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We investigate the problem of computing tensor product mul-
tiplicities for complex semisimple Lie algebras. Even though
computing these numbers is #P -hard in general, we show that
when the rank of the Lie algebra is assumed fixed, then there is
a polynomial-time algorithm, based on counting lattice points
in polytopes. In fact, for Lie algebras of type A, there is an al-
gorithm, based on the ellipsoid algorithm, to decide when the
coefficients are nonzero in polynomial time for arbitrary rank.
Our experiments show that the lattice point algorithm is superior
in practice to the standard techniques for computing multiplic-
ities when the weights have large entries but small rank. Using
an implementation of this algorithm, we provide experimental
evidence for two conjectured generalizations of the saturation
property of Littlewood–Richardson coefficients. One of these
conjectures seems to be valid for types B, C, and D.

1. INTRODUCTION

Given highest weights λ, µ, and ν for a finite-dimensional
complex semisimple Lie algebra, we denote by Cν

λµ the
multiplicity of the irreducible representation Vν in the
tensor product of Vλ and Vµ; that is, we write

Vλ ⊗ Vµ =
⊕

ν

Cν
λµVν . (1–1)

In general, the numbers Cν
λµ are called Clebsch–Gordan

coefficients. In the specific case of type-A Lie algebras,
the values Cν

λµ defined in equation (1–1) are called Little-
wood–Richardson coefficients. When we are specifically
discussing the type-A case, we will adhere to convention
and write cν

λµ for Cν
λµ.

The concrete computation of Clebsch–Gordan coeffi-
cients (sometimes known as the Clebsch–Gordan prob-
lem [Fulton and Harris 91]) has attracted considerable
attention from not only representation theorists, but
also from physicists, who employ them in the study
of quantum mechanics, e.g., [Belinfante and Kolman 89,
Cohen and de Graaf 96, Wybourne 90]. The importance
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of these coefficients is also evident from their widespread
appearance in other fields of mathematics besides rep-
resentation theory. For example, the Littlewood–Rich-
ardson coefficients appear in combinatorics via symmet-
ric functions and in enumerative algebraic geometry via
Schubert varieties and Grassmannians; see, for instance,
[Fulton 97, Stanley 77]. More recently, Clebsch–Gordan
coefficients are also playing an important role in the
study of P vs. NP ; see [Mulmuley and Sohoni 03].

Very recently, Narayanan has proved that the com-
putation of Clebsch–Gordan coefficients is in general a
#P -complete problem [Narayanan 05]. Nonetheless, one
can ask for an algorithm that behaves well when some pa-
rameter is fixed. Stembridge has raised the challenge of
crafting algorithms based on geometric ideas such as Lit-
telmann’s paths [Littelmann 98] or Kashiwara’s crystal
bases [Kashiwara 90] (see comment on page 29, section
7, of [Stembridge 01b]). As we show below, there is such
an algorithm, based on the polyhedral geometry of the
Clebsch–Gordan coefficients.

The first encoding of Littlewood–Richardson numbers
as integral points in polytopes appeared in the Ph.D.
thesis of S. Johnson [Johnson 79]. In 1988, Berenstein
and Zelevinsky presented another combinatorial interpre-
tation of the Littlewood–Richardson coefficients as the
number of lattice points in members of a certain family of
polytopes [Berenstein and Zelevinsky 88a]. Around the
same time, they also presented a more general family of
polytopes, which we call BZ-polytopes, that they con-
jectured would enumerate Clebsch–Gordan coefficients
for any finite-dimensional complex semisimple Lie alge-
bra [Berenstein and Zelevinsky 88b]. In 1999, Knutson
and Tao reformulated the type-A versions of these poly-
topes, which they called hive polytopes, and used them
to prove the saturation theorem [Knutson and Tao 99].
Other mathematicians have also looked at these polyhe-
dra [Pak and Vallejo 05, Kirillov 01]. In this paper, we
will use the presentation by Knutson and Tao in study-
ing the type-A case. Finally, in 2001, the polyhedral pic-
ture of Clebsch–Gordan coefficients was completed when
Berenstein and Zelevinsky proved their 1988 conjecture
[Berenstein and Zelevinsky 01]. Here are our contribu-
tions:

1. We combine the lattice point enumeration algorithm
of Barvinok [Barvinok 94] with the results of Beren-
stein and Zelevinsky [Berenstein and Zelevinsky 01] on
the polyhedral realization of Clebsch–Gordan coefficients
to produce a new algorithm for computing these coeffi-
cients. Our main theoretical result is the following.

Theorem 1.1. (Proved in Section 2.) Given a fixed finite-
dimensional complex semisimple Lie algebra g, one can
compute a Clebsch–Gordan coefficient Cν

λµ of g in time
polynomial in the input size of the defining weights.

Moreover, in the type-A case, deciding whether cν
λµ �=

0 can be done in polynomial time even when the rank is
not fixed.

2. We implemented this algorithm for types Ar, Br, Cr,
and Dr (the so-called classical Lie algebras) using the
software packages LattE [De Loera et al. 03] and Maple 9
[Maplesoft]. In many instances, our implementation per-
forms faster than standard methods, such as those im-
plemented in the software LıE [van Leeuwen 94]. Our
software is freely available at http://math.ucdavis.edu/
∼tmcal.

3. Using our software, we explored general properties sat-
isfied by the Clebsch–Gordan coefficients for the classical
Lie algebras under the operation of stretching of multi-
plicities in the sense of [King et al. 04]. Our computer
experiments provided evidence for the following proposi-
tion.

Proposition 1.2. (Proved in Section 4.2.) The minimum
quasiperiod of a stretched Clebsch–Gordan coefficient for
a classical Lie algebra is at most 2.

On the basis of abundant experimental evidence, we also
propose two conjectured generalizations of the satura-
tion theorem of Knutson and Tao [Knutson and Tao 99].
One of them, which applies to all of the classical root
systems, is an extension of earlier work by King et
al. [King et al. 04].

