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The complex geometric features of subsurface fractures at different scales makes mesh generation
challenging and/or expensive. In this paper, we make use of neural style transfer (NST), a machine
learning technique, to generate mesh from rock fracture images. In this new approach, we use digital
rock fractures at multiple scales that represent ‘content’ and define uniformly shaped and sized triangles
to represent ‘style’. The 19-layer convolutional neural network (CNN) learns the content from the rock
image, including lower-level features (such as edges and corners) and higher-level features (such as rock,
fractures, or other mineral fillings), and learns the style from the triangular grids. By optimizing the cost
function to achieve approximation to represent both the content and the style, numerical meshes can be
generated and optimized. We utilize the NST to generate meshes for rough fractures with asperities
formed in rock, a network of fractures embedded in rock, and a sand aggregate with multiple grains.
Based on the examples, we show that this new NST technique can make mesh generation and optimi-
zation much more efficient by achieving a good balance between the density of the mesh and the
presentation of the geometric features. Finally, we discuss future applications of this approach and
perspectives of applying machine learning to bridge the gaps between numerical modeling and
experiments.
� 2021 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Fractures play key roles in subsurface energy recovery and
storage, including hydrocarbon and geothermal energy production,
and nuclear waste disposal. Fractures, with sizes ranging from
microns to kilometers, may act as conduits or seals for fluid flow in
these various subsurface energy activities (Rutqvist and
Stephansson, 2003), and thus it is essential to have a good under-
standing of their potentially dynamic features with good repre-
sentation of their geometric features.

Based on geometric features, fractures can be categorized into
three different scales: discrete thin fractures, rough fractures with
certain widths and with asperities (may or may not be filled with
minerals), and microscale grain assemblies and asperities (Hu et al.,
2017a; Hu and Rutqvist, 2020a,b, 2021). At reservoir scales, frac-
tures often appear in groups, arbitrarily oriented and intersecting
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
by-nc-nd/4.0/).
with each other, thus forming a network. These fractures are usu-
ally very thin (e.g. microns to millimeters) relative to their length
(meters). When a single fracture is examined more closely, it is
often rough and may be filled with minerals and connected to
smaller fractures in the surrounding rock. Zooming into the
microscale, a single fracture becomes a rough channel with asper-
ities made up of a number of tightly contacting mineral grains.

Mesh generation is an essential first step in numerical modeling
of fractures and rock matrix at any of these aforementioned scales
and can be challenging and/or expensive. At the discrete fracture
scale, arbitrarily oriented and intersected fractures may lead to a
great number of unevenly sized blocks that have many sharp cor-
ners. A number of mesh generators have been developed for
discrete fracture networks (e.g. the well-known dfnWorks devel-
oped by Hyman et al. (2015)). However, it is challenging to consider
a large number of fractures embedded in rock matrix. At the
microscale, these asperities create surfaces that are not smooth.
Because of the challenges associated with dynamics of contacts
between a number of arbitrarily shaped blocks, only rarely can a
mechanical model be applied at this scale (Hu and Rutqvist, 2020b).
More widely, fluid flow, transport and/or reaction are often
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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modeled at this scale (Al-Yaarubi et al., 2005; Zou et al., 2015;
Steefel, 2019), in which case the most common meshing technique
is to use rectangular elements to map the rough fracture channels.

Convolutional neural network (CNN) is one of the deep learning
approaches that has been widely applied to image recognition
(Simonyan and Zisserman, 2015; Babhulgaonkar et al., 2020;
Rabbani et al., 2020). When a CNN model is trained to recognize an
image, each feature from the input image can be extracted by an
image filter (a layer), and this several-layer filtered information is
propagated toward the output layer so as to form a filtered version
of the image with original ‘content’ (e.g. geometry). By combining
CNN for content and style presentation of texture information,
Gatys et al. (2015) invented neural style transfer (NST) to create
new art images. This was achieved by optimizing the approxima-
tion of a ‘content’ with texture of a ‘style’ by constructing a loss
function as a weighted average of the loss functions of content and
style. Since its invention, NST has drawn considerable interest as a
new approach for creating art artificially. However, this approach
has never been applied in science or engineering.

