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ABSTRACT: As current shotgun proteomics experiments can
produce gigabytes of mass spectrometry data per hour, processing
these massive data volumes has become progressively more
challenging. Spectral clustering is an effective approach to speed
up downstream data processing by merging highly similar spectra
to minimize data redundancy. However, because state-of-the-art
spectral clustering tools fail to achieve optimal runtimes, this
simply moves the processing bottleneck. In this work, we present a
fast spectral clustering tool, HyperSpec, based on hyperdimen-
sional computing (HDC). HDC shows promising clustering
capability while only requiring lightweight binary operations with
high parallelism that can be optimized using low-level hardware
architectures, making it possible to run HyperSpec on graphics processing units to achieve extremely efficient spectral clustering
performance. Additionally, HyperSpec includes optimized data preprocessing modules to reduce the spectrum preprocessing time,
which is a critical bottleneck during spectral clustering. Based on experiments using various mass spectrometry data sets, HyperSpec
produces results with comparable clustering quality as state-of-the-art spectral clustering tools while achieving speedups by orders of
magnitude, shortening the clustering runtime of over 21 million spectra from 4 h to only 24 min.
KEYWORDS: mass spectrometry, spectral clustering, peptide identification, hyperdimensional computing, runtime optimization

1. INTRODUCTION
Mass spectrometry (MS) is currently the dominant analytical
technique to analyze the protein composition of biological
samples and study the proteome.1−3 Fueled by progress in
instrumentation over the previous decade, modern MS
experiments can consist of millions of mass spectra and
require tens to hundreds of gigabytes storage space. However,
because a typical spectral identification workflow consists of
exhaustively comparing each collected MS/MS spectrum
against the digested protein database to find relevant
peptide−spectrum matches, the generation of increasingly
large data sets can become problematic as MS data analysis
becomes excessively time consuming. For example, analyzing a
large-scale draft human proteome data set,1 amounting to 25
million MS/MS spectra and 131 GB of MS data, requires
several hours to days of processing time.

Spectral clustering is an effective approach to shortening the
spectral identification runtime by reducing the search space.4−9

Prior to peptide identification, highly similar MS/MS spectra
are first clustered together, and each cluster is represented by a
consensus spectrum. The benefits of this approach are 3-fold.
First, clustering minimizes data redundancy by grouping
repeated MS/MS spectra and representing them as a single
consensus spectrum. Second, rather than having to analyze all
raw spectra, downstream tools only need to process a smaller

number of consensus spectra. For example, Wang et al.4

reported using spectral clustering to reduce the runtime of
subsequent peptide identification by over 50%. Third, the
downstream analysis can achieve better results by operating on
high-quality consensus spectra with a higher signal-to-noise
ratio compared to the raw spectra.10

Previous spectral clustering tools have focused on optimizing
clustering quality and clustering speed. For example, MS-
Cluster5 and spectra-cluster8 use an iterative greedy approach
to efficiently merge similar spectra. spectra-cluster has been
utilized for large-scale clustering of public MS data in the
PRoteomics IDEntifications (PRIDE) database11 to build the
PRIDE-Cluster spectral libraries. MaRaCluster6 proposed an
optimized similarity metric that relies on the rarity of fragment
peaks to compare MS/MS spectra. Based on the intuition that
peaks shared by only a few spectra offer more evidence than
peaks shared by a large number of spectra, relative to a
background frequency of fragment peaks with specific m/z
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values, matches of frequent fragment peaks contribute less to
the spectrum similarity than matches of rare peaks. Next,
MaRaCluster performs hierarchical clustering with complete
linkage to group similar spectra in clusters. However, the
clustering speed of MS-Cluster, spectra-cluster, and MaR-
aCluster can be extremely slow on large data sets as they run
on CPU hardware only, which lacks massive parallelism. For
example, Bittremieux et al.9 reported that these tools took 8−
30 h to cluster a draft human proteome data set consisting of
25 million MS/MS spectra.1 Unfortunately, such long
clustering runtime negates any potential benefits of shortened
runtime from downstream applications. Additionally, as
current MS data repositories contain orders of magnitude
more data, with several billions of MS/MS spectra currently
available, performing spectral clustering at the repository scale
becomes increasingly challenging and computationally infea-
sible.

Several spectral clustering tools have tried to address this
issue by focusing on processing speed. msCRUSH4 utilizes
locality-sensitive hashing (LSH) to achieve fast clustering
speeds by projecting similar spectra into shared LSH buckets
to avoid unnecessary pairwise spectrum comparisons. Within
each bucket, msCRUSH then uses a greedy spectrum merging
strategy similar to MS-Cluster and spectra-cluster to cluster the
spectra. falcon9 first converts spectra to low-dimensional
vectors using a hashing strategy. It uses approximate nearest
neighbor searching12 to construct a sparse pairwise distance
matrix, which helps to shorten the required runtime.

