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Abstract

We develop an algorithm to analyze data from Illumina genotyping arrays for the detection

of copy number variations in a single individual or in a random sample of individuals. We

use a Hidden Markov Model framework, appropriately extended to take into account linkage

disequilibrium between nearby loci. We describe a multisample approach to estimate the fre-

quency of copy number variants in the population. With appropriate dataset, our methodology

simultaneously analyzes the data for copy-number variation and tests for association between

this and a disease trait of interest.

1 Copy number variation and genotyping arrays

Two important surveys appeared in 2004 [5, 14] documented the presence of copy number variation

in the genome in unsuspected high frequencies, both in the form of deletion of small genomic

segments as well as duplication. Since then, considerable attention has been paid to the study of

copy number polymorphisms and their relevance in disease traits. It has become apparent that high

resolution genotype data offers an important source of information for detection of copy number

polymorphisms: on the one hand, stretches of homozygous markers can indicate deletions (see, for

example, [17]) as well as duplications, on the other hand, patterns of Mendelian inconsistencies can

also provide indication of the presence of copy number variations [3]. Moreover, the technology

used to obtain high density genotyping provides quantitative information on DNA amounts that

can, and should, be used to detect copy number variations. Linkage disequilibrium by itself explain

the presence of stretches of homozygous markers in the genome. Modeling linkage disequilibrium

helps to narrow the number of genomic region that could harbor copy number variation on the basis

of genotype information alone [18], however, it is not sufficient. Only by looking at variation on the

intensity levels associated to DNA amounts at each marker, one can reliably distinguish deletions,

duplications or homozygosity corresponding to a regular diploid genome segment. A number of
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recent studies have indeed explored the effectiveness of high density genotyping arrays to detect

copy number variations in relation to other experimental methodologies: a careful comparison of

different technologies can be found, for example in [4], while [12] represents one of the most

recent and comprehensive screens.

This interest in the detection of copy number variation has spurred the development of statisti-

cal methods to analyze the experimental data: while a number of algorithms and software are avail-

able, both from commercial and academic sources (see, for example, the list provided by affymetrix

http://www.affymetrix.com/products/application/cna dataanalysis.affx),

this area of research is still in its infancy. With new contributions appearing in almost any issue of

relevant journals, it is hard to give a complete account of the current literature. Instead, we focus

on the specific problem we would like to tackle, which is in large part still open.

1. Our main goal is to develop an algorithm to analyze data from Illumina genotyping arrays

for the detection of copy number variations in a single individual or in a random sample of

individuals.

2. In the present effort, we use a Hidden Markov Model framework, appropriately extended to

take into account linkage disequilibrium between nearby loci;

3. We adopt a Bayesian approach with which information on copy number variation detected

in previous studies informs the analysis;

4. With appropriate dataset, our methodology simultaneously analyzes the data for copy-number

variation and tests for association between this and a disease trait of interest.

2 Illumina genotype data

We have become interested in studying the data obtained with the Illumina genotyping arrays for

a number of reasons. On the one hand, this is the platform of choice for a number of studies we
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Figure 1: (a) Scatterplot of the logarithm of intensity values for A and B allele in one SNP for

150 individuals. (b) Scatterplot of the same points of (a) in the changed coordinate system. (c)

standardization and re-scaling of the clusters to define LogR and BAF.

are involved in (2000 dutch individuals (case control sample), 5000 Finnish individuals (population

sample), and a smaller family sample from Costa Rica). On the other hand, our analysis of Illumina

data, as well as the experience of other researchers (Feingold, personal communications), indicates

that this platform provides particularly clean signal with considerable potential for copy number

variation detection. Finally, this is a relatively unexplored area, with perhaps [2, 19] the only

contributions to date.

In the following, adopting Illumina convention, we will indicate the two alleles at each SNP

with A and B. We are going to base our analysis on two measurements that Illumina software

generates for each SNP: the “B allele Frequency” (BAF) and Log R. These capture, respectively,

the estimated proportion of allele B and the log ratio of the overall level of DNA in the sample over

a reference value.

For specific definitions of these values, we refer to Illumina documentation. We here limit

ourselves to an approximate description of the data transformation that lead to BAF and LogR.

For each SNP, the Illumina genotyping platform leads to quantitative measurements of the amount
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of A and B alleles. Figure 1(a) present the scatterplot of these measurements (on the log scale)

on the same SNP on a large number of individuals: clearly three clusters can be identified, corre-

sponding to the AA, AB, and BB genotype. Illumina’s software further transforms the data before

proceeding to a genotype call. Figure 1(b) illustrate the change in coordinate system: θ is the angle

between the vector defined by each of the points in 1(a) and the y axis, while log T is the sum of the

log-intensities plotted in 1(a). Finally, the centers of the three clusters are compared to reference

values and standardized, so that the center of the clusters on the x axis is either 0, 0.5 or 1, and it

is 0 on the y axis (note that x values are truncated at 0 and 1). These final values are referred to as

BAF and LogR.

Few remarks are in order. It is important to note that BAF and LogR represent an intermediate

step between raw intensity values and final genotype calls. Typically, BAF and LogR are available

for each SNP, while anomalous values of these will result in a “no call” genotype. While suffi-

ciently close to the raw data to carry relevant information for copy number quantification, LogR

and BAF values are obtained through a standardization process that generates a great deal of ho-

mogeneity across SNPs. Our previous experience in low level analysis of intensity levels for allele

probes in Affymetrix technology underscore the importance of this normalization process. [13].

In the rest of the paper we will refer to the BAF value as x and to the LogR value as y. By

definition, x ranges between 0 and 1, while y is standardized to have mean zero. In normal diploid

state, x takes on values close to 0, 1/2 or 1, corresponding to the three possible genotypes, while

y has zero mean. In presence of a hemizygos deletion, x takes on only values close to 0 or 1, and

y tends to have negative values. In presence of a duplication, x can assume values close to 0, 1/3,

2/3 and 1—corresponding to the 4 possible genotypes—and y is increasingly positive.

