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ABSTRACT OF THE DISSERTATION

Extremal Problems for Random Objects

by

Sam Spiro

Doctor of Philosophy in Mathematics

University of California San Diego, 2022

Professor Jacques Verstraëte, Chair

This dissertation lies at the intersection of extremal combinatorics and probabilistic

combinatorics. Roughly speaking, extremal combinatorics studies how large a combina-

torial object can be. For example, a classical result of Mantel’s says that every n-vertex

triangle-free graph has at most 1
4
n2 edges. The area of probabilistic combinatorics en-

compasses both the application of probability to combinatorial problems, as well as the

study of random combinatorial objects such as random graphs and random permutations.
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In this dissertation we study three problems related to extremal properties of random

objects.

First, we study the maximum score of a certain guessing game which uses a ran-

domly shuffled deck of cards, and in doing so we solve a 40 year conjecture of Diaconis

and Graham.

Next, we study the Turán problem in random hypergraphs. Specifically, we exam-

ine the function ex(Hr
n,p,F), which is the maximum number of hyperedges that an F -free

subgraph of the random hypergraph Hr
n,p can have. By using a novel counting technique,

we obtain effective bounds when F consists of a collection of Berge cycles.

Finally, we study thresholds of random graphs and hypergraphs, which essentially

asks how large p must be in order for Hr
n,p to contain a given structure. We give a

common generalization of recent breakthrough work done by Alweiss, Lovett, Wu, and

Zhang related to the Erdős sunflower problem; and of work by Kahn, Narayanan, and

Park related to the threshold for squares of Hamiltonian cycles in Gn,p.
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Chapter 1

Introduction

This thesis focuses on problems at the intersection of extremal combinatorics and

probabilistic combinatorics. Roughly speaking, extremal combinatorics studies how large

a parameter associated to a combinatorial object can be. For example, Mantel’s Theo-

rem [Man07] says that every n-vertex triangle-free graph has at most 1
4
n2 edges, and this

bound is best possible due to the complete bipartite graph Kbn/2c,dn/2e.

Roughly speaking, probabilistic combinatorics studies both the application of prob-

ability to solve problems in combinatorics, as well as the study of random combinatorial

objects such as random graphs and random permutations. For example, Erdős [Erd47]

used random graphs to give the first exponential lower bound for diagonal Ramsey num-

bers. Since then, the application of probability to problems in extremal combinatorics

has been well developed into what is commonly known as the probabilistic method.

The focus of this thesis involves extremal problems for random objects. One clas-
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sical problem of this form is the problem of determining the (expected) length of a longest

increasing subsequence in a random permutation. This innocent sounding problem turns

out to have deep connections to many areas of math such as representation theory, and

it is the subject of the book by Romik [Rom15]. In a similar spirit, we investigate three

problems which ask how large a given parameter related to a random object can be.

1.1 Card Guessing with Feedback

Consider the following one player game. We start with a deck of mn cards which

consists of n card types, each appearing with multiplicity m. For example, a standard

deck of playing cards corresponds to n = 13 and m = 4. The deck is shuffled uniformly at

random, and then the player iteratively guesses the card type of the top card of the deck.

After each guess, the top card is revealed and then discarded, with this process repeating

until the deck is depleted. This game is known as the complete feedback model. One can

also consider the partial feedback model, where instead of being told the card type each

round, the player is only told whether their guess was correct or not. These models have

been studied extensively, in part due to their applications to clinical trials [BHJ57], casino

games [EL05], and many other real-life problems; see [DGS20] for more information about

applications.

We study how large or small of a score the player in this game can guarantee in

expectation. Our main result answers a question of Diaconis and Graham from 1981 who
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asked if the expected score in the partial feedback model could be bounded uniformly in

n. We answer this question in a strong form.

Theorem 1.1.1. There exists a sufficiently large constant C such that regardless of their

strategy, the player can guarantee at most m+Cm3/4 log1/4m correct guesses in expectation

in the partial feedback model whenever n is sufficiently large in terms of m.

Note that the player can always guarantee a score of m by guessing the same card

type every round, so this result is asymptotically best possible.

1.2 The Turán Problem in Random Hypergraphs

Szemerédi [Sze75] famously proved that any dense subset of the integers contains

arbitrarily long arithmetic progressions. Building on this, Green and Tao [GT08] proved

that any large subset of a “psuedorandom” set of integers contains arbitrarily long pro-

gressions, which they used to prove that the primes contain arbitrarily long progressions.

Given this result for pseudorandom sets, it is natural to ask when the random set [n]p,

which is defined by including each of the first n integers {1, 2, . . . , n} independently and

with probability p, is such that any dense subset of [n]p contains a k-term arithmetic pro-

gression with high probability. This problem was solved in breakthrough work by Conlon

and Gowers [CG16] and Schacht [Sch16]. The methods used in [CG16, Sch16] extend to

many other probabilistic variants of classical problems, and one such problem that we are

interested in is finding large F -free subgraphs of random graphs and hypergraphs.
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A hypergraph H is a set of vertices V (H) together with a set E(H) of subsets of

V (H) which are called edges or hyperedges. A hypergraph is said to be r-uniform or an

r-graph if every hyperedge has size exactly r. For example, the definition of a 2-graph

is equivalent to the definition of a graph, and thus r-graphs can be viewed as a natural

generalization of graphs. Given a set of r-graphs F , we say that an r-graph H is F-free

if H does not contain a subgraph isomorphic to any F ∈ F . We let ex(n,F) denote the

maximum number of edges that an F -free r-graph on n vertices can have. Determining

ex(n,F) is known as Turán’s problem and is one of the central problems in extremal

combinatorics.

We are interested in a random variant of Turán’s problem. We define the random r-

graph Hr
n,p to be the r-graph on n vertices obtained by including each possible hyperedge

independently and with probability p, and when r = 2 we will denote this as Gn,p.

For example, Gn,1 is the complete graph Kn since each possible edge is included with

probability 1.

Let ex(Hr
n,p,F) denote the maximum number of edges of an F -free subgraph of

Hr
n,p. For example, when p = 1, the (deterministic) function ex(Hr

n,1,F) is the maximum

number of hyperedges that an F -free r-graph on n vertices can have, which is exactly

Turán’s problem. This problem has been essentially solved if F contains no r-partite

r-graphs due to the work of Conlon and Gowers [CG16] and Schacht [Sch16], but the

problem is wide open when F contains an r-partite r-graph.

In the graph setting, Morris and Saxton [MS16] essentially determined ex(n, F )
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when F is either a complete bipartite graph or an even cycle, assuming some well known

conjectures in extremal graph theory. As is common in the area, their approach used the

heavy machinery of hypergraph containers which was developed independently by Balogh,

Morris, and Samotij [BMS15] and Saxton and Thomason [ST15]. We extend the results

of Morris and Saxton to the hypergraph setting. In doing so, we develop a novel approach

to counting F -free hypergraphs that avoids the (explicit) use of containers. Our new

approach relies heavily on turning counting problems for hypergraphs into counting prob-

lems for graphs. One result of this form is the following, where the girth of a hypergraph

is defined formally in Section 3.

Theorem 1.2.1. For `, r ≥ 3 let Nr
m(n, `) denote the number of n-vertex r-graphs with

m hyperedges and girth larger than `. For λ = d(r − 2)/(`− 2)e and all m,n ≥ 1,

Nr
m(n, `) ≤ N2

m(n, `)r−1+λ. (1.1)

1.3 Spread Hypergraphs

Given a property P that a graph can have, we say that a function p = p(n) is

a threshold for P if asymptotically almost surely (or a.a.s. for short), Gn,p′ satisfies P

whenever p′(n)/p(n) → ∞, and it fails to satisfy P a.a.s. whenever p′(n)/p(n) → 0. For

example, it is well known that Gn,p′ contains a Hamiltonian cycle a.a.s. if p′ � log n/n

and that it fails to do so a.a.s. if p′ � log n/n, so we say that p(n) = log n/n is a threshold

for the property of containing a Hamiltonian cycle.
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The study of thresholds is one of, if not the central problem, in the study of

random graphs. It was proven by Bollobás and Thomason [BT87] that thresholds always

exist for monotone properties P , and in particular they always exist when considering

the property of containing a given subgraph F . An elegant technique has recently been

developed which can be used to find upper bounds on thresholds for Gn,p containing a

given subgraph F , provided the copies of F are sufficiently “spread out” in Kn.

To motivate these ideas, we observe that for any graph F , we can define an auxiliary

hypergraph HF whose vertex set consists of the edges of Kn and whose hyperedges consist

of sets of edges which form a copy of F in Kn. Let Vp be a random subset of the vertices

of HF obtained by including each vertex independently and with probability p. If one

unwinds the definitions, one sees the probability that Gn,p contains a copy of F is exactly

the probability that Vp contains a hyperedge of HF . Thus we have reduced the problem

of studying thresholds in Gn,p to studying when random subsets of hypergraphs contain

a hyperedge.

A general technique for solving this latter problem was developed by Frankston,

Kahn, Narayanan, and Park [FKNP21] based off of breakthrough work of Alweiss, Lovett,

Wu, and Zhang [ALWZ20] regarding the sunflower conjecture. To state their result, if

A is a set of vertices of a hypergraph H, we define the degree of A to be the number

of edges of H containing A, and we denote this quantity by dH(A) or simply as d(A)

if H is understood. We say that a hypergraph H is q-spread if it is non-empty and if

d(A) ≤ q|A||H| for all sets of vertices A. It was proven by Frankston, Kahn, Narayanan,
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and Park [FKNP21] that if H is a q-spread r-graph, then with high probability a random

subset of V (H) of size Kq log r contains a hyperedge of H, where K is some absolute

constant. From this result, one can obtain very short proofs of problems which were

previously thought to be incredibly difficult. For example, in Theorem 4.2.1 we show

how this result gives a less than one page proof of Shamir’s problem, which asks for the

threshold of Hr
n,p containing a perfect matching. This problem was originally solved by

Johansson, Kahn, and Vu [JKV08] using a significantly harder argument.

Using a variant of this technique, Narayanan, Kahn, and Park [KNP21] determined

the threshold of the square of a Hamiltonian cycle, which was a longstanding open problem

of Kühn and Osthus [KO12]. During a talk, Naryanan asked the following question:

Question 1.3.1. Is it possible to give a common generalization of the proofs of [ALWZ20,

FKNP21, KNP21]?

We answer this question in the positive, giving a smooth interpolation between the

conditions needed for variants of q-spread techniques to apply.

1.4 Notation

We say a sequence of events An occurs asymptotically almost surely or a.a.s. if

limn→∞ Pr[An] = 1. Throughout we use standard asymptotic notation: O(f(x)) (respec-

tively Ω(f(x))) denotes a function which is at most (respectively at least) c · f(x) for

some constant c > 0, Θ(f(x)) denotes a function which is both O(f(x)) and Ω(f(x)),

7



and o(f(x)) denotes a function which tends to 0 as x tends to infinity. We write f ∼ g if

limx→∞
f(x)
g(x)

= 1. Occasionally in our exposition we will write f � g to informally mean

that f is significantly larger than g.
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Chapter 2

Card Guessing with Feedback

2.1 Introduction

Let Sm,n be the set of words π over the alphabet [n] := {1, 2, . . . , n} where each

character in [n] appears exactly m times in π. We think of π as some way to shuffle a

deck of cards which has m suits and n card types. For example, a standard deck of 52

cards has n = 13 values (Ace, Two, . . . , King), each appearing m = 4 times. We find it

helpful to think that m stands for multiplicity and n is for number of values. We refer

to the elements of Sm,n as permutations, even though for m > 1 this is technically not

the case. If X is a finite set, we write x ∼ X to indicate that x is chosen uniformly at

random from X.

Consider the following experiment: a deck with m copies of n different card types

is randomly shuffled according to some π ∼ Sm,n, and a guesser attempts to guess each
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card as it is drawn, and the drawn card is discarded after the guess is made (i.e. this is

sampling without replacement). Each time a guess is made, some amount of “feedback”

is given. For example, one could tell the guesser the true identity of the card they just

guessed (this is called the complete feedback model) or they could be told nothing at all

(the no feedback model). This can also be viewed as a one player game where the guesser

tries to either maximize or minimize the number of times their guesses are correct, and

we will often refer to these models as games.

These sorts of models were considered by Blackwell and Hodges [BHJ57] and

Efron [Efr71] in relation to clinical trials. For example, in a medical trial comprising 4

treatments and 100 subjects, a deck of 100 cards with 25 cards labeled by each treatment

is prepared. Subjects are assigned to treatments as they come into the clinic, sequentially,

using the next card (which is then discarded). Hospital staff have the option of ruling

subjects ineligible as they come in. If the staff has strong opinions about the efficacy of

treatments and observes which treatments have already been given out, they may guess

what the next treatment is and bias the experiment by ruling a sickly subject ineligible.

It is thus of interest to be able to evaluate the expected potential bias.

Card guessing is also a mainstay of classical experiments to test “Extra Sensory

Perception” (ESP). The most common experiment utilizes a deck of 25 cards where there

are five copies of five different types of cards (so m = n = 5 in our language) where

the subjects iteratively try and guess the identity of the next card, and experimenters

routinely give various kinds of feedback to enhance “learning”. Diaconis [Dia78] and

10



Diaconis and Graham [DG81] give a review of these problems.

In the no feedback model every strategy guesses m cards correctly in expectation.

The distribution of correct guesses depends on the guessing strategy: if the guesser always

guesses the same card type then the variance is 0, and it can be shown that the variance

is largest if the guesser uses a permutation of the mn values, see [DG81].

The complete feedback model is more complicated, but optimal strategies were

determined in [DG81]. Given a strategy G for the guesser, let C(G, π) denote the number of

correct guesses the guesser gets in the complete feedback model if they use strategy G and

the deck is shuffled according to π. Let C+
m,n = maxG E[C(G,π)], where π ∼ Sm,n and the

maximum ranges over all possible strategies G. Similarly define C−m,n = minG E[C(G,π)].

The following is proven in [DG81].

Theorem 2.1.1 ([DG81]). If G+ (respectively G−) is the strategy where one guesses a most

likely (respectively least likely) card at each step, then C±m,n = E[C(G±,π)]. Moreover,

C±m,n = m±Mn

√
m+ on(

√
m),

where Mn = Θ(
√

log n) is the expected maximum value of n independent standard normal

variables.

The main focus in this chapter is on a feedback model called the partial feedback

model, which returns an intermediate amount of information to the guesser. After each

guess, the guesser is only told whether their guess was correct or not (and thus not the

identity of the card if they were incorrect). This feedback protocol was recommended
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when conducting ESP trials and is a natural notion of bias if card guessing experiments

are performed with experimenter and subject in the same room. Given a strategy G for

this game, let P (G, π) denote the number of cards the guesser guesses correctly using

strategy G if the deck is shuffled according to π, and define P+
m,n = maxG E[P (G,π)]

and P−m,n = minG E[P (G,π)] for the maximum and minimum expected number of correct

guesses possible, respectively.

The partial feedback model is significantly more difficult to analyze than the other

two models, and relatively little is known about it. This is in large part due to the fact that

we do not understand the optimal strategy in this game, and in particular it is not the case

that the strategy G+ of guessing a maximum likelihood card satisfies E[P (G+,π)] = P+
m,n

for m ≥ 2, see [DG81].

Define N±m,n for the no feedback model analogous to how C±m,n and P±m,n were

defined, and note that N±m,n = m. One can easily show that N+
m,n ≤ P+

m,n ≤ C+
m,n for

all m and n, with the reverse inequalities holding for − instead of +. In particular, by

Theorem 2.1.1 and the fact that N±m,n = m, we obtain P±m,n = (1 + o(1))m as m goes

to infinity, for any fixed n. Given this, our focus will be in bounding P±m,n when m is

fixed and n is large. As a point of comparison, we first establish the value of C±m,n in this

regime. Here and throughout this chapter we let log denote the natural logarithm.

Theorem 2.1.2 ([DG81, DGHS21, HO21]). For m fixed and n→∞, we have

C+
m,n ∼ Hm log n,

12



where Hm =
∑m

i=1 j
−1 is the m-th harmonic number, and

C−m,n ∼ Γ

(
1 +

1

m

)
n−1/m,

where Γ(x) denotes the gamma function.

Theorem 2.1.2 shows that for any fixed m, in expectation the guesser can achieve

arbitrarily many or arbitrarily few correct guesses as n grows in the complete feedback

model. In sharp contrast, we show that the guesser cannot obtain arbitrarily many correct

guesses in the partial feedback model.

Theorem 2.1.3. If n is sufficiently large in terms of m, we have

P+
m,n = m+O(m3/4 log1/4m).

This resolves a 40 year old problem of Diaconis and Graham [DG81], which was

open even for m = 2 (i.e. a deck with composition {1, 1, 2, 2, . . . , n, n}). In particular,

this shows that the information from the partial feedback model is not enough for the

guesser to correctly guess asymptotically more cards compared to when they are given

no feedback at all. We suspect that the error term in Theorem 2.1.3 can be improved to

m1/2+o(1), which would be best possible; see the discussion in Section 2.3.

We conclude this introduction with some brief remarks about the related liter-

ature. In the partial feedback model, the enumeration of the number of permutations

consistent with a given sequence of guesses can be reduced to the evaluation of certain

permanents, see Chung, Diaconis, Graham, and Mallows [CDGM81] and Diaconis, Gra-

ham, and Holmes [DGH01]. These papers contain applications to the partial feedback
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model, as well as a fascinating “persistence conjecture”: whenever the guesser guesses a

card type i incorrectly, it is optimal for them to continue to guess i in the next step.

Throughout this chapter, we focus on evaluating the expected number of correct

guesses. The distribution of the number of correct guesses is treated in [DG81], see also

Proschan [Pro91]. A variety of other feedback mechanisms have also been explored, such

as less feedback if the guesser is doing well, and telling the guesser that their guess is

“high” or “low”, see Samaniego and Utts [SU83].

Our evaluation for these models gives one point for each card guessed correctly.

It is also natural to consider weighted scores: a correct guess early on might be weighted

more heavily than a correct guess towards the end since more information is available to

the guesser later on. This is known as skill scoring and is discussed in [DG81].

2.2 Proof of Theorem 2.1.3

2.2.1 Definitions and Outline

Throughout this section we fix a guessing strategy G and a suitable ε = ε(m) > 0

which will be on the order of m−1/4 log1/4m. Our goal is to prove for large enough n that

E[P (G,π)] ≤ (1 +O(ε))m. In this section, we simply refer to the partial feedback model

as “the game.”

A history h = (g, y) of a completed game is a pair of vectors: the [n]-valued vector

g of all mn guesses made throughout the game, and the boolean vector y of feedback
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received, so that yt = 1 if and only if the t-th card in the deck has value gt. A history at

time t, denoted ht, is a truncation of some complete history h to the first t values in each

vector, representing all the information available to the guesser after they make the t-th

guess.