The paper is organized as follows. In Section 2, after a
review of some background material, we prove Theorem
1.1. Section 3 explains our experiments comparing our
software with LıE. In Section 4, motivated by our compu-
tational results, we prove Proposition 1.2 and present two
conjectures: Conjectures 4.5 and 4.7. Each of these con-
jectures, if true, would generalize the saturation theorem
of Knutson and Tao.

2. CLEBSCH–GORDAN COEFFICIENTS:
POLYHEDRAL ALGORITHMS

As stated in the introduction, we are interested in the
problem of efficiently computing Cν

λµ in the tensor prod-
uct expansion Vλ ⊗ Vµ =

⊕
ν Cν

λµVν . It appears that the
most common method used to compute Clebsch–Gordan
coefficients is based on Klimyk’s formula (see Lemma
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2.1 below). For example, it is used in the package LıE

[van Leeuwen 94] and the Maple packages coxeter/weyl
[Stembridge 01a].

Lemma 2.1. [Humphreys 72, Exercise 24.9] Fix a complex
semisimple Lie algebra g, and let W be the associated
Weyl group. For each weight β of g, let sgn(β) denote the
parity of the minimum length of an element w ∈ W such
that w(β) is a highest weight, and let {β} denote that
highest weight. Let δ be one-half the sum of the positive
simple roots of g. Finally, for each highest weight λ of g,
let Kλβ be the multiplicity of β in Vλ.

Then, given highest weights λ and µ of g, we have that

Vλ ⊗ Vµ =
⊕

ε

Kλε sgn(ε + µ + δ)V{ε+µ+δ}−δ,

where the sum is over weights ε of g with trivial stabilizer
subgroup in W.

Implementations of Klimyk’s algorithm begin by com-
puting the weight spaces appearing with nonzero mul-
tiplicity in the representation Vλ. Then, for each such
weight ε with trivial stabilizer, one computes the Weyl
group orbit of ε + µ + δ. One then finds the dominant
member of the orbit and notes the number � of reflec-
tions needed to reach it. Finally, one adds (−1)�Kλε to
the multiplicity of V{ε+µ+δ}−δ.

Observe that as we perform the Klimyk algorithm, we
compute the coefficient of each Vν in Vλ⊗Vµ “in parallel.”
In other words, we do not know the value of any particu-
lar Clebsch–Gordan coefficient until we have carried out
the entire computation and produced the complete de-
composition Vλ ⊗ Vµ =

⊕
ν Cν

λµVν . Since the number of
terms in this decomposition grows exponentially as the
sizes of λ and µ grow, these sizes need to be small in prac-
tice. This is the main disadvantage of Klimyk’s algorithm
from the point of view of computational complexity. One
can then ask for an algorithm that behaves well as the
sizes of the input weights increase, at least if some other
parameter is fixed.

As discussed in the introduction, it was shown
in [Berenstein and Zelevinsky 88a] that the Littlewood–
Richardson coefficients are equal to the number of
integral lattice points in members of a particular
family of polytopes. In 1999, Knutson and Tao
[Knutson and Tao 99] used these polytopes to prove the
saturation theorem. More precisely, Knutson and Tao
applied a lattice-preserving linear map to the polytopes
of Berenstein and Zelevinsky, producing what they call

hive polytopes. These polytopes exist in the polyhedral
cone of hive patterns, which we now define.

Definition 2.2. Fix r ∈ Z≥0 and let H = {(i, j, k) ∈ Z
3
≥0 :

i + j + k = r}. A hive pattern is a map

h : H → R≥0, (i, j, k) �→ hijk,

satisfying the rhombus inequalities:

• hi,j−1,k+1 + hi−1,j+1,k ≤ hijk + hi−1,j,k+1,

• hijk + hi−1,j−1,k+2 ≤ hi,j−1,k+1 + hi−1,j,k+1,

• hi+1,j−1,k + hi−1,j,k+1 ≤ hijk + hi,j−1,k+1,

for (i, j, k) ∈ H, i, j ≥ 1.

We usually think of a hive pattern of size r as a trian-
gular array of real numbers:

h0,0,r

h1,0,r−1 h0,1,r−1

h2,0,r−2 h1,1,r−2 h0,2,r−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hr,0,0 hr−1,1,0 · · · h1,r−1,0 h0,r,0

In this representation, the rhombus inequalities state
that for each “little rhombus” of entries (which comes
in one of three orientations), the sum of the entries on
the long diagonal does not exceed the sum of the entries
on the short diagonal. That is, in each of the three cases

c b

a d

c

a b

d

a c

d b

we have that a + b ≥ c + d. Here is an example of a hive
pattern with r = 4:

0

8 5

13 12 8

18 17 15 11

20 20 18 16 12
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FIGURE 1. The boundary entries of hive patterns in Hν
λµ.

Recall that a partition of length r is a sequence λ of
integers λ1 ≥ · · · ≥ λr ≥ 0. We write |λ| for

∑r
i=1 λi, the

size of the partition λ.

Definition 2.3. Given partitions λ, µ, ν ∈ Z
r
≥0, the hive

polytope Hν
λµ is the set of hive patterns with boundary

entries fixed as in Figure 1.

Knutson and Tao do not require in their definition
that λ, µ, ν ≥ 0. However, in considering Littlewood–
Richardson coefficients, it suffices to restrict ourselves to
the case in which λ, µ, and ν are partitions; in partic-
ular, their coordinates are nonnegative. This has the
consequence that hive polytopes lie in the nonnegative
orthant, which will be convenient in Section 4.1.

From the perspective of computational complexity, it
is important to note that for fixed r, the input size of
a hive polytope Hν

λµ grows linearly with the input sizes
of the weights λ, µ, and ν. As we have indicated sev-
eral times, our interest in hive polytopes arises from the
following result:

Lemma 2.4. [Berenstein and Zelevinsky 88a, Knutson et
al. 04] The Littlewood–Richardson coefficient cν

λµ equals
the number of integer lattice points in the hive polytope
Hν

λµ.