The preprocessing steps adopted by Illumina to define the x and y values are such that these

carry almost independent information. Figures 2 and 3 illustrate how they are both important

to detect CNV. Plotted against genomic position are the x and y signal for about 2000 SNPs in

the proximity of a deleted (2) and duplicated (3) region. It can be noted how a lower value of

4
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Figure 2: A deletion encompassing 245 SNPs on Chromosome 4. Data for additional 1000 SNPs

flanking the deletion is also presented. On the x-axis, we report the positions of queried SNPs in

base pairs. The top plot displays the copy number values; the central plot presents the y LogR

values associated with each SNP; and the bottom plot displays the x B allele frequency values.
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Figure 3: A duplication encompassing 82 SNPs on Chromosome 12. Data for additional 1000

SNPs flanking the duplication is also presented. On the x-axis, we report the positions of queried

SNPs in base pairs. The top plot displays the copy number values; the central plot presents the

y LogR values associated with each SNP; and the bottom plot displays the x B allele frequency

values.
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y allows to separate homozygous signal corresponding to a 1 or 2 copy numbers, and values of

x close to 1/3 or 2/3 clearly mark a duplication, even when the corresponding y values are not

elevated. Mindful of this observation, we want to develop an algorithm that detects CNV using

both these signals. A Hidden Markov model is particularly useful in this setting, and, indeed, a

recent literature contribution [2] documents a HMM for this problem. In the following section we

describe our own model that we believe has more realistic features.

3 One sample analysis

The main interest of this paper is in the analysis of genotype data from normal individuals to

detect presence of copy number polymorphisms. By definition, these consist in specific regions in

the genome that are lost or duplicated with non negligible frequency in the population. A first goal

consists, then, in the identification of such regions. Secondly, one may be interested in testing for

association between the CN polymorphism and traits of interest.

While we do not analyze tumor data in the present work, similar goals can be stated for cancer-

related research. When studying CN variation in tumor cells, one is especially interested in the

identification of regions that appear preferentially lost or duplicated in cancer, suggesting that they

contain tumor related genes.

In order to carry out either of these plans, one needs data from multiple individuals. The model

we adopt for CN variation, however, is best described first specifying the probability distribution

for data pertinent to a single sample and then illustrating how it can be modified to best exploit the

information contained in multiple samples. A similar framework was first considered by Newton

[8, 9, 10] in the context of copy number variation in tumors. We refer the interested reader to that

work which documents the biological basis of this approach in the context of cancer studies.
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1 2 3

Figure 4: Generic infinitesimal rates for the homogeneous copy number process with three states.

3.1 A homogeneous Markov model for Copy Number States

Let {πt} be the continuous process that describes copy number status of one individual across the

genome. We model {πt} as a homogeneous continuous-time Markov chain moving along each

chromosome. For ease of exposition, we start considering three possible states, corresponding

to 1, 2, or 3 DNA copies. In light of our goal of identifying copy number polymorphisms, our

homogeneity assumption may appear rather futile. However, we ask the reader to bear with us for

a little. We will relax this assumption when analyzing data from multiple samples, but we rely on

it as a regularization device when dealing with data from one individual alone.

Figure 4 illustrates the generic infinitesimal transition rates one can choose for this process.

In an effort to build a parsimonious model, we initially considered fixing three rates: φ is the

transition rate for deletions, ξ for duplications, and λ for restoration to diploidy. We considered

two models: (a) each state can lead to any state; (b) states 1 and 3 can be reached only from state

2. Under both models, the equilibrium distribution for the chain is

p(πt = 1) =
φ

φ + λ + ξ
, p(πt = 2) =

λ

φ + λ + ξ
, p(πt = 3) =

ξ

φ + λ + ξ
. (1)

Under model (a), the expected length of a deletion is (ξ+λ)−1, the expected length of a duplication

is (φ+λ)−1, and the expected length of a diploid stretch is (φ+ξ)−1. Under model (b) the expected

values are, respectively (λ)−1, (λ)−1, and (φ + ξ)−1.

In effect, this continuous process is observed (partially) only at a set of discrete time points

i = 1, . . . n, corresponding to the genotyped SNPs. Using standard continuous Markov chain

theory [6], for model (a), we can obtain a following discrete time transition matrix between points

8



at distance d:

ta(d) =


1− (1− δ)(1− e−ηd) (1− δ − γ)(1− e−ηd) γ(1− e−ηd)

δ(1− e−ηd) 1− (δ + γ)(1− e−ηd) γ(1− e−ηd)

δ(1− e−ηd) (1− δ − γ)(1− e−ηd) 1− (1− γ)(1− e−ηd)

 , (2)

where δ = π1, γ = π3, and η = φ+λ+ξ. Model (b) leads to a similar finite time transition matrix,

with second row and second column identical to (2) and other terms as follows:

tb11(d) =
γ

γ + δ
e−(1−γ−δ)ηd + δ +

δ

γ + δ
(1− δ − γ)e−ηd

tb13(d) = − γ

γ + δ
e−(1−γ−δ)ηd + γ +

γ

γ + δ
(1− δ − γ)e−ηd,

where tb31(d) and tb33(d), can be obtained appropriately exchanging the values of γ and δ.

In the following, we will use model (a). The practical differences between model (a) and (b)

are not substantial and model (a) leads to a transition matrix that can be more directly compared

with others used in hidden markov models for data of our type. For example, a similar model

has been proposed in [2]: these authors, however, assume each copy number state to be equally

probable, which appears to be rather unreasonable.

Each of the three parameters in (2) can be easily related to observable quantities: δ and γ

represent respectively the population frequency of deletions and duplications. In model (a), the

chance that a change of state occurs between two locations d a part depends only on the parameter

η, which captures the level of dependency of the process and can be interpreted as a “smoothing”

parameter. Note that expected lengths of deletions and duplications can be expressed in terms of

these parameters: easy algebra leads to obtain that the expected length of a deletion is 1/(η(1−δ))

and the expected length of a duplication is 1/(η(1− γ)).

While we select model (a) for definiteness, it is important to note, that the specific form of

the homogeneous Markov model for CN is not crucial for the remainder of the analysis. One can

easily decide to adopt another model, with a higher number of parameters, for example. Adapting

9



the algorithm to consider this will not entail very substantial work. Indeed, one of our current goals

for further investigation is to consider a variety of different models.