We let H denote a sample of the history of the game given the fixed strategy G

and that the deck is shuffled according to a uniform random π ∼ Sm,n. Similarly Ht

denotes a sample of the history of the game at time t.

Given a history h = (g, y), we write Y (h) := ‖y‖ for the total number of correct

guesses, where here and throughout this chapter ‖v‖ :=
∑
|vi| denotes the `1 norm.

Define ai(h) := |{t : gt = i}| to be the number of times card type i has been guessed, and

mi(h) := m−|{t : gt = i and yt = 1}| to be the number of copies of card i left to be found

in the deck. For a partial history ht, the values Y (ht), ai(ht), and mi(ht) are defined in

the same way.

We are ready to outline the proof. The first and most important step is to prove

the following “pointwise” lemma, which roughly shows that for all typical histories ht−1,

the probability that the t-th guess is correct is at most (1 + o(1))n−1.

Lemma 2.2.1. For any history ht−1 of the game up to time t− 1 and any i ∈ [n],

Pr[πt = i|Ht−1 = ht−1] ≤ mi(ht−1)

mn− ai(ht−1)− Y (ht−1)
.

Note that the fraction on the right hand side is a natural estimate for Pr[πt =

i|Ht−1 = ht−1]: the numerator is exactly the number of copies of i in the deck that have
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yet to be found, and the denominator is approximately the total number of positions

among [mn] at which such a copy could lie (this may not be exact because ai(ht−1) and

Y (ht−1) can count the same position twice). We use a simple bijective argument to prove

Lemma 2.2.1 in Section 2.2.2.

The second step of the proof is to show that the term Y (Ht−1) in Lemma 2.2.1 is

negligible with high probability, which is done by the following lemma.

Lemma 2.2.2. For any 0 < λ ≤ 1/6, n1/2 ≥ 12λ−1, and any fixed strategy G,

Pr[P (G,π) > λmn] ≤ 2e−mn
1/2

.

This bound is proved in Section 2.2.3 using Lemma 2.2.1 and Chernoff bounds.

Combining Lemmas 2.2.1 and 2.2.2, and since Y (ht−1) ≤ Y (h), we see that with high

probability for any ε > 0,

Pr[πt = i] ≤ mi(Ht−1)

(1− ε)mn− ai(Ht−1)
.

We now break guesses into three types, based on how many times a given card i has already

been guessed. A guess at time t, say with gt = i, is called subcritical if ai(Ht−1) < εmn,

critical if εmn ≤ ai(Ht−1) < (1 − ε)mn, and supercritical if ai(Ht−1) ≥ (1 − ε)mn. Note

that if even a single supercritical guess is made, then almost all guesses must have been

of that same card type, which makes the situation easy to analyze.

By adaptively re-numbering the cards during the game if necessary, we may assume

without loss of generality that if there are k card types for which critical guesses are made,

then they are exactly the first k cards 1, . . . , k. For any given history h, let b0(h) be the
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number of subcritical guesses made, let bi(h), 1 ≤ i ≤ k be the number of critical guesses

made with gt = i, and let b∞(h) be the number of supercritical guesses made. Define

Y0(h), Yi(h), and Y∞(h) to be the number of correct guesses made in each regime.

We finish the proof by showing with high probability that each of the Yi(H) values

are not much larger than their means. The subcritical guesses Y0(H) are handled in Sec-

tion 2.2.4, the critical guesses Yi(H) in Section 2.2.5, and the supercritical regime is simple

enough to not merit its own subsection. The proof is then completed in Section 2.2.6.

Throughout the proof we will often omit floors and ceilings for ease of presentation.

For an event E we let E denote its complement. For real valued random variables X and

Y , we write X � Y if X stochastically dominates Y , i.e. if for all x ∈ R, Pr[X ≥ x] ≥

Pr[Y ≥ x]. We also recall a standard variant of the Chernoff bound, see for instance

[KQ21].

Lemma 2.2.3. Let B(N, p) be a binomial random variable with N trials and probability

of success p. Then for all λ > 0,

Pr[B(N, p) > (1 + λ)pN ] ≤ e−
λ2pN
2+λ .

2.2.2 The Pointwise Lemma

In this section we show Lemma 2.2.1, which is equivalent to an upper bound on

the number of π ∈ Sm,n for which at each position up through t, either πt is specified or

a single value is disallowed for πt. We reduce to the following setup.
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Definition 2.2.4. Let m = (m1, . . . ,mn) and a = (a1, . . . , an) be vectors of nonnegative

integers satisfying ‖a‖ < ‖m‖. An m-permutation is a word of length ‖m‖ over alphabet

[n] where i appears exactly mi times. An (m, a)-permutation π is an m-permutation where

the first a1 terms are not 1, the next a2 terms are not 2, and so on, so that exactly ai

terms in π are forbidden from taking value i.

It is significant that ‖a‖ < ‖m‖ strictly in the definition of (m, a)-permutations,

guaranteeing that no restrictions are made on the value of the last term. Given a history

ht−1 up to time t − 1, we let m be the vector (m1(ht−1), . . . ,mn(ht−1)), and a be the

vector (a1(ht−1), . . . , an(ht−1)). We claim that the following bound on (m, a)-permutations

implies Lemma 2.2.1.

Lemma 2.2.5. If fi(m, a) is the fraction of all (m, a)-permutations for which the last

term is i, then

fi(m, a) ≤ mi

‖m‖ − ai
.

Indeed, by definition fi(m, a) is the probability that the last card in π is exactly i

given the current history ht−1. But all positions past the first t− 1 are indistinguishable,

so fi(m, a) is also the probability that the next card (at index t) is i. Thus it suffices to

prove Lemma 2.2.5.

Proof of Lemma 2.2.5. It suffices to show the lemma for i = 1. First we make a technical

reduction to the case a1 = 0 for convenience. Let π̃ be any sequence of a1 cards in which
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1 does not appear and i appears at most mi times for all i > 1. Define an (m, a, π̃)-

permutation to be an (m, a)-permutation where the first a1 terms agree with π̃.

Define fi(m, a, π̃) to be the fraction of (m, a, π̃)-permutations which have last term

i. Since f1(m, a) is some convex combination of the values f1(m, a, π̃), it suffices to show

that for every specific choice of π̃,

f1(m, a, π̃) ≤ m1

‖m‖ − a1

. (2.1)

Let m′ be the vector of card counts remaining when the cards in π̃ are taken out,

and let a′ = (0, a2, a3, . . . , an), so that an (m, a, π̃)-permutation is just π̃ concatenated

with an (m′, a′)-permutation π′. Since m′1 = m1 and ‖m′‖ = ‖m‖−a1, it suffices to show

f1(m′, a′) ≤ m′1
‖m′‖

,

which is just the case a1 = 0 in the original lemma statement. Thus, it remains to show

that if a1 = 0, we have

f1(m, a) ≤ m1

‖m‖
. (2.2)

In fact, we will prove that for any i,

f1(m, a)

fi(m, a)
≤ m1

mi

. (2.3)

The case i = 1 is trivial, so we just need to prove this for i > 1, and without loss

of generality we can assume i = 2. We divide the (m, a)-permutations π which end in

either 1 or 2 into classes as follows. For each π which ends in either 1 or 2, consider all

positions past the first a2 which contain either a 1 or a 2. Let S(π) denote the set of π′
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obtained by cyclically shifting the 1’s and 2’s in these positions within π, fixing all other

values. Note that with this we never move a 1 into a forbidden position (as a1 = 0) nor

a 2 into a forbidden position (as we only shift past the first a2 positions). It follows that

every π′ ∈ S(π) is a (m, a)-permutation ending in 1 or 2.

Note that the total number of 2’s past the first a2 positions is exactly m2, since

every 2 appears past the first a2, while the total number of 1’s past the first a2 positions

is at most m1, since there are exactly m1 1’s in total. Thus, we see that the fraction of

π′ ∈ S(π) which end in 1 is at most m1

m1+m2
for every π. As the S(π) partition all possible

(m, a)-permutations π which end in either 1 or 2, (2.3) follows for i = 2.

Finally, to derive (2.2) it suffices to write (2.3) as

mi

m1

f1(m, a) ≤ fi(m, a)

and sum over i, noting that
∑

i fi(m, a) = 1 since every (m, a)-permutation must end in

some i.

2.2.3 Weak Bound on P+
m,n

The next step is to show that the Y (ht−1) term in Lemma 2.2.1 is negligible with

high probability. Since Y (ht−1) is bounded by just Y (h), the total number of cards guessed

correctly, it suffices to show a weak upper bound on the total number of correct guesses

in the form of Lemma 2.2.2. To do this we first show the following.

Lemma 2.2.6. Let B1, . . . , Bk be (not necessarily independent) Bernoulli random vari-
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ables with Pr[Bt = 1|
∑

s<tBs = x] ≤ p for all t and x. Then
∑k

t=1 Bt is stochastically

dominated by a binomial random variable B(k, p).

This lemma will be proved by induction. The induction step is the following simple

observation.

Lemma 2.2.7. Let X,X ′, Y, Y ′ be integer-valued random variables such that X ′ and Y ′

are {0, 1}-valued, X � Y , and for all x ∈ Z, (X ′|X = x) � (Y ′|Y = x). Then,

X +X ′ � Y + Y ′.

Proof. Our goal is to show that for any y ∈ Z, Pr[X + X ′ ≥ y] � Pr[Y + Y ′ ≥ y]. But

clearly

Pr[X +X ′ ≥ y] = Pr[X ≥ y] + Pr[(X = y − 1) ∧ (X ′ = 1)]

= Pr[X ≥ y] + Pr[X = y − 1] Pr[X ′ = 1|X = y − 1]

≥ Pr[X ≥ y] + Pr[X = y − 1] Pr[Y ′ = 1|Y = y − 1]

≥ Pr[Y ≥ y] + Pr[Y = y − 1] Pr[Y ′ = 1|Y = y − 1] (2.4)

= Pr[Y + Y ′ ≥ y].

Here only (2.4) is worth explaining. Since X � Y we have Pr[X ≥ y] ≥ Pr[Y ≥ y] and

Pr[X ≥ y]+Pr[X = y−1] ≥ Pr[Y ≥ y]+Pr[Y = y−1], so by taking convex combinations

of these two inequalities, we have for any t ∈ [0, 1], Pr[X ≥ y] + tPr[X = y−1] ≥ Pr[Y ≥

y] + tPr[Y = y − 1] as well. Taking t = Pr[Y ′ = 1|Y = y − 1] completes the proof.
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Lemma 2.2.6 follows by iterating Lemma 2.2.7 with X =
∑

s<tBs, X
′ = Bt, Y a

binomial random variable B(t−1, p), and Y ′ a Bernoulli random variable with probability

p. We omit the details.

We next prove the following, which immediately implies Lemma 2.2.2.

Lemma 2.2.8. For any 0 < λ ≤ 1/6, n ≥ 200λ−1, and any fixed strategy G,

Pr[P (G,π) > λmn] ≤ 2e−λmn/12.

Proof. We first show that few correct guesses are made in the first third of the game, i.e.

when t ≤ mn/3. In this case we apply Lemma 2.2.1 to find that for any i ∈ [n],

Pr[πt = i|Ht−1 = ht−1] ≤ mi(ht−1)

mn− ai(ht−1)− Y (ht−1)
≤ m

mn−mn/3−mn/3
=

3

n
,

since up to this point there have been at most mn/3 correct guesses and each i has been

guessed at most mn/3 times. It follows that for t ≤ mn/3, conditional on any ht−1, the

probability that the t-th guess is correct is at most 3/n. In particular the t-th guess is

correct with probability at most 3/n regardless of the value of Y (Ht−1), so by Lemma 2.2.6

the number of correct guesses in the first third of the game Y (Hmn/3) is stochastically

dominated by a binomial random variable B(mn/3, 3/n). Applying Lemma 2.2.3 gives

for all δ ≥ 2,

Pr[Y (Hmn/3) > (1 + δ)m] ≤ Pr[B(mn/3, 3/n) > (1 + δ)m] ≤ e−δm/2.

Taking δ = λn/4− 1 ≥ λn/6 ≥ 2 since n ≥ 12λ−1, we find

Pr[Y (Hmn/3) > λmn/4] ≤ e−λmn/12. (2.5)
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Let T be the set of i such that ai(ht) < mn/4 for all t, and note that there are

at most four card types not in T (since only mn total guesses are made). Let E be the

event that Y (Hmn/3) ≤ λmn/4, and observe that conditional on E we have Y (Ht) ≤

(2/3 + λ/4)mn for all t since at most 2mn/3 correct guesses can be made in the last 2/3

of the game. Thus by Lemma 2.2.5 and the above observations, we have for i ∈ T , all

t > mn/3, and any possible history ht−1 for which E occurs,

Pr[πt = i|Ht−1 = ht−1] ≤ m

mn−mn/4− (2/3 + λ/4)mn
≤ 24

n
, (2.6)

where we used λ ≤ 1/6.

Let Y ′(H) denote the total number of correct guesses of card types i ∈ T and let

Y ′′(H) denote the total number of correct guesses involving i /∈ T . Observe that

Y (H) = Y ′(H) + Y ′′(H) ≤ Y ′(H) + 4m ≤ Y ′(H) + λmn/2,

where this last step used n ≥ 8λ−1 (which is implicit in our hypothesis of the lemma).

By (2.6) we see that conditional on E, Y ′(H)− Y (Hmn/3) is stochastically dominated by

a binomial random variable B(2mn/3, 24/n). Thus

Pr[Y (H) > λmn] ≤ Pr[Y ′(H) > λmn/2] ≤ Pr[Y ′(H)− Y (Hmn/3) > λmn/4|E] + Pr[E]

≤ Pr[B(2mn/3, 24/n) > λmn/4] + Pr[E] ≤ e−λmn/12 + e−λmn/12,

where the last inequality used the Chernoff bound with δ = λn/64− 1 ≥ λn/96 ≥ 2 and

(2.5).
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2.2.4 Concentration of Subcritical Guesses

In this section we handle the subcritical guesses. If Xt denotes the indicator

variable that the t-th subcritical guess is correct, then intuitively the Xt variables are

dominated by Bernoulli random variables with parameter p = 1
(1−2ε)n

, so the total number

of correct subcritical guesses is dominated by a binomial distribution B(b0(H), p), where

we recall that b0(H) is the number of subcritical guesses in history H.

We would like to say that this binomial distribution is close to its expectation with

high probability. It is not enough, however, to prove this for a fixed binomial distribution.

The main technical issue is that the number of trials b0(H) can be chosen adaptively by

the guesser. For example, they can use a strategy where they repeatedly make subcritical

guesses until they have guessed an above average number of cards correctly. This is

essentially equivalent to the guesser simulating a summation of Bernoulli random variables∑mn
t=1Bt, and then choosing some number of trials b ≤ mn such that the number of correct

subcritical guesses is
∑b

t=1Bt. We thus wish to show that for Bt a sequence of independent

Bernoulli variables,
∑b

t=1Bt is not much larger than its expectation for all large b. With

this, no matter how the guesser chooses b, they can never do much better than pb.

A weak upper bound for this probability comes from applying the Chernoff bound

to all b ≤ mn and then using a union bound. Unfortunately when p is very small this

upper bound is not effective. A more careful application of the union bound gives the

following technical result, where we think of the Zk’s in its statement as centered binomial

random variables with k trials.
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Lemma 2.2.9. Let 0 ≤ p ≤ 1, c, c′ > 0, and let 0 ≡ Z0, Z1, Z2, . . . be random variables

such that Zk − Zk−1 ≥ −p for all k, and such that for all integers 0 ≤ k′ < k and all

0 < λ ≤ 1,

Pr[Zk − Zk′ > λp(k − k′)] ≤ c′e−cλ
2p(k−k′).

Then for all 0 < λ ≤ 1 and integers k1 ≥ k0 ≥ 2λ−1, we have

Pr[∃k ∈ [k0, k1], Zk > λpk] ≤ 8c′k1

λk0

e−
1

256
cλ3pk0 .

Proof. Define ` = 1
2
λk0 ≥ 1. The idea of the proof is to take a union bound over the

events Z`a−Z`(a−1) > λp` for all integers a ≤ k1
`

, which will turn out to be strong enough

to conclude the stated result. To be precise, let 0 = x0 < x1 < · · · < xr = k1 be any

sequence of integers such that 1
2
` ≤ xa−xa−1 ≤ ` for all a > 0, and note that the number

of terms in this sequence satisfies

r ≤ d2k1/`e ≤
8k1

λk0

. (2.7)

Let E be the event that Zxb >
1
8
λpb` for some b. Observe that Zxb =

∑b
a=1 Zxa − Zxa−1 ,

so Zxb >
1
8
λpb` implies that some a ≤ b has

Zxa − Zxa−1 >
1

8
λp` ≥ 1

8
λp(xa − xa−1).

Thus by the union bound, the hypothesis of the lemma, the fact that xa−xa−1 ≥ 1
2
`, and

inequality (2.7), we have

Pr[E] ≤
r∑

a=1

Pr[Zxa − Zxa−1 >
1

8
λp(xa − xa−1)] ≤ r · c′e−

1
128

cλ2p` ≤ 8c′k1

λk0

e−
1

256
cλ3pk0 .
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We claim that if Zk > λpk for some k ∈ [k0, k1], then E occurs. Indeed, suppose

such a k exists and let b be the smallest integer such that k ≤ xb, which in particular

implies xb − k ≤ `. We also have b ≥ 2 because k0 ≤ k ≤ b` and k0/` = 2λ−1 ≥ 2, and

thus

k ≥ 1

2
(b− 1)` ≥ 1

4
b`. (2.8)

Note that Zxb −Zk ≥ −`p because Zk−Zk−1 ≥ −p for all k. Using this, ` = 1
2
λk0 ≤ 1

2
λk,

and inequality (2.8), we have

Zxb > λpk − `p ≥ 1

2
λpk ≥ 1

8
pb`,

so E occurs. Thus,

Pr[∃k ∈ [k0, k1], Zk > λpk] ≤ Pr[E] ≤ 8c′k1

λk0

e−
1

256
cλ3pk0

as desired.

Using Lemma 2.2.9, we can show that subcritical guesses are well behaved.

Lemma 2.2.10. If ε ≤ 1
8

and n is sufficiently large in terms of ε,m, then

Pr
[
Y0(H) > (1 + 4ε)

b0(H)

n

]
≤ c′ε−2e−cε

4m,

for some absolute constants c, c′ > 0.

Proof. Given t ≤ b0(H), let t′ be the smallest positive integer for which b0(Ht′) = t, so that

t′ is the time of the t-th subcritical guess (note that t′ is itself a random variable), and let

Xt := Y0(Ht′)−Y0(Ht′−1). In other words, Xt is the indicator of the t-th subcritical guess.
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Let E be the event that Y (H) > εmn, and define Et to be the event that Y (Ht′) > εmn.

Observe that E implies that no Et occurs.