Unfortunately, the description of the BZ-polytopes
for the other classical Lie algebras is more involved
than that of the hive polytopes above. Therefore,
we refer the reader to Theorems 2.5 and 2.6 of
[Berenstein and Zelevinsky 01], which give their descrip-

tion as systems of linear equalities and inequalities in
terms of the root systems Br, Cr, and Dr. The reader
may also view the contents of our Maple notebooks, avail-
able at http://math.ucdavis.edu/∼tmcal, for completely
explicit descriptions of the necessary inequalities. The
specific properties of the BZ-polytopes that we need to
prove our theorem are (1) for fixed rank r, the dimensions
of the BZ-polytopes are bounded above by a constant, (2)
the input size of a BZ-polytope grows linearly with the
input sizes of the weights λ, µ, and ν, and (3) we have
the following result describing the relationship between
BZ-polytopes and Clebsch–Gordan coefficients:

Lemma 2.5. [Berenstein and Zelevinsky 01, Theorem
2.4] Fix a finite-dimensional complex semisimple Lie al-
gebra g and a triple of highest weights (λ, µ, ν) for g.
Then the Clebsch–Gordan coefficient Cν

λµ equals the num-
ber of integer lattice points in the corresponding BZ-
polytope.

The final necessary ingredient is Barvinok’s algorithm
for counting lattice points in polytopes in polynomial
time for fixed dimension. Several detailed descriptions
of the algorithm in Lemma 2.6 are now available in the
literature; see, for example, [De Loera et al. 04] and ref-
erences therein.

Lemma 2.6. [Barvinok 94] Fix d ∈ Z≥0. Then, given a
system of equalities and inequalities defining a rational
convex polytope P ⊂ R

d, we can compute #(P ∩ Z
d) in

time polynomial in the input size of the polytope.

Having stated these prior results, we are now ready to
prove our main theorem.

Proof of Theorem 1.1: First, if we fix the rank of the Lie
algebra, then we fix an upper bound on the dimension
of the hive or BZ-polytope. Moreover, the input sizes
of these polytopes grow linearly with the input sizes of
the weights. Thus, by Barvinok’s theorem (Lemma 2.6
stated above), their lattice points can be computed in
time polynomial in the input sizes of the weights. There-
fore, the first part of the theorem follows by Lemmas 2.4
and 2.5.

For the second part of the theorem, regarding type A,
the hive polytopes provide a very fast method for deter-
mining whether cν

λµ �= 0. According to the saturation
theorem (see Section 4), cν

λµ �= 0 if and only if the corre-
sponding hive polytope is nonempty. Hence, it suffices to
check whether the system of inequalities defining the hive
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polytope is (real) feasible, which can be done in polyno-
mial time for arbitrary dimension as a corollary of the
polynomiality of linear programming via Khachian’s el-
lipsoid algorithm; see [Schrijver 86].

An analogue of Theorem 1.1 also applies to Kostka
numbers Kλβ , which are another significant family of in-
variants in the representation theory of type-A Lie alge-
bras.

Proposition 2.7. For fixed rank, the Kostka number Kλβ

can be computed in polynomial time in the size of the
highest weight λ and the weight β. For arbitrary rank,
one can decide in polynomial time whether Kλβ �= 0.

The polynomiality of computing Kostka numbers for
fixed rank follows because these numbers can be ex-
pressed as the number of lattice points in Gelfand–Tsetlin
polytopes [Gelfand and Tsetlin 50]. The polynomiality
of determining whether Kλβ �= 0 for arbitrary rank fol-
lows from the well-known criterion that Kλβ �= 0 if and
only if λ dominates β, which may be checked in polyno-
mial time.

It is also worth noticing that Proposition 2.7 follows
directly from Theorem 1.1. This is because each Kostka
number Kλβ is a Littlewood–Richardson coefficient for
some choice of highest weights. For example, as observed
in [King et al. 04], if λ, β ∈ Z

r, then Kλβ = cν
µλ, where

{
νi = βi + βi+1 + · · · ,

µi = βi+1 + βi+2 + · · · ,
for i = 1, 2, . . . , r.

For those familiar with the enumeration of semi-
standard Young tableaux and Littlewood–Richardson
tableaux by Kostka numbers and Littlewood–Richardson
coefficients respectively (see, e.g., [Stanley 99]), the bijec-
tion establishing this relation is straightforward: given a
semistandard Young tableau Y with shape λ and content
β, construct a Littlewood–Richardson tableau L with
shape ν/µ and content λ by filling the boxes as follows.
Start with a skew Young diagram D with shape ν/µ. For
1 ≤ i, j ≤ r, place a number of j’s in the ith row of D

equal to the number of i’s in the jth row of Y , ordering
the entries in each row so that they are weakly increas-
ing. Let L be the tableau produced by filling the boxes
of D in this fashion. (See Figure 2 for an example.)

It is not hard to see that under this map, the column-
strictness condition on Y is equivalent to the lattice
permutation condition on L. It follows that the map
just described is a bijection between semistandard Young

1 1 2 4
2 2 3
4

�−→
1 1

1 2 2
2

1 3

FIGURE 2. Corresponding semistandard Young
and Littlewood–Richardson tableaux.

tableaux with shape λ and content β and Littlewood–
Richardson tableaux with shape ν/µ and content λ.
Thus, computing Kostka numbers reduces to computing
Littlewood–Richardson coefficients.

3. USING THE ALGORITHM IN PRACTICE

Using the explicit definitions for the hive and BZ-
polytopes as the sets of solutions to systems of linear in-
equalities and equalities, we wrote a Maple notebook that
given a triple of highest weights produces the correspond-
ing hive or BZ-polytope in a LattE-readable format.
The notebook is available from http://math.ucdavis.edu/
∼tmcal.

All of our computations were done on a Linux PC
with a 2-GHz CPU and 4 GB of memory. From our ex-
periments, we conclude that (1) the polyhedral method
of computing tensor product multiplicities complements
the method employed in LıE. LıE is effective for slightly
larger ranks (up to r = 10, say), but the sizes of the
weights must be kept small. This is because LıE uses the
Klimyk formula to generate the entire direct sum decom-
position of the tensor product, after which it dispenses
with all but the single desired term. However, comput-
ing all of the terms in the direct sum decomposition is
not feasible when the sizes of the entries in the weights
grow into the 100s. On the other hand, (2) lattice point
enumeration is often effective for very large weights (in
particular, the algorithm is suitable for investigating the
stretching properties of Section 4). However, the rank
must be relatively low (roughly r < 6) because lattice
point enumeration complexity grows exponentially in the
dimension of the polytope, and the dimensions of these
polytopes grow quadratically with the rank of the Lie al-
gebra. Together, the two algorithms cover a larger range
of problems.