ClusterSheep7 further optimizes the spectral clustering runtime
by offloading computations to a graphics processing unit
(GPU). Compared to falcon, ClusterSheep implements
function kernels on a GPU to speed up further. Unfortunately,
however, despite their efficient runtimes, falcon and Cluster-
Sheep exhibit some reduction in clustering quality compared to
MaRaCluster and msCRUSH. Consequently, existing spectral
clustering tools still lack the ability to yield high clustering
quality within a short runtime when processing large-scale data
sets.

Here, we propose HyperSpec, a GPU-accelerated spectral
clustering library using brain-inspired hyperdimensional
computing (HDC).13 Unlike previous hashing-based methods
that project spectra into a low-dimensional space, HDC
instead encodes spectra into binary high-dimensional vectors,
called hypervectors (HVs). Compared to the low-dimensional
embeddings used by msCRUSH4 and falcon,9 HVs are
superior in the sense that spectra can be encoded as compact,
binary vector representations with a minimal loss of
information. Additionally, binary HDC operation in Hyper-
Spec offers high data parallelism for low-level hardware
architecture, which we leveraged by developing fast Python
kernels tailored for exploiting GPU resources. By operating on
spectra represented as HVs, HyperSpec achieves state-of-the-
art clustering quality and clustering speed. Our experiments
show that HyperSpec is scalable to different data set sizes and
significantly accelerates spectral clustering up to 15× compared
to alternative clustering tools. As an example, clustering of a

Figure 1. (a) Overall diagram of HyperSpec. (b) HyperSpec’s spectrum preprocessing and bucket division flow. HyperSpec’s spectra preprocessing
and bucket division are optimized using multiprocessing on a CPU. HD encoding and distance computation are offloaded to a highly parallel GPU.
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large draft human proteome data set1 was reduced from over 4
h (using MaRaCluster) to only 24 min. Meanwhile, the
peptide identification quality using clustered consensuses
generated by HyperSpec is comparable with state-of-the-art
tools. HyperSpec is freely available as open source on GitHub
at https://github.com/wh-xu/Hyper-Spec under the BSD
license.

2. MATERIALS AND METHODS

2.1. Overall Flow
HyperSpec is a Python library for spectral clustering that
optimally makes use of both CPU and GPU hardware
resources (Figure 1a). The overall data processing flow of
HyperSpec consists of five main steps, including spectrum
preprocessing, bucket division, hyperdimensional (HD)
encoding, HD distance computation, and clustering. The first
two steps, namely, spectrum preprocessing and bucket division,
are executed on a CPU, while the HD encoding and distance
computation are accelerated using GPUs. This allows Hyper-
Spec to fully utilize both CPU and GPU computing resources
for optimized preprocessing and clustering speed.
2.2. Efficient Spectrum Preprocessing
Prior to spectral clustering, the raw spectra need to be loaded
and preprocessed. This is one of the bottlenecks during
spectral clustering, contributing 20−90% of the overall runtime
for several state-of-the-art spectral clustering tools (Figure 2).

There are several reasons contributing to the slow preprocess-
ing step. (1) During preprocessing, raw spectra are loaded and
parsed from the storage device, after which the parsed spectra
are processed to remove noise. The parsing phase is bounded
by the speed of parsing spectral data into a numerical format,
since the peak information takes up over 95% of the data
volume in raw files. (2) Processing the parsed spectra is
computation bounded, because it requires sorting, computing,
and data manipulation for high-dimensional peak vectors. (3)
Another crucial factor limiting the preprocessing speed of
existing clustering tools is the underutilization of storage I/O
bandwidth. Specifically, modern solid-state drives (SSD)
provide GB/s sequential access speeds, but most clustering
tools cannot provide sufficient preprocessing speed to match
the I/O bandwidth. To this end, HyperSpec optimizes
spectrum preprocessing as follows.

2.2.1. Multiprocessing. HyperSpec uses the commonly
used Mascot Generic Format (MGF) as an input. HyperSpec
utilizes multiprocessing to read each file in parallel and
distribute the computation to k independent CPU cores
(Figure 1b). Spectrum preprocessing is composed of two
phases: spectrum parsing and preprocessing. We implemented
an optimized spectrum data parser and a paral-
lelized preprocessor, which are executed independ-
ently on k CPU cores to increase data parallelism.
Supplementary Information Figure S1 shows that multi-
processing achieves sublinear speedup and effectively reduces
the preprocessing time.
2.2.2. Spectrum Data Parser. Rather than using stand-

alone C++ or Python parsing,4,5,9 HyperSpec uses a hybrid C+
+−Python program, which balances Python’s convenience of
code extension and C++’s performance. The low-level
spectrum data parser is built using the Spirit X3
parser in Boost C++14 to convert MGF data to numerical
arrays. After being compiled, the spectrum data parser
is invoked by the high-level Python interface using multi-
processing.
2.2.3. Parallelized Preprocessor. HyperSpec’s paral-

lelized preprocessor reduces the preprocessing time
by vectorizing the computation. Specifically, the preprocessing
operations are parallelized to multiple CPU cores using just-in-
time (JIT) compilation by Numba.15 The JIT compilation
requires negligible human intervention while providing great
portability for code extension and modification.