Note that Y0(H) =
∑b0(H)

t=1 Xt. We modify Y0(H) to ignore the events Et as follows.

Define X ′t = Xt if Et−1 does not occur and X ′t = 0 otherwise, and let Y ′0 =
∑b0(H)

t=1 X ′t.

With L := (1 + 4ε) b0(H)
n

, we find

Pr[Y0(H) > L] ≤ Pr[(Y0(H) > L) ∧ E] + Pr[E] = Pr[(Y ′0 > L) ∧ E] + Pr[E]

≤ Pr[Y ′0 > L] + Pr[E],

By Lemma 2.2.2 we know Pr[E] ≤ 2e−mn
1/2

, so for n sufficiently large the contri-

bution of Pr[E] is negligible. It remains to upper bound the probability that Y ′0 is large.

Note that X ′t = 1 if and only if the next term πt′ is exactly the next guess i, the total

number ai(Ht′−1) of times i is guessed is at most εmn, and the total number Y (Ht′−1) of

correct guesses up to this point is also at most εmn. We now have by Lemma 2.2.1 that

Pr[X ′t = 1|X ′1, . . . , X ′t−1] ≤ mi(Ht′−1)

mn− ai(Ht′−1)− Y (Ht′−1)
≤ m

(1− 2ε)mn
=

1

(1− 2ε)n
=: p.

Define B1, B2, . . . , Bmn to be independent Bernoulli random variables with Pr[Bt =

1] = p and define Zk =
∑k

t=1Bt − pk. By the above inequality, we see that given any

history ht′−1 up to the t′-th guess, X ′t is stochastically dominated by Bt, and hence Zk

stochastically dominates
∑k

t=1 X
′
t − pk. Observe that

b0(H)∑
t=1

X ′t − pb0(H) >
εb0(H)

(1− 2ε)n
⇐⇒ Y ′0 >

(1 + ε)b0(H)

(1− 2ε)n
⇐= Y ′0 >

(1 + 4ε)b0(H)

n
= L,

where the last step used ε ≤ 1
8
. Because Zb0(H) stochastically dominates the above sum,

we have
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Pr[Y ′0 > L] ≤ Pr

b0(H)∑
t=1

X ′t − pb0(H) >
εb0(H)

(1− 2ε)n

 ≤ Pr

[
Zb0(H) >

εb0(H)

(1− 2ε)n

]

≤ Pr

[
∃k ∈ [εmn,mn], Zk >

εk

(1− 2ε)n

]
,

Where this last step used that the number of subcritical guesses b0(H) must always be at

least εmn and at most mn.

Because Zk is a centered binomial distribution, Pr[Zk − Zk′ > λp(k − k′)] ≤

e−
1
3
λ2p(k−k′) for k′ < k by Lemma 2.2.3, and also Zk−Zk−1 ≥ −p for all k by construction.

If n is sufficiently large we have εmn ≥ 2ε−1, so we can apply Lemma 2.2.9 to the above

inequality with c′ = 1
3

and c = 1 to conclude

Pr[Y ′0 > L] ≤ 8

(1− 2ε)ε2
e−

1
768(1−2ε)

ε4m ≤ 16ε−2e−
1

768
ε4m,

with this last step using ε ≤ 1
4
.

2.2.5 Concentration of Critical Guesses

In the subcritical region we were able to bound the number of correct guesses by

a binomial random variable. For the critical region, we compare the number of correct

guesses with a hypergeometric random variable. We recall that a random variable S ∼

Hyp(N,m, b) has a hypergeometric distribution (with parametersN,m, b) if for all integers
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1 ≤ k ≤ m we have

Pr[S = k] =

(
b

k

)(
N − b
m− k

)(
N

m

)−1

. (2.9)

Equivalently one can define this by uniformly shuffling a deck of N cards with m of these

cards being “good”, and then letting S be the number of good cards one sees in the first

b draws from the deck. From this viewpoint, if we let Rt denote the indicator variable

which is 1 if the tth draw is a good card, we see that S =
∑b

t=1 Rt and that the Rt can

be defined by

Pr[Rt = 1] =
m− (R1 + · · ·+Rt−1)

N − t+ 1
. (2.10)

We can use the following lemma to bound random variables by hypergeometric

random variables.

Lemma 2.2.11. Suppose P1, . . . , Pk and R1, . . . , Rk are {0, 1}-random variables satisfying

Pr[Pt = 1] ≤ m− (P1 + · · ·+ Pt−1)

N − t+ 1

Pr[Rt = 1] =
m− (R1 + · · ·+Rt−1)

N − t+ 1
.

Then R1 + · · ·+Rk � P1 + · · ·+ Pk.

The proof of Lemma 2.2.11 follows from induction and applying Lemma 2.2.7 with

X = R1 + · · ·+Rt−1, X ′ = Rt, Y = P1 + · · ·+Pt−1, and Y ′ = Pt. The last thing we need

is to use Lemma 2.2.9 in this hypergeometric setting.

Lemma 2.2.12. Let N ≥ m2 +m, define the indicator random variables R1, R2, . . . , RN
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as in (2.10), and let Sb :=
∑b

t=1Rt for all b. Then for all b and 0 < λ ≤ 1,

Pr

[
Sb >

(1 + λ)bm

N

]
≤ 3e−

λ2bm
3N .

Further, for all 0 < λ ≤ 1 and integers b0, b1 satisfying 2λ−1 ≤ b0 ≤ b1 ≤ N , we have

Pr

[
∃b ∈ [b0, b1], Sb >

(1 + λ)bm

N

]
≤ 24b1

λb0

e−
λ3b0m
768N .

Proof. Observe that Sb ∼ Hyp(N,m, b). Thus if q := b/N , we have by (2.9) that

Pr[Sb = k] =

(
qN

k

)(
(1− q)N
m− k

)(
N

m

)−1

≤ (qN)k

k!

((1− q)N)m−k

(m− k)!

m!

(N −m)m

=

(
m

k

)
qk(1− q)m−k

(
1 +

m

N −m

)m
≤
(
m

k

)
qk(1− q)m−kem2/(N−m)

≤
(
m

k

)
qk(1− q)m−k · 3,

where this last step used N −m ≥ m2.

We thus see that Pr[Sb > (1+λ)qm] ·3−1 is at most the probability that a binomial

distribution with m trials and probability q of success has at least (1 + λ)qm successes,

which is at most e−λ
2qm/3 by Lemma 2.2.3. This gives the first result.

For the second result, define p = m/N and let Zb := Sb− pb. Note that Sb−Sb′ ∼

Hyp(N,m, b− b′) for b > b′ (since this is just a sum of b− b′ of the Rt variables), so the

first result implies

Pr[Zb − Zb′ > λp(b− b′)] = Pr[Sb − Sb′ > (1 + λ)p(b− b′)] ≤ 3e−
1
3
λ2pb.

We can thus apply Lemma 2.2.9 to the Zb variables with c′ = 3 and c = −1
3

to conclude

the result.
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Using this we can prove the following.

Lemma 2.2.13. For i ≥ 1 finite, ε ≤ 1
4
, and n sufficiently large in terms of ε,m, we

have

Pr
[
Yi(H) > (1 + 4ε)

bi(H)

n
+ ε2m

]
≤ c′ε−2e−cε

4m

for some absolute constants c, c′ > 0.

Proof. Fix i positive and finite, and let Xt := Yi(Ht′)− Yi(Ht′−1) where t′ is the smallest

positive integer for which bi(Ht′) = t (note that t′ is itself a random variable). In other

words, Xt is the indicator of the t-th critical guess of i. Define X ′t = Xt if Y (H) ≤ εmn

and define X ′t = 0 otherwise.

Let Rt be random variables as in Lemma 2.2.11 with N = (1− 2ε)mn, and define

Sb =
∑b

i=1Ri for all 1 ≤ b ≤ (1 − 2ε)mn. By applying Lemma 2.2.5 (and noting that i

was guessed εmn times before its critical guesses started), we see

Pr[X ′t = 1] ≤
m− (X ′1 + · · ·+X ′t−1)

(1− 2ε)mn− t+ 1
.

Thus we can apply Lemma 2.2.11 with X ′t taking the role of Pt, and letting

L(b) = (1 + 4ε)
b

n
+ ε2m
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gives

Pr[Yi(H) > L(bi(H))] = Pr

bi(H)∑
t=1

Xt > L(bi(H))


≤ Pr[Y (H) ≤ εmn] · Pr

bi(H)∑
t=1

X ′t > L(bi(H))

+ Pr[Y (H) > εmn]

≤ 1 · Pr[Sbi(H) > L(bi(H))] + 2e−mn
1/2

≤ Pr [∃b ∈ [1, (1− 2ε)mn], Sb > L(b)] + 2e−mn
1/2

,

where the second to last step used Lemma 2.2.2 and the last step used that the value of

bi(H) must lie in 1 and (1− 2ε)mn.

To bound Pr [∃b ∈ [1, (1− 2ε)mn], Sb > L(b)], we partition [1, (1 − 2ε)mn] into

intervals [bj−1, bj] (which we define below) and show that Pr [∃b ∈ [bj−1, bj], Sb > Lj(b)]

is small for all j, where Lj(b) is some quantity upper bounded by L(j). Taking a union

bound will then give the desired result.

Let b0 := 1
2
ε2(1 − 2ε)mn ≥ 2 for n sufficiently large. By taking λ = 1 in

Lemma 2.2.12, we have

Pr[∃b ∈ [1, b0], Sb > ε2m] = Pr

[
Sb0 >

2b0m

(1− 2ε)mn

]
≤ 3e−

b0m
(1−2ε)mn = 3e−

1
4
ε2m. (2.11)

Define bj = 2jb0. Observe that for all b ≤ bj we have ε2 ≥ 21−j b
(1−2ε)mn

. Thus for
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j such that 21−j ≥ 4ε we find for n sufficiently large in terms of j,

Pr[∃b ∈ [bj−1, bj], Sb >
b

n
+ ε2m] ≤ Pr

[
∃b ∈ [bj−1, bj], Sb > (1− 2ε+ 21−j)

bm

(1− 2ε)mn

]
≤ Pr

[
∃b ∈ [bj−1, bj], Sb > (1 + 2−j)

bm

(1− 2ε)mn

]
≤ 48 · 2je−

2jb0
23j+9(1−2ε)n = 48 · 2je−2−2j−10ε2m

≤ 48ε−1e−2−10ε4m, (2.12)

where this third inequality used Lemma 2.2.12.

Let J = blog2(ε−1)c − 1, noting that we can apply the above bound up to

bJ = 2J−1ε2(1− 2ε)mn ≥ 1

8
ε(1− 2ε)mn.

Observe that for ε ≤ 1
8
,

(1 + 4ε)b

n
≥ (1 + ε)b

(1− 2ε)n
.

Thus by Lemma 2.2.12 applied with λ = ε, we see that

Pr

[
∃b ∈ [bJ , (1− 2ε)mn], Sb >

(1 + 4ε)b

n

]
≤ 24(1− 2ε)mn

εbJ
e
− ε3bJ

768(1−2ε)n ≤ 96ε−2e
−1+ε

3072(1−2ε)
ε4m

.

Taking the union bound over this, (2.11), and (2.12) for the at most − log2(ε) ≤ ε−1

values of j ≤ J gives the result.

2.2.6 Completing the Proof

We need the following simple consequence of Lemma 2.2.8.

Lemma 2.2.14. If n is sufficiently large and A is an event with Pr[A] = p > 0, then

E[Y (H)|A] < 200m+ 20p−1.
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Proof. The statement of Lemma 2.2.8 implies the following: For any 0 < λ ≤ 1/6 and

n ≥ 200λ−1,

Pr[Y (H) > λmn] ≤ 2e−λmn/12.

By taking x = λn, this is equivalent to saying that for 200 ≤ x ≤ n/6 we have

Pr[Y (H) > xm] ≤ 2e−xm/12.

In particular, even after conditioning on the event A,

Pr[Y (H) > xm|A] ≤ 2p−1e−xm/12.

With this we have

E[Y (H)|A] = m

∫ n

0

Pr[Y (H) > xm|A]dx

≤ 200m+m

∫ n/6

200

Pr[Y (H) > xm|A]dx+mn · Pr[Y (H) > mn/6]

≤ 200m+m

∫ ∞
0

2p−1e−xm/12dx+ 2mne−mn
1/2

= 200m+ 12p−1 + 2mne−mn
1/2

,

where the second inequality used the observation made above and Lemma 2.2.2. This

gives the result by taking n to be sufficiently large in terms of m.

Finally we have all the tools to prove the main theorem.

Proof of Theorem 2.1.3. We will pick ε = O((logm/m)1/4), and show that for an appro-

priate such ε and n sufficiently large in terms of m and ε, E[Y (H)] ≤ (1 + ε)m. To this

end, we define the following three “atypical” events: E0, E1 and E∞.
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• The event E0 is the event that Y0(H) > (1 + 4ε)b0(H)/n, in other words that

significantly more than the average number of subcritical guesses are correct.

• The event E1 is the event that Yi(H) > (1 + 4ε)bi(H)/n + ε2m for some i ≥ 1, in

other words that for some critical card i, significantly more than the average number

of critical guesses of card i are correct.

• The event E∞ is the event that there is at least one supercritical card. In this case,

this single card is guessed at least (1− ε)mn times.

Our goal will be to calculate the conditional expectation of Y (H) depending on

whether or not the exceptional events above occur. It will be convenient to group E0 and

E1 together and define their union A = E0 ∨ E1. Then,

E[Y (H)] = Pr[A]E[Y (H)|A]+Pr[A∧E∞]·E[Y (H)|A∧E∞]+Pr[A∧E∞]E[Y (H)|A∧E∞]. (2.13)

We first observe that if none of the events E0, E1 and E∞ occur, then the conditional

expectation of Y (H) is small. Indeed, we have

E[Y (H)|A ∧ E∞] = E[Y (H)|E0 ∧ E1 ∧ E∞] ≤ (1 + 5ε)m, (2.14)

since all guesses must be subcritical or critical, and there are at most ε−1 distinct critical

card types i.

Define pj = Pr[Ej] for j ∈ {0, 1}. We have by Lemma 2.2.10 and Lemma 2.2.13

that for some absolute constants c, c′ > 0,

p0 ≤ c′ε−2e−cε
4m
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and

p1 ≤ c′ε−3e−cε
4m,

where there is an extra multiplicative factor of ε−1 in the second inequality because there

may be up to ε−1 critical cards. In particular, we have

Pr[A] = Pr[E0 ∨ E1] ≤ p := 2c′ε−3e−cε
4m. (2.15)

By Lemma 2.2.14 we find

E[Y (H)|A] ≤ 200m+ 20 Pr[A]−1,

and so

Pr[A]E[Y (H)|A] ≤ 200mPr[A] + 20 ≤ 200mp+ 20,

for p defined above. By picking an appropriate ε = O((logm/m)1/4), we find

Pr[A]E[Y (H)|A] ≤ m−Ω(1) + 20 < εm (2.16)

for m sufficiently large.

Finally, to control the third term of (2.13), note that if there is a supercritical

card, at most m guesses are correct for that card (since there are a total of m copies of

that card in the deck), and at most εmn guesses are made of any other card, so all other

guesses are subcritical. In particular, including guesses of the unique supercritical card,

there at most b0(H) ≤ 2εmn subcritical guesses. Thus, by the definition of E0, we get

E[Y (H)|A ∧ E∞] ≤ m+ (1 + 4ε)(2εm) ≤ (1 + 3ε)m.
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In total, using (2.13), (2.14), (2.16), and the inequality above, we find that for

m,n sufficiently large,

E[Y (H)] ≤ εm+ Pr[A] · (1 + 5ε)m ≤ (1 + 6ε)m = m+O(m3/4 log1/4m),

completing the proof.

2.3 Concluding Remarks

2.3.1 Sharper Bounds

Our main result was a tight asymptotic upper bound on P+
m,n, which is the most

number of cards one can guess correctly in expectation in the partial feedback model.

Specifically, we proved P+
m,n = m + O(m3/4 log1/4m) provided n is sufficiently large. We

have a trivial lower bound of P+
m,n ≥ m coming from the strategy of guessing the same

card type every round, so we know P+
m,n ∼ m. At this point it is natural to ask to

improve upon the bounds for the error term of P+
m,n, and especially to improve upon the

trivial lower bound of m. For this latter task, we need to exhibit effective strategies for

the partial feedback model. It will also be of independent interest to construct practical

strategies, i.e. strategies for which a human player could reasonably implement.

Perhaps the simplest non-trivial strategy one could consider is the strategy of

guessing 1 until m correct guesses are made, then 2 until m correct guesses are made, and

so on. While this does better than the trivial strategy of guessing the same card type
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every round, one can show that this strategy only achieves about m + 1 − 1
m+1

correct

guesses in expectation, see [DGS20].

Another natural strategy to consider is the shifting strategy G defined by guessing

1 until you get a correct guess, then 2 until you get a correct guess, and so on; and if you

guess n correctly, play arbitrarily for the remaining trials. The score in this game turns

out to be somewhat complex, and it is closely related to certain increasing subsequences

of random multiset permutations.

For π ∈ Sm,n, let L(π) denote the largest integer p such that there exist i1 < · · · <

ip with πij = j for all 1 ≤ j ≤ p; i.e. L(π) is the longest subsequence of the form 12 · · · p.

It is not difficult to see that if one plays the partial feedback model with a deck shuffled

according to π ∈ Sm,n, then L(π) is at least the score obtained when using the shifting

strategy (and it is equal to the score provided the player does not get n correct guesses,

which happens with overwhelming probability). Together with Clifton, Deb, Huang, and

Yoo [CDH+21], we obtained very precise estimates for E[L(π)], and hence for the expected

score under the shifting strategy.

Theorem 2.3.1 ([CDH+21]). Let Lm,n = E[L(π)] where π ∼ Sm,n. For any integer

m ≥ 1, let α1, . . . , αm be the zeroes of Em(x) :=
∑m

k=0
xk

k!
. We have

Lm := lim
n→∞

Lm,n = −1−
∑

α−1
i e−αi . (2.17)

Moreover, there exists an absolute constant β > 0 such that∣∣∣∣Lm − (m+ 1− 1

m+ 2

)∣∣∣∣ ≤ O(e−βm).
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For example, this says that the limiting score of the shifting strategy when m = 1

is L1 = e − 1, which is easy to prove by hand. However, even at m = 2 we get the

non-trivial conclusion that L2 = e(cos(1) + sin(1))− 1.

Theorem 2.3.1 shows that the shifting strategy also only gives about m + 1 cor-

rect guesses in expectation, so we see that the simplest possible strategies do not do

much better than the trivial one. The following result due to Diaconis, Graham, and

ourselves [DGS20] gives the best known strategy for the partial feedback model.

Theorem 2.3.2 ([DGS20]). If n is sufficiently large in terms of m, then

P+
m,n = m+ Ω(m1/2).