In this paper, we will make full use of the NST by combining
digital rock fractures atmultiple scales that represent ‘content’with
numerical meshes that represent ‘style’. We will first introduce the
approach and the structure that we used for the NST calculation.
Thenwe apply the NST to generate meshes for rough fractures with
explicit asperities formed in rock, a network of fractures embedded
in rock, and a sand aggregate with multiple grains. Finally, we
discuss future applications of this approach.
Fig. 1. Schematic of machine learning.
2. Approach

2.1. Machine learning and numerical modeling

Machine learning has been an increasingly popular research
approach that has been applied in disciplines ranging from social
science to natural sciences, geosciences (Karpatne et al., 2019;
Dumont et al., 2020; Mital et al., 2020), and engineering in recent
years. The approach benefits from the flexibility and generality of
using statistics and algorithms that enable computers to learn
without explicitly programming the physics.

When the desired output is given, for example bymeasurement,
synthesis, or results produced by other approaches such as nu-
merical modeling, a general statistical distribution (linear, poly-
nomial, logistic, Gaussian, or their combination) can be learned.
This is called supervised machine learning. When the desired
output is not given, the machine learns the pattern of the data and
finds the trend by itself. This is called unsupervised machine
learning. Linear and nonlinear data distribution functions lead to
continuous solutions, as desired in regression problems. In contrast,
logistic regression in combination with a set of discontinuous
functions may lead to a number of discontinuous numbers that
determine the decision boundaries. This type of problem is cate-
gorized as a classification problem.

A typical supervised machine learning algorithm involves the
following steps:

(1) Construct the hypothesis (a guess of the output). These
possible hypotheses include the aforementioned linear, poly-
nomial, logistic, Gaussian, or a network that combines these func-
tions (known as a neural network):

h ¼ g
�
qTx

�
(1)

where h represents the hypothesis; x is the matrix of the input data
with a number of features and a number of examples; and q is the
vector of weight factors that need to be determined, which function
as fitting coefficients of the distribution constrained by the avail-
able datasets for a given output.

(2) Construct the cost function, which can be understood as the
cost of deviation of a hypothesis from the given output:

J ¼ g½f ðh� yÞ� (2)

where f is the function of deviation of h from the given output y. For
a linear regression problem, it becomes

f ðh� yÞ ¼ 1
2
ðh� yÞTðh� yÞ (3)

If using regularization to enhance convergence, the cost func-
tion adds:

Jreg ¼ lqTq (4)

and the cost function becomes

J ¼ g
h
f ðh� yÞþ lqTq

i
(5)

where l is the penalty factor to prevent overfitting.
(3) Based on Eq. (2), the solution of each component of q can be

found by minimizing the cost function:

qkþ1
j ¼ qkj � m

vJ

vqkj
(6)

where the superscript k refers to the iteration number, the
subscript j refers to the jth feature, and m is the learning rate.

(4) Repeat steps (1)e(3) until the fitting coefficient vector q

reaches convergence. A simplified schematic of machine learning is
shown in Fig. 1.

Based on the features generalized above, the following similar-
ities can be found between machine learning and numerical
modeling, as listed in Table 1.

In Eq. (7), wT represents the shape function, 4 is the field vari-
able at interpolation units, and 4 is the field variable. Eq. (7) rep-
resents a typical linear interpolation that may be used in different
numerical methods such as finite element, finite difference, finite
volume, and numerical manifold methods. Comparison between
these numerical methods in terms of interpolationwas made by Hu
and Rutqvist (2020a). Similarity between linear interpolation in
numerical modeling and linear hypothesis in machine learning is
made explicit if Eqs. (7) and (12) are compared.