These modules are used to preprocess the spectra as follows.
First, peaks related to the precursor ion or with <1% intensity
than the base peak intensity are removed. Second, spectra with
<5 valid peaks or with a <250 Da mass range between their
minimum and maximum peaks are removed. Third, at most, 50
peaks with the highest intensities are retained, and the peak
intensities are normalized to [0, 1] using their L2 norm.
2.3. Bucket Division

An important challenge while clustering large data sets, with n
spectra, is that performing all pairwise spectrum comparisons
results in a dense pairwise distance matrix with quadratic

n( )2 complexity, which is prohibitive for large n. To reduce
this requirement, we follow a simple and effective strategy by
dividing spectra into buckets.7,9 After all MGF files have been
processed by the spectrum preprocessing module,
the spectra are sorted and organized by ascending precursor
m/z order (Figure 1b). Instead of having to cluster an entire
data set, the spectra are divided into smaller buckets as follows

= ×m z C
bucket

( / 1.00794)
1.0005079i

i i
Å
Ç
ÅÅÅÅÅÅÅÅ

Ñ
Ö
ÑÑÑÑÑÑÑÑ (1)

where Ci is the precursor charge, m/zi is the precursor m/z
associated with the ith spectrum, 1.00794 is the mass of the
charge, and 1.0005079 corresponds to the distance between
the centers of two adjacent clusters of physically possible
peptide masses.16 Each bucket is represented using an integer.

This bucket division scheme significantly reduces the
memory usage and runtime by only comparing spectra within
the same bucket to compute distance matrices for each bucket,
instead of having to perform all pairwise spectrum comparisons
for the full data set.

Figure 2. Runtime profiling for five popular spectral clustering tools
(falcon,9 msCRUSH,4 MaRaCluster,6 spectra-cluster,8 and MS-
Cluster5). The runtimes were evaluated in terms of the time required
for spectrum preprocessing and the time required for spectral
clustering.
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2.4. GPU-Accelerated Spectral Clustering in
Hyperdimensional Space

HyperSpec exploits emerging HDC techniques13,17 to convert
the preprocessed spectra into hyperdimensional space, where
data are expressed as high-dimensional vectors with binary
values. An important advantage of such HDC encoding is that
the transformed data preserve features of the original space
while exhibiting opportunities for data parallelism that can be
leveraged by parallel GPU architectures.17 Due to this reason,
the final three steps of HyperSpec (HD encoding, HD distance
computation, and clustering) can be significantly accelerated
using a GPU or CPU. HyperSpec clusters spectra by bucket
granularity, meaning that one bucket is encoded, computed,
and clustered at a time.
2.4.1. HD Encoding for Spectra. Whereas previous

works4,6 directly computed spectrum similarities and per-
formed clustering using the peak vectors, HyperSpec first uses
HD encoding to project spectra to binary hypervectors (HVs)
in the hyperdimensional space before performing the distance
calculations (Figure 3). The HD encoding models the locality
of the peak m/z and intensity values using two sets of encoding

HVs (ID HVs I and level HVs L, respectively). The ID HVs I
∈{ I1, I2, ..., If} reflect the spatial locality of m/z values, while
the level HVs L∈{ L1, L2, ..., LQ } reflect the intensity of peaks,
where f and Q are the maximum peak index range and intensity
quantization levels, respectively. Both Ii and Lj are D-
dimensional binary HVs, such that Ii, Lj ∈{0,1}D.

The two sets of encoding HVs, I and L, are iteratively
generated in a stochastic manner. For ID HVs I, first a random
HV is generated and regarded as I1. Next, the ith HV Ii is
generated by randomly flipping a specific number of bits from
its preceding HV Ii−1. In this work, the default number of
flipped bits is D

2
. For level HVs L, the generation process of

first HV L1 is identical with I. The difference is that level HVs
generate the ith HV Li by flipping D

Q
bits compared to the

preceding HV Li−1. The impact of the generation parameters
on the clustering quality is discussed in section 3.

In the HD spectrum encoding process, the spectra in each
bucket are first converted and quantized to two sparse vectors:
peak m/z and peak intensity vectors. Based on the m/z and
intensity pairs (i, j) in the peak m/z and peak intensity vectors,
HyperSpec’s HD encoder finds the associated ID HV Ii and
level HV Lj in the encoding HV sets. The fetched ID HV Ii and
level HV Lj are then pointwise XORed by Ii ⊕Lj. After all
i j( , ) , where denotes the set of peak m/z and intensity
vectors, are computed, the HD-encoded spectrum is generated
as follows

=h I LMajority
i j

i j
( , )

i

k
jjjjjjj

y

{
zzzzzzz (2)

where Majority(·) denotes the pointwise majority function that
generates the binarized spectrum HV h∈{0, 1}D.

