperforms all the

other models at almost every lead time (Figure 4.4 and 4.5). At shorter lead times (1-3

months), the ensemble BMA is able to capture the quantity and the timing of the peaks and

troughs seen in the observed precipitation (Figure 4.4). The low RMSE (approximately 25

mm/month) and high correlation coefficient (greater than 0.9) at lead time 1-month supports

this conclusion. At shorter lead times, the CanCM4 model outperforms the ensemble mean

in terms of both the magnitude of error and the correlation with the observed data. This

highlights the advantage of the Bayesian model averaging technique, which provides higher

weights to better performing models (CanCM4 in this case). The ensemble mean which

weighs all the ensemble members equally is biased by the lower performing CanCM3 and

GEOS-5 models members. The improvements are particularly greater in the second half

of the year 2005, in which the overestimation of precipitation by CanCM3 and GEOS-5
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are reduced by ensemble BMA and the ensemble mean. In addition, the variance of the

ensemble BMA seems to also match the variance of the observed precipitation better than

the individual members, except at lead time 1-month, where CanCM4 standard deviation

matches the observed value better.

Figure 4.4: Time series comparison of precipitation from different NMME models and ob-

servations (TRMM) for different lead times (1-8 months) and for the calibration (12 months

of 2004) and validation (12 months of 2005) time periods. We present the mean of the 10

members from CanCM3, CanCM4 and GEOS-5. Ensemble Mean and Ensemble BMA are

the simple mean and Bayesian model average of all the 30 ensemble members. In addition,

we present the 5% and 95% quantiles of all the 30 ensemble members.
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Figure 4.5: Taylor diagrams of precipitation from CanCM3, CanCM4, GEOS-5, Ensem-

ble Mean and BMA models determined for different lead times (1-8 months) and for the

calibration (12 months of 2004) and validation (12 months of 2005) time periods.
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4.4.2 Validation of the Noah-MP hydrologic model

As stated in the experiment design section, we use evapotranspiration (ET) as a proxy for

streamflow (SF) in calibrating the Noah-MP hydrologic model for the Omo-Gibe river basin.

Accordingly, we validate the hydrologic model with remote sensing-based ET estimates from

GLEAM. Figure 4.7 presents the posterior distribution of Noah-MP model parameters de-

rived from the MT-DREAM (ZS) algorithm. We see that the distributions of all of the

parameters, except REFDK, are well defined (non-uniform). The distributions of BB and

MAXSMC, which are soil related parameters, are skewed towards the higher values. We can

identify the high values of BB (greater than 10.0) and MAXSMC (greater thank 0.4) param-

eters combined with lower SATDK seen in Figure 4.7 with sandy clay, silty clay, and clay

soil textures. Compared to the soil-related parameters, the distributions of the runoff-related

parameters are less well defined. While the REFKDT parameter is more skewed towards

the lower values, the REFDK parameter is more uniform. REFKDT is a parameter that

controls the partitioning of total runoff into surface and subsurface components. A lower

value of REFKDT implies that a larger portion of the total runoff is being partitioned into

surface runoff. The optimized parameter set from Bayesian calibration is used to construct

the posterior distribution of simulated ET errors. Then, we define an error threshold of 50%

quantile to select a set of behavioral (acceptable) parameter sets. Twenty parameter sets

from the behavioral solutions are used to quantify the uncertainty in inflow forecasts, and

hence the hydropower, due to uncertainty in model parameters.

