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Abstract 
 

This paper provides a review of recent advances in causal inference relevant to sociology. 

We focus on a selective subset of contributions aligning with four broad topics: causal effect 

identification and estimation in general, causal effect heterogeneity, causal effect mediation, 

and temporal and spatial interference. We describe how machine learning, as an estimation 

strategy, can be effectively combined with causal inference, which has been traditionally 

concerned with identification. The incorporation of machine learning in causal inference 

enables researchers to better address potential biases in estimating causal effects and 

uncover heterogeneous causal effects. Uncovering sources of effect heterogeneity is key for 

generalizing to populations beyond those under study. While sociology has long emphasized 

the importance of causal mechanisms, historical and life-cycle variation, and social contexts 

involving network interactions, recent conceptual and computational advances facilitate 

more principled estimation of causal effects under these settings. We encourage sociologists 

to incorporate these insights into their empirical research.   

 
 

 
 
 
 
 
 
 
Keywords: causal inference; counterfactuals; machine learning; treatment effect 
heterogeneity; mediation; extrapolation; external validity; 
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Recent Developments in Causal Inference and Machine Learning 

 

1  Introduction 

Many important questions in the social sciences, and everyday life, are causal questions. 

For example, we want to know how parental divorce affects children, how attending college 

affects job prospects, or how moving to a new neighborhood affects children’s academic 

performance. We ask what would happen if individuals did or did not experience an event, 

like divorcing or attending college. Since reviews in sociology by Winship and Morgan (1999) 

and Gangl (2010), the literature on causal inference has developed several new promising 

directions. Some of the most exciting areas of development lie at the intersection of causal 

inference with machine learning (Athey & Imbens 2017, 2019; Huber 2021). This review 

describes several key identification strategies for causal inference and how machine learning 

methods can enhance our estimation of causal effects. Throughout our review, we describe 

some empirical applications of these methods in sociology.4  

We emphasize four main principles in our review. First, the plausibility of the 

assumptions underlying different research designs and identification strategies varies by 

applications. Machine learning methods adapted to causal tasks facilitate estimation, but 

like other estimation tools, they do not assure identification of causal effects. Second, causal 

effect heterogeneity is the norm, and it complicates extrapolation. Researchers may exert 

considerable effort in establishing a model with high internal validity, or credibility of the 

estimator of the causal effect of interest, but with low external validity, or limited 

 
 
 
4 Our review differs from recent reviews in sociology (Lundberg et al. 2022; Molina & Garip 2019) and political 
science (Grimmer et al. 2021) on machine learning in that we focus on the intersection between causal inference 
and machine learning. See also Hastie et al. (2017) for a textbook treatment of statistical learning.  
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generalizability of the causal effect to other populations. To understand the population 

distribution of causal effects, we need to assess causal effect heterogeneity. Machine learning 

methods can help identify subpopulations most responsive to treatments. Third, when 

assessing social mechanisms in sociological research, we need to attend to confounding along 

the causal pathway, i.e., for not only the treatment-outcome relationship but also the 

treatment-mediator and mediator-outcome relationships. Fourth, temporal and spatial 

interference, typical in social settings, complicates the definition, identification, and 

estimation of causal effects. These complications should be addressed more routinely in 

sociological research. In the following sections, we discuss (1) effect identification and 

estimation, (2) effect heterogeneity, (3) effect mediation, and (4) temporal and spatial 

interference. We conclude with some general remarks.  

 

2   Causal Effect Identification and Estimation 

2.1. Notation and Estimands 

Empirical work can be descriptive, such that we establish facts through associations between 

observables. For example, we might observe that college graduates earn higher wages than 

non-college graduates. But to evaluate causal effects, we draw on counterfactuals, i.e., we 

ask how much college-educated individuals would have earned without a college degree. The 

potential outcomes framework offers a conceptual apparatus for defining causal effects. The 

framework has roots in research on experiments by Fisher (1935) and Neyman (1923) and 

research in economics by Roy (1951) and Quandt (1972). Rubin formalized and extended 

the potential outcomes framework in a series of papers in statistics in the 1970s and 1980s 

(e.g., Rubin 1974, 1977, 1986). 

Let us define a treatment 𝑊, e.g., an event or intervention, applied to unit i, i being 

a member in a population. A unit exposed to a treatment (Wi = 1) at a specific time could 
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have been exposed to an alternative treatment (i.e., control, Wi = 0) at the same time. For 

example, a person who attended college could have instead not attended college.  We assume 

units assigned to treatment and control groups have potential outcomes in both states, the 

ones in which they are observed and unobserved. For a binary treatment, let Y be an 

outcome of interest and Yi1 and Yi0 the potential outcomes for unit 𝑖 that would result from 

exposure to the treatment and control states, respectively. The causal effect of the treatment 

is thus the difference between the potential outcomes (i.e., 𝑌!" − 𝑌!#). The fundamental 

problem of causal inference is that we cannot observe both potential outcomes (Holland 

1986). This framework is often applied to binary treatments, although extending to 

multicategory treatments is conceptually straightforward. We may also consider continuous 

treatments, but in this case the number of potential outcomes becomes infinite, rendering 

the framework more complex (Gill and Robins 2001).5 For each unit, we assume that the 

treatment status and potential outcomes determine the observed outcome. Let us focus on 

the case of binary treatment conditions. We have 𝑌! = 𝑊!𝑌!" + (1 −𝑊!)𝑌!#. The stable unit 

treatment value assumption (SUTVA) (Rubin 1986) implies that the potential outcomes 

for any unit do not vary with the treatment assigned to other units. In other words, there 

is no interference between units. However, in many social settings, SUTVA can be 

problematic. For example, the wages for one college graduate may be affected by the 

population proportion of workers completing college. 