The HD dimension D needs to be large (normally > 1000)
to guarantee representation capability.17 However, because
such a large dimension incurs an expensive encoding cost, we
have made two optimizations to reduce the encoding overhead.
2.4.2. Bit Packing. By default, existing CPU or GPU

architectures have a byte-level data granularity. However,
storing a binary HV as a byte array needs 8× larger space than
the theoretical number of bits D. To increase the memory
efficiency of HyperSpec, HVs are stored in a bit-packed data
structure, where every 32 bits of a HV h are packed into a 32-
bit integer and each HV is stored in an integer array with
length D

32
, which reduces the memory requirements to store a

HV 8-fold.
2.4.3. Batched GPU Parallel Encoding. The HD

encoding is a bit-parallel algorithm, such that each bit of h
can be computed independently. We have implemented the
HD encoding modules using the CUDA platform18 and the
HDC-specialized GPU memory optimization scheme19 to
exploit this parallelism on GPUs. Before starting the HD
encoding process, ID HVs I and level HVs L are transferred to
the GPU memory. We found that data transfer of the HVs
incurs a large overhead, since the size of the ID HVs I is much
larger than the size of a single encoded spectrum. To reduce
this overhead, the GPU parallel encoding in HyperSpec is
performed in a batchwise manner, where the HV data are
transferred while a batch of spectra are processed.
2.4.4. HD Distance Computation. The clustering step of

HyperSpec operates on the pairwise distance matrix of each
bucket (also called bucket distance matrix). We use a

Figure 3. HD encoding and distance computation on a GPU. Each
preprocessed spectrum’s m/z and intensity after vectorization and
quantization are encoded into single hypervector (HV). Then, the
bucket distance matrix is computed.
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normalized Hamming distance to measure the similarity
between spectrum HVs. For two binary encoded spectra hi
and hj, the Hamming distance is first computed by counting
the set bits of their XOR result hi⊕hj. Then the Hamming
distance is normalized to [0, 1] by dividing D. Consequently,
the pairwise distance d(hi, hj) is computed as

=d
D

h h
h h

( , )
popcount( )

i j
i j

(3)

where popcount(·) denotes the operation that obtains the
number of set bits in a binary vector.

The HDC-based distance computation is lightweight
because the computation of eq 3 only needs XOR and ones-
counting operations. Our efficient implementation of these
distance calculations leverages two CUDA integer intrinsics,
XOR and popc. Additionally, by operating on bit-packed HVs,
the time complexity to calculate each value in the pairwise
distance matrix is reduced from D to D

32
.

2.4.5. Clustering Algorithms. HyperSpec supports two
popular clustering algorithms�DBSCAN20 and hierarchical
clustering21�to cluster each spectra bucket based on the
bucket distance matrix. HyperSpec implements these two
clustering algorithms due to their three common benefits.

(1) DBSCAN and hierarchical clustering have been
previously demonstrated effective to generate satisfac-
tory quality for spectral clustering.9,22,23 The analysis in
section 3.1 shows DBSCAN and hierarchical clustering
yield various trade-offs between runtime and clustering
quality. Supporting both of them allows the users to
have more flexible choices.

(2) DBSCAN and hierarchical clustering require minimal
efforts to tune the algorithmic hyperparameters, as the
number of clusters does not need to be specified
explicitly.

(3) From the perspective of runtime performance, the off-
the-shelf fast DBSCAN and hierarchical clustering
implementations21,24 are available and the clustering
speed scales well to million- or even billion-scale
scenarios.

2.5. Software Development and Code Availability

HyperSpec was implemented in Python 3.8. The MGF loading
and parsing functions were written in C++ and compiled to
Cython interfaces25 that can be invoked by Python. The
spectrum preprocessing functionality was parallelized using the
JIT compilation library Numba (version 1.20.2).15 The HD
encoding and distance computation functions on a GPU were
implemented using Numba and CuPy. We used the DBSCAN
available in the cuML library (version 22.04)24 of the
RAPIDS26 framework and fast hierarchical clustering with
complete linkage in fastcluster21 to perform clustering on a
GPU and CPU, respectively. HyperSpec is publicly available as
open source at https://github.com/wh-xu/Hyper-Spec under
the BSD license.
2.6. Clustering Evaluation

2.6.1. Clustering Quality Metrics. We used the following
metrics to evaluate the clustering quality and runtime
performance.

• Clustered spectra ratio. The clustered spectra ratio
equals the number of clustered spectra divided by the

total number of spectra. This metric evaluates the
clustering capability of the corresponding clustering tool.