We validate the set of selected behavioral solutions with GLEAM ET reference dataset

for the year 2005 using time series analysis (Figure 4.6) and relevant error metrics. A visual

examination of Figure 4.6 reveals that the ET-calibrated Noah-MP model performs well in

simulating the evapotranspiration over the Omo-Gibe river basin. In the calibration period

(12 months of 2004), we see that the reference ET data (black line) is closer to the 95%

quantile of the modelled ET. This implies that the behavioral solutions consistently under-

estimate ET. In the validation period (12 months of 2005), the reference dataset corresponds

to the median modelled ET values for the first six months. In this last six months of 2005,
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we see that the model consistently underestimates (except November 2005) the evapotran-

spiration over the study area. This consistent underestimation of ET coupled with the fact

that the NMME forecasts overestimate precipitation in the second half of 2005 can lead to

overestimation of reservoir inflows. It is interesting to note that the model results show

higher uncertainty for the month of October in both the calibration and validation time pe-

riods compared to other months. Additionally, the model is able to capture the quantity and

timing of the peaks and troughs seen in the reference ET dataset. A low mean RMSE of 3

mm/month and a high mean correlation co-efficient of 0.97 supports this conclusion. We note

that the primary assumption of our study is that ET can be used as a proxy for streamflow in

data-scarce regions. Consequently, we assume that the high fidelity of the Noah-MP model

in simulating ET over the Omo-Gibe river basin leads to accurate simulation of streamflow,

and hence the reservoir inflows required for seasonal hydropower planning.

Figure 4.6: Time series comparison of evapotranspiration from ET-calibrated Noah-MP

model (green) and observed ET estimates (black) from GLEAM for the calibration (12

months of 2004) and validation (12 months of 2005) time periods. The 5% and 95% quantiles

from the behavioral solutions of Bayesian calibration is used to determine the uncertainty in

modeled ET (green band).
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Figure 4.7: Posterior probability density functions (PDFs) of the Noah-MP hydrologic model

parameters considered for calibration using the MT-DREAM (ZS) algorithm and ET esti-

mates from GLEAM. The green line represents the 50% quantile values for each of the

parameters.

4.4.3 Seasonal Hydropower planning in the study region

We select the best performing Noah-MP model parameter set from the twenty behavioral

solutions to generate the reservoir inflow forecasts required to optimize the cascade of two

reservoirs (Gibe I and Gibe III) in the study region. We construct the three scenario struc-
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tures (DET, SPWR-D, and SPWR-S) for the months February 2005 to September 2005 by

combining the NMME precipitation forecasts and the Noah-MP hydrologic model as detailed

in the methodology section. The three inflow scenario structures are then used as inputs

to a deterministic and stochastic programming with recourse model to generate the opti-

mal power releases, reservoir storage variations, and the associated hydropower production

(Figure 4.8). In a stochastic programming with recourse model, only the immediate stage

release decisions are implemented. At the end of the immediate stage, scenario tree or fan

structures are re-generated and the system is re-optimized with a rolling horizon. Figure

4.8 shows the results obtained from the optimization model for the immediate stage. First,

we compare the differences in reservoir inflows among the three scenarios. We then, analyze

the impact of these differences in the scenario structure on the optimized release decisions,

storage variations and hydropower production. Figure 4.8a presents the deterministic (from

BMA) and stochastic (raw forecast ensembles) inflows used to construct the three scenario

trees. We see that the first three months of the study period are relatively dry compared

to the rest of the months. Also, the deterministic inflows into both Gibe I and Gibe III

are consistently lower than the mean of the 30-member ensemble, with June and July be-

ing the exceptions. Additionally, we also see that there is considerable uncertainty in the

reservoir inflow arising from uncertainty in the input precipitation ensembles. To compare

the uncertainty of inflows across different months and reservoirs, we calculate coefficient of

variation and coefficient of range values (Table 4.2). The high values of measures of absolute

and relative dispersion reflects the high uncertainty in the inflow values. The inflows in the

month of March 2005 exhibit the largest uncertainty with a coefficient of variation of 0.74

and 0.69 for Gibe I and Gibe III reservoirs respectively. The month of July 2005 has the

least uncertainty with a coefficient of variation of 0.31 and 0.24 for the Gibe I and Gibe III

inflows respectively.