Sketch of Proof. Consider the following strategy. Guess 1 a total of mn/2 times. If you

guessed at least 1
2
m +

√
m cards correctly, guess 2 for the rest of the game, otherwise

keep guessing 1. In the latter scenario we always get exactly m correct guesses. One can

show that the first scenario happens with some constant probability, and given this, the

expected number of 2’s left in the second half of the deck is at least m/2. In total this

gives a lower bound of m+ Ω(m1/2).

We suspect that this lower bound is close to the truth.

Conjecture 2.3.3. For all ε > 0 and n sufficiently large,

P+
m,n = m+O(m1/2+ε).
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The current proof overshoots this bound at two points. The first is in Lemma 2.2.9

where we try and bound the probability that an “adversarial” binomial distribution de-

viates significantly from its mean. Our proof of this lemma essentially only used a union

bound, and it’s plausible that more sophisticated techniques could decrease this error

term.

The second point is in the bounds of Lemmas 2.2.10 and 2.2.13 where we bound

the probability that the subcritical or critical guesses are much larger than average. We

note that by adding in an error term of εm to the lower bound of Y0 in Lemma 2.2.10,

one can decrease the probability from roughly e−ε
4m to e−ε

3m (which could go down to

e−ε
2m if Lemma 2.2.9 is improved), so the central issue is the critical case, and it seems

like new ideas are needed here.

2.3.2 Minimizing Scores

Another problem of interest is bounding P−m,n, the fewest number of cards one

can guess correctly in expectation in the partial feedback model. In [DGS20] we proved

P−m,n ≤ m−Ω(m1/2) using an analog of the strategy for P+
m,n sketched in Theorem 2.3.2.

We also proved an asymptotic lower bound for P−m,n of 1 − e−m by showing that one

always has probability at least roughly 1 − e−m of guessing at least one card correctly.

Thus P−m,n = Ω(1), which is again in sharp contrast to the complete feedback model

where one can get arbitrarily few correct guesses in expectation. There is still a large

gap between these bounds, and as in Theorem 2.1.3 we suspect that the partial feedback

40



model does not allow one to guess significantly fewer guesses than in the no feedback

model.

Conjecture 2.3.4. If n is sufficiently large in terms of m, then

P−m,n ∼ m.

The central difficulty in this setting is that there does not exist an analog of

Lemma 2.2.1 which lower bounds Pr[πt = i] given that we have not guessed i many times

and that we have guessed few cards correctly. For example, say we incorrectly guessed 1

a total of (m− 1)n, so the remaining cards are m copies of 1. Then the probability that

the next card is 2 is 0 despite the fact that we have not guessed 2 at all nor guessed any

cards correctly.

2.3.3 Other Models

One can consider variants of these models where π is chosen according to some

non-uniform distribution. For m = 1, the case when π is obtained from a single riffle

shuffle is studied by Ciucu [Ciu98] (under no feedback), and Liu [Liu21] (under complete

feedback). Analysis under repeated “top to random shuffles” is done by Pehlivan [Peh10].

In [Spi21], we considered a variant of the complete feedback model where an ad-

versary is allowed to shuffle the deck according to an arbitrary distribution. Our main

result can be stated as follows.
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Theorem 2.3.5 ([Spi21]). There exists a distribution for π ∈ Sm,n such that for any

strategy G in the complete feedback model,

Γ

(
1 +

1

m

)
(m!)1/m · n−1/m + o(n−1/m) ≤ E[C(G,π)] ≤ log n+ o(log n).

Moreover, both of these bounds are asymptotically best possible.

By Theorem 2.1.2 we see that these bounds differ from those of C±m,n (i.e. the

maximum expected score when the deck is shuffled according to a uniform distribution) by

multiplicative factors of (m!)1/m and Hm, respectively. Thus an adversary can significantly

alter the extremal scores that the player can obtain in expectation.

This chapter contains material from: P. Diaconis, R. Graham, X. He, and S.

Spiro, “Card Guessing with Partial Feedback”, Combinatorics, Probability, and Comput-

ing (2021) 1–20. The dissertation author was one of the primary investigators and authors

of this paper.
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Chapter 3

Turán’s Problem in Random

Hypergraphs

3.1 Introduction

Recall that Hr
n,p denotes the random r-graph obtained by keeping each possible

hyperedge on Kn independently and with probability p, and that ex(Hr
n,p,F) denotes

the maximum size of an F -free subgraph of Hr
n,p. The problem of understanding the

behavior of ex(Hr
n,p,F) when F contains no r-partite r-graphs was essentially solved

due to independent work of Conlon and Gowers [CG16] and Schacht [Sch16], but only a

few sporadic results are known when F contains an r-partite r-graph. The first result

in this direction was obtained by Füredi [Für94] who essentially solved the problem for

F = {C4}. Kohayakawa, Kreuter, and Steger [KKS98] considered the more general
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problem of avoiding C2` and proved essentially tight bounds whenever p is not too large.

In breakthrough work, Morris and Saxton [MS16] essentially solved the problem for F =

{C2`} and F = {Ks,t} for all values of p provided certain well known conjectures in

extremal graph theory are true.

In this chapter we consider analogs of these results for hypergraphs. For example,

we proved the following result with Verstraëte [SV21], where here Ks1,...,sr denotes the

complete r-partite r-graph with parts of sizes s1, . . . , sr.

Theorem 3.1.1 ([SV21]). For r ≥ 2, let 2 ≤ s1 ≤ · · · ≤ sr be integers, ai =
∏i−1

j=1 sj for

i = r, r + 1, and

β1 =

∑r
i=1 si − r
ar+1 − 1

and β2 =
ar(
∑r−1

i=1 si − r) + 1

(ar − 1)(ar+1 − 1)
.

If ex(n,Ks1,...,sr) = Ω(nr−1/ar), then a.a.s.

ex(Hr
n,p, Ks1,...,sr) =



Θ(pnr) n−r log n ≤ p ≤ n−β1 ,

nr−β1+o(1) n−β1 ≤ p ≤ n−β2(log n)2ar/(ar−1),

Θ(p1−1/arnr−1/ar) n−β2(log n)2ar/(ar−1) ≤ p ≤ 1.

For example, in Figure 3.1 we have plotted f(n, p) = E[ex(Gn,p, K2,2)]. Note that

this plot goes through three distinct phases: when p is very small, one can find a K2,2-free

subgraph using almost every edge of Gn,p. The function is essentially constant for medium

values of p, and for larger p the function grows in some non-trivial way with p. This kind

of behavior is typical for these sorts of problems.
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Figure 3.1: Plot of f(n, p) = E[ex(Gn,p, K2,2)].

We next turn to hypergraph cycles. There are several different notions of hyper-

graph cycles, and we start by considering loose cycles. The r-uniform loose `-cycle Cr
` is

the r-graph which is obtained from the graph cycle C` by inserting r− 2 distinct vertices

into each edge of C2`. More precisely, the hypergraph consits of hyperedges e1, . . . , e` such

that there exist distinct vertices v1, . . . , v` with ei−1 ∩ ei = {vi} (where the indices are

written cyclically) and ei ∩ ej = ∅ otherwise. See Figure 3.2 for a picture of C3
4 .

With Nie and Verstraëte [NSV20], we obtained the following bound for the loose

triangle C3
3 .

45



Figure 3.2: The leftmost hypergraph depicts C3
4 . All of the hypergraphs are examples

of 3-uniform Berge 4-cycles.

Theorem 3.1.2 ([NSV20]). If p ≥ n−
3
2 (log n)3, then a.a.s.

p
1
3n2−o(1) ≤ ex(H3

n,p, C
3
3) ≤ p

1
3n2+o(1).

We note that it is easy to show ex(H3
n,p, C

3
3) = Θ(pn3) provided n−3 � p� n−3/2

by a standard deletion argument. Bounds for r > 3 were also obtained in [NSV20], but

these bounds are not tight and somewhat cumbersome to state. The best known bounds

involving loose even cycles Cr
2` are due to Mubayi and Yepremyan [MY20], and once again

there are significant gaps between the best known upper and lower bounds.

We next turn to Berge cycles, which is the main focus of this chapter. For ` ≥ 2,

an r-graph F is said to be a Berge `-cycle if there exist distinct vertices v1, . . . , v` and

distinct hyperedges e1, . . . , e` with vi, vi+1 ∈ ei for all 1 ≤ i ≤ `. See Figure 3.2 for some

examples of 3-uniform Berge 4-cycles.

Observe that the loose cycle Cr
` is a Berge `-cycle, and that a hypergraph H is

linear (i.e. no two hyperedges of H intersect in at least two vertices) if and only if it

contains no Berge 2-cycle. We denote by Cr` the family of all r-uniform Berge `-cycles. If
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H is an r-graph containing a Berge cycle, then the girth of H is the smallest ` ≥ 2 such

that H contains a Berge `-cycle. Let Cr[`] = Cr2 ∪ Cr3 ∪ · · · ∪ Cr` denote the family of all

r-uniform Berge cycles of length at most `, and when r = 2 we simply write C[`]. With

this an r-graph has girth larger than ` if and only if it is Cr[`]-free.

Note that ex(Hr
n,p, Cr[2]) denotes the largest subgraph of Hr

n,p which has girth 3, i.e.

the largest subgraph which is linear. It is not hard to show by a simple first moment

calculation that if p ≥ n−r log n, then a.a.s

ex(Hr
n,p, Cr[2]) = Θ(min{pnr, n2}).

By using a non-trivial argument, we can determines the a.a.s. behavior of the number of

edges in an extremal subgraph of Hr
n,p of girth four. In this theorem we omit the case

p < n−r+
3
2 , as it is straightforward to show that a.a.s ex(Hr

n,p, Cr[3]) = Θ(pnr) in this range

when p ≥ n−r log n.

Theorem 3.1.3. Let r ≥ 3. If p ≥ n−r+
3
2 (log n)2r−3, then a.a.s.

p
1

2r−3n2−o(1) ≤ ex(Hr
n,p, Cr[3]) ≤ p

1
2r−3n2+o(1).

We are not able to obtain tight bounds for larger girths. Part of the difficulty here

lies with the fact that the Turán numbers ex(n, Cr[`]) are unknown in general. A reasonable

guess is the following, which is essentially a strengthening of a conjecture of Erdős and

Simonovits [ES83] for graphs.

Conjecture 3.1.4. For all ` ≥ 3 and r ≥ 2 and k = b`/2c,

ex(n, Cr[`]) = n1+1/k−o(1).
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Conjecture 3.1.4 is known to hold for r = 2 without the o(1) term for ` ∈

{3, 4, 5, 6, 7, 10, 11}. It is also known to hold for ` = 3, 4 and r ≥ 3 – see [EFR86,

LV03, RS78, TV15] – but is open and evidently difficult for ` ≥ 5 and r ≥ 3. Györi

and Lemons [GL12] proved ex(n, Cr` ) = O(n1+1/k) with k = b`/2c, so the conjecture

concerns constructions of dense r-graphs of girth more than `. We emphasize that

the o(1) term in Conjecture 3.1.4 is necessary for ` = 3, due to the Ruzsa-Szemerédi

Theorem [EFR86, RS78], and for ` = 5, due to work of Conlon, Fox, Sudakov and

Zhao [CFSZ20].

With this conjecture in mind, we can prove the following.

Theorem 3.1.5. Let ` ≥ 4 and r ≥ 2, and let k = b`/2c and λ = d(r − 2)/(`− 2)e.

Then a.a.s.

ex(Hr
n,p, Cr[`]) ≤


n1+ 1

`−1
+o(1) n−r+1+ 1

`−1 ≤ p < n
−(r−1+λ)(k−1)

2k−1 (log n)(r−1+λ)k,

p
1

(r−1+λ)kn1+ 1
k

+o(1) n
−(r−1+λ)(`−1−k)

`−1 (log n)(r−1+λ)k ≤ p ≤ 1.

If Conjecture 3.1.4 is true, then

ex(Hr
n,p, Cr[`]) ≥


n1+ 1

`−1
+o(1) n−r+1+ 1

`−1 ≤ p < n
−(r−1)(`−1−k)

`−1 ,

p
1

(r−1)kn1+ 1
k
−o(1) n

−(r−1)(`−1−k)
`−1 ≤ p ≤ 1.

We emphasize that there is a significant gap in the bounds of Theorem 3.1.5 due

to the presence of λ in the exponent of p in the upper bound and its absence in the lower

bound, and we close this gap when ` = 3 through Theorem 3.1.3 by an improvement to

the lower bound. Thus the simplest case where a gap remains is when ` = 4 and r = 3.
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Letting g(n, p) = E[ex(H3
n,p, C3

[4])], we plot the bounds of Theorem 3.1.5 in Figure 3.3,

where the upper bound is in blue and the lower bound is in green.

Figure 3.3: Plot of g(n, p) = E[ex(H3
n,p, C3

[4])], the expected maximum size of a subgraph

of H3
n,p of girth five.

3.1.1 Counting F-free Hypergraphs

There are two somewhat standard techniques for proving bounds on ex(Hr
n.p,F).

For lower bounds, one (roughly speaking) considers a random map φ : V (Hr
n,p) → V (J)

where J is some F -free r-graph with many edges, and then one takes H ⊆ Hr
n,p to consist

of all the hyperedges which get mapped to hyperedges of T via φ. This exact approach

as stated does not work in general, but some standard adjustments can be used to get an

effective bound in many cases. We will see examples of this in Section 3.4.
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The problem of upper bounding ex(Hr
n,p,F) is typically harder and is intimately

related to the problem of counting F -free r-graphs with a given number of hyperedges,

which is a problem of independent interest. To this end, define Nr(n,F) to be the number

of F -free r-graphs on [n] := {1, . . . , n}, and define Nr
m(n,F) to be the number of F -free

r-graphs on [n] with exactly m hyperedges. A simple first moment argument can be

used to show that upper bounds on Nr
m(n,F) directly translate to upper bounds for

E[ex(Hr
n,p,F)], and this is essentially what we will use to prove all of the upper bounds

of our main results.

Recalling that ex(n,F) denotes the maximum number of hyperedges in an F -free

r-graph on [n]; it is not difficult to see that for 1 ≤ m ≤ ex(n,F),(
ex(n,F)

m

)m
≤
(

ex(n,F)

m

)
≤ Nr

m(n,F) ≤
((n

r

)
m

)
≤
(
enr

m

)m
,

and summing over m one obtains 2Ω(ex(n,F)) = Nr(n,F) = 2O(ex(n,F) logn). The state of the

art for bounding Nr(n,F) is the work of Ferber, McKinley, and Samotij [FMS20] which

shows that if F is an r-uniform hypergraph with ex(n, F ) = O(nα) and α not too small,

then

Nr(n, F ) = 2O(nα),

and this result encompasses many of the earlier results in the area [BNS19, BS11, CT17,

MS16].

There are relatively few families for which effective bounds for Nr
m(n,F) are known.

One family where results are known is C[`] = {C3, C4, . . . , C`}, the family of all graph cycles

of length at most `. Morris and Saxton implicitly proved the following in this setting:
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Theorem 3.1.6 ([MS16]). For ` ≥ 3 and k = b`/2c, there exists a constant c = c(`) > 0

such that if n is sufficiently large and m ≥ n1+1/(2k−1)(log n)2, then

N2
m(n, C[`]) ≤ ecm(log n)(k−1)m

(
n1+1/k

m

)km
.

We note that if ex(n, C[2`]) = Θ(n1+1/`), then this result would be best possible up

to the exponent of (log n)m

Essentially all of the previously known upper bounds for N2
m(n,F) required proving

a technical result known as a “balanced supersaturation” lemma together with a routine

(but tedious) calculation using the powerful machinery of hypergraph containers. Indeed,

this exact approach is what we used to prove Theorems 3.1.1 and 3.1.2, and is what was

used to prove Theorem 3.1.6. The main goal of this chapter is to present a fairly simple

argument which, assuming Theorem 3.1.6, can be used to count hypergraphs of a given

girth.

To this end, we write Nr
m(n, `) := Nr

m(n, Cr[`]) for the number of n-vertex r-graphs

with m edges and girth larger than `. By refining an argument of Balogh and Li [BL20],

we prove effective and almost tight bounds on Nr
m(n, `) relative to N2

m(n, `).

Theorem 3.1.7. Let `, r ≥ 3 and λ = d(r − 2)/(`− 2)e. Then for all m,n ≥ 1,

Nr
m(n, `) ≤ N2

m(n, `)r−1+λ. (3.1)

This inequality is essentially tight when `− 2 divides r− 2 due to standard proba-

bilistic arguments (see for instance Janson,  Luczak and Rucinski [J LR00]): it is possible

to show that when m ≤ n1+1/(`−1), the uniform model of random n-vertex r-graphs with
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m edges has girth larger than ` with probability at least a−m for some constant a > 1

depending only on ` and r. In particular, there exists some constants b, c > 1 such that

for m ≤ n1+1/(`−1) we have

Nr
m(n, `) ≥ a−m

((n
r

)
m

)
≥ b−m(nr/m)m ≥ b−m(n2/m)(r−1+ r−2

`−2
)m ≥ c−m · N2

m(n, `)r−1+ r−2
`−2 ,

(3.2)

where the third inequality used m ≤ n1+1/(`−1) and the last inequality used the trivial

bound N2
m(n, `) ≤ (en2/m)m. This shows that the bound of Theorem 3.1.7 is best possible

when ` − 2 divides r − 2 up to a multiplicative error of c−m for some constant c > 1.

We believe that (3.2) should define the optimal exponent, and propose the following

conjecture:

Conjecture 3.1.8. For all r ≥ 2, ` ≥ 3 and m,n ≥ 1,

Nr
m(n, `) ≤ N2

m(n, `)r−1+ r−2
`−2 .

Theorem 3.1.7 shows that this conjecture is true when `− 2 divides r − 2, so the

first open case of Conjecture 3.1.8 is when ` = 4 and r = 3. We note that a proof of

Conjecture 3.1.8 would give improved bounds to Theorem 3.1.5, but even with this there

would still be a gap between the upper and lower bounds.

In the case that Berge `-cycles are forbidden instead of all Berge cycles of length

at most `, we can prove an analog of Theorem 3.1.7 with weaker quantitative bounds.

To this end, let Nr
[m](n,F) denote the number of n-vertex F -free r-graphs on at most m

hyperedges.
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Theorem 3.1.9. For each `, r ≥ 3, there exists c = c(`, r) such that

Nr
m(n, Cr` ) ≤ 2cm · N2

[m](n,C`)
r!/2.

We suspect that this result continues to hold with N2
[m](n,C`) replaced by N2

m(n,C`).

In any case, one can use Theorem 3.1.9 to obtain non-trivial upper bounds on ex(Hr
n,p, Cr` ),

but these bounds are very far from the lower bounds when r is large.

Organization. Theorem 3.1.7 and the upper bounds of Theorems 3.1.5 and 3.1.3

are proven in Section 3.2. Theorem 3.1.9 is proven in Section 3.3. The lower bounds for

Theorems 3.1.5 and 3.1.3 are proven in Section 3.4.