We would also like to mention that Charles Cochet
[Cochet 05] also uses lattice points in polytopes to com-
pute Clebsch–Gordan coefficients. Using the Steinberg
formula (see Equation (4–3), Section 4.2), together with
techniques developed in [Baldoni et al. 05], he has writ-
ten software that, like ours, can compute with large sizes
of weight entries. Indeed, in the comparison of running
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times reported in [Cochet 05], his software seems to com-
pute Clebsch–Gordan coefficients approximately five to
ten times more quickly than ours. It would be interest-
ing to determine whether these computation times differ
by a constant factor in general and whether this factor
is due to the theoretical complexity of the computations
or to implementation issues.

Applying the Steinberg formula consists in comput-
ing an alternating sum of vector partition functions over
W × W, the Cartesian square of the Weyl group. Since
this is a fixed set for fixed rank, and since evaluating each
vector partition function in the sum amounts to enumer-
ating the lattice points in a polytope, Cochet’s techniques
also yield a polynomial-time algorithm for computing
Clebsch–Gordan coefficients in fixed rank. However, be-
cause applying the Steinberg formula involves computing
an alternating sum, the techniques in [Cochet 05] cannot
be used to yield the second theoretical result in Theo-
rem 1.1.

3.1 Experiments for Type Ar

In the tables below, we index Littlewood–Richardson co-
efficients for type Ar with triples of partitions with r + 1
parts. Experiments indicate that lattice point enumera-
tion is very efficient for computing Littlewood–Richard-
son numbers when r ≤ 4. First, we computed over 30
instances with randomly generated weights with leading
entries larger than 40 with our approach and with LıE. In
all cases our algorithm was faster. After that, we did a
“worst case” sampling for Table 1 comparing the compu-
tation times of LattE and LıE. To produce the ith row of
that table, we selected uniformly at random 1000 triples
of weights (λ, µ, ν) in which the largest parts of λ and
µ were bounded above by 10i and |ν| = |λ| + |µ| (this
is a necessary condition for cν

λµ �= 0). Then we evalu-
ated the corresponding hive polytopes with LattE. The
LattE input files are created with our Maple program.
The weight triple in the ith row is the one that LattE
took the longest time to compute. We then computed
the same tensor product multiplicity with LıE. Table 2
shows the running time needed when one uses LattE to
compute weight triples with entries in the thousands or
millions.

When r ≥ 5, the running time under LattE begins
to blow up. Still, for r = 5, all examples we attempted
could be computed in under 30 minutes using LattE, and
most could be computed in under 5 minutes. For exam-
ple, among 54 nonempty hive polytopes chosen uniformly
at random among those in which the weights had entries
less than 100, all but seven could be computed in under

5 minutes with LattE, and the remaining seven could all
be computed in under 30 minutes. None of these Little-
wood–Richardson coefficients could be computed with
LıE. At r = 6, lattice point enumeration becomes less
effective, with examples typically taking several hours or
more to evaluate.

3.2 Experiments for Types Br, Cr, and Dr

To compute Clebsch–Gordan coefficients in types Br, Cr,
and Dr, we used the BZ-polytopes. In the tables that
follow, all weights are given in the basis of fundamental
weights for the corresponding Lie algebra.

Our experiments followed the same process we used
for Ar: first, for each root system, we computed over
30 instances with randomly generated weights with en-
tries larger than 40 with our approach and with LıE. In
all cases our algorithm was faster. After that, we did a
“worst case” sampling to produce Table 3, comparing the
computation times of LattE and LıE. As in Section 3.1,
these weight triples were the ones that LattE took the
longest to evaluate among thousands of instances gener-
ated with the following procedure: first, to produce line
i of a table, we set an upper bound Ui for the entries
of each weight. Then, we generated 1000 random-weight
triples with entry sizes no larger than Ui. Here are the
specific values of Ui used in each of the three subtables in
Table 3. For type Br, the bounds Ui were 50, 60, 70, and
10,000, respectively. For type Cr, the bounds Ui were
50, 60, 80, and 10,000, respectively. Finally, for type
Dr, the bounds Ui were 20, 30, 40, and 10,000, respec-
tively. For each generated triple of weights, we produced
the associated BZ-polytopes (using our Maple notebook)
and counted their lattice points with LattE. Table 3 in-
cludes those instances that were slowest in LattE. We also
recorded in the table the time taken by LıE for the same
instances. One can see that the running time needed by
LattE is hardly affected by growth in the size of the input
weights, while the time needed by LıE grows rapidly.

We found that for types Br and Cr, lattice point enu-
meration with the BZ-polytopes is very effective when
r ≤ 3. Each of the many thousands of examples we gen-
erated could be evaluated by LattE in under 10 seconds
(the examples in Table 3 were the worst cases). When
r = 4, the computation time begins to blow up, with
examples typically taking half an hour or more to com-
pute. The polyhedral method is also reasonably efficient
for type-D Lie algebras with rank 4, the lowest rank in
which they are defined. All of the examples we generated
could be evaluated by LattE in under five minutes.
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λ, µ, ν cν
λµ LattE runtime LıE runtime

(9,7,3,0,0), (9,9,3,2,0), (10,9,9,8,6) 2 0m 00.74s 0m00.01s
(18,11,9,4,2), (20,17,9,4,0), (26,25,19,16,8) 453 0m 03.86s 0m00.12s
(30,24,17,10,2), (27,23,13,8,2), (47,36,33,29,11) 5231 0m 05.21s 0m02.71s
(38,27,14,4,2), (35,26,16,11,2), (58,49,29,26,13) 16784 0m 06.33s 0m25.31s
(47,44,25,12,10), (40,34,25,15,8), (77,68,55,31,29) 5449 0m 04.35s 1m55.83s
(60,35,19,12,10), (60,54,27,25,3), (96,83,61,42,23) 13637 0m 04.32s 23m32.10s
(64,30,27,17,9), (55,48,32,12,4), (84,75,66,49,24) 49307 0m 04.63s 45m52.61s
(73,58,41,21,4), (77,61,46,27,1), (124,117,71,52,45) 557744 0m 07.02s > 24 hours

TABLE 1. A “worst case” comparison of running times between LattE and LıE for A4.