In Figure 4.8b, we present the results of the optimized release decisions generated for the

three inflow scenario structures 1) DET, 2) SPWR-D, and 3) SPWR-S. We see that the

optimized release decisions generated with the DET and SPWR-D inflow scenario structures
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are very similar to each other, except for the month of May 2005. We note here that the

results presented correspond to the immediate stage of the stochastic programming with

recourse model. Therefore, the similarity between DET and SPWR-D release decisions may

be due to the fact that the immediate stage of the SPWR-D model is deterministic, and the

value derived from BMA of ensemble members is equal to the DET inflow scenario struc-

ture. We see that the optimized release decisions are consistently higher in the SPWR-S

case compared to either the DET or SPWR-D scenario structures. This can be attributed

to the fact that the inflows in the DET scenarios are consistently lower than the mean of

the ensemble members (Figure 4.8a). It is interesting to note that the uncertainty in the

inflows represented in the SPWR-S scenarios only impacts the dry periods (February 2005 to

May 2005). In the wet months, the power releases reached the capacity of the power plants.

For reference we also present the storage variations corresponding to the optimized release

decisions in Figure 4.8c. Figure 4.8d presents the optimized hydropower productions corre-

sponding to the optimized release decisions for each of the three inflow scenario structures.

The differences among the three inflow structures match the differences in optimal release

decisions: 1) In the dry periods (Feb 2005 to May 2005), the SPWR-S inflow scenario struc-

ture leads to higher hydropower production compared to the DET and SPWR-D cases, 2)

The differences among the scenario structures and the uncertainty in reservoir inflows do not

have any impact in the wet months of the study period. Finally, we compare the optimized

hydropower values with the actual power produced at the Gibe I reservoir for the months

of February 2005 to September 2005. The actual power produced for the 8 month study

period is 746 MW. In comparison, the optimized hydropower generated from DET, SPWR-

D, and SPWR-S scenario structures are 1,014 MW, 994 MW and 1,060 MW. We note that

reservoir evaporation has been ignored in our study, which, when included, may reduce the

optimized hydropower values. Nevertheless, with inflow forecasts and optimization, there is

a substantial gain in power production when compared with historical operational records.

The higher power produced in the SPWR-S scenario structure may be attributed to the

consistently higher values of reservoir inflow compared to the DET and SPWR-D scenarios.
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In addition to incorporating the uncertainty in reservoir inflow forecasts using stochastic

programming, we quantify the impact of model parameter uncertainty on inflow forecasts,

power release decisions, and hydropower production (Figure 4.9). Comparing Figure 4.8a

and 4.9a, we see that the range and standard deviation of reservoir inflows have increased

for all the months in the study period. We present the specific values of range and standard

deviation values in Table 4.3. However, we see little difference in the coefficient of variation

and coefficient of range values, with the exception of April 2005. This indicates that model

parameter uncertainty does not have a significant impact on the deterministic and stochastic

inflow forecasts. The corresponding release decisions (Figure 4.9b), storage variations (Figure

4.9c), and the optimized hydropower values (Figure 4.9d). With the exception of March

2005 for DET and SPWR-D scenarios, the uncertainty in the release decisions and the

corresponding hydropower production due to model parameter uncertainty is not very high.

It is seen that the impact of model parameter uncertainty on release decisions is more

pronounced during the dry months. In the wet months, model parameter uncertainty has

no impact on the release decisions. Finally, we compare the uncertainty in total hydropower

production by the two reservoirs for the three inflow scenario structures. For the DET

scenario, the combined hydropower production from Gibe I and Gibe III varies from 3,726

MW to 3,942 MW. Similarly, for the SPWR-D scenario structure, the combined hydropower

production varies from 3,677 MW to 3,820 MW, and from 3,897 MW to 4,048 MW for the

SPWR-S scenario structure. This shows that model parameter uncertainty can impact the

hydropower production by approximately 200 250 MW or 5-6% of the total power, which

could be significant in seasonal planning of large hydropower systems.
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Figure 4.8: a) Reservoir inflows, b) optimal release decisions, c) storage and d) power pro-

duced in the Gibe 1 and Gibe 3 reservoirs for the 8 month planning horizon (February 2005

to September 2005) and three scenario structures (DET, SPWR-D and SPWR-S). Note:

the results correspond to the first stage of each iteration of the deterministic and stochastic

programming with recourse model.