Notation. A set of size k will be called a k-set. Given a hypergraph H on [n],

we define the k-shadow ∂kH to be the k-graph on [n] consisting of all k-sets e which lie

in a hyperedge of E(H). As much as possible, when working with a k-graph G and an

r-graph H with k < r, we will refer to elements of E(G) as edges and elements of E(H)

as hyperedges. If G1, . . . , Gq are k-graphs on [n], then
⋃
Gi denotes the k-graph G on [n]

which has edge set
⋃
E(Gi).

3.2 Counting Hypergraphs with Large Girth

As Balogh and Li [BL20] observed, if ` ≥ 3 and H has girth larger than `, then

H is uniquely determined by ∂2H, which we can view as the graph obtained by replacing

each hyperedge of H by a clique. A key insight in proving Theorem 3.1.7 is that we can

replace each hyperedge of H with a sparser graph B and still uniquely recover H from
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this graph. To this end, we say that a graph B is a book if there exist cycles F1, . . . , Fk

and an edge xy such that B =
⋃
Fi and E(Fi) ∩ E(Fj) = {xy} for all i 6= j. In this case

we call the cycles Fi the pages of B and we call the common edge xy the spine of B. The

following lemma shows that if we replace each hyperedge in H by a book on r vertices

which has small pages, then the vertex sets of books in the resulting graph are exactly

the hyperedges of H.

Lemma 3.2.1. Let H be an r-graph of girth larger than `. If ∂2H contains a book B on r

vertices such that every page has length at most `, then there exists a hyperedge e ∈ E(H)

such that V (B) = e.

Proof. Let F be a cycle in ∂2H with V (F ) = {v1, . . . , vp} such that vivi+1 ∈ E(∂2H)

for i < p and v1vp ∈ E(∂2H). If p ≤ ` we claim that there exists an e ∈ E(H) such

that V (F ) ⊆ e. Indeed, by definition of ∂2H there exists some hyperedge ei ∈ E(H)

with vi, vi+1 ∈ ei for all i < p and some hyperedge ep with v1, vp ∈ ep. If all of these ei

hyperedges are equal then we are done, so we may assume e1 6= ep. Define i1 to be the

largest index such that ei = e1 for all i ≤ i1, define i2 to be the largest index so that

ei = ei1+1 for all i1 < i ≤ i2, and so on up to iq = p, and note that 2 ≤ q ≤ p since

e1 6= ep. If all the eij hyperedges are distinct, then they form a Berge q-cycle in H since

v1+ij ∈ eij ∩ e1+ij = eij ∩ eij+1
for all j, a contradiction. Thus we can assume eij = eij′

for some j < j′. We can further assume that eis 6= eis′ for any j ≤ s < s′ < j′, as

otherwise we could replace j, j′ with s, s′. Finally note that j < j′ − 1, as otherwise we

would have eij = eij′ = eij+1, contradicting the maximality of ij. We conclude that the
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distinct hyperedges eij , eij+1
, . . . , eij′−1

form a Berge (j′ − j)-cycle with 2 ≤ j′ − j ≤ ` in

H, a contradiction. This proves the claim.

Now let B be a book with spine xy and pages F1, . . . , Fk of length at most `.

By the claim there exist hyperedges e1, . . . , ek ∈ E(H) such that V (Fi) ⊆ ei for all i,

and in particular x, y ∈ ei for all i. Because H is linear, this implies that all of these

hyperedges are equal and we have V (B) ⊆ e1. If B has r vertices, then we further have

V (B) = e1.

Proof of Theorem 3.1.7. With λ := d(r − 2)/(`− 2)e, we observe for all `, r ≥ 3 that there

exists a book graph B on r vertices {x1, . . . , xr} with r−1+λ edges f1, . . . , fr−1+λ. Indeed

if `−2 divides r−2 one can take λ copies of C` which share a common edge, and otherwise

one can take λ−1 copies of C` and a copy of Cp with p = r−(λ−1)(`−2) ≥ 3. From now

on we let B denote this book graph. If fi = {xj, xj′} ∈ E(B) and e = {v1, . . . , vr} ⊆ [n]

is any r-set with v1 < · · · < vr, define φi(e) = {vj, vj′}. If H is an r-graph on [n], define

φi(H) to be the graph on [n] which has all edges of the form φi(e) for e ∈ E(H); so in

particular
⋃
φi(H) is the graph obtained by replacing each hyperedge of H with a copy

of B. See Figure 3.4 for an example.

Let Hm,n denote the set of r-graphs on [n] with m hyperedges and girth more than

`, and let Gm,n be the set of graphs on [n] with m edges and girth more than `. We claim

that φi maps Hm,n to Gm,n. Indeed, if H ∈ Hm,n, then each hyperedge of H contributes

a distinct edge to φi(H) since H is linear, so e(φi(H)) = e(H) = m. One can show that

if φi(e1), . . . , φi(ep) form a p-cycle in φi(H), then e1, . . . , ep form a Berge p-cycle in H; so
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x1

x2 x3

B
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1
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5

2

H

Figure 3.4: A book B on 3 vertices and a 3-graph H on [5] which consists of two
hyperedges sharing a vertex. If f1 = {x1, x2}, then φ1(H) is the graph on [5] using the
two dashed edges 13 and 24 (since these two pairs consist of the two smallest elements of
each hyperedge of H).

H ∈ Hm,n implies φi(H) does not contain a cycle of length at most `.

Let Gtm,n = {(G1, G2, . . . , Gt) : Gi ∈ Gm,n} and define the map φ : Hm,n → Gr−1+λ
m,n

by

φ(H) = (φ1(H), . . . , φr−1+λ(H)).

We claim that this map is injective. Indeed, fix someH ∈ Hm,n and let B(G) denote the set

of books B in the graph G :=
⋃
φi(H) ⊆ ∂2H. By definition of φ we have E(H) ⊆ B(G)

for all H. Moreover, if H ∈ Hm,n, then Lemma 3.2.1 implies B(G) ⊆ E(H). Thus E(H)

(and hence H) is uniquely determined by G, which is itself determined by φ(H), so the

map is injective. In total we conclude

Nr
m(n, `) = |Hm,n| ≤ |Gr−1+λ

m,n | = N2
m(n, `)r−1+λ,

proving Theorem 3.1.7.

Before going onward, let us show how Theorem 3.1.7 implies our desired upper

bounds for the random Turán problem.
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Proof of Upper Bound of Theorem 3.1.5. Let

p0 = n−
(r−1+λ)(k−1)

2k−1 (log n)(r−1+λ)k.

For p ≥ p0, define

m = p
1

(r−1+λ)kn1+ 1
k log n,

and note that this is large enough to apply Theorem 3.1.6 for p ≥ p0. Let Ym denote

the number of subgraphs of Hr
n,p which are Cr[`]-free and have exactly m edges, and note

that ex(Hr
n,p, Cr[`]) ≥ m if and only if Ym ≥ 1. By Markov’s inequality, Theorem 3.1.7, and

Theorem 3.1.6:

Pr[Ym ≥ 1] ≤ E[Ym] = pm · Nr
m(n, `)

≤ pm · N2
m(n, `)r−1+λ

≤
(
p

1
r−1+λ ec(log n)k−1

(n1+ 1
k

m

)k)m(r−1+λ)

=
( ec

log n

)m(r−1+λ)

.

The right hand side converges to zero, so for p ≥ p0, a.a.s:

ex(Hr
n,p, Cr[`]) < m.

As E[ex(Hr
n,p, Cr[`])] is non-decreasing in p, the bound

ex(Hr
n,p, Cr[`]) < n1+ 1

`−1 (log n)2

continues to hold a.a.s. for all p < p0.
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Proof of Upper Bound of Theorem 3.1.5. This proof is almost identical to the previous,

so we omit some of the redundant details. Let m = p
1

2r−3n2 log n and let Ym denote the

number of subgraphs of Hr
n,p which are Cr[`]-free and have exactly m edges. By Markov’s

inequality, Theorem 3.1.7, and the trivial bound N2
m(n, 3) ≤

(
n2

m

)
which is valid for all m,

we find for all p

Pr[Ym ≥ 1] ≤ pm(en2/m)(2r−3)m = (e/ log n)m.

This quantity converges to zero, so we conclude the result by the same reasoning as in

the previous proof.

3.3 Counting Hypergraphs avoiding a Single Berge

Cycle

For arbitrary hypergraphs H, the map φ(H) = ∂r−1H (let alone the map to ∂2H) is

not injective. However, we will show that this map is “almost” injective when considering

H which are Cr` -free. To this end, we say that a set of vertices {v1, . . . , vr} is a core set

of an r-graph H if there exist distinct hyperedges e1, . . . , er with {v1, . . . , vr} \ {vi} ⊆ ei

for all i. The following observation shows that core sets are the only obstruction to

φ(H) = ∂r−1H being injective.

Lemma 3.3.1. Let H be an r-graph. If {v1, . . . , vr} induces a Kr−1
r in ∂r−1H, then either

{v1, . . . , vr} ∈ E(H) or {v1, . . . , vr} is a core set of H.
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Proof. By assumption of {v1, . . . , vr} inducing a Kr−1
r in ∂r−1H, for all i there exist

e′i ∈ E(∂r−1H) with e′i = {v1, . . . , vr} \ {vi}. By definition of ∂r−1H, this means there

exist (not necessarily distinct) ei ∈ E(H) with ei ⊇ e′i = {v1, . . . , vr} \ {vi}. Given this,

either ei = {v1, . . . , vr} for some i, or all of the ei distinct, in which case {v1, . . . , vr} is a

core set of H. In either case we conclude the result.

We next show that Cr` -free r-graphs have few core sets.

Lemma 3.3.2. Let `, r ≥ 3 and let H be a Cr` -free r-graph with m hyperedges. The number

of core sets in H is at most `2r2m.

Proof. We claim that H contains no core sets if ` ≤ r. Indeed, assume for contradiction

that H contained a core set {v1, . . . , vr} with distinct hyperedges ei ⊇ {v1, . . . , vr} \ {vi}.

It is not difficult to see that the hyperedges e1, . . . , e` form a Berge `-cycle, a contradiction

to H being Cr` -free. Thus from now on we may assume ` > r.

Let A1 denote the set of core sets in H, and for any A′ ⊆ A1 and (r − 1)-set S,

define dA′(S) to be the number of core sets A ∈ A′ with S ⊆ A. Observe that dA1(S) > 0

for at most
(
r
r−1

)
m = rm distinct (r − 1)-sets S, since in particular S must be contained

in a hyperedge of H.

Given Ai, define A′i ⊆ Ai to be the core sets A ∈ Ai which contain an (r − 1)-set

S with dAi(S) ≤ `r, and let Ai+1 = Ai \ A′i. Observe that |A′i| ≤ `r · rm since each

59



(r − 1)-set S with dAi(S) > 0 is contained in at most `r elements of A′i. In particular,

|A1| ≤ (`− r) · `r2m+ |A`−r+1| ≤ `2r2m+ |A`−r+1|. (3.3)

Assume for the sake of contradiction that A`−r+1 6= ∅. We prove by induction

on r ≤ i ≤ ` that one can find distinct vertices v1, . . . , vi and distinct hyperedges

e1, . . . , ei−1, ẽi such that vj, vj+1 ∈ ej for 1 ≤ j < i and v1, vi ∈ ẽi, and such that

{vi, vi−1, . . . , vi−r+2, v1} ∈ A`−i+1. For the base case, consider any {vr, vr−1, . . . , v1} ∈

A`−r+1. As this is a core set, there exist distinct hyperedges ej ⊇ {v1, . . . , vr} \ {vj+2}

and ẽr ⊇ {v1, . . . , vr} \ {v2}, proving the base case of the induction.

Assume that we have proven the result for i < `, which in particular implies that

{vi, vi−1, . . . , vi−r+2, v1} ∈ A`−i+1. Thus we have {vi, vi−1, . . . , vi−r+2, v1} /∈ A′`−i, so there

exists a set of vertices {u1, . . . , u`r+1} such that {vi, vi−1, . . . , vi−r+3, v1, uj} ∈ A`−i for

all j. Because |
⋃i−1
k=1 ek| ≤ `r, there exists some j such that uj /∈

⋃i−1
k=1 ek. For this

j, let vi+1 := uj and let ei, ẽi+1 be distinct hyperedges containing vi, vi+1 and v1, vi+1

respectively, which exist by assumption of this being a core set. Note that vi+1 is distinct

from every other vi′ since vi′ ∈
⋃i−1
k=1 ek for i′ ≤ i, and similarly the hyperedges ei, ẽi+1

are distinct from every hyperedge ei′ with i′ < i since these new hyperedges contain

vi+1 /∈
⋃i−1
k=1 ek. This proves the inductive step and hence the claim. The i = ` case of this

claim implies that H contains a Berge `-cycle, a contradiction. Thus A`−r+1 = ∅, and the

result follows by (3.3).

Combining these two lemmas gives the following result, which allows us to reduce
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from r-graphs to (r−1)-graphs. We recall that Nr
[m](n,F) denotes the number of n-vertex

F -free r-graphs on at most m hyperedges.

Proposition 3.3.3. For each `, r ≥ 3, there exists c = c(`, r) such that

Nr
[m](n, Cr` ) ≤ 2cm · Nr−1

[m] (n, Cr−1
` )r.

Proof. If e = {v1, v2, . . . , vr} ⊆ [n] is any r-set with v1 < v2 < · · · < vr, let φi(e) =

{v1, . . . , vr} \ {vi}. Given an r-graph H on [n], let φi(H) be the (r − 1)-graph on [n]

with edge set {φi(e) : e ∈ E(H)}, and define φ(H) = (φ1(H), φ2(H), . . . , φr(H)) and

ψ(H) = (φ(H), E(H)). Observe that
⋃
φi(H) = ∂r−1H. Let H[m],n denote the set of all

r-graphs on [n] with at most m hyperedges which are Cr` -free, and let φ(H[m],n), ψ(H[m],n)

denote the image sets of H[m],n under these respective maps. Observe that ψ is injective

since it records E(H), so it suffices to bound how large ψ(H[m],n) can be.

Let G[m],n denote the set of (r − 1)-graphs on [n] which have at most m edges

and which are Cr−1
` -free. It is not difficult to see that φ(H[m],n) ⊆ Gr[m],n. We observe

by Lemmas 3.3.1 and 3.3.2 that for any (G1, G2, . . . , Gr) ∈ φ(H[m],n), say with φ(H) =

(G1, . . . , Gr), there are at most (1 + `2r2)m copies of Kr−1
r in

⋃
Gi = ∂r−1H. We also

observe that if ((G1, G2, . . . , Gr), E) ∈ ψ(H[m],n), then E is a set of at most m copies

of Kr−1
r in

⋃
Gi. Thus given any (G1, . . . , Gr) ∈ φ(H[m],n) ⊆ Gr[m],n, there are at most

2(1+`2r2)m choices of E such that ((G1, . . . , Gr), E) ∈ ψ(H[m],n). We conclude that

N[m](n, Cr` ) = |H[m],n| ≤ |G[m],n|r · 2(1+`2r2)m = Nr
[m](n, Cr−1

` )r · 2(1+`2r2)m,

proving the result.
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Applying this proposition repeatedly gives Nr
[m](n, Cr` ) ≤ 2cmN2

[m](n,C`)
r!/2. Com-

bining this with the trivial inequality Nr
m(n, Cr` ) ≤ Nr

[m](n, Cr` ) gives Theorem 3.1.9.

3.4 Lower Bounds: Random Homomorphisms

To prove lower bounds for ex(Hr
n,p, Cr[`]), we use homomorphisms similar to Foucaud,

Krivelevich and Perarnau [FKP15] and Perarnau and Reed [PR17]. If F and F ′ are

hypergraphs and χ : V (F ) → V (F ′) is any map, we let χ(e) = {χ(u) : u ∈ e} for any

e ∈ E(F ). For two r-graphs F and F ′, a map χ : V (F ) → V (F ′) is a homomorphism if

χ(e) ∈ E(F ′) for all e ∈ E(F ), and χ is a local isomorphism if χ is a homomorphism and

χ(e) 6= χ(f) whenever e, f ∈ E(F ) with e ∩ f 6= ∅. A key lemma is the following:

Lemma 3.4.1. If F ∈ Cr[`] and χ : F → F ′ is a local isomorphism, then F ′ has girth at

most `.

Proof. Let F be a Berge p-cycle with p ≤ ` and E(F ) = {e1, e2, . . . , ep}. Then there

exist distinct vertices v1, v2, . . . , vp such that vi ∈ ei ∩ ei+1 for i < p and vp ∈ ep ∩ e1.

First assume there exists i 6= j such that χ(ei) = χ(ej). By reindexing, we can assume

χ(e1) = χ(ek) for some k > 1, and further that χ(ei) 6= χ(ej) for any 1 ≤ i < j < k. Note

that k ≥ 3 since e1∩e2 6= ∅ and χ is a local isomorphism. If we also have χ(vi) 6= χ(vj) for

all 1 ≤ i < j < k, then χ(vi) ∈ χ(ei)∩χ(ei+1) for i < k−1 and χ(vk−1) ∈ χ(ek−1)∩χ(e1),

so χ(e1), χ(e2), . . . , χ(ek−1) is the edge set of a Berge (k − 1)-cycle in F ′ as required.

Suppose χ(vi) = χ(vj) for some 1 ≤ i < j < k, and as before we can assume there
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exists no i ≤ i′ < j′ < j with χ(vi′) = χ(vj′). Then χ(vi), χ(vi+1), . . . , χ(vj−1) are distinct

vertices with χ(vh) ∈ χ(eh) ∩ χ(eh+1) for i ≤ h < j − 1 and χ(vj−1) ∈ χ(ej−1) ∩ χ(e1).

Note that χ(vi) 6= χ(vi+1) since this would imply |χ(ei)| < r, contradicting that χ is

a homomorphism, so j > i + 1. Thus the hyperedges χ(ei), χ(ei+1), . . . , χ(ej−1) form a

Berge (j − i)-cycle in F ′ with j − i ≥ 2 as desired.

This proves the result if χ(ei) = χ(ej) for some i 6= j. If this does not happen and

the χ(vi) are all distinct, then F ′ is a Berge p-cycle, and if χ(vi) = χ(vj) then the same

proof as above gives a Berge (j − i)-cycle in F ′.

The following lemma allows us to find a relatively dense subgraph of large girth in

any r-graph whose maximum i-degree is not too large, where the i-degree of an i-set S is

the number of hyperedges containing S.

Lemma 3.4.2. Let `, r ≥ 3 and let H be an r-graph with maximum i-degree ∆i for each

i ≥ 1. If t ≥ r24r∆
1/(r−i)
i for all i ≥ 1, then H has a subgraph H ′ of girth larger than `

with

e(H ′) ≥ ex(t, Cr[`])t−r · e(H).