λ, µ, ν cν
λµ LattE runtime

(935,639,283,75,48)
(921,683,386,136,21)
(1529,1142,743,488,225)

1303088213330 0m 07.84s

(6797,5843,4136,2770,707)
(6071,5175,4035,1169,135)
(10527,9398,8040,5803,3070)

459072901240524338 0m 09.63s

(859647,444276,283294,33686,24714)
(482907,437967,280801,79229,26997)
(1120207,699019,624861,351784,157647)

11711220003870071391294871475 0m 08.15s

TABLE 2. Computing large weights with LattE for case A4.

λ, µ, ν Cµ
λν LattE runtime LıE runtime

B3

(46,42,38), (38,36,42), (41,36,44) 354440672 0m09.58s 1m 45.27s
(46,42,41), (14,58,17), (50,54,38) 88429965 0m06.38s 3m 16.01s
(15,60,67), (58,70,52), (57,38,63) 626863031 0m07.14s 6m 01.43s
(5567,2146,6241), (6932,1819,8227),
(3538,4733,3648) 215676881876569849679 0m7.07s n/a

C3

(25,42,22), (36,38,50), (31,33,48) 87348857 0m 07.48s 0m 17.21s
(34,56,36), (44,51,49), (37,51,54) 606746767 0m 08.42s 2m 57.27s
(39,64,58), (65,15,72), (70,41,44) 519379044 0m 07.63s 8m 00.35s
(5046,5267,7266), (7091,3228,9528),
(9655,7698,2728) 1578943284716032240384 0m 07.66s n/a

D4

(13,20,10,14), (10,20,13,20), (5,11,15,18) 41336415 2m 46.88s 0m 12.29s
(12,22,9,30), (28,14,15,26), (10,24,10,26) 322610723 3m 04.31s 7m 03.44s
(37,16,31,29), (40,18,35,41), (36,27,19,37) 18538329184 4m 29.63s >60m
(2883,8198,3874,5423), (1901,9609,889,4288),
(5284,9031,2959,5527) 1891293256704574356565149344 2m 06.42s n/a

TABLE 3. A “worst case” sample comparison of running times between LattE and LıE.

4. TWO NEW CONJECTURES THAT WOULD
GENERALIZE THE SATURATION THEOREM

In 1999, Knutson and Tao used the hive polytopes to
prove the saturation theorem.

Theorem 4.1. (Saturation.) [Knutson and Tao 99] Given
highest weights λ, µ, and ν for slr(C), and given an in-
teger n > 0, the Littlewood–Richardson coefficient cν

λµ

satisfies

cν
λµ �= 0 ⇐⇒ cnν

nλ,nµ �= 0.

Buch [Buch 00] has written a very readable exposi-
tion of Knutson and Tao’s proof of this theorem. Several
conjectured generalizations of Knutson and Tao’s result
have appeared in the literature since then. For exam-
ple, Littlewood–Richardson numbers can be expressed as
coefficients of certain polynomials arising in the study
of parabolic Kostka polynomials. Kirillov conjectures
an extension of the saturation theorem to other coeffi-
cients of these polynomials [Kirillov 04]. Another con-
jecture, by Kapovich and Millson, concerns the degree to
which the other classical Lie algebras fail to be saturated
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[Kapovich and Millson 04]. This conjecture implies sat-
uration in the type-A case.

We would like to state two additional conjectures that,
if true, generalize Theorem 4.1. Our conjectures concern
the polyhedral geometry arising in the interpretation pro-
vided by Berenstein and Zelevinsky. First, we translate
Theorem 4.1 into the language of hive polytopes, where
it may be restated as

#
(
Hν

λµ ∩ Z
d
) �= ∅ ⇐⇒ #

(
Hnν

nλ,nµ ∩ Z
d
) �= ∅,

where d =
(
r+2
2

)
. The definition of hive polytopes (see

Definition 2.3 above) implies that Hnν
nλ,nµ = nHν

λµ. Since
nHν

λµ clearly contains an integer lattice point for suffi-
ciently large n, it follows that the saturation theorem is
equivalent to the statement that every nonempty hive
polytope contains an integral lattice point.

4.1 First Conjecture

To show that every hive polytope contains an integral
point, Knutson and Tao actually proved that every hive
polytope contains an integral vertex. Our idea was to
take a different approach to prove a generalization of
this last result using the theory of triangulations of semi-
groups. To develop this idea, observe that the boundary
equalities and rhombus inequalities that define a hive
polytope may be expressed as the set of solutions to a
system of matrix equalities and inequalities:

Hν
λµ =

{
h ∈ R

(r+1)(r+2)/2 :
Bh = b(λ, µ, ν),
Rh ≤ 0

}
, (4–1)

where B and R are integral matrices (depending on r),
and b(λ, µ, ν) is an integral vector depending linearly on
λ, µ, and ν. Here we think of a hive pattern h as a
column vector of dimension (r + 1)(r + 2)/2. There is
some degree of choice in how the boundary equalities
and rhombus inequalities are encoded as matrices B and
R, respectively, but all such encodings are equivalent for
our purposes.