Figure 4.9: Uncertainty in a) reservoir inflows, b) optimal release decisions, c) storage and

d) power produced in the Gibe 1 and Gibe 3 reservoirs for the 8 month planning horizon

(February 2005 to September 2005) and three scenario structures (DET, SPWR-D and SP-

WR-S), due to uncertainty in model parameters derived from Bayesian calibration. Note:

the results correspond to the first stage of each iteration of the deterministic and stochastic

programming with recourse model.



Table 4.2: Different measures of absolute and relative dispersion determined for the ensemble

inflows into Gibe I and Gibe III reservoirs generated using the best performing Noah-MP

parameter set

Month Range (m3/s) Standard

Deviation

(m3/s)

Coefficient of

Variation

Coefficient of

Range

February (29.9, 226.1) (7.7, 58.8) (0.45, 0.43) (0.56, 0.54)

March (108.3, 815.8) (21.6, 160.9) (0.74, 0.69) (0.79, 0.78)

April (91.0, 681.4) (25.8, 184.2) (0.55, 0.49) (0.71, 0.67)

May (189.5, 1760.4) (59.4, 498.1) (0.59, 0.60) (0.73, 0.75)

June (255.5, 1847.1) (64.5, 456.7) (0.45, 0.37) (0.72, 0.66)

July (218.3, 1583.8) (54.0, 390.8) (0.31, 0.24) (0.71, 0.58)

August (218.6, 2172.9) (53.1, 512.1) (0.37, 0.34) (0.63, 0.59)

September (246.5, 2430.8) (81.4, 570.1) (0.39, 0.29) (0.62, 0.60)

a In the parenthesis, values for Gibe I inflows are presented first, followed by values

for Gibe III inflows



Table 4.3: Different measures of absolute and relative dispersion determined for the ensemble

inflows into Gibe I and Gibe III reservoirs generated using all the behavioral Noah-MP

parameter sets

Month Range (m3/s) Standard

Deviation

(m3/s)

Coefficient of

Variation

Coefficient of

Range

February (43.1, 301.8) (8.2, 61.9) (0.46, 0.43) (0.65, 0.62)

March (165.7, 990.8) (24.9, 168.5) (0.79, 0.68) (0.85, 0.81)

April (234.8, 1009.0) (85.3, 235.8) (0.94, 0.74) (0.87, 0.71)

May (221.9, 1949.9) (60.9, 508.0) (0.58, 0.60) (0.77, 0.77)

June (256.9, 1904.9) (62.6, 454.1) (0.42, 0.35) (0.73, 0.68)

July (230.3, 1740.2) (53.4, 399.6) (0.29, 0.24) (0.72, 0.60)

August (223.0, 2264.7) (50.2, 510.4) (0.33, 0.32) (0.63, 0.60)

September (266.4, 2494.6) (80.5, 557.9) (0.38, 0.28) (0.63, 0.61)

a In the parenthesis, values for Gibe I inflows are presented first, followed by values

for Gibe III inflows



4.5 Conclusions and future work

In this study, we developed a framework for seasonal hydropower planning in regions where

reliable streamflow measurements are unavailable. Within this framework, we investigated

the potential of combining seasonal precipitation forecasts from NWP models, ET-calibrated

spatially distributed hydrologic models, and stochastic programming with recourse models

for optimizing hydropower production in data-scarce regions. We compared three different

inflow scenario structures that combine deterministic and stochastic reservoir inflow forecasts