Proof. Let J be an extremal Cr[`]-free r-graph on t vertices and χ : V (H)→ V (J) chosen

uniformly at random. Let H ′ ⊆ H be the random subgraph which keeps the hyperedge

e ∈ E(H) if

(1) χ(e) ∈ E(J), and

(2) χ(e) 6= χ(f) for any other f ∈ E(H) with |e ∩ f | 6= 0.
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We claim thatH ′ is Cr[`]-free. Indeed, assumeH ′ contained a subgraph F isomorphic

to some element of Cr[`]. Let F ′ be the subgraph of J with V (F ′) = {χ(u) : u ∈ V (F )}

and E(F ′) = {χ(e) : e ∈ E(F )}, and note that F ⊆ H ′ implies that each hyperedge of F

satisfies (1), so every element of E(F ′) is a hyperedge in J . By conditions (1) and (2), χ

is a local isomorphism from F to F ′. By Lemma 3.4.1, F ′ ⊆ J contains a Berge cycle of

length at most `, a contradiction to J being Cr[`]-free.

It remains to compute E[e(H ′)]. Given e ∈ E(H), let A1 denote the event that

(1) is satisfied, let Ei = {f ∈ E(H) : |e ∩ f | = i}, and let A2 denote the event that

χ(f) 6⊆ χ(e) for any f ∈
⋃
iEi, which in particular implies (2) for the hyperedge e. It

is not too difficult to see that Pr[A1] = r!e(J)t−r, and that for any f ∈ Ei we have

Pr[χ(f) ⊆ χ(e)|A1] = (r/t)r−i. Note for each i ≥ 1 that |Ei| ≤ 2r∆i, as e has at most 2r

subsets of size i each of i-degree at most ∆i. Taking a union bound we find

Pr[A2|A1] ≥ 1−
r∑
i=1

|Ei|(r/t)r−i ≥ 1−
r∑
i=1

2r∆i(r/t)
r−i ≥ 1−

r∑
i=1

r−12−r ≥ 1

2
,

where the second to last inequality used (r4r)i−r ≥ r−14−r for i ≤ r. Consequently

Pr[e ∈ E(H ′)] = Pr[A1] · Pr[A2|A1] ≥ r!e(J)t−r · 1

2
≥ e(J)t−r,

and linearity of expectation gives E[e(H ′)] ≥ e(J)t−r · e(H) = ex(t, Cr[`])t−r · e(H). Thus

there exists some Cr[`]-free subgraph H ′ ⊆ H with at least ex(t, Cr[`])t−r · e(H) hyperedges.

Proof of lower bound of Theorem 3.1.5. By the Chernoff bound one can show for

p ≥ p1 := n
−(r−1)(`−1−k)

`−1
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that a.a.s. Hr
n,p has maximum i-degree at most Θ(pnr−i) for all i. If Conjecture 3.1.4 is

true, then a.a.s for p ≥ p1 Lemma 3.4.2 with t = Θ(p1/(r−1)n) gives:

ex(Hr
n,p, Cr[`]) = Ω(t−rex(t, Cr[`])pnr) = p

1
(r−1)kn1+ 1

k
−o(1).

This gives the desired result.

For Theorem 3.1.3 we use the following variant of Lemma 3.4.2:

Lemma 3.4.3. Let H be an r-graph and let R`,v(H) be the number of Berge `-cycles in

H on v vertices. For all t ≥ 1, H has a subgraph H ′ of girth larger than 3 with

e(H ′) ≥

(
e(H)t2−r −

3∑
`=2

∑
v

t2−vR`,v(H)

)
e−c
√

log t,

where c > 0 is an absolute constant.

Proof. By work of Ruzsa and Szemerédi [RS78] and Erdős, Frankl, Rödl [EFR86], it

is known for all t that there exists a Cr[3]-free r-graph J on t vertices with t2e−c
√

log t

hyperedges. Choose a map χ : V (H) → V (J) uniformly at random and define H ′′ ⊆ H

to be the subgraph which keeps a hyperedge e = {v1, . . . , vr} ∈ E(H) if and only if

χ(e) ∈ E(J).

We claim that if e1, e2, e3 form a Berge triangle in H ′′, then χ(e1) = χ(e2) = χ(e3).

Observe that if v1, v2, v3 are vertices with vi ∈ ei ∩ ei+1, then we must have e.g. χ(v1) 6=

χ(v2), as otherwise |χ(e2)| < r. Because J is linear we must have |χ(ei) ∩ χ(ej)| ∈ {1, r}.

These hyperedges can not all intersect in 1 vertex since this together with the distinct

vertices χ(v1), χ(v2), χ(v3) defines a Berge triangle in J , so we must have say χ(e1) =
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χ(e2). But this means χ(v3), χ(v2) are distinct vertices in χ(e1) = χ(e2) and χ(e3), so

|χ(e1) ∩ χ(e3)| > 1 and we must have χ(e1) = χ(e3) as desired.

The probability that a given Berge triangle C on v vertices in H maps to a

given hyperedge in J is at most (r/t)v (since this is the probability that every ver-

tex of C maps into the edge of J). By linearity of expectation, H ′′ contains at most∑
v R3,v(H)e(J)(r/t)v Berge triangles in expectation. An identical proof shows that H ′′

contains at most
∑

v R2,v(H)e(J)(r/t)v Berge 2-cycles in expectation. We can then delete

a hyperedge from each of these Berge cycles in H ′′ to find a subgraph H ′ with

E[e(H ′)] ≥ e(J)t−r · e(H)−
3∑
`=2

∑
v

R`,v(H)e(J)(r/t)v.

The result follows since e(J) = t2e−c
√

log t.

Proof of Lower Bound of Theorem 3.1.3. By Markov’s inequality one can show that a.a.s.

R3,3r−3(Hr
n,p) = O(p3n3r−3). By the Chernoff bound we have a.a.s. that e(Hr

n,p) = Ω(pnr),

so if we take t = p2/(2r−3)n(log n)−1, then a.a.s. t5−3rR3,3r−3(Hr
n,p) is significantly smaller

than t2−re(Hr
n,p). A similar result holds for each term t2−vR`,v(H

r
n,p) with ` = 2, 3 and

v ≤ `(r−1), so by Lemma 3.4.3 we conclude ex(Hr
n,p, Cr[3])] ≥ p1/(2r−3)n2−o(1) a.a.s., proving

the lower bound in Theorem 3.1.3.

We note that the proof of Lemma 3.4.3 fails for larger `. In particular, a Berge

4-cycle can appear in H ′′ by mapping onto two edges in J intersecting at a single vertex,

and with this the bound becomes ineffective.

66



3.4.1 Relative Turán Problems

The lower bound techniques discussed above extend to a more general set of prob-

lems, which we briefly discuss here. Given an r-graph H and a set of r-graphs F , we

define the relative Turán number ex(H,F) to be the largest size of an F -free subgraph

of H. The central problem here is to bound ex(H,F) in terms of parameters of H. One

particular problem of this form is the following:

Problem 3.4.4. Given a family of r-graphs F , determine lower bounds for ex(H,F) in

terms of the number of edges of H and the maximum degree of H.

In some sense this problem is a “worst case analysis” of the function ex(H,F),

which complements the “average case analysis” which comes from studying ex(Hr
n,p,F).

One result in the spirit of Problem 3.4.4 was proven by Perarnau and Reed [PR17]:

for any graph G with maximum degree at most ∆,

ex(G,Ka,b) = Ω

(
ex(∆, Ka,b)

∆2

)
· e(G). (3.4)

This result is essentially best possible because G = K∆ has maximum degree at most ∆

and satisfies

ex(G,Ka,b) = ex(∆, Ka,b) ≈ ex(∆, Ka,b) ·
e(G)

∆2
.

Surprisingly, the bound (3.4) holds despite the fact that the order of magnitude of

ex(∆, Ka,b) is unknown for most values of a and b. In order to generalize (3.4), the

following was essentially conjectured by Foucaud, Krivelevich, and Perarnau [FKP15]:
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Conjecture 3.4.5. If F and G are graphs such that G has maximum degree at most ∆,

then

ex(G,F ) = Ω
(ex(∆, F )

∆2

)
· e(G).

One might naively conjecture that an analogous statement holds for r-uniform

hypergraphs, namely that

ex(H,F ) = Ω
(ex(∆1/(r−1), F )

∆r/(r−1)

)
· e(H),

since a clique H = Kr
n with n ≈ ∆1/(r−1) once again shows that such a bound would be

best possible. With Verstraëte, we proved that this naive conjecture for hypergrpahs is

very false, even for hypergraph analogs of Ka,b.

Theorem 3.4.6 ([SV21]). Let Ka,b,c be the complete 3-partite 3-uniform hypergraph with

parts of sizes a ≤ b ≤ c. There exists a 3-uniform hypergraph H with maximum degree ∆

such that

ex(H,Ka,b,c) = O(∆
−1
ab+a ) · e(H).

Moreover, if b is sufficiently large in terms of a, and if c is sufficiently large in terms of

b, then for all 3-uniform hypergraphs H of maximum degree at most ∆, we have

ex(H,Ka,b,c) ≥ ∆
−1
ab+a

−o(1) · e(H).

We emphasize that these bounds are not what one gets by considering H = K3
n,

since in this case it is conjectured that ex(K3
n, Ka,b,c) = Θ(n3− 1

ab ) = Θ(∆
−1
2ab ) · e(K3

n).

Thus the natural analog of (3.4) fails for 3-uniform hypergraphs. A generalization of
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Theorem 3.4.6 for complete r-partite r-graphs is also proven in [SV21]. We briefly outline

the ideas of this proof.

Sketch of Proof. Let H be a 3-graph with maximum degree ∆ and let D = ∆b/(1+b). If H

has maximum 2-degree at most D, then an analog of Lemma 3.4.2 gives the desired lower

bound. If every hyperedge of H contains a pair of vertices with codegree D, then we can

form a graph G consisting of these pairs with large codegrees, find a subgraph G′ ⊆ G

which contains no Ka,b (again by using an analog of Lemma 3.4.2), and then lift this to a

large Ka,b,c-free subgraph of H. By making some reductions, one can more or less assume

one of these two cases happen, giving the desired lower bound.

For the upper bound, let n = ∆1/(1+b) and take H to be the complete 3-partite

3-graph Kn,n,nb . We note that this example is motivated by the proof of the lower bound:

our parameters are such that H has maximum degree n1+b = ∆ and maximum 2-degree

nb = D. One can show by using an alteration of the proof of the Kővári-Sós-Turán

theorem that ex(H,Ka,b,c) = O(∆
−1
ab+a ) · e(H), proving the result.

Given our work on Berge cycles, it is natural to ask for lower bounds on ex(H, Cr[`]).

Unfortunately one can only prove trivial bounds on ex(H, Cr[`]) for r ≥ 3 because Cr[`]

contains sunflowers. A hypergraph F is said to be a sunflower if there exists a set K

called the kernel such that e ∩ f = K for any distinct edges e, f in F . If F ∈ Cr` is a

sunflower with kernel of size k, and if H is a sunflower with kernel of size k and ∆ edges,

then ex(H,F ) = ` − 1 = O(∆−1) · e(H). Thus the best lower bound one can prove is
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ex(H, Cr[`]) = Ω(∆−1) · e(H), and this trivially holds by considering a largest matching

in H. With Verstraëte, we showed that sunflowers are the only obstruction to obtaining

non-trivial bounds.

Theorem 3.4.7 ([SV20]). Let Ĉr[`] consist of all the elements of Cr[`] which are not sun-

flowers. If `, r ≥ 3 are such that Conjecture 3.1.4 holds, then for all r-graphs H with

maximum degree at most ∆, we have

ex(H, Ĉr[`]) ≥ ∆−1+ 1
(r−1)b`/2c−o(1) · e(H), (3.5)

and this bound is tight up to the o(1) term in the exponent for H = Kr
∆1/(r−1).

We note that the r = 2 case of Theorem 3.4.7 was originally proven by Perarnau

and Reed [PR17].

3.5 Concluding remarks

In this chapter, we extended ideas of Balogh and Li to bound the number of

n-vertex r-graphs with m edges and girth more than ` in terms of the number of n-

vertex graphs with m edges and girth more than `. The reduction is best possible when

m = Θ(n`/(`−1)) and `− 2 divides r− 2. Theorem 3.1.9 shows that similar reductions can

be made when forbidding a single family of Berge cycles.

By using variations of our method, we can prove the following generalization. For

a graph F , a hypergraph H is a Berge-F if there exists a bijection φ : E(F ) → E(H)
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such that e ⊆ φ(e) for all e ∈ E(F ). Let Br(F ) denote the family of r-uniform Berge-F .

We can prove the following extension of Theorem 3.1.9: if there exists a vertex v ∈ V (F )

such that F − v is a forest, then there exists c = c(F, r) such that

Nr
m(n,Br(F )) ≤ 2cm · N2

[m](n, F )r!/2.

For example, this result applies when F is a theta graph. We do not believe that the

exponent r!/2 is optimal in general, and we propose the following problem.

Problem 3.5.1. Let `, r ≥ 3. Determine the smallest value β = β(`, r) > 0 such that

there exists a constant c = c(`, r) so that, for all m,n ≥ 1,

Nr
m(n, Cr` ) ≤ 2cm · N2

[m](n,C`)
β.

Theorem 3.1.9 shows that β ≤ r!/2 for all `, r, but in principle it could be that

β = O`(r). We claim without proof that it is possible to use variants of our methods to

show β(3, r), β(4, r) ≤
(
r
2

)
, but beyond this we do not know any non-trivial upper bounds

on β.

It seems likely that the following conjecture is true:

Conjecture 3.5.2. Let `, r ≥ 3 and k = b`/2c. Then there exists γ = γ(`, r) such that

a.a.s.

ex(Hr
n,p, Cr[`]) =


n1+ 1

`−1
+o(1) n−r+1+ 1

`−1 ≤ p < n−
γ(`−1−k)

`−1 ,

p
1
γkn1+ 1

k
+o(1) n−

γ(`−1−k)
`−1 ≤ p ≤ 1.

Conjecture 3.1.8 suggests the possible value γ(`, r) = r− 1 + (r− 2)/(`− 2), which

is the correct value for ` = 3 by Theorem 3.1.3. We are not certain that this is the
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right value of γ in general, even when r = 3 and ` = 4, and more generally Conjecture

3.1.4 is an obstacle for r ≥ 3 and ` ≥ 5. Theorem 3.1.5 shows that if γ exists, then

(r − 1)k ≤ γ ≤ (r − 1 + λ)k provided Conjecture 3.1.4 holds. It would be interesting as

a test case to know if γ(3, 4) = 5/2:

Problem 3.5.3. Prove or disprove that Conjecture 3.5.2 holds with γ(3, 4) = 5/2.

This chapter contains material from: S. Spiro and J. Verstraëte, “Counting Hy-

pergraphs with Large Girth”, Journal of Graph Theory, accepted (2021). The dissertation

author was one of the primary investigators and authors of this paper.
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Chapter 4

Spread Hypergraphs

4.1 Introduction

Throughout this chapter we allow our hypergraphs to have repeated edges. If

A is a set of vertices of a hypergraph H, we define the degree of A to be the number

of edges of H containing A, and we denote this quantity by dH(A), or simply by d(A)

if H is understood. We say that a hypergraph H is q-spread if it is non-empty and if

d(A) ≤ q|A||H| for all sets of vertices A. A hypergraph is said to be r-bounded if each of

its edges have size at most r and it is r-uniform if all of its edges have size exactly r.

The notion of q-spread hypergraphs was introduced by Alweiss, Lovett, Wu, and

Zhang [ALWZ20] where it was a key ingredient in their groundbreaking work which sig-

nificantly improved upon the bounds on the largest size of a set system which contain no

sunflower. Their method was refined by Frankston, Kahn, Narayanan, and Park [FKNP21]
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who proved the following.

Theorem 4.1.1 ([FKNP21]). There exists an absolute constant K0 such that the following

holds. Let H be an r-bounded q-spread hypergraph on V . If W is a set of size K0(log r)q|V |

chosen uniformly at random from V , then W contains an edge of H with probability

tending to 1 as r tends towards infinity.

This theorem can be used to give short proofs of a number of important results,

see Section 4.2 for some examples.

Kahn, Narayanan, and Park [KNP21] used a variant of the method from [FKNP21]

to show that for certain q-spread hypergraphs, the conclusion of Theorem 4.1.1 holds for

random sets W of size only K0q|V |. They used this to determine the threshold for when

a square of a Hamiltonian cycle appears in the random graph Gn,p, which was a long-

standing open problem.

In a talk, Narayanan asked if there was a “smoother” definition of spread hyper-

graphs, one which interpolates between q-spread hypergraphs and hypergraphs like those

in [KNP21] where the log r term of Theorem 4.1.1 can be dropped. The aim of this

chapter is to provide such a definition.

Definition 1. Let 0 < q ≤ 1 be a real number and r1 > · · · > r` positive integers.

We say that a hypergraph H on V is (q; r1, . . . , r`)-spread if H is non-empty, r1-bounded,

and if for all 1 ≤ i < `, every A ⊆ V with d(A) > 0 and every integer j satisfying
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ri ≥ |A| ≥ j ≥ ri+1 has

Mj(A) := |{S ∈ H : |A ∩ S| ≥ j}| ≤ qj|H|.

Roughly speaking, this condition says that every set A of ri vertices intersects few

edges of H in more than ri+1 vertices. Note that we always have

Mj(A) ≤
∑

B⊆A:|B|=j

d(B),

and in practice it is often easiest to upper bound this sum rather than trying to upper

bound Mj(A) directly. As a warm-up, we show how this definition relates to the definition

of being q-spread.

Proposition 4.1.2. We have the following.

(a) If H is (q; r1, . . . , r`, 1)-spread, then it is q-spread.

(b) If H is q-spread and r1-bounded, then it is (4q; r1, . . . , r`)-spread for any sequence of

integers ri satisfying ri > ri+1 ≥ 1
2
ri.

Proof. For (a), assume H is (q; r1, . . . , r`, 1)-spread and let r`+1 = 1. Let A be a set of

vertices of H. If A = ∅, then d(A) = |H| = q|A||H|, so we can assume A is non-empty. If

d(A) = 0, then trivially d(A) ≤ q|A||H|, so we can assume d(A) > 0. This means |A| ≤ r1

since in particular H is r1 bounded. Thus there exists an integer 1 ≤ i ≤ ` such that

ri ≥ |A| ≥ ri+1, so the hypothesis that H is (q; r1, . . . , r`, 1)-spread and d(A) > 0 implies

d(A) ≤M|A|(A) ≤ q|A||H|,
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proving that H is q-spread.

For (b), assume H is q-spread and r1-bounded. If A is any set of vertices of H,

then for all j ≥ 1
2
|A| we have

Mj(A) ≤
∑

B⊆A:|B|=j

d(B) ≤ 2|A| · qj|H| ≤ (4q)j|H|.