Recall that in our definition of hive polytopes, we re-
quired that λ, µ, ν ≥ 0. This has the convenient conse-
quence that the hive polytope Hν

λµ is contained in the
nonnegative orthant. Such a polytope defined by a sys-
tem of equalities and inequalities may be homogenized by
adding “slack variables” to produce an equivalent poly-
tope defined as the set of nonnegative solutions to a sys-
tem of linear equations. Following this procedure, we
define the homogenized hive polytope H̃ν

λµ by

H̃ν
λµ =

{
h̃ :

[
B 0
R I

]
h̃ =

[
b(λ, µ, ν)

0

]
, h̃ ≥ 0

}

(where I is an identity matrix). The equivalence between
Hν

λµ and H̃ν
λµ is given by the linear map

h �→
[

h
−Rh

]
.

Note that this linear map preserves vertices and integral-
ity. Therefore, to prove the saturation theorem, it suffices
to show that every homogenized hive polytope contains
an integral vertex. Proceeding with this idea, we make
the following definitions.

Definition 4.2. Fix r ∈ Z. Define the homogenized hive
matrix to be

M =
[
B 0
R I

]

(where B and R are as in equation (4–1)). Given an
integral vector b with dimension equal to the number of
rows in M , define the generalized hive polytope or g-hive
polytope Hb by

Hb =
{

h̃ : Mh̃ = b, h̃ ≥ 0
}

. (4–2)

Note that the homogenized hive polytopes are g-hive
polytopes that satisfy certain additional conditions on
the right-hand-side vector b, such as its final entries be-
ing 0.

We now state some very basic facts about vertices of
polyhedra expressed in the form {x : Ax = b, x ≥ 0}. Let
a finite collection of integral points {a1, . . . , ad} ⊂ Z

m be
given, and let A be the matrix with columns a1, . . . , ad.
Define cone A to be the cone in R

m generated by the
point set {a1, . . . , ad}:

cone A = {x1a1 + · · · + xdad : x1, . . . , xd ≥ 0}.

Then, for each vector b ∈ Z
m, we have a polytope

Pb = {x : Ax = b, x ≥ 0} ⊂ R
d,

and Pb �= ∅ if and only if b ∈ cone A. In other words,
there is a correspondence between nonempty polytopes
Pb, b ∈ Z

m, and the elements of the semigroup of inte-
gral lattice points contained in the cone generated by the
columns of A. The crucial property for our purposes is
the following.

Lemma 4.3. If b ∈ (cone A′) ∩ Z
m for some m × m sub-

matrix A′ of A with det A′ = ±1, then Pb has an integral
vertex.
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Proof: Suppose that b ∈ (cone A′) ∩ Z
m for some m × m

submatrix A′ of A with detA′ = ±1. Let the columns
of A′ be ai1 , . . . , aim

, and let J = {i1, . . . , im} be the
indices of these columns. Then there is a vector x =
(x1, . . . , xd)T ∈ R

d
≥0 such that Ax = b and xi = 0 for each

i /∈ J . Letting x′ = (xi1 , . . . , xim
)T and using Cramer’s

rule to solve for x′ in A′x′ = b, we find that x is an
integral vector. Thus, x is an integral lattice point in the
polytope Pb.

To see that x is in fact a vertex of Pb, recall that
the codimension (with respect to the ambient space) of
the face containing a solution to the system Ax = b,
x ≥ 0, of linear equalities and inequalities is the number
of linearly independent equalities or inequalities satisfied
with equality. Observe that x is a solution to the system
of d equalities {

Ax = b,

xi = 0, i /∈ J.

We claim that this is a linearly independent system of
equalities. Suppose otherwise; then the zero row vector
is a nontrivial linear combination of the rows of A and
the row vectors (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the
ith position, i /∈ J . But this implies that the zero row
vector is a nontrivial linear combination of the rows of
A′, which is impossible because det A′ �= 0.

Thus, having shown that x satisfies the d linearly in-
dependent equalities above, we have shown that x lies in
a codimension-d face of Pb; that is, x is a vertex.

We say that ai1 , . . . , aim
is a unimodular subset if the

submatrix A′ of A with columns ai1 , . . . , aim
satisfies

det A′ = ±1. We say that the matrix A has a unimodular
cover (respectively unimodular triangulation) if the point
set {a1, . . . , ad} has a unimodular cover (respectively uni-
modular triangulation).

Corollary 4.4. If A has a unimodular cover, then Pb has
an integral vertex for every integral b ∈ cone(A).

Our conjecture is that this corollary applies to the
homogenized hive matrix. More precisely, we conjecture
the following.

Conjecture 4.5. The homogenized hive matrix has a uni-
modular triangulation. Consequently, every g-hive poly-
tope has an integral vertex.

Since the hive polytopes are special cases of the g-
hive polytopes, Conjecture 4.5 generalizes the saturation
theorem.

Theorem 4.6. Conjecture 4.5 is true for r ≤ 6.

To compute the unimodular triangulations that pro-
vide a proof of Theorem 4.6 we used the software topcom
[Rambau 02]. It may be worth noting that the triangu-
lations used to prove Theorem 4.6 were all placing trian-
gulations.

4.2 Second Conjecture

For our second conjecture, we looked at general proper-
ties satisfied by Clebsch–Gordan coefficients for semisim-
ple Lie algebras of types Br, Cr, and Dr under the op-
eration of stretching of multiplicities. By stretching of
multiplicities, we refer to the function e : Z>0 → Z≥0

defined by e(n) = Cnν
nλ,nµ.

The BZ-polytopes are defined as the set of solutions
to a system of linear equalities and inequalities Ax ≤ b,
Cx = d, where b and d are linear functions of λ, µ, and ν

with rational coefficients [Berenstein and Zelevinsky 01].
It follows that given any highest weights λ, µ, and ν of
a semisimple Lie algebra, e(n) is a quasipolynomial in
n. Indeed, e(n) is, in polyhedral language, the Ehrhart
quasipolynomial of the corresponding BZ-polytope. We
recall the basic theory of Ehrhart quasipolynomials. Its
origins can be traced to the work of Ehrhart [Ehrhart 77]
in the 1960s (see [Stanley 97, Chapter 4] for an excellent
introduction).