3.2 Emission probabilities and expanded state space

The states of the markov model described in the previous section are not observed; rather, for

each genotyped SNP i, we observe values oi = (xi, yi). Emission probabilities link these to the

underlying states of the Markov process. We assume that conditional on the unobserved copy

number, x and y are independent.

Figures 5 presents summary statistics of the distribution of x and y in the training dataset that

guided our modelling choices (for details on this dataset, please see section 5).

We propose modeling the distribution of yi using gaussian distributions. A close inspection

of the histograms in Figure 5 reveals that the histograms of the y values corresponding to one and

three DNA copies are asymmetric. However, we attribute this to a selection effect: the CNV used

to compile those histograms have been identified due to their “anomalous” y values. This results

in the following distribution for the y values:

y|aploid ∼ N (µ1, σ1)

y|diploid ∼ N (0, σ2)

y|triploid ∼ N (µ3, σ3)

Let us now consider models for the distribution of x. By looking at the data presented in

Figure 5, one immediately notices that values of x depend on the underlying genotypes. In partic-

ular, the theoretical fraction of B alleles over total corresponding to different genotypes appears

important; in our model we have five such ratios: 0, 1/3, 1/2, 2/3, 1. The emission probabilities

we choose for x, need to model the empirical distribution of x conditional on the true underlying

allelic ratio. Before we specify such distributions, however, another consideration is in order. Our
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Figure 5: Histogram of the values of the emitted signals x and y for approximately 500,000 SNPs

genotyped in a set of individuals including known deletions and duplications. Each row corre-

sponds to one copy number. (See section 5 for more detail)
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previous work on detection of deletions and estimation of inbreeding coefficients [18] underscores

the importance of accounting for linkage disequilibrium when interpreting the signal from consec-

utive homozygous markers. In other words, the distribution of xi and xi+1, the B allele frequencies

at two consecutive markers, cannot be considered independent given the copy number status at loci

i and i + 1. In [18] we describe an extension of the typical HMM framework to account for this

dependency.

The simplest way to take linkage disequilibrium into account is to augment the hidden states

of the HMM described above to include underlying genotypes. Thus, we propose a model based

on the nine possible hidden states S = { A, B, AA, AB, BB, AAA, AAB, ABB, BBB}. The

deletion-duplication mechanism still operates, but the genotype at marker j = i + 1 no longer

occurs independently of the genotype at the previous marker i. As an illustration, the transition

between states A and AB can be calculated as

Pij(AB | A) = t12(dij)[qij(A | A)pj(B) + qij(B | A)pj(A)],

where t12(dij) is the probability of going from 1 to 2 copies over a distance dij and qij(A | A) and

qij(B | A) are conditional haplotype frequencies. In general, we can write the transition probability

between two of the nine possible states as the product of a component that depends only on the

copy number associated to each state πi and a component that depends also on the genotype value

for the state πi: t(πi, πi+1) = tcn(πi),cn(πi+1)(di,i+1)G(πi, πi+1). We are going to assume that the

G(πi, πi+1) component of the transition probability is known. Indeed, it is determined by two-

marker haplotype frequencies that can be estimated easily from association genome scan data. So

that the unknown parameters of the transition probability remain T = (δ, γ, η).

Note that our previous work [18] suggests that the simple order one Markov model that we use

here to describe linkage disequilibrium may be inadequate for some genomic regions. Neverthe-

less, it is reasonable to believe that this should not pose a serious difficulty in the present context,

where inference will not depend only on x values, but also on the y values that are unaffected by
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Figure 6: Histograms of the value of the emitted x signals, conditional on underlying genotype, for

approximately 500,000 SNPS including deletions and duplications. Each row corresponds to one

copy number, each column to one of the five relevant allele ratios: 0, 1/3, 1/2, 2/3, 1. The specific

genotype is indicated in the main title of each plot.

linkage disequilibrium.

Given that we are going to work with a HMM with nine states, corresponding to the nine

genotypes, it is convenient to specify the emission probabilities for x conditional on each of the

nine genotypes (the emission probabilities for y still depend only on the underlying copy number).

Since there is no prior distinction between the A and B allele, we enforce appropriate symmetries in

the distributions. Figure 6 presents the histograms of x conditional on known underlying genotypes

for a collection of about 500,000 SNPs that form one of our training datasets (see section 5 for

more specific information). One detail that is not immediately evident from Figure 6, is that the
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distribution of x for homozygous genotypes is not simply continuous. The algorithm used by

Illumina sets equal to 0 (1) extremely small (large) x values. Our emission probabilities need

to incorporate these discrete component. The continuous components appear to be adequately

modeled with exponential distribution. A double exponential distribution provides a good fit for

the emission of the AB genotype, while the x values corresponding to ABB and AAB are better

modeled as gaussian variates. Obviously, both exponential and Gaussian distribution need to be

truncated as to assign positive probability only to the [0,1] interval.

To start with, we enforce a certain amount of symmetry and consider then the following emis-

sion probabilities for x:

f(x|A) = f(x|AA) = f(x|AAA) =

 ω x = 0

(1− ω)λe−λx x 6= 0

f(x|B) = f(x|BB) = f(x|BBB) =

 ω x = 1

(1− ω)λe−λ(1−x) x 6= 1

f(x|AB) = λ2/2 exp{−λ2|x− 0.5|}

f(x|AAB) = N (1/3, ν)

f(x|ABB) N (2/3, ν)

In summary, the emission probabilities we described are defined by the following parameters E =

(µ1, σ1, σ2, µ3, σ3, ω, λ, λ2, ν).

3.3 Algorithms for evaluating conditional probabilities and parameter esti-

mation

To evaluate the probability of the data O = {oi}n
i=1 for one individual, we resort to the standard

hidden Markov model machinery. Rather then attempting to calculate directly the sum

Pr(O|T , E) =
∑
Π

p(π1, |T )e(o1|π1, E)
n∏

i=2

t(πi|πi−1, T )e(oi|πi, E),
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we define the forward and backward probabilities α(πi) = Pr(o1, . . . , oi, πi), and β(πi) = Pr(oi+1, . . . , on|πi)

that can be evaluated with recursions:

α(πi) =
∑

πi−1∈S

α(πi−1)t(πi|πi−1)e(oi|πi)

β(πi) =
∑

πi+1∈S

β(πi+1)t(πi+1|πi)e(oi+1|πi+1).