• Incorrect clustering ratio. Incorrectly clustered spectra
are those spectra whose peptide labels deviate from the
most frequent peptide label in their clusters. The
incorrect clustering ratio is the number of incorrectly
clustered spectra divided by the total number of
clustered and identified spectra.

• Completeness. Completeness measures the fragmenta-
tion of spectra corresponding to the same peptide across
multiple clusters and is based on the notion of entropy
in information theory. A clustering result that perfectly
satisfies the completeness criterium (value “1”) assigns
all PSMs with an identical peptide label to a single
cluster. Completeness is computed as one minus the
conditional entropy of the cluster distribution given the
peptide assignments divided by the maximum reduction
in entropy the peptide assignments could provide.27

• Runtime. The runtime is defined as the wall clock time
between the start of spectrum preprocessing and the
finish of the clustering procedure. We use the Linux
system command to measure the wall clock time. The
time for generating cluster consensus spectra was
excluded since the overhead hereof is small.

2.6.2. Hardware Configurations. The runtime perform-
ance of all clustering libraries was measured on a server with a
12-core CPU, 128 GB DDR4 memory, and a 2 TB NVMe
solid-state drive (SSD). The equipped GPU card was an
NVIDIA GeForce RTX 3090 GPU with 24 GB RAM. All tools
were allowed to use all available processor cores and threads.
2.6.3. Benchmarks. We compared HyperSpec to six state-

of-the-art spectral clustering libraries, including GLEAMS,23

falcon,9 msCRUSH,4 MaRaCluster,6 spectra-cluster,8 and MS-
Cluster.5 The clustering quality was controlled by varying the
spectrum similarity threshold values, while the other
configurations were set to the default values without explicit
specifications. The distance threshold during clustering in
HyperSpec was from 0.2 to 0.45. GLEAMS’ distance threshold
for agglomerative clustering with complete linkage was 0.2−
0.7. The cosine distance threshold of falcon was 0.05−0.25.
msCRUSH’s cosine similarity threshold was varied from 0.3 to
0.8. MaRaCluster’s P value was from −30 to −3. The
clustering threshold for spectra-cluster was 0.8−0.99999. MS-
Cluster’s mixture probability was from 0.00001 to 0.1.
2.6.4. Data Set. We used five MS data sets at different

scales for evaluation (Table 1). These data sets consist of
various human proteomics data, such as the HEK293 cell
line,2,28,29 HeLa,3 and a draft map of the human proteome.1

For all data sets, raw files were downloaded from PRIDE30 and
converted to MGF files using ThermoRawFileParser.31

For each data set, spectra with precursor charge 2 and
precursor charge 3 were considered. The largest data set,

Table 1. Properties of the Evaluated MS Data Sets

data set sample type PRIDE ID
no. of
spectra size

Data set-A kidney cell2 PXD001468 1.1M 5.6 GB
Data set-B kidney cell28 PXD001197 1.1M 25 GB
Data set-C HeLa proteins3 PXD003258 4.1M 54 GB
Data set-D HEK293 cell 29 PXD001511 4.2M 87 GB
Data set-E human proteome

draft 1
PXD000561 21.1M 131 GB
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PXD000561,1 was used for runtime and clustering quality
evaluation. The corresponding spectrum identifications were
downloaded from MassIVE reanalysis RMSV000000091.3.
These identifications were obtained via automatic reanalysis of
public data on MassIVE using MS-GF+.32 Spectra were
searched against the UniProtKB/Swiss-Prot human reference
proteome (downloaded 2016/05/23)33 augmented with
common contaminants. Search settings included a 50 ppm
precursor mass tolerance, trypsin cleavage with maximum one
nonenzymatic peptide terminus, and cysteine carbamidome-
thylation as a static modification. Methionine oxidation,
formation of pyroglutamate from N-terminal glutamine, N-
terminal carbamylation, N-terminal acetylation, and deamida-
tion of asparagine and glutamine were specified as variable
modifications, with a maximum one modification per peptide.
The remaining four data sets were used for runtime evaluation
only.

3. RESULTS

3.1. Clustering Quality Comparison

3.1.1. HyperSpec Clustering Quality Using Different
Parameters. We studied the impact of HD parameters and
clustering algorithms on HyperSpec’s clustering quality to
select the optimal parameter combination. For HD, the two
hyperparameters that influence the capability to represent
spectra as HVs, and thus impact the spectrum clustering
quality, are the HV dimension D and quantization level Q.
Using the draft human proteome Data set-E, we examined the
clustering quality using different combinations of clustering
algorithms (DBSCAN or hierarchical clustering with complete
linkage), HV dimension D (Supplementary Information Table
S1), and quantization level Q (Supplementary Information
Table S2), fixing the clustering distance threshold.