Given a convex polytope P ⊂ R
k, let nP = {x :

(1/n)x ∈ P} for n = 1, 2, . . . . If P is a d-dimensional
rational polytope, then the counting function iP (n) =
#(nP ∩ Z

k) is a quasipolynomial function of degree d;
that is, there are polynomials f1(n), . . . , fN (n) such that
each (fj(n)) is either the zero polynomial or is of degree
d, and

iP (n) =

⎧⎪⎨
⎪⎩

f1(n) if n ≡ 1 mod N,

· · ·
fN (n) if n ≡ N mod N.

If iP (n) can be expressed in terms of N polynomials in
this fashion, we say that N is a quasiperiod of iP (n). We
do not assume that N is the minimum such number.

If we put P = Hν
λµ, then the Ehrhart quasipolynomial

of P is just the stretched Littlewood–Richardson coeffi-
cient cnν

nλ,nµ. The Ehrhart quasipolynomials of hive poly-
topes have been studied by several authors. Since lattice
point enumeration can compute with large weights, it is
possible to produce the Ehrhart quasipolynomials for the
stretched Clebsch–Gordan coefficients in the other types.
See Tables 4–6 for some examples out of the many hun-
dreds generated.
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λ, µ, ν Cnµ
nλ,nν LattE runtime

(0, 15, 5)
(12, 15, 3)
(6, 15, 6)

{
68339

64 n5 + 407513
384 n4 + 13405

32 n3 + 9499
96 n2 + 107

8 n + 1, n even
68339

64 n5 + 407513
384 n4 + 13405

32 n3 + 16355
192 n2 + 659

64 n + 75
128 , n odd

7m08.57s

(4, 8, 11)
(3, 15, 10)
(10, 1, 3)

{
13
4 n2 + 3n + 1, n even
13
4 n2 + 3n + 3/4, n odd

0m01.64s

(8, 1, 3)
(11, 13, 3)
(8, 6, 14)

{
121
576 n6 + 1129

640 n5 + 6809
1152 n4 + 163

16 n3 + 2771
288 n2 + 191

40 n + 1, n even
121
576 n6 + 1129

640 n5 + 6809
1152 n4 + 1933

192 n3 + 659
72 n2 + 8003

1920 n + 93
128 , n odd

0m10.26s

(8, 9, 14)
(8, 4, 5)
(1, 5, 15)

{
4117
192 n6 + 50369

640 n5 + 14829
128 n4 + 703

8 n3 + 3541
96 n2 + 341

40 n + 1, n even
4117
192 n6 + 50369

640 n5 + 14829
128 n4 + 5599

64 n3 + 3451
96 n2 + 5001

640 n + 97
128 , n odd

0m13.29s

(10, 5, 6)
(5, 4, 10)
(0, 7, 12)

{
669989

960 n5 + 286355
384 n4 + 10803

32 n3 + 7993
96 n2 + 1427

120 n + 1, n even
669989

960 n5 + 286355
384 n4 + 10803

32 n3 + 15509
192 n2 + 10081

960 n + 65
128 , n odd

2m52.39s

TABLE 4. Ehrhart quasipolynomials for BZ-polytopes of type B3.

λ, µ, ν Cnµ
nλ,nν LattE runtime

(1,13,6)
(14,15,5)
(5,11,7)

{
5937739

5760
n6 + 87023

40
n5 + 936097

576
n4 + 27961

48
n3 + 85397

720
n2 + 883

60
n + 1, n even

5937739
5760

n6 + 87023
40

n5 + 936097
576

n4 + 27961
48

n3 + 657931
5760

n2 + 3097
240

n + 3/4, n odd
21m20.59s

(4,15,14)
(12,12,10)
(4,9,8)

{
22199219

2880
n6 + 8154617

960
n5 + 4500665

1152
n4 + 31297

32
n3 + 226903

1440
n2 + 2021

120
n + 1, n even

22199219
2880

n6 + 8154617
960

n5 + 4500665
1152

n4 + 31297
32

n3 + 217363
1440

n2 + 13513
960

n + 85
128

, n odd
17m05.74s

(9,0,8)
(8,12,9)
(7,7,3)

1
30

n5 + 3
8

n4 + 19
12

n3 + 25
8

n2 + 173
60

n + 1 0m00.61s

(10,2,7)
(8,10,1)
(7,5,5)

{
596153
1152

n6 + 53425
48

n5 + 502621
576

n4 + 5577
16

n3 + 11941
144

n2 + 149
12

n + 1, n even
596153
1152

n6 + 53425
48

n5 + 502621
576

n4 + 5577
16

n3 + 94097
1152

n2 + 131
12

n + 23
32

, n odd
19m24.55s

(10,10,15)
(11,3,15)
(10,7,15)

{
6084163

320
n6 + 507527

30
n5 + 1185853

192
n4 + 59995

48
n3 + 43039

240
n2 + 357

20
n + 1, n even

6084163
320

n6 + 507527
30

n5 + 1185853
192

n4 + 59995
48

n3 + 144751
960

n2 + 883
80

n + 25
64

, n odd
16m05.08s

TABLE 5. Ehrhart quasipolynomials for BZ-polytopes of type C3.

The reader will observe that each of the quasipoly-
nomials in Tables 4–6 have quasiperiod 2. We now
show that this property holds in general for each
of the classical Lie algebras. Derksen and Weyman
[Derksen and Weyman 02] have already shown that the
stretched Littlewood–Richardson coefficients are polyno-
mials, so it remains only to consider the root systems Br,
Cr, and Dr.

Proof of Proposition 1.2: Let g be a classical Lie algebra
of type Br, Cr, or Dr. Since we already know that Cnν

nλ,nµ

is a quasipolynomial in n, it will suffice to show that, for
all sufficiently large n, Cnν

nλ,nµ has quasiperiod 2. Once
this is established, we can interpolate to show that the
claim holds for all values of n.

Let Λ be the weight lattice of g and let Ng(b) denote
the number of ways to write a vector b ∈ Λ as an integral

linear combination of the positive roots of g. The func-
tion Ng is a vector partition function; that is, its support
is contained in a union of polyhedral cones in Λ⊗R, called
chambers, such that the restriction of Ng(b) to the lattice
points in any chamber is a multivariate quasipolynomial
function of the coordinates of b [Sturmfels 95].