The sample probability can then be obtained as Pr(O) =
∑
πn∈S

α(πm). The sequences of α and

β can also be used to evaluate the distribution of πi conditional on the observed data and the

conditional probability of a specific transition. Let Prob(πi = sj, πi+1 = sk|O) = ξi,i+1(sj, sk)

and Prob(πi = sk|O) = ρi(sk), then

ξi,i+1(sj, sk) =
α(πi)t(πi|πi+1)e(oi+1|πi+1)β(πi+1)

Pr(O)

ρi(sk) =
∑

πi+1∈S

ξ(πi, πi+1).

The hidden markov model machinery can also be used to estimate the parameters T , E . We

will discuss in a later session the precise strategy with which we choose the parameter values in

data analysis. We here present the algorithm that can be used given availability of appropriate

data. We start considering a maximum likelihood approach which we will extend to maximum a

posteriori. Consider the maximization problem

max
T ,E

L(T , E|O) = max
T ,E

∑
Π

p(π1|T )e(o1|π1, E)
n∏

i=2

t(πi|πi−1, T )e(oi|πi, E).

We tackle this using an iterative algorithm in the MM framework [7]. That is, given a current

value for the parameters (T `, E `), we need to find a minorizing function q(T , E|T `, E `) such

that q(T , E|T `, E `) ≤ L(T , E|O) for all (T , E), with equality holding for (T , E) = (T `, E `).

At each iteration, new values (T `+1, E `+1) will be obtained maximizing the minorizing function

with respect to (T , E). The sequence of parameter values {T `, E `} so defined is guaranteed to

lead to increasing values of the likelihood (see [7]). The theory of the EM algorithm offers a
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recipe for identifying a minorizing function for the logarithm of the likelihood. Indicating with

Π = {πi}n
i=1 the missing data corresponding to the unobserved copy-number states, we can use

q(T , E|T `, E `) = E(logL(T , E|O, Π)), the expected value of the logarithm of the complete data

log-likelihood. Following this suggestion, we obtain a minorizing function where the emission

parameters E and the transition parameters T are separated:

E(logL(T , E|O, Π)) = E(log p(π1|T ) +
n∑

i=2

τ(πi|πi−1, T )) + E(
n∑

i=1

ε(oi|πi, E)),

where τ and ε indicate the logarithms of t and e.

Let’s consider first the updates relative to the emission parameters. These can be obtained

maximizing

E(
n∑

i=1

ε(oi|πi, E)) =
9∑

k=1

n∑
i=1

ε(oi|πi, E)ρ`
i(sk).

In this sum, emission parameters relative to different states are separated. Simple calculations show

that the maximum value of the surrogate function is obtained in correspondance of the classical

MLE estimators for the Gaussian, binomial, and exponential parameters that constitute E , with

observations appropriately weighted for their probability of deriving from the relevant unobserved

state. For example, consider the parameters (µ1, σ
2
1) relative to the distribution of y, given copy

number 1. Let w`
i (1) = ρ`

i(s1) + ρ`
i(s2) be the current probability that observation i derives from a

hidden state with copy number 1. Then,

µ
(`+1)
1 =

∑n
i=1 yiw

`
i (1)∑n

i=1 w`
i (1)

σ
(`+1)
1 =

√∑n
i=1(yi − µ

(`+1)
1 )w`

i (1)∑n
i=1 w`

i (1)

Let us now consider the transition parameters. For ease of exposition, let us omit consideration

of p(π1). Then, the relevant portion of the logarithm of the complete data likelihood is

n∑
i=2

τ(πi|πi−1, T ) =
n∑

i=2

log tcn(πi),cn(πi+1)(di,i+1) +
n∑

i=2

log G(πi, πi+1),
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where the parameter T depends on πi only through the copy number and not the genotype values.

To carry out traditional EM, at each iteration, we would need to maximize
9∑

j,k=1

n∑
i=2

ξ`
i−1,i(sj, sk) log tcn(sj),cn(sk)(di,i+1), (3)

however, the three parameters δ, γ, and η are not separated. Referring back to the transition matrix

in (2), it is easy to see that η and the frequency parameters are separated, when taking the loga-

rithms, in all matrix entries, with the exception of the main diagonal. To circumvent this difficulty,

we seek a further minorization. Let’s consider the first entry of the finite time transition matrix:

log(1− (1− δ)(1− e−ηd)) = log(δ(1− e−ηd) + e−ηd). Setting a = δ(1− e−ηd) and b = e−ηd, we

can use the concavity of the logarithm function to find a minorization:

log(a + b) ≥ a0

a0 + b0

log(
a0 + b0

a0

a) +
b0

a0 + b0

log(
a0 + b0

b0

b),

with equality holding for a = a0, b = b0. This says that for optimization purposes, we can concen-

trate on the function a0

a0+b0
log(a)+ b0

a0+b0
log(b), which separates the δ and η parameters. Precisely,

let

α`
i =

δ`(1− e−η`di,i+1)

δ`(1− e−η`di,i+1) + e−η`di,i+1

β`
i =

γ`(1− e−η`di,i+1)

γ`(1− e−η`di,i+1) + e−η`di,i+1

ζ`
i =

(1− γ` − δ`)(1− e−η`di,i+1)

(1− γ` − δ`)(1− e−η`di,i+1) + e−η`di,i+1
.

We can minorize each of the logarithms of the terms on the main diagonal of (2) as follows:

log t`11(di,i+1) ≥ α`
i log δ + α`

i log(1− e−ηdi,i+1)− (1− α`
i)ηdi,i+1

log t`22(di,i+1) ≥ ζ`
i log(1− δ − γ) + ζ`

i log(1− e−ηdi,i+1)− (1− ζ`
i )ηdi,i+1

log t`33(di,i+1) ≥ β`
i log γ + β`

i log(1− e−ηdi,i+1)− (1− β`
i )ηdi,i+1.