First, the HV dimension D was varied between 128 and
8192 and three clustering quality metrics (clustered spectra
ratio, incorrect clustering ratio, and completeness) were
computed for each combination of clustering algorithm and
D value (Supplementary Information Table S1). This
evaluation showed that as the HV dimension D increases,
the incorrect clustering ratio and the clustered spectra ratio for
both clustering algorithms decreased. However, the complete-
ness of DBSCAN decreases from 0.8979 to 0.8615, while
hierarchical clustering’s completeness is improved from 0.8071
to 0.8406. This is because a larger D allows the HVs to more
granularly represent the spectra after encoding; their
corresponding similarities will more accurately reflect the
true spectral similarities and avoid that spectra corresponding
to different peptides are incorrectly grouped together. The
clustering results become less complete for DBSCAN as the
density-based DBSCAN is unable to form large clusters when
the spectral similarities are more accurate. Larger D also
increases the memory usage for HV encoding and storing. The
HV dimension D = 2048 balances well between clustering
quality and memory consumption. We used D = 2048 as the
default value for HV dimension.

In the second experiment, we fixed D = 2048 and then
varied the quantization level Q from 4 to 64 and calculated the
corresponding clustering quality metrics for each quantization
level (Supplementary Information Table S2). Increasing
quantization level Q reduced the clustered spectra ratio as
well as completeness while slightly improving the incorrect
clustering ratio for both clustering algorithms. For DBSCAN,

the incorrect clustering ratio dropped from 1.41% to 1.29%
while completeness dropped from 0.8644 to 0.8595 as Q is
increasing from 4 to 64. Overall, the clustering quality is less
sensitive to the change of quantization level Q. We choose Q =
16 as the default value for quantization level.

We find hierarchical clustering with complete linkage
achieves a better clustering spectra ratio and lower incorrect
clustering ratio as compared to DBSCAN (see Supplementary
Information Tables S1 and S2). In the following sections, we
use hierarchical clustering as the default clustering algorithm
without explicit specifications.
3.1.2. Comparison with Existing Tools. Using the draft

human proteome Data set-E, we also compared the clustering
quality of HyperSpec to six alternative spectral clustering tools
(Figure 4). As suggested previously,8,22 a high clustered spectra

ratio at a low incorrect clustering ratio indicates a better
clustering capability for a specific tool. Additionally, complete-
ness measures fragmentation of the same peptide over multiple
clusters, and an ideal clustering result should be as complete as
possible to ensure that spectra originating from the same
peptide are more likely to be grouped into a single cluster.

For the clustered spectra ratio shown in Figure 4a,
HyperSpec is significantly higher than falcon and MS-Cluster
across different incorrect clustering ratios. Meanwhile, Hyper-
Spec consistently clusters more spectra than MaRaCluster and
is slightly inferior to GLEAMS, achieving the second best
result at the region with low incorrect clustering ratio.

In terms of completeness, HyperSpec outperforms spectra-
cluster, MS-Cluster, and falcon, achieving top-3 completeness

Figure 4. Clustering quality comparison for seven clustering tools: (a)
clustered spectra ratio vs incorrect clustering ratio, (b) clustering
completeness vs incorrect clustering ratio.
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among the six clustering tools according to Figure 4b. In
contrast to falcon and spectra-cluster, which reach a plateau in
terms of completeness as the incorrect clustering ratio
increases, HyperSpec is able to trade off a small amount of
incorrect clustering ratio for more complete clustering results.
HyperSpec also maintains high completeness values as the
incorrect clustering ratio increases. For the region with
incorrect clustering ratio > 3%, HyperSpec surpasses other
counterparts except for MaRaCluster, suggesting that the
clusters produced by HyperSpec are generally less fragmented.
This can be especially beneficial for downstream analysis tasks
since more complete clustering results can be represented by a
smaller number of consensus spectra to optimally minimize
data redundancy.

To intuitively understand the clustering results, we studied
the distribution of cluster sizes for the most frequently
identified peptide sequence VATVSIPR with precursor charge
2 for different spectral clustering tools (Figure 5). Here,

HyperSpec used a threshold of eps = 0.25, HD dimension of D
= 2048, and quantization level of Q = 16 to achieve a clustering
with a ratio of incorrectly clustered spectra < 1.2%. The other
spectral clustering tools use configurations as listed in Table 2.
We can see that HyperSpec mostly forms medium-size clusters
with size 5−500 as compared to falcon and msCRUSH which
tend to generate large clusters (size > 500). The majority of
clusters produced by MaRaCluster and spectra-cluster contain
less than 100 spectra, which indicates that these two tools are
more likely to group spectra corresponding to the same
peptide into multiple small and fragmented clusters. The
characteristics of cluster size distribution for HyperSpec is
most similar to those of MaRaCluster and spectra-cluster that
also adopt hierarchical clustering. In comparison, falcon and
msCRUSH group these spectra into a limited number of large
clusters that contain at least 5000 spectra. We also add the six
most frequent peptide sequences on Data set-E with charge 2
and charge 3 as shown in (Supplementary Information Figure
S2) to illustrate the distribution of the cluster sizes.