The Clebsch–Gordan coefficients can be ex-
pressed in terms of the vector partition function
Ng with the Steinberg multiplicity formula (see, e.g.,
[Fulton and Harris 91]), according to which

Cnν
nλ,nµ =

∑
(−1)σ(ww′)Ng

(
w(nλ + ρ)

+ w′(nµ + ρ) − (nν + 2ρ)
)
, (4–3)

where W is the Weyl group of g, σ(w) is the sign of w in
W, and the sum is over (w,w′) ∈ W × W.
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λ, µ, ν Cnµ
nλ,nν LattE runtime

(0, 2, 10, 5)
(4, 11, 9, 11)
(5, 8, 6, 9)

⎧⎪⎪⎨
⎪⎪⎩

625007
10080

n7 + 729157
2880

n6 + 77197
180

n5 + 449539
1152

n4 + 298979
1440

n3 + 95189
1440

n2

+ 10079
840

n + 1, n even
625007
10080

n7 + 729157
2880

n6 + 77197
180

n5 + 449539
1152

n4 + 298979
1440

n3 + 95189
1440

n2

+ 10079
840

n + 127
128

, n odd

20m24.79s

(2, 7, 12, 2)
(11, 10, 5, 9)
(13, 11, 1, 1)

⎧⎪⎪⎨
⎪⎪⎩

34675903
80640

n8 + 3037051
1680

n7 + 9121453
2880

n6 + 241181
80

n5 + 615083
360

n4 + 8947
15

n3

+ 107791
840

n2 + 6721
420

n + 1 n even
34675903

80640
n8 + 3037051

1680
n7 + 9121453

2880
n6 + 241181

80
n5 + 615083

360
n4 + 8947

15
n3

+ 107791
840

n2 + 6721
420

n + 239
256

n odd

123m59.76s

(3, 11, 0, 10)
(2, 15, 10, 15)
(10, 12, 11, 0)

⎧⎪⎪⎨
⎪⎪⎩

53609
60

n6 + 25631
15

n5 + 63779
48

n4 + 1627
3

n3

+ 2497
20

n2 + 239
15

n + 1, n even
53609

60
n6 + 25631

15
n5 + 63779

48
n4 + 1627

3
n3

+ 2497
20

n2 + 239
15

n + 15
16

, n odd

2m37.73s

(10, 1, 12, 4)
(1, 12, 0, 3)
(0, 5, 3, 4)

5 n2 + 4 n + 1 0m01.63s

(12, 2, 5, 13)
(15, 6, 10, 11)
(2, 0, 12, 13)

⎧⎪⎪⎨
⎪⎪⎩

455263
2016

n7 + 447281
576

n6 + 198433
180

n5 + 971011
1152

n4 + 108787
288

n3

+ 28969
288

n2 + 12631
840

n + 1, n even
455263
2016

n7 + 447281
576

n6 + 198433
180

n5 + 971011
1152

n4 + 108787
288

n3

+ 28969
288

n2 + 12631
840

n + 127
128

, n odd

4m25.90s

TABLE 6. Ehrhart quasipolynomials for BZ-polytopes of type D3.

To prove that Cnν
nλ,nµ is a quasiperiod-2 quasipolyno-

mial of n, it will suffice to show that each term in the
sum on the right-hand side of (4–3) is a quasiperiod-2
quasipolynomial of n. The key fact from which this will
follow is Corollary 3.6 in [Baldoni et al. 05], which states
that, in each of its chambers, Ng(b) is a multivariate
quasipolynomial function of b with quasiperiod 2. Thus,
we need only show that for all sufficiently large n, the
vectors

bn = w(nλ + ρ) + w′(nµ + ρ) − (nν + 2ρ)

remain in a single chamber.
To see this, note that as n increases, the direction

of bn approaches that of b′ = w(λ) + w′(µ) − ν along
a straight line. Hence, for all n sufficiently large, bn

and b′ share a chamber, so that the value of Ng(bn) is
given by a single quasipolynomial function of the coor-
dinates of bn. Because we are looking at a particular
term in the right side of (4–3), w, w′, λ, µ, and ν are
all fixed, so Ng(bn) reduces to a quasipolynomial of n.
This reduction does not increase the quasiperiod, so we
have shown that the right-hand side of (4–3) is a sum
of quasiperiod-2 quasipolynomials when n is sufficiently
large. Thus it follows that Cnν

nλ,nµ is also a quasipolyno-
mial of quasiperiod 2.

Our experiments also motivate the following “stretch-
ing conjecture,” which generalizes the saturation theo-
rem.

Conjecture 4.7. (Stretching conjecture.) Given highest
weights λ, µ, ν of a Lie algebra of type Ar, Br, Cr, or Dr,
let

Cnν
nλ,nµ =

{
f1(n) if n is odd,

f2(n) if n is even

be the quasipolynomial representation of the stretched
Clebsch–Gordan coefficient Cnν

nλ,nµ. Then the coefficients
of f1 and f2 are all nonnegative.

The type-Ar case of this conjecture was made by King,
Tollu, and Toumazet in [King et al. 04]. That Conjecture
4.7 implies the saturation theorem follows from a result of
Derksen and Weyman [Derksen and Weyman 02] show-
ing that the Ehrhart quasipolynomials of hive polytopes
are in fact just polynomials.

We should remark that the saturation property is
known not to hold in the root systems Br, Cr, and Dr. A
simple example in B2, due to Kapovich, Leeb, and Mill-
son [Kapovich et al. 02], is given by setting λ = µ = ν =
(1, 0) (with respect to the basis of fundamental weights).
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In this case we have

Cnν
nλ,nµ =

{
0 if n is odd,

1 if n is even.

This example also demonstrates why the stretching con-
jecture is not contradicted by the failure of the saturation
property in the root systems Br, Cr, or Dr. Since the
stretched multiplicities are not necessarily polynomials in
these cases, it is possible for them to evaluate to zero for
some nonnegative integer while still having all nonnega-
tive coefficients.
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méthode des polyèdres en combinatoire. International
Series of Numerical Mathematics, 35. Basel: Birkhäuser
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