Plugging these expressions in (3), we obtain a simple function of δ and γ, separated from η.

Let κ`
i.i+1(j, k) =

∑
l,t:cn(l)=j,cn(t)=k ξ`

i,i+1(sj, sk). Then, N `
j,k =

∑
i κ

`
i,i+1(j, k) is the expected
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number of transitions from state j to state k 6= j. And let N `
1,1 =

∑
i κ

`
i,i+1(1, 1)α`

i , N `
2,2 =∑

i κ
`
i,i+1(2, 2)ζ`

i , N `
3,3 =

∑
i κ

`
i,i+1(3, 3)β`

i . Then, to obtain the up-dates of δ and γ we need to

maximize the following function:

log(δ)(N1,1 + N2,1 + N3,1) + log(γ)(N1,3 + N2,3 + N3,3) + log(1− δ − γ)(N1,2 + N2,2 + N3,2).

This leads to the obvious updates

δ`+1 =
N1,1 + N2,1 + N3,1

N1,1 + N2,1 + N3,1 + N1,2 + N2,2 + N3,2 + N1,3 + N2,3 + N3,3

γ`+1 =
N1,3 + N2,3 + N3,3

N1,1 + N2,1 + N3,1 + N1,2 + N2,2 + N3,2 + N1,3 + N2,3 + N3,3

The corresponding function of η is slightly more complicated. Let

M `
i =

∑
j 6=k

κ`
i,i+1(j, k)

S`
i =

∑
j

κ`
i,i+1(j, j)

W `
i = κ`

i,i+1(1, 1)α`
i + κ`

i,i+1(2, 2)ζ`
i + κ`

i,i+1(3, 3)γ`
i

The minorizing function that we have to maximize at iteration ` + 1 is then

g(η|T `, E `) =
∑

i

log(1− e−ηdi,i+1)(O`
i + W `

i )− ηdi,i+1(S
`
i −W `

i ).

While we cannot find an analytic expression for the max of this function, one can easily calculate

its first and second derivative and use them to define a Newton update (it is well known that one

can substitute a step of Newton algorithm for the explicit maximization in the MM framework [7]):

∂g(η|T `, E `)

∂η
=

∑
i

di,i+1e
−ηdi,i+1

1− e−ηdi,i+1
(O`

i + W `
i )−

∑
i

di,i+1(S
`
i −W `

i )

∂2g(η|T `, E `)

∂η2
= −

∑
i

d2
i,i+1

e−ηdi,i+1

(1− e−ηdi,i+1)2
.

Before we conclude this section devoted to the description of computational methods, we

want to describe how the MM algorithm above can be modified to obtain maximum a posteriori
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estimate rather then MLE. A Bayesian framework may be useful when prior data is available to

provide the user with reasonable values for the parameter, and current data is to be used simply

to adjust these estimates. Conjugate priors allow one to incorporate available information without

increasing the computational burden. We assume that the emission E and transition parameters

T are independent a priori. Furthermore, we assume that a priori all the emission parameters

are independent from each other. We take a Gaussian prior for each of (µ1, µ3), a Gamma prior

for each of the precisions (1/σ2
1, 1/σ

2
2, 1/σ

2
3, 1/ν

2), a Beta prior for ω, and a Gamma prior for the

exponential parameters λ, λ2. We use a Dirichlet prior for (δ, γ) and a Gamma prior for η. To obtain

maximum a-posteriori estimates, we can use an MM algorithm, adopting the same minorizations

described above. The updates will change in a predictable fashion. For example, consider again

the parameters (µ1, σ
2
1). Say that we take a Gaussian prior on µ1 with parameters (m1, p1) (with

p1 precision of the distribution), and a gamma prior on 1/σ2
1 with parameters (a1, b1). Then, the

updates for the parameters are:

µ
(`+1)
1 =

1

σ2
1

n∑
i=1

yiw
`
i (1) + p1m1

1

σ2
1

n∑
i=1

w`
i (1) + p1

σ
(`+1)
1 =

√√√√√√√√√
1

2

n∑
i=1

(yi − µ
(`+1)
1 )w`

i (1) + b1

1

2

n∑
i=1

w`
i (1) + a1 − 1

4 Multiple sample analysis

When data from multiple samples is available, it becomes possible to identify genomic locations

that are lost or duplicated with higher frequency. In the case of DNA from normal individuals, this

leads to the identification of copy number polymorphisms. In the case of tumor cells, this local-

izes tumor-related genes. Furthermore, when analyzing multiple samples together and accounting
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for differential rates of CNV across the genome, we increase our power to detect copy number

variations in individuals with noisier signal. Let us consider, then, how to exploit the information

available in multiple samples, and relax our assumption of homogeneity across the genome of the

copy number process. We do this by defining the location specific parameters δi and γi.

4.1 Identifying cancer related genes

We start considering the setting studied by Newton [8, 9, 10]: the study of cancer cell lines to

localize tumor suppressor genes. The biological process that generates the observed data can be

grossly summarized as follows. 1) all somatic cells experience occasionally loss or duplication of

DNA portions. These are typically rare events, and cell survival is more likely, the smaller the size

of the perturbation. 2) when, because of one such event, the region harboring a tumor-related gene

is affected, the cell has an increased chance of becoming cancerous. 3) tumor cells experience,

uniformly across the genome, higher rates of loss and duplication, because of the frequency and

instability of their division process.

When we observe DNA from a population of cancer cells, then, we expect to see the effects

of (a) relatively common deletions and duplications across the genome; (b) and effects of a selec-

tion process in which cells that experienced losses or duplications in a specific position became

cancerous. With reference to our model, these observations mean that (a) the loss and duplica-

tion probabilities δ, γ can be assumed to be constant across ‘most’ of the genome, and to have

non-transcurable values. Furthermore, (b) we can identify the location of cancer-related genes by

looking for positions that call for a loss/duplication rate different from the background one. Hence,

for SNP i, we will want to test H0 : δi = δ versus H1 : δi > δ, indicating that SNP i is lost at a

higher rate than the rest of the genome. We may be interested in H0 : γi = γ versus H1 : γi > γ,

or in a combination of these hypothesis. Furthermore, if our sample contains a set of cases (e)

and controls (c) for a given trait, we may want to test the H0 : δc
i = δe

i versus H1 : δc
i 6= δe

i , to
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investigate possible association between the CN at location i and the trait of interest.