Eq. (8) represents higher-order interpolation with a larger
number of degrees of freedom (DOFs). These include: (1) Formu-
lation 1: increasing the number of interpolation nodes leading to
high-order weight functions; and (2) Formulation 2: increasing the
order of interpolation units from a constant value while keeping
the same weight function (Wang et al., 2016). Comparing Eqs. (7)
and (13), we find that if the function g is linear, then this type of
hypothesis resembles the second formulation of higher-order



Table 1
Theoretical comparison between numerical modeling and machine learning.

Numerical modeling No. Machine learning No.

Linear interpolation: 4 ¼ wT4 (7) Linear hypothesis: h ¼ qTx (12)

Higher-order interpolation: f ¼ A ðwTÞL ð4Þ (8) Neural network: h ¼ gðqTaÞ, a ¼ qTx (13)

Total potential energy: P ¼ b½Dðf Þ� (9) Cost function: J ¼ g½f ðh � yÞ� (2)

Penalty method for boundary constraints: Pbc ¼ 1
2
hð4� 4ÞTð4 � 4Þ (10) Regularization: Jreg ¼ lqTq (4)

Iteration (e.g. NewtoneRaphson iteration): 4kþ1
j ¼ 4k

j �
1
k
Rk

. vRk

v4k
j

(11)
Gradient descent: qkþ1

j ¼ qkj � m
vJ

vqkj

(6)
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interpolation. Eq. (13) will be explained in more detail in Section
2.2.

Eq. (9) represents the total potential energy function for main-
taining the balance of solid and/or momentum, and/or mass
considering all types of boundary constraints (Hu et al., 2017b) for
numerical modeling. Similarly, the cost function as expressed in Eq.
(2) represents the cost of deviation between a hypothesis and the
given output. If the linear interpolation is based on physical laws,
similarities can be further found with the expanded versions of
total potential function for numerical modeling and cost function
for machine learning.

In order to apply boundary constraints, the penalty method is
often used by giving a large penalty number to penalize deviation
from a certain boundary constraint. Similarity between this with
the regularization term in the cost function is made explicit if Eqs.
(4) and (10) are compared.

Finally, in order to solve the equation in numerical modeling, the
total potential energy is minimized to represent equilibrium. One
approach to derive the solution for nonlinear equation is to use
NewtoneRaphson iteration as expressed in Eq. (11). Similarly,
gradient descent is a commonway tominimize the cost function for
machine learning so that the most accurate values of q can be
gradually learned, while the most accurate hypothesis h can be
achieved for a given set of values of y. In this study, because we use
a rather deep neural network, the Adam optimization algorithm as
a first-order gradient-based algorithm is applied for optimization
(Kingma and Ba, 2015).

To summarize, similarities between numerical modeling and
machine learning can be found if similar interpolation structures
are used. The major difference is that in machine learning, the
weighting factors in q need to be derived while input data in x are
given. In numerical modeling, x needs to be solved and weight
factors are typically constructed by shape functions of numerical
grids. If the physical meanings of x and q are swapped, machine
learning can be identical to numerical modeling in terms of con-
structing the hypothesis and cost function and minimizing the cost
function to derive q. Because of these similarities, computer soft-
ware designed for machine learning and numerical modeling may
be shared.

Whether machine learning or deep learning can be applied
widely for physical analysis of geosciences depends on two
important questions:

(1) If there is a lack of data, can machine learning perform like a
numerical model?

(2) What can machine learning do to bridge the fields of ex-
periments and numerical modeling?

The similarity between machine learning and numerical
modeling derived in this section provides the theoretical demon-
stration that machine learning can function like a numerical model.
In a recent study by Sirignano and Spiliopoulos (2018), machine
learningwas trained to solve partial differential equations, and thus
functions like a physics solver. However, building on 60 years of
experience in the development of numerical models for analyzing
physics across temporal and spatial scales, numerical model su-
pervised machine learning could be a promising pathway to inte-
grate the advantages of both.