3.2. Spectra Database Searching Comparison
The generated consensuses from spectra clustering tools can
be used for the downstream spectra database search to identify
peptide sequences. We compared the spectra searching
performance on the human proteome draft Data set-E in
Table 1 for three clustering tools, including HyperSpec,
GLEAMS, and falcon. The clustering results generated by
these tools were controlled to have a clustered spectra ratio
around 60%. The clustering consensuses of HyperSpec were
generated based on the original raw spectra data. We use the
default parameters provided by the software except for the
distance thresholds. Specifically, HyperSpec uses a distance
threshold value = 0.3 and produces 62.9% clustered ratio with
1.58% incorrect clustering ratio. GLEAMS uses a distance
threshold value = 0.25 and produces 59.1% clustered ratio with
1.14% incorrect clustering ratio. falcon uses a distance
threshold value = 0.2 and produces 61.1% clustered ratio
with 4.27% incorrect clustering ratio. The clustering
consensuses were searched using MSGF+32 with the same
parameters given in section 2.6.4.

Figure 6 illustrates the Venn diagrams that depict the
overlap relationship of identified unique peptides using

consensus spectra clustered by HyperSpec, GLEAMS, and
falcon. GLEAMS identifies the largest number of unique
peptides. HyperSpec identifies 8.1% and 1.1% less unique
peptides for charge 2 and identifies 7.8% and 4.1% less unique
peptides for charge 3 as compared to GLEAMS and falcon,
respectively. It should be noted that HyperSpec achieves a
much lower incorrect clustering ratio than falcon (1.58% vs
4.27%). Considering that HyperSpec is significantly faster than
GLEAMS and falcon, we believe its slight degradation of
spectra searching quality is acceptable. Furthermore, Hyper-
Spec not only boosts the spectra clustering procedure but also
reduces the search time of spectra database search. HyperSpec
yields about a 2.7× speedup over the spectra searching using

Figure 5. Distribution of cluster sizes for the most frequently
identified peptide sequence VATVSIPR with precursor charge 2.

Table 2. Key Performance Metrics of HyperSpec, GLEAMS, falcon, msCRUSH, and MaRaCluster on the draft Human
Proteome Data Set-E.

tool parameters runtime peak memory clustered spectra incorrect clustering ratio completeness

HyperSpec eps = 0.25, D = 2048, Q = 16 24 min 54 GB 10 290 245 (48.70%) 1.08% 0.7885
GLEAMS threshold = 0.25 217 min 34 GB 12 392 427 (59.06%) 1.14% 0.8251
falcon eps = 0.05 161 min 87 GB 5 675 468 (27.42%) 1.11% 0.8438
msCRUSH similarity = 0.8 55 min 91 GB 4 397 921 (22.34%) 1.16% 0.8418
MaRaCluster pvalThreshold = −30.0 251 min 19 GB 9 305 471 (43.20%) 1.07% 0.7911

Figure 6. Venn diagrams that depict the overlap of identified unique
peptides using consensus spectra generated by HyperSpec, GLEAMS,
and falcon. The precursor charges include charge 2 in a and charge 3
in b. Identified peptides from HyperSpec are highly overlapped with
the results generated by GLEAMS and falcon.
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raw spectra because the redundant searching processes for
those similar spectra are skipped.
3.3. Runtime Performance Comparison
Runtime is a crucial metric to evaluate the efficiency of spectral
clustering tools. Especially, to be able to perform spectral
clustering at the repository scale, tools have to be fast to handle
the ever-growing amount of MS data that is available in public
data resources.

We first compared the total clustering time of HyperSpec
using DBSCAN or hierarchical clustering with complete
linkage on five data sets. Supplementary Information Figure
S3 shows that hierarchical clustering was ∼29% faster than
DBSCAN on the small-size and medium-size Data set-A to
Data set-D. However, HyperSpec using DBSCAN generated
more complete results with 38% shorter runtime than
hierarchical clustering on large-scale data set Data set-E. The
shorter runtime on large-scale data sets comes from the
optimized DBSCAN routines on parallel GPU devices.

We extensively measured the runtime performance of
HyperSpec hierarchical clustering with complete linkage
compared to three fast spectral clustering tools on five data
sets with a varying number of spectra in Table 1. falcon and
GLEAMS are Python-based libraries that use both optimized
JIT compilation and multiprocessing, while msCRUSH and
MaRaCluster were written in high-performance C++ and
optimized using multithreading. spectra-cluster and MS-
Cluster were not considered here since they are significantly
(>5×) slower than other tools. Our evaluation results in Figure
7 indicate that HyperSpec consistently outperforms all other

tools in terms of runtime; 10.8 × to 15.0 × speedup was
observed across different data sets. HyperSpec’s speed
advantage for spectra preprocessing progressively grows for
larger data sets (Figure 8a). We further investigated the
runtime scalability when processing an increasing number of
spectra (Figure 8b). Our analysis shows HyperSpec’s excellent
scalability and performance advantages over alternative tools
for increasingly large MS data sets.