Taking this view point, when analyzing each location i we assume that all the remaining

locations on the chromosome are lost or duplicated at the background rates δ, γ. The probability

of the data Ok for k = 1, . . . ,m individuals is then equal to:

P(O1, . . . , Om|E , T , δi, γi) =
m∏

k=1

(δiP(Ok|πk
i =1) + (1−δi−γi)P(Ok|πk

i =2) + γiP(Ok|πk
i =3)).

If we keep the parameters E , T fixed, it is easy to estimate the pair (δi, γi) using a MLE

approach. Resorting once again the an EM framework, we consider π1
i , . . . , π

m
i as the missing

data, and we can iterate on the basis of the following

E(πk
i = 1|O, δ`

i , γ
`
i ) ∝ δ`

iP (Ok|πk
i = 1) (4)

δ
(`+1)
i =

m∑
k=1

E(πk
i = 1|O, δ`

i , γ
`
i )/m,

with analogous expressions holding for γi.

These maximum likelihood estimates are used to carry out a likelihood ratio test for the hy-

pothesis of interest. Suppose for example that we want to test H i
0 : δi = δ versus H1 : δi > δ,

which is the case when we are trying to identify the location of a tumor suppressor gene. Then, we

can construct the following lod-score curve:

Li =


log10

L(E , T , δ∗i |O1, . . . , Om)∏m
k=1 L(E , T | Ok)

δ∗i = argmaxL(E , T , δ∗i |O1, . . . , Om) > δ

0 δ∗i < δ

.

The researcher’s interest focuses on locations where the values of Li are particularly high.

On purely statistical grounds, the determination of an appropriate cut off depends on the dis-

tribution of Li under the null H i
0 and on the necessity of taking into account that multiple tests

are being performed. Furthermore, notice that the tests Li and Lj corresponding to two locations

on the same chromosome are not independent. To determine a significance cut-off one ideally

would like to know the distribution of the entire process {Li}k under the complete null hypothesis.
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Unfortunately, this is unknown at this stage. The marginal distribution of Li, as m → ∞, can

be roughly approximated using the known results for likelihood ratio tests: under H i
0, 2 ln 10Li is

asymptotically distributed as a 50:50 mixture of a mass at zero and χ2
(1) (the mass at zero derives

from the fact that we place a constraint on the values of δi > δ, and the 0.5 mixing coefficient can

be derived from the consistency and gaussianity of the MLE of δi). While this approximation of

the distribution of Li is rather crude, it provides us a guideline of what a reasonable significance

cut-off may be. The appropriate cut-off for Li depends on the distribution of Li and, roughly

speaking, on the number of “effectively independent” tests, which is determined by the length of

the segment of the genome studied and the value of the η parameter. We suggest that once the

instability parameters are estimated, a small scale simulation study be conducted where genotype

data with the same structure as the real one is generated from the instability model, with no selec-

tion effect, and a cut-off for Li that controls the desired measure of error rate to be determined. It

may be of use to refer once again to the analogy with linkage mapping which carries through in

terms of distribution for Li: in these genetic mapping studies, a value of Li greater than 3, or 3.5

is typically considered strong evidence in favor of H i
1 (Lander and Kruglyak, 1995).

4.2 DNA from normal cells and identification of CN polymorphisms

Let us now consider the case of normal cells where we are interested in discovering CN polymor-

phisms. The biological mechanisms behind the observed data are here quite different. It is still true

that 1) all somatic cells experience occasionally loss or duplication uniformly across the genome.

These are typically very rare events. 2) In addition, there appear to be specific genomic regions

that are present with variable copy number in the population.

The homogeneous markov model we presented for the analysis of a single cell characterizes

copy number variations derived from 1). CN polymorphisms, instead, call for a non homogeneus

component in our process. The approach described in section 4.1, however, is inadequate to char-
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acterize this inhomogeneity as, unlike what happens for tumor cells in regions surrounding tumor

suppressor genes, all cell lines that exhibit CN variations are expected to share the same bound-

aries.

We distinguish here two problems: a) how to take into account known CNPs; b) how to

discover new CNPs. a) The HMM framework can be easily adapted to account for known CNPs.

To avoid unnecessary complications, let’s focus on modifications of the transition matrix defined

on copy number states (2). To incorporate knowledge of known CNPs, one can consider two

additional states: 1P and 3P , corresponding to copy number equal to 1 and 3 in a CN polymorphic

region. These states are visited with positive probability only in portions of the genome that exhibit

CN polymorphisms. Once in states 1P or 3P , the process has to remain there till the end of the

CNP region. To fix ideas, suppose that the only known CNP is covered by SNPs i through i + m

with copy number equal to 1 (3) in a portion d(g) of the population. Then we will have three

transition matrices

Tj−1,j =

1P 1 2 3 3P

1P 0 δ (1− δ − γ) γ 0

1 0 t11(di,i+1) t12(di,i+1) t13(di,i+1) 0

2 0 t21(di,i+1) t22(di,i+1) t23(di,i+1) 0

3 0 t31(di,i+1) t32(di,i+1) t33(di,i+1) 0

3P 0 δ (1− δ − γ) γ 0

j 6= i, . . . , i + m

Ti−1,i =

1P 1 2 3 3P

1P d δ(1− d− g) (1− δ − γ)(1− d− g) γ(1− d− g) g

1 d t11(di,i+1)(1− d− g) t12(di,i+1)(1− d− g) t13(di,i+1)(1− d− g) g

2 d t21(di,i+1)(1− d− g) t22(di,i+1)(1− d− g) t23(di,i+1)(1− d− g) g

3 d t31(di,i+1)(1− d− g) t32(di,i+1)(1− d− g) t33(di,i+1)(1− d− g) g

3P d δ(1− d− g) (1− δ − γ)(1− d− g) γ(1− d− g) g
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Tk−1,k =

1P 1 2 3 3P

1P 1 0 0 0 0

1 0 t11(di,i+1) t12(di,i+1) t13(di,i+1) 0

2 0 t21(di,i+1) t22(di,i+1) t23(di,i+1) 0

3 0 t31(di,i+1) t32(di,i+1) t33(di,i+1) 0

3P 0 0 0 0 1

k = i + 1, . . . , i + m

This described modification assumes that one knows exactly the frequency of copy number variants

in the genome. More realistically, we may simply be aware of the presence of a copy number vari-

ant, without knowing exactly its frequency. This situation can be dealt with using the framework

we are about to describe and the use of appropriate priors.