Between experiments and numerical modeling, there are at
least two challenging steps: (1) image processing may require
considerable effort when attempted using traditional approaches;
and (2) determination of physical properties can be difficult. These
challenges can be overcome with the help of machine learning. In
addition, machine learning can be easily applied to predict statis-
tical trends and to classify patterns. With the development of CNN,
machine learning has been increasingly used in the fields of image
processing, but prediction of the dynamic evolution of geometry
can be challenging. Thus, machine learning supervised by experi-
ments and numerical modeling may be a promising approach if
there are sufficient datasets.
2.2. Convolutional neural network for image recognition

Deep neural networks make use of multiple layers of different
types of functions to establish a highly nonlinear (or discontinuous)
propagation of information from the input to the output. The
general hypothesis of a deep neural network can be expressed as

y ¼ a½l� ¼ g½l�
��

q½l�
�T

a½l�1�
�

a½l�1� ¼ g½l�1�
��

q½l�1��Ta½l�2�
�

«

a½1� ¼ g½1�
��

q½1�
�T

x
�

9>>>=
>>>;

(14)

where the superscript l refers to the total number of layers of a
neural network. In Eq. (14), the hypothesis may involve a number of
layers of linear or nonlinear algebraic transformation function g in
different layers. If l ¼ 2 (only two layers) and g(z) ¼ z, this neural
network is simplified as a linear regression problem; If l¼ 2 and g is
a sigmoid function, this neural network is simplified as a classifi-
cation problem.

In most cases, however, the purpose of introducing multiple
layers is to introduce additional orders for enhanced approxima-
tion, which is achieved when multiple layers are combined. These
layers include an input layer, several hidden layers and an output
layer. Therefore, such enhanced approximation is realized as Eq.
(14), functioning like a propagation from the bottom to the top row.
With increased number of layers, the function becomes highly
nonlinear. Solving q in each layer is challenging. Thus, back-
propagation is used to solve q from the output layer to the input
layer. Embedded in the steps of a typical machine learning routine,
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a neural network consists of a forward propagation routine to
construct the hypothesis and a back-propagation routine to
approximate q until convergence is realized.

In the field of image recognition where images are represented
by pixels, the input data are represented as a tensor, i.e. image
height � image width � color depth. CNN has beenwidely used for
processing these data and recognizing features. Different types of
CNN have been developed to accommodate different types or sizes
of data. Fig. 2 shows a CNN that consists of several layers to classify
rock matrix and fractures from an image. In this CNN, different
layers can be used to realize higher-order approximation and ma-
trix transformation with multiplication of a number of different
functions. These layers include convolutional, rectified linear unit
(ReLU), normalized exponential (softmax), pooling, and fully con-
nected layers. The structure of the VGG-19 network used in this
study was introduced by Simonyan and Zisserman (2015).
2.3. Neural style transfer

Based on image recognition, NST was invented by Gatys et al.
(2015) to create new art images by combining CNN for content
presentation with style presentation of texture information. Thus,
the NST generates images that match the content and style of the
content and style images, respectively. This is achieved by con-
structing a total cost function J consisting of weighted average of
the content cost function and the style cost function:

J ¼ aJcontentðR; CÞ þ bJstyleðR; SÞ (15)

where R, C and S represent the functions associated with generated
(resulted), content and style images, respectively. The weighting
factors a and b are user-defined.

In order to approximate the content image, the cost function of a
certain selected hidden layer is

JcontentðR; CÞ ¼ 1
4hwn

S
�
aðCÞ � aðRÞ

�2
(16)

where h, w and n mean the height, width and the total number of
channels of this hidden layer, respectively. This hidden layer
therefore has a function (activation) awith a dimension of h� w�
n.

In order to properly represent the ‘style’ in an image, the inner
product (that projects one vector on another to represent similar-
ity) is used to define the style matrix:

G ¼ aaT (17)

The cost function for the style is the weighted average of cost
function of each layer:

JstyleðR; SÞ ¼
1

4h2w2n2
Xl

k¼1

2k
XnðkÞ

j¼1

XnðkÞ

i¼1

�
GðS;kÞ
ij � GðR;kÞ

ij

�2
(18)
Fig. 2. CNN for recognizing ro
where 2k is theweighting factor of layer k, satisfying
Pl
k¼1

2k ¼ 1. For

simplicity, evenly distributed weighting factors among different
layers can be used. With this specially constructed cost function
involving both content and style images, we are able to generate
new images that keep the content of the content image and the
style of the style image.