(DET, SPWR-D, SPWR-S). In addition, we used a Bayesian calibration approach to quan-

tify the impact of hydrologic model parameter uncertainty on the reservoir inflow forecasts,

optimal release decisions, and the hydropower production. We applied the framework to a

cascade of two reservoirs in the Omo-Gibe river basin using NMME seasonal forecasts, the

Noah-MP hydrologic model, and a deterministic and stochastic programming with recourse

model. We draw the following conclusions - 1) The NWP-based 3-model, 30-member en-

semble precipitation forecasts from NMME are accurate at short lead times (1-3 months),

2) Bayesian model averaging (BMA) of the ensemble precipitation forecasts outperform the

ensemble mean as well as the individual models at all lead times, 3) The Noah-MP model

calibrated with remote sensing-based ET estimates (GLEAM) performs well in simulating

evapotranspiration in the calibration and validation time periods, 4) The ensemble seasonal

inflow forecasts exhibit considerable uncertainty, with the deterministic inflow values (DET

scenario structure) being consistently lower than the mean of the raw ensembles, 5) The

uncertainty in the inflow forecasts affect the optimized release decisions only in the dry

months of the study period. This finding agrees with previous studies in which accurate

streamflow forecasts improve system performance mainly in dry situations such as droughts

(Turner et al., 2017), 6) In the wet period all the ensemble reservoir inflows are very high

and the optimized power releases are governed by the capacity of the power plants, 7) In

terms of hydropower production, SPWR-D scenario structure leads to the most conservative

estimate (994 MW), followed by DET (1,014) and SPWR-S (1,060), 8) Model parameter un-

certainty has significant impact (200-250 MW) on the optimized hydropower results, and 9),
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using inflow forecasts and stochastic programming, there is a substantial gain in hydropower

production.

Currently, the NWP-based seasonal precipitation forecasts are available for 8-12 months.

This hinders the applicability of the framework in seasonal hydropower planning which re-

quires forecasts with lead times greater than 12 months. Therefore, future work involves

extending the seasonal forecasts beyond lead times of 12 months. In our study, we assume

that evapotranspiration is a reliable proxy for streamflow in calibrating and validating the

hydrologic model. Although this is a valid assumption based on existing calibration litera-

ture, it would be interesting to analyze the impact of using other fluxes (such as soil moisture

and total water storage) as proxies for streamflow. The framework developed in this study for

seasonal hydropower planning, provides the flexibility of testing different seasonal precipita-

tion forecasts, forecast post-processing methods other BMA, different hydrologic models, and

optimization algorithms. Finally, future work also involves the application of the developed

methodology to other study regions with larger hydropower reservoir systems.
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CHAPTER 5

Dissertation Conclusions and Future Work

The main objective of the dissertation was to improve hydrologic and hydropower studies in

data-scarce regions using satellite-based remote sensing. In this regard, the dissertation has

led to three original contributions: 1) a validation framework for remotely sensed precipita-

tion and evapotranspiration datasets without ground-based measurements, 2) a framework

for calibrating large-scale hydrologic models with multiple flux measurements, and 3) a

general methodology for seasonal hydropower planning in data-scarce regions using remote

sensing data, multi-model ensemble precipitation forecasts, stochastic programming with

recourse models. In this section, a summary of the conclusions drawn from the results pre-

sented in chapters two, three, and four are presented. Finally, possible improvements in

the presented research are suggested. In addition, potential lines of inquiry which can be

pursued to improve hydrologic research in data-scarce regions is discussed.