In particular, if ri ≥ |A| ≥ ri+1, then this bound holds for any j ≥ ri+1 since ri+1 ≥ 1
2
ri ≥

1
2
|A|. We conclude that H is (4q; r1, . . . , r`)-spread.

We now state our main result for uniform hypergraphs, which says that a random

set of size C`q|V | will contain an edge of an r1-uniform (q; r1, . . . , r`, 1)-spread hypergraph

with high probability as C` tends towards infinity. An analogous result can be proven for

non-uniform hypergraphs, but for ease of presentation we defer this result to Section 4.4.

Theorem 4.1.3. There exists an absolute constant K0 such that the following holds. Let

H be an r1-uniform (q; r1, . . . , r`, 1)-spread hypergraph on V . If W is a set of size C`q|V |

chosen uniformly at random from V with C ≥ K0, then

Pr[W contains an edge of H] ≥ 1− K0

C`
.

We note that Theorem 4.1.3 with ` = Θ(log r) together with Proposition 4.1.2(b)

implies Theorem 4.1.1 for uniform H. In [KNP21], it is implicitly proven that the hyper-

graph H encoding squares of Hamiltonian cycles is a (2n)-uniform (Cn−1/2; 2n,C0n
1/2, 1)-

spread hypergraph for some appropriate constants C,C0, so the ` = 2 case of Theo-

rem 4.1.3 suffices to prove the main result of [KNP21]. Thus, at least in the uniform

76



case, Theorem 4.1.3 provides an interpolation between the results of [FKNP21, KNP21].

Theorem 4.1.3 can also be used to recover results from very recent work of Espuny Dı́az

and Person [EP21] who extended the results of [KNP21] to other spanning subgraphs of

Gn,p.

4.2 Applications

In this section we showcase the power of Theorems 4.1.1 and 4.1.3 through a

number of examples.

Theorem 4.2.1 ([JKV08]). Let Hr
n,m be the r-graph chosen uniformly at random amongst

all r-graphs with n vertices and m edges. Then there exists a constant C such that if

m ≥ Cn log n and n is a multiple of r, then Hr
n,m contains a perfect matching a.a.s.

It is not too difficult to show that this bound on m is essentially best possible. We

note that Hr
n,m behaves very similarly to Hr

n,p where p = m/
(
n
r

)
. In particular, one can

use Theorem 4.2.1 to prove that Hr
n,p contains a perfect matching a.a.s. if p is significantly

larger than n1−r log n. Proving Theorem 4.2.1 for r = 2 is not hard, but the result for

general r was thought to be very difficult, with its first proof due to Johansson, Kahn,

and Vu [JKV08] using a rather involved argument. We will prove Theorem 4.2.1 in just

a few lines with Theorem 4.1.3.

Proof. Let H be the hypergraph with vertex set V = E(Kr
n) where each hyperedge S is
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a perfect matching of Kr
n. Observe that for any set A ⊆ E(Kr

n), we have

d(A) · |H|−1 =
(n− r|A|)!

(r!)n/r−|A|(n/r − |A|)!
· (r!)n/r(n/r)!

n!

= (r!)|A|
(
n/r

|A|

)(
n

r|A|

)−1 |A|!
(r|A|)!

≤ (r!)|A|(en/r|A|)|A| · (n/r|A|)−r|A| · (|A|)|A| · (r|A|/e)−r|A|

= (r!)|A|e(r+1)|A|n−(r−1)|A| ≤ (n/re3)−(r−1)|A|.

Thus H is (n/re3)−r+1-spread. It is also (n/r)-uniform and has a ground set V = E(Kr
n)

of size
(
n
r

)
. By Theorem 4.1.3, we see that if m is at least as large as in our hypothesis,

then with high probability a random m-subset of H will contain a hyperedge, i.e. Hr
n,m

will contain a perfect matching with high probability.

Another basic example is the following.

Proposition 4.2.2. Let F be an r-graph and define

t(F ) = max

{
|E(F ′)|
|V (F ′)|

: F ′ ⊆ F

}
.

Let Hr
n,m be as in Theorem 4.2.1. There exists a constant C(F ) such that if m ≥

C(F )nr−1/t(F ), then Hr
n,m contains a copy of F a.a.s.

A simple first moment argument shows that this bound is tight. One can prove

Proposition 4.2.2 using a standard but somewhat tedious second moment argument, but

using Theorem 4.1.3 gives a shorter proof.

Proof. Let H be the hypergraph on E(Kr
n) whose hyperedges correspond to copies of

F . Observe that H being q-spread is equivalent to having (d(A)/|H|)1/|A| ≤ q for all
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A ⊆ V = E(Kr
n). Any set A ⊆ E(Kr

n) of positive degree in H forms some subgraph

F ′ ⊆ F with |E(F ′)| = |A|, and in this case

(
d(A)

|H|

)1/|A|

≤

(
n|V (F )|−|V (F ′)|(

n
|V (F )|

) )1/|A|

≤ |V (F )||V (F )| · n−|V (F ′)|/|E(F ′)|.

This implies that H is q-spread with

q = max{|V (F )||V (F )| · n−|V (F ′)|/|E(F ′)| : F ′ ⊆ F} = |V (F )||V (F )| · n−1/t(F ).

Plugging this into Theorem 4.1.3 gives the result.

The study of q-spread hypergraphs was initiated by Alweiss, Lovett, Wu, and

Zhang [ALWZ20] where they proved a slightly weaker version of Theorem 4.1.3. Their

motivation came from the Erdős sunflower conjecture. A k-sunflower is a hypergraph with

edges S1, . . . , Sk such that there exists a set K called the kernel which has Si ∩ Sj = K

for all i 6= j.

Theorem 4.2.3 ([ALWZ20, Rao19, BCW21]). There exists a constant C such that if H

is an r-graph with more than (Ck log r)r edges, then H contains a k-sunflower.

We note that [ALWZ20] was the first to prove a theorem of this form, with [Rao19,

BCW21] later giving better bounds in terms of k. When k is fixed, Theorem 4.2.3 gives

a bound of the form (log r)r+o(1). Prior to [ALWZ20], the best known bounds were of the

form rr−o(1). It is a famous conjecture of Erdős that one can prove a bound of the form

c
r+o(1)
k .
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Proof. We prove the result by induction on r, the r = 1 case being trivial. Let H be

an r-graph with at least (Ck log r)r edges. If H is not q-spread with q = (Ck log r)−1,

then there exists some A ⊆ V (H) such that d(A) ≥ (Ck log r)r−|A|. This means that the

link hypergraph HA = {S \ A : S ∈ H, A ⊆ S} has size at least (Ck log r)r−|A|. Since

HA is an (r−|A|)-uniform hypergraph, by induction HA contains a k-sunflower, say with

edges S1 \ A, . . . , Sk \ A ∈ HA. It is not difficult to check that S1, . . . , Sk ∈ H forms a

k-sunflower in H. We conclude that any H with at least (Ck log r)r edges which is not

q-spread contains a k-sunflower, so from now on we may assume H is q-spread.

Possibly by adding isolated vertices to H, we can assume that the size of the vertex

set V of H is a multiple of 2k. Let V1, . . . , V2k be a random partition of V such that each

Vi ⊆ V has size (2k)−1|V |. This means that each Vi is a uniformly chosen set of V of size

(2k)−1|V | = 1
2
C(log r)q|V |. Let 1i be the indicator variable for the event that Vi contains

an edge of H. By Theorem 4.1.3, we have Pr[1i = 1] ≥ 1
2

provided C is sufficiently

large. In this case, E[
∑

1i] ≥ k, and hence there exists some partition V1, . . . , V2k such

that
∑

1i ≥ k, which in particular means there exist k disjoint edges of H. This is a

k-sunflower in H, proving the result.

For our last application, we say that a subgraph G ⊆ Kn contains the square of

a Hamiltonian cycle if there exist a cyclic ordering of the vertices v1, . . . , vn such that vi

is adjacent to vi+1 and vi+2 for all i in G. Let Gn,m denote the random graph obtained

by uniformly choosing a graph on n vertices with m edges. Kühn and Osthus [KO12]

asked when Gn,m contains the square a of a Hamiltonian cycle with high probability. One
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can show using Theorem 4.1.1 that Gn,m will contain the square of a Hamiltonian cycle

with high probability if m ≥ Cn3/2 log n. It turns out that one can do better by utilizing

Theorem 4.1.3.

Theorem 4.2.4 ([KNP21]). There exists an absolute constant C such that if m ≥ Cn3/2,

then Gn,m contains the square of a Hamiltonian cycle a.a.s.

Proof. Let H be the hypergraph on E(Kn) whose hyperedges are squares of Hamiltonian

cycles. For this proof, we will rely on two elementary combinatorial results proven in

[KNP21]. First, [KNP21, Proposition 2.1] stated in our language says that if B ⊆ E(Kn)

is such that it consists of j ≤ n/4 edges and c non-trivial connected components, then

d(B) ≤ (16)j
(
n−

⌈
j + c

2

⌉
− 1

)
! (4.1)

Second, [KNP21, Proposition 2.2] says that if A ⊆ V has d(A) > 0, then the number of

subsets B ⊆ A with |B| = j and which have c non-trivial connected components is at

most

(8e)j
(

2|A|
c

)
. (4.2)

Using these results, we will show that H is (q; 2n, 4
√
n, 1)-spread for some q = Θ(n−1/2),

and from this the result will follow from Theorem 4.1.3.

First observe that H is (2n)-uniform, i.e. squares of Hamiltonian cycles have 2n

edges (provided n is sufficiently large). As noted in [KNP21, Equation (2)], one can prove

that H is q̃-spread with q̃ = Θ(n−1/2). This implies that for all A ⊆ E(Kn) and j with
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2n ≥ |A| ≥ j ≥ n/4 that

Mj(A) ≤
∑

B⊆A, |B|=j

d(B) ≤ 22n · q̃j|H| ≤ (28q̃)j|H|. (4.3)

If 2n ≥ |A| ≥ 4
√
n with d(A) > 0, and if n/4 ≥ j ≥ 4

√
n, then we can conclude that

Mj(A) ≤
∑

B⊆A, |B|=j

d(B) ≤ (128e)j
j∑
c=1

(
4n

c

)
· (n−

⌈
j + c

2

⌉
− 1)! (4.4)

where the second inequality follows by first partitioning the sum over B ⊆ A based off

of the number of connected components of B, then using (4.1) to upper bound d(B),

then using (4.2) to upper bound the number of B with a given number of connected

components. Noting that |H| = (n−1)!/2 ≥
√
n(n−1

e
)n−1 for n sufficiently large, and that

(n−
⌈
j+c

2

⌉
− 1)! ≤ 2

√
n(n−1

e
)n−1−j/2−c/2 for n sufficiently large, we have

(n−
⌈
j+c

2

⌉
− 1)!

|H|
≤ 2ej/2+c/2(n− 1)−j/2−c/2 ≤ 2ej(n/2)−j/2−c/2.

Thus (4.2) is at most

(128e)j|H|
j∑
c=1

(
4en

c

)c
· 2ej(n/2)−j/2−c/2 = 2(128e2(n/2)−1/2)j|H|

j∑
c=1

(
32e2n

c2

)c/2
≤ 2(128e100(n/2)−1/2)j|H|, (4.5)

where this last step used that the function (α/x2)x is maximized when x = e
√
α, i.e. at

ee
√
α, so taking x = c/2 and α = 8e2n gives

j∑
c=1

(
32e2n

c2

)c/2
≤ j · ee2

√
8n ≤ e98j,

where this last step critically used that j = Ω(
√
n). Combining (4.3) and (4.5), we

conclude for all 2n ≥ |A| ≥ j ≥ 4
√
n and d(A) > 0 that for some q = Θ(n−1/2), we have

Mj(A) ≤ qj|H|.
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Similarly for A ⊆ V and j with 4
√
n ≥ |A| ≥ j ≥ 1 and d(A) > 0, we have

Mj(A) ≤
∑

B⊆A, |B|=j

d(B) ≤ (128e)j
j∑
c=1

(
8
√
n

c

)
(n−

⌈
j + c

2

⌉
− 1)!,

and essentially the same reasoning as before gives that this is at most qj|H|. Thus H is

(q; 2n, 4
√
n, 1)-spread, giving the result.

We emphasize in the proceeding proof that one cannot prove Mj(A) ≤ qj|H| with

q = Θ(n−1/2) for arbitrary 2n ≥ |A| ≥ j ≥ 1. Roughly speaking, this is because the

expression
∑

B⊆A:|B|=j d(B) has too many terms when |A| �
√
n � j. Indeed, when

j = 1 one can check that this sum equals |A| · 2n

(n2)
|H| ≈ |A|n−1 · |H|, so there is no hope of

succeeding here with q = Θ(n−1/2) unless |A| = O(n1/2). This is why it is crucial that we

split our bounds for Mj(A) into separate ranges depending on |A|, j, and this partially

motivates the definition of being (q; r1, . . . , r`)-spread.

4.3 Proof of Theorem 4.1.3

Our approach borrows heavily from Kahn, Narayanan, and Park [KNP21]. We

break our proof into three parts: the main reduction lemma, auxiliary lemmas to deal

with some special cases, and a final subsection proving the theorem.

4.3.1 The Main Lemma

We briefly sketch our approach for proving Theorem 4.1.3. Let H be a hypergraph

with vertex set V . We first choose a random set W1 ⊆ V of size roughly q|V |. If W1

83



contains an edge of H then we would be done, but most likely we will need to try and

add in an additional random set W2 of size q|V | and repeat the process. In total then

we are interested in finding the smallest I such that W1 ∪ · · · ∪WI contains an edge of

H with relatively high probability. One way to guarantee that I is small would be if we

had |S \W1| small for most S ∈ H (i.e., most vertices of most edges S ∈ H are covered

by W1), and then that W2 covered most of the vertices of most S \W1, and so on.

The condition that, say, |S \ W1| is small for most S ∈ H turns out to be too

strong a condition to impose. However, if H is sufficiently spread, then we can guarantee

a weaker result: for most S ∈ H, there is an S ′ ⊆ S ∪W1 such that |S ′ \W1| is small. We

can then discard S and focus only on S ′, and by iterating this repeatedly we obtain the

desired result.

To be more precise, given a hypergraph H, we say that a pair of sets (S,W ) is

k-good if there exists S ′ ∈ H such that S ′ ⊆ S ∪W and |S ′ \W | ≤ k, and we say that

the pair is k-bad otherwise. The next lemma shows that (q; r, k)-spread hypergraphs have

few k-bad pairs with S ∈ H and W a set of size roughly q|V |. In the lemma statement

we adopt the notation that
(
V
m

)
is the set of subsets of V of size m.

Lemma 4.3.1. Let H be an r-uniform n-vertex hypergraph on V which is (q; r, k)-spread.

Let C ≥ 4 and define p = Cq. If pn ≥ 2r and p ≤ 1
2
, then

∣∣∣∣{(S,W ) : S ∈ H, W ∈
(
V

pn

)
, (S,W ) is k-bad

}∣∣∣∣ ≤ 3(C/2)−k/2|H|
(
n

pn

)
.
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Proof. Throughout this lemma we make frequent use of the identity(
a− c
b− c

)
/

(
a

b

)
=

(
b

c

)
/

(
a

c

)
,

which follows from the simple combinatorial identity
(
a
b

)(
b
c

)
=
(
a
c

)(
a−c
b−c

)
.

For t ≤ r, define

Bt = {(S,W ) : S ∈ H, W ∈
(
V

pn

)
, (S,W ) is k-bad, |S ∩W | = t}.

Observe that the quantity we wish to bound is
∑

t |Bt|, so it suffices to bound each term

of this sum. From now on we fix some t and define

w = pn− t.

At this point we need to count the number of elements in Bt, and there are several

natural approaches that could be used. One way would be to first pick any S ∈ H and

then count how many W satisfy (S,W ) ∈ Bt. Another approach would be to pick any set

Z of size r + w (which will be the size of S ∪W since |S ∩W | = t) and then bound how

many S,W ⊆ Z have (S,W ) ∈ Bt. For some pairs the first approach is more efficient,

and for others the second is. In particular, the second approach will be more effective

whenever Z = S ∪W contains few elements of Bt.

With this in mind, we say that a set Z is pathological if

|{S ∈ H : S ⊆ Z, (S,Z \ S) is k-bad}| > N,

where

N := (C/2)−k/2|H|
(
n− r
w

)
/

(
n

w + r

)
= (C/2)−k/2|H|

(
w + r

r

)
/

(
n

r

)
.
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We say that a pair (S,W ) is pathological if the set S ∪W is pathological and that (S,W )

is non-pathological otherwise.

Claim 4.3.2. The number of (S,W ) ∈ Bt which are non-pathological is at most

(
n

r + w

)
N

(
r

t

)
= (C/2)−k/2|H|

(
r

t

)(
n− r
w

)
.

Proof. We identify each of the non-pathological pairs (S,W ) by specifying S ∪W , then

S, then S ∩W .

Observe that S ∪W is a non-pathological set of size r+w, and in particular there

are at most
(

n
r+w

)
ways to make this first choice. Fix such a non-pathological set Z of size

r + w. Observe that if (S,W ) is k-bad with S ∪W = Z, then (S,Z \ S) is also k-bad.

Because Z is non-pathological, there are at most N choices for S such that (S,Z \ S)

is k-bad. Given S, there are at most
(
r
t

)
choices for S ∩W . Multiplying the number of

choices at each step gives the stated result.

Claim 4.3.3. The number of (S,W ) ∈ Bt which are pathological is at most

2(C/2)−k/2|H|
(
r

t

)(
n− r
w

)

Proof. We identify these pairs by first specifying S ∈ H, then S ∩W , then W \ S.

Note that S and S ∩W can be specified in at most |H| ·
(
r
t

)
ways, and from now

on we fix such a choice of S and S ∩W . It remains to specify W \ S, which will be some

element of
(
V \S
w

)
. Thus it suffices to count the number of W ′ ∈

(
V \S
w

)
such that (S,W ′)

is both k-bad and pathological.
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For W ′ ∈
(
V \S
w

)
, define

S(W ′) = |{S ′ ∈ H : S ′ ⊆ (S ∪W ′), |S ′ ∩ S| ≥ k}|.

Observe that if (S,W ′) is k-bad, then every edge S ′ ⊆ (S ∪W ′) has |S ′ ∩ S| ≥ k (since

|S ′ ∩ S| ≥ |S ′ \W ′|), so the W ′ we wish to count satisfy

S(W ′) = |{S ′ ∈ H : S ′ ⊆ (S ∪W ′)|.

If (S,W ′) is pathological, then this latter set has size at least N . In total, if W′ is chosen

uniformly at random from
(
V \S
w

)
, then

Pr[(S,W′) is k-bad and pathological] ≤ Pr[S(W′) ≥ N ] ≤ E[S(W′)]

N
, (4.6)

where this last step used Markov’s inequality. It remains to upper bound E[S(W′)].