Considering that the VGG-19 model (Simonyan and Zisserman,
2015) has been trained on very large image datasets, we apply
the 19-layer VGG network to conduct our NST simulation for mesh
generation. In this network, the shallower layers are designed to
detect lower-level features such as edges and corners. The deeper
layers are used to detect higher-level features such as rock, frac-
tures, or other mineral fillings. The structure and schematics of the
NST model for mesh generation are shown in Fig. 3, in which a 19-
layer VGG network is included in the middle. As shown in Fig. 3,
because this approach for generating mesh is based on machine
learning the content of the rock images and learning the style of the
mesh, the only data required for the mesh generation are the image
of the content (rock image) and the image of the mesh style. The
learning process is indeed an optimization process from an initially
generated noisy image to the finally generated image that achieves
the minimized total cost, and thus has the best approximation to
the content of the rock image with the mesh style. Optimization of
the total cost function is realized by using the Adam optimization
algorithm (Kingma and Ba, 2015).

3. Examples and results

To demonstrate the approach, we use the NST model with the
19-layer network to generate numerical meshes for various sys-
tems of interest in the geosciences. We extracted images of rock
fractures at different scales to provide the contents for the exam-
ples. These include an image that contains several dominant and
rough fractures, an image that contains a network of densely
intersecting discrete fractures, and an image that contains an
aggregate of sandstone grains. In order to understand how the NST
works and to avoid additional complexity that is introduced by the
complexity of the style, we have used uniform triangles in terms of
size, shape and distribution as the style images to explore this use
of machine learning for mesh generation.

3.1. Example 1: Mesh generation for rough fractures using neural
style transfer

As a first example, we utilized the NST algorithm to generate
meshes for an image of rock containing several dominant and
rough fractures. We tried two different densities of triangles as the
style. Fig. 4 shows the results. As can be noted, the NST learned the
boundaries of rock and fractures from the rock image and applied
the triangular styles to the images that were recognized. The sizes
of triangles in the generatedmesh are the same as those in the style
image. With the size and shape of the triangles kept in the gener-
ck matrix and fractures.



Fig. 3. NST model for mesh generation from a rock image.

Fig. 4. NST generated mesh for rough fractures: Coarser (top) and denser (bottom) meshes.

Fig. 5. NST generated mesh for rough fractures with denser meshes and thicker mesh lines.
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ated image, the machine rearranged the orientations of the tri-
angles to accommodate the fractures and rock matrix. Comparing
the generated meshes with coarse triangle style (top) and dense
triangle style (bottom), we can see that the machine is ‘smart’
enough to distribute triangular grid cells along fractures even with
coarse triangles.

However, the mesh generated using the denser meshing style is
not clear-suggesting insufficient resolutionof thestyle image. Inorder
to resolve this issue,weusedanewstyle imagewith the samedensity
of themesh but with thicker mesh lines. The result is shown in Fig. 5.
Despite that someelements arenotperfectly triangular inFig. 5due to
non-triangular meshes on the boundaries in the style image, we can
see that themesh generatedwith the thick-line style becomes clearer
than the one shown in Fig. 4.

In order to analyze the differences caused by the thickness of the
lines in the mesh style, we plot the changes of cost functions over
iterations inFig. 6. InFig. 6a,weshowthechangesof total cost, content
cost and style cost corresponding to the thin-line style (Fig. 4). In
Fig. 6b, the changes are corresponding to the thick-line mesh style
(Fig. 5).Both imagesare400pixelsby300pixelse such lowresolution
is used for only demonstrating the approach with smaller computa-
tional effort. For both cases, we used a ¼ 10 and b ¼ 40: By
comparing the changes, we can see larger content and style costs for
the thick-line style, leading to a higher total cost. However, with
increased number of iterations, a larger decrease can be found in the
thick-line style. The total cost does not reach a convergence value (a
rate larger than zero) until 200 iterations for the thin-line style.
However, the total cost reaches convergence after 150 iterations.