5.1 Conclusions and original contributions

In Chapter 2, the primary impediment of using satellite-based remote sensing data for hydro-

logic studies in data-scarce regions i.e., the large uncertainty in the available remotely sensed

hydrologic fluxes, was addressed. A novel approach to test the consistency of precipitation

and evapotranspiration datasets using a parsimonious combined water-energy balance model

(Budyko hypothesis) was proposed. This approach is conceptually different from methods

such as triple collocation (Stoffelen, 1998; McColl et al., 2014), where the focus is on sta-

tistically understanding the errors in datasets using at least three independent estimates of

the target variable. The approach is also different from a probabilistic approach wherein all
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available datasets are used to quantify the uncertainty in the final results. The approach

proposed in the dissertation was shown to mimic traditional validation methodologies which

use ground-based measurements. The application of the framework to a data-scarce region

(Omo-Gibe River basin) revealed the importance of ranking and selecting the most accurate

precipitation and evapotranspiration datasets before using them in hydrologic studies.

Chapter 3 addressed a fundamental question in hydrologic modeling of data-scarce catch-

ments: How can the wealth of remotely sensed estimates of hydrologic fluxes and storages

be meaningfully used to constrain parameters of large scale hydrologic models? The novel

approach combined Bayesian and Pareto-optimal approaches to understand the trade-offs

among accurate simulation of multiple fluxes and the factors governing such trade-offs. The

results reveal several new insights into the value of different hydrologic data such as ET, SM,

and SF in improving the realism of hydrologic models. Contrary to previous studies, the

results showed that significant trade-offs exist among accurate simulations of different fluxes

by hydrologic models. In addition, the framework enables comprehensive diagnosis of model

parameters. In contrast to traditional parameter sensitivity, the importance of different

model parameters for accurately accurately simulating multiple parameters simultaneously

is highlighted. For data-scarce regions, it is seen that evapotranspiration is a better proxy

for streamflow compared to soil moisture. This result has significant implications on model

calibration in regions where streamflow measurements are not available.

The conclusions drawn in Chapter 2 (regarding the best precipitation and evapotran-

spiration dataset) and Chapter 3 (regarding the best proxy for streamflow in calibrating

hydrologic models) were used to develop a seasonal hydropower planning for data-scarce

regions in Chapter 4. Inspite of the lack of skill in seasonal forecasts at long lead times, the

research represented the first application of ensemble NWP-based global seasonal precipi-

tation forecasts for hydropower planning. The comparison of different optimization models

(deterministic, traditional stochastic programming with recourse, reformulated stochastic

programming with recourse) highlighted the importance taking into account input uncer-

tainty in hydropower optimization. In addition, the use of Bayesian calibration enabled

101



the quantification of the value of incorporating model parameter uncertainty in hydropower

planning.

5.2 Future work

Data-scarce regions present significant challenges for conducting robust studies concerning

either their hydrology or water resources systems. Although the dissertation addresses a

number of important problems, several important issues persist. In addressing these chal-

lenges, the role of satellite-based is important. Several different approaches, which have

not been investigated in this dissertation, such as data assimilation needs to be explored

to improve the hydrologic understanding of data-scarce catchments. However the potential

improvements and future work discussed below is restricted to the research carried out in

this dissertation:

• The Budyko hypothesis used in developing the validation framework (Chapter 1) is only

applicable for long-term time scales. Future work involves extending the framework to

account for inter-annual and intra-annual variations in precipitation and evapotranspi-

ration.

• The general validation framework (Chapter 1) can be used for global validation of

precipitation and evapotranspiration datasets as it does not need ground-based mea-

surements.

• The calibration framework developed in Chapter 2 was applied for evapotranspiration,

soil moisture, and streamflow variables. Future work involved extending the analysis

to other variables such snow water equivalent (SWE) and total water storage (TWS).

• The calibration framework can be used for model intercomparison studies to under-

stand the trade-offs in accuracies and understand parameter deficiencies in different

large scale hydrologic models and different study regions.
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• The seasonal hydropower planning framework developed in Chapter 3 needs to be

operationalized in the study region (Omo-Gibe river basin). Additionaly, future work

involves extending the hydropower optimization methodology to sub-seasonal and real-

time temporal scales.
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