We also studied detailed performance metrics (runtime,
peak memory consumption, and clustering quality) when
running HyperSpec, GLEAMS, falcon, msCRUSH, and
MaRaCluster on the draft human proteome Data set-E
(Table 2). All tools were allowed to use all available CPU
cores to obtain the fastest clustering speed and were configured
to produce a clustering result with a ratio of incorrect clustered
spectra around 1.0%. HyperSpec was able to process the full
draft human proteome data set, amounting to 131 GB of MS
data, in a mere 24 min, which is by far the fastest speed among
the four spectral clustering tools considered. This runtime is

2.3× faster than the second-fastest tool, msCRUSH, while
achieving a higher clustered spectra ratio and smaller peak
memory usage. Although GLEAMS produced the highest ratio
of correctly clustered spectra, it required 217 min of processing
time, which is 9.0× slower than HyperSpec. This is because
>90% of GLEAMS’ runtime is consumed by the spectra
preprocessing and embedding steps. MaRaCluster obtained the
lowest ratio of incorrectly clustered spectra among all tools and
a comparable completeness value with HyperSpec. Finally,
with a peak memory consumption of 54 GB, HyperSpec was
more memory efficient than msCRUSH and falcon. In
summary, because HyperSpec achieves an optimal tradeoff
between clustering quality and runtime efficiency, it is an
especially appealing option to process the quickly growing
volumes of MS data.

4. DISCUSSION
Here, we have presented a HDC-based spectral clustering tool,
HyperSpec, to achieve both excellent clustering quality and
runtime. Instead of clustering raw spectra directly, HyperSpec
leverages HDC17 to convert spectra to hyperdimensional
space. Specifically, the spectra are first encoded into binary
HVs that have high dimensionality but simpler representation
format. Our evaluations show that HyperSpec achieves a
comparable clustering quality as state-of-the-art spectral

Figure 7. Total clustering runtime speedup of HyperSpec compared
to alternative clustering tools. The tool with the slowest runtime on
each data set was normalized to 1.

Figure 8. Runtime performance of msCRUSH,4 falcon,9 and
HyperSpec when scaling to different data set sizes and number of
spectra.
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clustering tools.4−6,9,34 Furthermore, we profiled and analyzed
the bottlenecks of existing clustering tools. We developed
optimized spectra preprocessing routines and an efficient
clustering flow by addressing bottleneck components. As a
result, HyperSpec achieved the fastest speed among all tools
considered and is orders of magnitude faster than alternative
spectral clustering tools.

HyperSpec is extensible to plug in and support other MS
workloads. For example, spectrum preprocessing is a common
step during various MS data analysis tasks, such as sequence
database searching35 and spectral library searching.34,36 The
spectrum preprocessing routines in HyperSpec are highly
modularized, so that users can easily integrate these optimized
routines into other workloads to take advantage of their
efficient implementations.

Another potential application of HyperSpec is to utilize the
compact binary HV representation to compress MS data. We
have demonstrated that the original spectra in floating-point
format can be encoded into binary HVs with D = 1024−4096
bits with minimal loss of information to maintain a high-quality
clustering quality. In this case, the original spectrum with 50−
100 peaks in 32-bit or 64-bit floating-point number can be
compressed by a factor of 3.1−12.5×. Moreover, HV encoding
could be convenient for the subsequent downstream MS
workloads, such as spectrum identification. Specifically, off-the-
shelf HDC-based pattern matching algorithms37−39 could be
leveraged to match spectra against a peptide database.

There are still several opportunities to improve upon
HyperSpec’s clustering quality and runtime performance.
Similar to MaRaCluster and spectra-cluster,6,34 one possible
approach could be to derive an optimized distance function to
compare spectrum HVs and improve the clustering quality,
since finding similar spectra is an essential task during spectral
clustering. Another strategy could be to adopt a postprocessing
scheme after clustering to split up invalid clusters.7,22 To
further shorten the clustering runtime, the HV distance
computations and the clustering step can be parallelized over
multiple GPU cards. Because the bucket division mechanism
relaxes data dependencies between different buckets of spectra
and the clustering implementations in cuML24 natively support
multiple GPUs, a multi-GPU mode could be integrated in
HyperSpec at minimal effort to achieve a near-linear speedup.
The other possible speedup opportunity is combining
HyperSpec with the emerging near-storage spectrum process-
ing hardware40 that can generate higher energy efficiency for
repository-scale data processing.
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