To partially account for the presence of CN polymorphisms, one can modify the homogeneous

model in 2, introducing location specific parameters δi, γi. All the SNPs in a CNP region will have

the same values δi, γi, different from the background ones. The algorithm we described for the

estimation of δ, γ can be easily adapted for δi, γi, in presence of multiple samples. To model the

known structure of the CN polymorphisms, we can use a prior that enforces small total variation

for {δi}n
i=1 and {γi}n

i=1: Pr({δi}) ∝
∑n

i=2 |δi − δi−1| (procedures that use such penalty have been

recently suggested for the analysis of CGH data under the name of “fused lasso”).

However, one has to be careful not to underestimate the computational costs involved in such

procedure. For each iteration, one needs to recompute all the forward and backward probabilities

for each of the individual sequences. This is in stark contrast with the estimation described in the

previous section, which uses one set of forward and backward probabilities. For this reason, we

suggest an heuristic, two stage procedure to detect CN polymorphisms. (I) Estimate the location

specific parameters as in (5); (II) regularize these estimates using a fused lasso procedure; (III)

finally, focus on regions for which δi + γi > C, with the cut-off C used to define polymorphisms

(for example C = 0.05). Step (I) increases the chances of detecting CN variations that have
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small signal and would be undetected with single sample analysis or aggregations of it. Step

(II) helps reduce the variance of the estimated CN variant probabilities. Step (III) focuses the

researcher attention to CN variants that are of greater biological interests and serves also as a

statistical significant threshold (all loci are evaluated with the same number of samples, so that

the signal in favor of increased copy number frequency depends only on the number of detected

variations.

A version of the likelihood ratio statistics described for the analysis of tumor samples, can

also be used to detect differences in CNV frequencies in a population of cases and controls. We

will illustrate this point in the data analysis section.

5 Data analysis

Both to develop our model and to test the effectiveness of our algorithm, we have relied on a

dataset collected for genome-wide association study of sporadic amyotrophic lateral sclerosis, and

comprising 461 patients and 450 matched controls of dutch origin [16]. Genotyping was carried out

with Illumina Hap300 Bead Chips. The entire dataset was used to estimate two-marker haplotype

frequencies.

For the purpose of data analysis, we fixed the parameters of the transition matrix resorting

to literature information. We focused on the results reported in [12] with regard to deletions and

duplications scored with Affymetrix genotypes. We obtained the distribution of the lengths of

deletions and duplications, as well as of the percentage of SNPs in deleted or duplicated regions

for 270 HapMap individuals. These results are presented in Figure 7. The median lengths of

deletions and duplications are 48734 and 131571 base pairs respectively. The median proportions

of SNPs in a deletion and duplication are 0.00027 and 0.00049. Using the method of moments, we

fixed then δ = 0.001, γ = 0.0005, and η = 7 × 10−6, with distance measured in number of base

pairs separating two loci.
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Figure 7: The top row contains histograms of the lengths in basepairs of all duplications and

deletions detected in HapMap individuals in [12]. The bottom row presents the histograms of the

proportion of all SNPs that appeared to be in a duplicated and deleted region in each individual in

the study.
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We used the ALS dataset to compile a training set informative for emission parameters. A

simple script was run through the data to identify putative CNV on the basis of consecutive ho-

mozygous genotypes and logR values outside a defined window. The results from 70 were visually

scored by two raters to confirm putative copy number variations on the bases of LogR and BAF

values. We further matched these putative variations in copy number with copy number polymor-

phisms documented in the on-line database of genomic variants

(http://projects.tcag.ca/variation/). We considered as true copy number varia-

tions the subset of those visually scored that we were able to match with an existing variant in

the database, had either been validated with a PCR study, or independently documented with two

different high throughput assays. This leads us to a total of 10 homozygous deletions, 105 hem-

izygous deletions and 140 duplications. Ten of these variants were confirmed with experimental

methods.

We extracted BAF and LogR information for these copy number variable sites, with a context

of 1000 SNPs proximal and 1000 SNPs distal to the CNV (with the exception of the CNVs located

at the telomeres). In order to eliminate smooth variation in LogR values (see later portion of this

section for more in-depth discussion), we pre-processed the samples, estimating a smooth value

for LogR for each sample (we used the Lowess function implemented in R with default values)

and subtracting it prior to the analysis with HMM.

The model we described so far allows only for three possible copy number states. Our training

data, however, contains a small number of hemizygous deletions. To accommodate for this possi-

bility, we have extended the HMM to include a zero copy number state, with marginal probability

0.00005.

In conducting data analysis, we fixed the transition parameters at the values described above,

and estimated the emission parameters with the EM algorithm. However, we felt that the amount

of data in our training set was not sufficient to estimate the emission parameters relative to the

homozygous deletion states. Instead, we fixed them at the following levels, that appear reasonable
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True Reconstructed

0 1 2 3

0 33 0 0 0

1 2 1466 36 0

2 3 189 514298 289

3 0 1 20 1816

Table 1: Comparison of true and reconstructed state values on the training set.

in light of prior evidence and the data in the training set: the mean value for Log R is -5.6 and its

standard deviation is 1.133.