Let

mj(S) = |{S ′ ∈ H : |S ∩ S ′| = j}|,

and observe that for any S ′ with |S∩S ′| = j, the number of W ′ ∈
(
V \S
w

)
with S ′ ⊆ S∪W ′

is exactly
(
n−2r+j
w−r+j

)
. With this we see that

E[S(W′)] =
∑
j≥k

mj(S)

(
n−2r+j
w−r+j

)(
n−r
w

) =
∑
j≥k

mj(S)

(
w
r−j

)(
n−r
r−j

) =

(
w+r
r

)(
n
r

) ∑
j≥k

mj(S)

(
w
r−j

)(
n−r
r−j

) · ( n
w+r

)(
n−r
w

) .
(4.7)

Because H is (q; r, k)-spread, we have for each j ≥ k in the sum that

mj(S) ≤Mj(S) ≤ qj|H|. (4.8)
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For integers x, y, define the falling factorial (x)y := x(x− 1) · · · (x− y + 1). With this we

have(
w
r−j
)(

n−r
r−j
) · ( n

w+r

)(
n−r
w

) =
(w)r−j

(n− r)r−j
· (n)r

(w + r)r
≤
(

w

n− r

)r−j
·
(
n− r

w

)r
=

(
w

n− r

)−j
≤ (Cq/2)−j ,

(4.9)

where the first inequality used w ≤ pn ≤ 1
2
n ≤ n− r, and the second inequality used

w = pn− t ≥ pn− r ≥ pn/2 = Cqn/2.

Combining (4.7), (4.8), and (4.9) shows that

E[S(W′)] ≤
(
w+r
r

)(
n
r

) |H|(C/2)−k ·
∑
j≥k

(C/2)k−j ≤
(
w+r
r

)(
n
r

) |H|(C/2)−k · 2,

where this last step used C ≥ 4. Plugging this into (4.6) shows that the number of

W ′ ∈
(
V \S
w

)
such that (S,W ′) is k-bad and pathological is at most

2(C/2)−k|H|
(
w+r
r

)(
n
r

)
N
·
(
n− r
w

)
= 2(C/2)−k/2 ·

(
n− r
w

)
.

Combining this with the fact that there were |H| ·
(
r
t

)
ways of choosing S and S∩W gives

the claim.

In total |Bt| is at most the sum of the bounds from these two claims. Using this

and w = pn− t implies

∑
t≤r

|Bt| ≤
∑
t≤r

3(C/2)−k/2|H|
(
r

t

)(
n− r
pn− t

)

= 3(C/2)−k/2|H|
(
n

pn

)
,

giving the desired result.
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4.3.2 Auxiliary Lemmas

To prove Theorem 4.1.3, we need to consider two special cases. The first is when

H is r-uniform with r relatively small. In this case the following lemma gives effective

bounds.

Lemma 4.3.4 ([FKNP21]). Let H be a q-spread r-bounded hypergraph on V and α ∈ (0, 1)

such that α ≥ 2rq. If W is a set of size α|V | chosen uniformly at random from V , then

the probability that W does not contain an element of H is at most

2e−α/(2rq).

The other special case we consider is the following.

Lemma 4.3.5. Let H be an r-uniform (q; r, 1)-spread hypergraph on V and α ∈ (0, 1)

such that α ≥ 4q. If W is a set of size α|V | chosen uniformly at random from V , then

the probability that W does not contain an edge of H is at most

4qα−1 + 2e−α|V |/4.

Proof. Let W ′ be a random set of V obtained by including each vertex independently and

with probability α/2. Let X = |{S ∈ H : S ⊆ W ′}| and define mj(S) to be the number
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of S ′ ∈ H with |S ∩ S ′| = j. Note that E[X] = (α/2)r|H| and that

Var(X) ≤ (α/2)2r
∑
S∈H

∑
S′∈H, S∩S′ 6=∅

(α/2)−|S∩S
′| = (α/2)2r

∑
S∈H

r∑
j=1

(α/2)−j ·mj(S)

≤ (α/2)2r
∑
S∈H

r∑
j=1

(α/2)−j · qj|H| = (α/2)2r

r∑
j=1

(α/2q)−j|H|2

= E[X]2(α/2q)−1

r∑
j=1

(α/2q)1−j ≤ 4E[X]2qα−1,

where the second inequality used that H being (q; r, 1)-spread implies mj(S) ≤ qj|H| for

all S ∈ H and j ≥ 1, and the last inequality used α/2q ≥ 2. By Chebyshev’s inequality

we have

Pr[X = 0] ≤ Var(X)/E[X]2 ≤ 4qα−1.

Lastly, observe that

Pr[W contains an edge of H] ≥ Pr[W ′ contains an edge of H
∣∣|W ′| ≤ α|V |]

≥ Pr[W ′ contains an edge of H]− Pr[W ′ > α|V |].

By the Chernoff bound (see for example [AS04]) we have Pr[|W ′| > α|V |] ≤ 2e−α|V |/4.

Note that W ′ contains an edge of H precisely when X > 0, so the result follows from our

analysis above.

We conclude this subsection with a small observation.

Lemma 4.3.6. If H is an r1-uniform (q; r1, . . . , r`)-spread hypergraph on V , then r1 ≤

eq|V |.
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Proof. Let m = maxS∈H d(S), i.e. this is the maximum multiplicity of any edge in H.

Then for any S ∈ H with d(S) = m, we have

m = Mr1(S) ≤ qr1|H| ≤ qr1 ·m
(
|V |
r1

)
≤ m(eq|V |/r1)r1 ,

proving the result.

4.3.3 Putting the Pieces Together

We now prove a technical version of Theorem 4.1.3 with more explicit quantitative

bounds. Theorem 4.1.3 will follow shortly (but not immediately) after proving this.

Theorem 4.3.7. Let H be an r1-uniform (q; r1, . . . , r`, 1)-spread hypergraph on V and let

C ≥ 8 be a real number. If W is a set of size 2C`q|V | chosen uniformly at random from

V , then

Pr[W contains an edge of H] ≥ 1− 6`2(C/4)−r`/2 − 40(C`)−1, (4.10)

and for any i with 4ri ≤ C` we have

Pr[W contains an edge of H] ≥ 1− 6`2(C/4)−ri/2 − 2e−C`/4ri . (4.11)

Proof. Define p := Cq and n := |V |. We can assume p ≤ 1
2
, as otherwise the result is

trivial. Let W1, . . .W`−1 be chosen independently and uniformly at random from
(
V
pn

)
.

Throughout this proof we let r`+1 = 1.

Let H1 = H and let φ1 : H1 → H be the identity map. Inductively assume we

have defined Hi and φi : Hi → H for some 1 ≤ i < `. Let H′i ⊆ Hi be all the edges
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S ∈ Hi such that (S,Wi) is ri+1-good with respect to Hi. Thus for each S ∈ H′i, there

exists an S ′ ∈ Hi such that S ′ ⊆ S ∪Wi and |S ′ \Wi| ≤ ri+1. Choose such an S ′ for

each S ∈ H′i and let AS be any subset of S of size exactly ri+1 that contains S ′ \ Wi

(noting that S ′ \Wi ⊆ S since S ′ ⊆ S ∪Wi). Finally, define Hi+1 = {AS : S ∈ H′i} and

φi+1 : Hi+1 → H by φi+1(AS) = φi(S).

Intuitively, φi(A) is meant to correspond to the “original” edge S ∈ H which

generated A. More precisely, we have the following.

Claim 4.3.8. For i ≤ `, the maps φi are injective and A ⊆ φi(A) for all A ∈ Hi.

Proof. This claim trivially holds at i = 1. Inductively assume the result has been proved

through some value i. Observe that in the process for generating Hi+1, we have implicitly

defined a bijection ψ : H′i → Hi+1 through the correspondence ψ(S) = AS.

By construction of φi+1, we have φi+1(A) = φi(ψ
−1(A)), so φi+1 is injective since φi

was inductively assumed to be injective and ψ is a bijection. Also be construction we have

A ⊆ ψ−1(A), and by the inductive hypothesis we have ψ−1(A) ⊆ φi(ψ
−1(A)) = φi+1(A).

This completes the proof.

For i < `, we say that Wi is successful if |Hi+1| ≥ (1− 1
2`

)|Hi|. Note that |Hi+1| =

|H′i|, so this is equivalent to saying that the number of ri+1-bad pairs (S,Wi) with S ∈ Hi

is at most 1
2`
|Hi|.

Claim 4.3.9. For i ≤ `, if W1, . . . ,Wi−1 are successful, then Hi is (2q; ri, . . . , r`, 1)-spread.
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Proof. For a hypergraph H′, we let Mj(A;H′) denote the number of edges of H′ inter-

secting A in at least j vertices. By Claim 4.3.8, if {A1, . . . , At} are the set of edges of Hi

which intersect some set A in at least j vertices, then {φi(A1), . . . , φi(At)} is a set of t

distinct edges of H intersecting A in at least j vertices. Thus for all sets A and integers

j we have Mj(A;Hi) ≤Mj(A;H).

If A is contained in an edge A′ of Hi, then by Claim 4.3.8 A is contained in the

edge φi(A
′) of H. Thus dHi(A) > 0 implies dH(A) > 0. By assumption of H being

(q; r1, . . . , r`, 1)-spread, if A is a set with ri′ ≥ |A| ≥ ri′+1 for some integer i′ such that

dHi(A) > 0, and if j is an integer satisfying j ≥ ri′+1, then our previous observations

imply

Mj(A;Hi) ≤Mj(A;H) ≤ qj|H|. (4.12)

Because each of W1, . . . ,Wi−1 were successful, we have

|Hi| ≥
(

1− 1

2`

)i
|H| ≥

(
1− 1

2`

)`
|H| ≥ 1

2
|H|,

where in this last step we used that (1 − 1/(2x))x is an increasing function for x ≥ 1.

Plugging |H| ≤ 2|Hi| into (4.12) shows that Hi is (2q; ri, . . . , r`, 1)-spread as desired.

Claim 4.3.10. For i < `,

Pr[Wi is not successful | W1, . . . ,Wi−1 are successful] ≤ 6`(C/4)−ri+1/2.

Proof. By construction Hi is ri-uniform. Conditional on W1, . . . ,Wi−1 being successful,

Claim 4.3.9 implies that Hi is in particular (2q; ri, ri+1)-spread. By hypothesis we have
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p ≤ 1
2

and C/2 ≥ 4, and by Lemma 4.3.6 applied to H we have 2ri ≤ pn since C ≥ 2e.

Thus we can apply Lemma 4.3.1 to Hi (using C/2 instead of C), which shows that the

expected number of ri+1-bad pairs (S,Wi) is at most 3(C/4)−ri+1/2|Hi|. By Markov’s

inequality, the probability of there being more than 1
2`
|Hi| total ri+1-bad pairs is at most

6`(C/4)−ri+1/2, giving the result.

We are now ready to prove the result. Let W and W ′ be sets of size 2`pn and `pn

chosen uniformly at random from V . Observe that for any 1 ≤ i ≤ `, the probability of

W containing an edge of H is at least the probability of W1 ∪ · · · ∪Wi−1 ∪W ′ containing

an edge of H, and this is at least the probability that W ′ contains an edge of Hi (since

every edge of Hi is an edge of H after removing vertices that are in W1 ∪ · · · ∪Wi−1), so

it suffices to show that this latter probability is large for some i.

By Proposition 4.1.2(a) and Claim 4.3.9, the hypergraph Hi will be (2q)-spread

if W1, . . . ,Wi−1 are all successful. If i is such that C` ≥ 4ri, then by Claim 4.3.10 and

Lemma 4.3.4 the probability that W1, . . . ,Wi−1 are all successful and W ′ contains an edge

of Hi is at least

1− 6`2(C/4)−ri/2 − 2e−C`/4ri ,

giving (4.11).

Alternatively, the probability that W ′ contains an edge of H` can be computed

using Lemma 4.3.5, which gives that the probability of success is at least

1− 6`2(C/4)−r`/2 − 16(C`)−1 − 2e−C`qn/4.
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Using qn ≥ e−1r1 ≥ 1/3 from Lemma 4.3.6 together with e−x ≤ x−1 gives (4.10) as

desired.

We now use this to prove Theorem 4.1.3.

Proof of Theorem 4.1.3. There exists a large constant K ′ such that if1 r` ≥ K ′ log(`+ 1),

then the result follows from (4.10). If this does not hold and if r1 > K ′ log(`+1), then there

exists some I ≥ 2 such that rI−1 > K ′ log(`+1) ≥ rI . If rI = K ′ log(`+1), then the result

follows from (4.11) with i = I provided C is sufficiently large in terms of K ′. Otherwise

we define a new sequence of integers r′1, . . . , r
′
`+1 with r′i = ri for i < I, r′I = K ′ log(`+ 1),

and r′i = ri−1 for i > I. It is not hard to see that H is (q; r′1, . . . , r
′
`+1, 1)-spread, so the

result follows2 from (4.11) with i = I.

It remains to deal with the case r1 ≤ K ′ log(` + 1). Because ` ≤ r1, this can only

hold if r1 ≤ K ′′ for some large constant K ′′. In this case we can apply Lemma 4.3.4 to

give the desired result by choosing K0 sufficiently large in terms of K ′′.

4.4 Concluding Remarks

With a very similar proof one can prove the following non-uniform analog of The-

orem 4.1.3.

1We consider log(` + 1) as opposed to log(`) to guarantee that this is a positive number for all ` ≥ 1.
2The bound of (4.11) now uses ` + 1 instead of ` throughout because we are working with the r′i

sequence, but this does not affect the final result.
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Theorem 4.4.1. Let H be a (q; r1, . . . , r`, 1)-spread hypergraph on V and define s =

minS∈H |S|. Assume that there exists a K such that r1 ≤ Kq|V |, and such that for all i

with ri > s we have log ri ≤ Kri+1. Then there exists a constant K0 depending only on K

such that if r` ≤ max{s,K0 log(`+ 1)} and C ≥ K0, then a set W of size C`q|V | chosen

uniformly at random from V satisfies

Pr[W contains an edge of H] ≥ 1− K0

C`
.

Observe that if H is r1-uniform then this reduces to Theorem 4.1.3 with the ad-

ditional constraint that r1 ≤ Kq|V | for some K. By Lemma 4.3.6, this extra condition

is always satisfied for uniform hypergraphs with K = e. We note that Theorem 4.4.1

together with Proposition 4.1.2(b) implies Theorem 4.1.1. We briefly describe the details

on how to prove this.

Sketch of Proof. We first adjust the statement and proof of Lemma 4.3.1 to allow H to

be r-bounded. To do this, we partition H into the uniform hypergraphs Hr′ = {S ∈ H :

|S| = r′}, and word for word the exact same proof3 as before shows that the number of

k-bad pairs using S ∈ Hr′ is at most 3(C/2)−k/2|H|
(
n
pn

)
. We then add these bounds over

all r′ to get the same bound as in Lemma 4.3.1 multiplied by an extra factor of r. With

regards to the other lemmas, one no longer needs Lemma 4.3.6 due to the r1 ≤ Kq|V |

hypothesis, and Lemmas 4.3.4 and 4.3.5 are fine as is (in particular, Lemma 4.3.5 still

requires H to be uniform).

3The Hr′ hypergraphs may not be spread, but they still have the property that mj(S) ≤ qj |H| for all
S ∈ Hr′ ⊆ H, and this is the only point in the proof where we used that H is spread.
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For the main part of the proof, instead of choosing AS to be a subset of S of size

exactly ri, we choose it to have size at most ri and at least min{ri, s}. With thisHi will be

uniform if ri ≤ s, and otherwise when we apply the non-uniform version of Lemma 4.3.1

our error term will have an extra factor of ri ≤ eKri+1 , with this inequality holding by our

hypothesis for ri > s. This term will be insignificant compared to (C/2)−ri+1/2 provided

C is large in terms of K.

If r` ≤ K ′ log(` + 1) for some large K ′ depending on K, then as in the proof

of Theorem 4.1.3 we can assume rI = K ′ log(` + 1) for some I and conclude the result

as before. Otherwise r` ≤ s by hypothesis, so H` will be uniform and we can apply

Lemma 4.3.5 to conclude the result.

Another extension can be made by not requiring the same “level of spreadness”

throughout H.

Definition 2. Let 0 < q1, . . . , q`−1 ≤ 1 be real numbers and r1 > · · · > r` positive integers.

We say that a hypergraph H on V is (q1, . . . , q`−1; r1, . . . , r`)-spread if H is non-empty,

r1-bounded, and if for all 1 ≤ i < `, every A ⊆ V with d(A) > 0 and every integer j

satisfying ri ≥ |A| ≥ j ≥ ri+1 has

Mj(A) = |{S ∈ H : |A ∩ S| ≥ j}| ≤ qji |H|.

Different levels of spread was also considered in [ALWZ20]. Here one can prove

the following.
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Theorem 4.4.2. Let H be a (q1, . . . , q`; r1, . . . , r`, 1)-spread hypergraph on V and define

s = minS∈H |S|. Assume that there exists a K such that for all i we have ri ≤ Kqi|V |,

and that for all i with ri > s we have log ri ≤ Kri+1. Then there exists a constant K0

depending only on K such that if r` ≤ max{s,K0 log(` + 1)} and if C ≥ K0, then a set

W of size C
∑
qi|V | chosen uniformly at random from V satisfies

Pr[W contains an edge of H] ≥ 1− K0 log(`+ 1)

CL
,

where L :=
∑

i qi/maxi qi.

Note that
∑
qi ≤ `max qi, so we have L ≤ ` with equality if qi = qj for all i, j.

Sketch of Proof. We now choose our random sets Wi to have sizes Cqi|V | and W ′ to have

size C
∑
qi|V | = C(L ·max qi)|V |. With this any of the Hi could be at worst (2 max qi)-

spread if each Hi′ was successful, so in this case when we apply Lemma 4.3.4 with W ′

we end up getting a probability of roughly 1 − e−CL/ri of containing an edge. From this

quantity we should subtract roughly `2C−ri , since this is the probability that some Hi′ is

unsuccessful. If ri = K ′ log(` + 1) for some large constant K ′ then this gives the desired

bound. Otherwise we can basically assume r` > K ′ log(` + 1) and apply Lemma 4.3.5 to

H` to get a probability of roughly 1−(CL)−1, which also gives the result after subtracting

`2C−r` to account for some Hi′ being unsuccessful.

Recently Frieze and Marbach [FM21] developed a variant of Theorem 4.1.1 for

rainbow structures in hypergraphs. We suspect that straightforward generalizations of
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our proofs and those of [FM21] should give an analog of Theorem 4.1.3 (as well as Theo-

rems 4.4.1 and 4.4.2) for the rainbow setting.

This chapter contains material from: S. Spiro, “A Smoother Notion of Spread

Hypergraphs”, submitted (2021). The dissertation author was the primary investigator

and author of this paper.
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