From this example, we see that because the generation is
automatic despite the complexity of the geometric features, this
new NST technique can potentially save a great deal of effort for
mesh generation and optimization by achieving a good balance
between the density of the mesh and the presentation of the geo-
metric features. From the comparison between the low-resolution
thin-line and high-resolution thick-line style images, we show
that it is important to provide a good balance of resolutions be-
tween the content and the style images.

3.2. Example 2: Mesh generation for discrete fractures using neural
style transfer

In the second example, we test the NSTalgorithmwith a densely
intersecting fracture network (Fig. 7). This image contains more
Fig. 6. Cost functions decreasing with iterations b
than 50 densely intersecting fractures, including a long and sinuous
fracture running from the left to the bottom of the domain.We used
the coarse triangles as style. It can be observed that the NST model
captures all the fractures and arranges the triangles along the
intersecting fractures. In particular, if we examine the long and
rough fractures, we see that all the non-smooth line segments are
well represented in the generated mesh.

3.3. Example 3: Mesh generation for a sandstone core sample using
neural style transfer

In the last example, we test the NST algorithmwith a sandstone
core sample (Fig. 8). The major difference between this example
and the previous two examples is that the boundaries of the grains
in this example are not as apparent as those of the fractures in the
previous two examples. This makes it more difficult for the ma-
chine to learn the higher-level content. It is apparent that because
of the difficulty associated with learning of the content, the mesh is
distributed well but the boundaries of the grains are not very clear.
Increasing the density of the triangles does not resolve the issue.
Therefore, this issue is associated with content learning, and may
be addressed by improving the resolution of the content image,
and/or by improving the neural network for content learning.

4. Conclusions

In this study, we havemade use of NST by combining digital rock
fractures at multiple scales that represent ‘content’ with numerical
meshes that represent ‘style’. We used a 19-layer VGG network to
conduct our NST simulations, where the shallower layers are
designed to detect lower-level features (such as edges and corners)
and the deeper layers are used to detect higher-level features such
as rock, fractures, or other mineral fillings. By optimizing the cost
function to achieve approximation to represent both the content
and the style, numerical meshes were generated and optimized.

We applied two different densities of triangles as style images to
a rock samplewith rough fractures. By using NST, we can generate a
rather coarse mesh with the coarse triangle style. We also applied
the NST to generate meshes for discrete fractures and at the grain-
scale for a sandstone core sample. Good representation of the
geometric features with a rather coarse triangle style was achieved
in both examples. From the comparison between the low- and
high-resolution style images, we show that it is important to
y (a) thin-line and (b) thick-line mesh styles.



Fig. 7. NST generated mesh for discrete fractures.

Fig. 8. NST generated mesh for a sandstone core sample.
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provide a good balance of resolutions between the content and the
style images. Based on the examples, we show that this new NST
approach for mesh generation is automatic. This new approach can
potentially make mesh generation and optimization much more
efficient, with the result that a good balance between the density of
the mesh and the representation of the geometric features can be
achieved.

The new approach presented in this paper can bewidely applied
to mesh generation of complex geometric features. The mesh style
that we used with triangles can be used for finite element analysis.
In the future, rectangles and spheres can be used as styles to
generate meshes for other numerical methods, such as finite dif-
ference and discrete element methods. In addition, adaptive mesh
refinement can be explored with non-evenly sized triangles/rect-
angles as styles. Combined with three-dimensional (3D) digital
rock images (if available, and data from images are sufficient), the
challenges associated with 3D mesh generation may be overcome.
Because the mesh generation routine is automatic, the NST tech-
nique is very promising for application of simple mesh patterns
(e.g. evenly sized or adaptively refined triangles, rectangles, and
spheres) to generate and optimize meshes for complex geometric
features in the geosciences.
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