Once the parameters of the HMM are estimated, we use the Viterbi algorithm to reconstruct

copy number states in the training set, with the performance described in Table 1. For comparison

purposes, we also analyzed the same sample with a version of the HMM that did not account for

linkage disequilibrium. This leads to a decrease in specificity. Figure 8 illustrates one of the regions

in our training set. The deletion here considered spans of 5 SNPs and has been experimentally

verified. While, the logR values in correspondence of that SNP are lower then average, identifying

the CNV on the basis of this signal alone is not easy. For illustrative purposes we used the Fused

Lasso routine by Tibshirani and Wang [15]. This routine correctly identifies the CNV, but in the

same region also identifies another putative CNV that is spurious. We will comment further on the

behavior of the Fused Lasso on this dataset.

We then proceeded to analyze the entire genome sequence of one individual, keeping the

parameters of the HMM fixed at the estimated values. We required that the local posterior proba-

bility of copy number other then 2 to be greater then .99 in order to identify a copy number variant.

According to this criterion, 20 regions appeared to harbor putative copy number variations, with

locations illustrated in Figure 9. Figures 10 and 11 give details on the nature of two of these iden-
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Figure 8: A deletion involving 5 SNPs on chromosome 15. Data for additional 1000 SNPs flanking

the deletion is also presented. On the x-axis, we report the positions of queried SNPs in base pairs.

The plots, from top to bottom, display the posterior probability of a copy number aberration, the

copy number state reconstructed with Viterbi, the values of x (B allele frequency) and y (LogR).
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Figure 9: Copy number variants detected in one individual. The posterior probability of a copy

number aberration is displayed against the genomic position of analyzed SNPs. Junctures between

different chromosomes are identified with vertical lines.

tified variations that appear to be reliable calls. In the case of the CNV on chromosome 19, the

consideration of the B allele frequency, again helps to correctly identify the location.

We then considered the analysis of one genomic location that has been documented to contain

copy number polymorphisms in the entire sample of 922 individuals. This region is an hemizygous

deletion of approximately 160kb on Chromosome 8, deposited by 6 independent sources in the

Database of Genomic Variation. Analyzing our dataset with the HMM, we identified 54 individuals

carrying the deletion. The averge Viterbi path across all 922 individuals in this region is presented

in figure 12. The polymorphic deletion, which spans 17 SNPs is clearly identified. Subsequently,

we analyzed this region, estimating a location specific loss and duplication rate for SNPs in the

neighborhood. Because multisample analysis of this kind is more sensitive, we wanted to compare

the frequency of individuals with a deletion according to the single sample analysis conducted with

Viterbi with the location specific estimate of deletion. In this case, the numbers turned out to be

equivalent, suggesting that we had already captured all deletions with out original scan.

Conducting the multisample analysis, however, we realized one strength of the single sample

analysis: its robustness to smooth fluctuations of the logR signal. Consider the situation presented

in Figure 13. The logR signal, in the top panel, clearly fluctuates around a trend, captured here
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Figure 10: Data relative to SNPs on chromosome 19 for the studied individual. On the x-axis,

we report the positions of queried SNPs in base pairs. The plots, from top to bottom, display

the posterior probability of a copy number aberration, the copy number state reconstructed with

Viterbi, the values of x (B allele frequency) and y (LogR).
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Figure 11: Data relative to the small arm of chromosome 2 for the studied individual. On the x-

axis, we report the positions of queried SNPs in base pairs. The plots, from top to bottom, display

the posterior probability of a copy number aberration, the copy number state reconstructed with

Viterbi, the values of x (B allele frequency) and y (LogR).
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Figure 12: Average of Viterbi paths across 922 individuals in 3000 SNPs surrounding a common

deletion, comprising 16-17 SNPs.
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with a spline regression. The analysis of this data with Fused lasso leads to results illustrated in

the middle panel, while the bottom panel reports the estimated viterbi path. The smooth trend is

reflected in the fused lasso results, but it is eliminated from the viterbi path.

To date, we do not have a clear understanding of the experimental effects behind this trend. In

our dataset, we were able to identify samples that appear not to have a systematic trend difference

from zero, and two groups of samples that shared two different smooth patterns. Multisample

analysis is particularly sensitive to these. In order to avoid spurious results, we first pre-processed

the row logR values to estimate a smooth trend and remove it. We then run single sample viterbi

and multisample analysis on the residuals of this analysis. The single sample viterbi were not

substantially different from the ones obtained on the original row data, but the multisample results

were now much less noisy. Figure 14 illustrates these results. In the top panel, we have the

frequency of deletion according to the Viterbi paths. In the middle panel, the estimated frequency

of deletions using multisample analysis for the entire sample, cases, and controls. In the bottom

panel the value of the log-likelihood ratio statistics for comparing the hypothesis of the same

frequency of deletion in cases and controls versus different frequency. Clearly, it appears that the

overall sample frequency of deletion is well captured by the single sample Viterbi analysis. In this

case there appears to be no differences between cases and controls; while the deletion appears to

be longer in some of the controls, it is hard to assess the relevance of this finding.

6 Discussion

We introduced a Hidden Markov Model algorithm to reconstruct variation in copy numbers from

Illumina genotype data. Our algorithm differs from others recently appeared in the literature in the

following aspects. (1) Like other HMM models proposed for illumina genotype, but differently

from adaptations for this purpose of segmentation algorithms, we use the information contained in

the B allele frequency signal. (2) We assume that deletion and duplications are “rare” events, and
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Figure 13: Smooth trends in LogR signal. The top display, provides LogR values for the 3000

analyzed SNPs in one individual. The middle plot presents the result of the cghFlasso algorithm

applied on the LogR values. The bottom display reports the reconstructed copy number state by

our HMM algorithm that uses both LogR and BAF values.
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Figure 14: Multisample analysis of 60 SNPs in the proximity of the studied deletion. The top

display contains the proportion of individuals whose Viterbi path was equal to 1 among the 922

analyzed. The middle plot presents the location-specific probability of deletion estimated using

the algorithm described in section 4.1. The black line refers to the entire sample, blue line to ALS

cases and red line to controls. The bottom plot presents the LR test statistics for a difference in

location-specific propensity of loss between cases and controls.
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model this with a genomewide rate of deletion δ and duplication γ that are much lower then the

probability of 2 DNA copies. (3) We explicitly take into account linkage disequilibrium between

SNPs. (4) We describe how our model can be adapted to carry out multi-sample analysis.
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