 Following Heckman and Robb (1986), we assume that treatment effects are 

heterogeneous. Using the potential-outcomes notation, we smooth out that heterogeneity 

 
 
 
5 Kennedy et al. (2017) develop non-parametric methods for doubly robust estimation of continuous treatment 
effects. 
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and define different estimands for specific populations of interest.6 The average treatment 

effect (ATE) is the average of individual treatment effects in the population:  

𝜏$%& = 𝐸[𝑌" − 𝑌#],     (1) 

where we omit the unit subscript 𝑖 for conciseness. The average treatment effect on the 

treated (ATT) is the average of individual effects among the treated subpopulation: 

𝜏$%% = 𝐸[𝑌" − 𝑌#|𝑊 = 1].      (2) 

Now consider the estimand corresponding to the difference in average outcomes between 

the treated and control units: 

𝜏 = 𝐸[𝑌|𝑊 = 1] − 𝐸[𝑌|𝑊 = 0].    (3) 

Following Abadie and Cattaneo (2018), we note: 

𝜏 = 𝜏$%& +	𝑏$%& = 𝜏$%% +	𝑏$%% ,    (4) 

where 𝑏$%& and 𝑏$%% are bias terms given by 

𝑏$%& = (𝐸[𝑌"|𝑊 = 1] − 𝐸[𝑌"|𝑊 = 0]) Pr(𝑊 = 0) + (𝐸[𝑌#|𝑊 = 1] − 𝐸[𝑌#|𝑊 =

0]) Pr(𝑊 = 1),      (5) 

and 

𝑏$%% = 𝐸[𝑌#|𝑊 = 1] − 𝐸[𝑌#|𝑊 = 0].    (6) 

If the average potential outcomes under both states are identical between treated and 

control units, the bias terms 𝑏$%&  and 𝑏$%%  disappear. This condition is, however, 

untestable. Confounding arises when pretreatment characteristics correlated with potential 

outcomes also influence treatment assignment. 

2.2. Experimental Studies 

 
 
 
6 See Lundberg, Johnson, and Stewart (2021) and Lundberg (2022) for discussions on setting theoretical 
estimands in precise terms, outside of any statistical model.  
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Randomized experiments, where we randomly assign individuals to treatment and control 

conditions, offer one strategy to address confounding (Fisher 1935). With successful 

randomization, experiments generate independence between treatment status and both 

potential outcomes: 

(𝑌", 𝑌#) ⊥ 𝑊,      (7) 

where ⊥ denotes statistical independence. Consequently, the bias terms in (5) and (6) equal 

0, and we can credibly attribute the difference in average outcomes between the treated 

(𝐸[𝑌|𝑊 = 1] ) and control groups (𝐸[𝑌|𝑊 = 0] ) to the treatment. In a traditional 

experiment, we assign a predetermined number of units to one of two conditions. Note, 

however, that unless an experiment is conducted on a population-representative sample it 

is not possible in general to derive the population-level ATE from experimental data. We 

return to the topic of extrapolating study-specific results in section 3.2. 

Recent developments in randomized experiments include adaptive designs for 

evaluating optimal treatment assignment. For example, multi-armed bandits tailor 

treatments to individuals when they need to be treated. The design aims to balance the 

goals of “exploration” (i.e., evaluating the effects of different treatment conditions) and 

“exploitation” (i.e., assigning units to treatment conditions with higher payoffs) (Athey & 

Imbens 2019; Carranza et al. 2022; Offer-Westport et al. 2021; Scott 2010). Consider an 

online setting where treatment is assigned sequentially to different units, and the outcome 

for each unit is measured quickly after treatment assignment. A multi-armed bandit assigns 

treatment conditions based on information learned up to the point of the assignment, thus 

allowing researchers or policymakers to assign more units to conditions with higher payoffs. 

Sociological applications of multi-armed bandits remain scarce, but it is a promising 

approach for future studies. 

2.3. Observational Studies under Unconfoundedness 
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For practical and ethical reasons, sociologists cannot address many interesting social 

questions using experiments, and some scholars have lamented the extent to which 

randomized experiments dominate the hierarchy of scientific evidence (Abadie & Cattaneo 

2018; Deaton & Catwright 2018). But in most observational studies, the independence 

condition (7) may not hold. In the case of college effects, for example, the simple difference 

between college and non-college graduates’ wages is not a credible estimate of the causal 

effect due to pretreatment heterogeneity, i.e., that individuals with higher skills and 

achievement and advantaged social backgrounds disproportionately complete college. We 

may observe some confounding factors in our data, while others are unobserved. Researchers 

may assume that after adjusting for a set of pretreatment covariates X, there are no 

additional confounders that affect both treatment status and the outcome. That is, they 

assume unconfoundedness (also called ignorability, selection-on-observables, conditional 

independence, or exogeneity): 

(𝑌", 𝑌#) ⊥ 𝑊|𝑋,     (8) 

which allows for the identification of the causal effect of 𝑊 on 𝑌 by adjusting for X. Figure 

1 is a directed acyclic graph (DAG) representing the causal relationships between 𝑊, 𝑋, 

and 𝑌 under unconfoundedness.7  

[Figure 1 about here] 

To estimate the ATE, we also assume positivity, meaning that treatment assignment 

is probabilistic at all covariate values in the population. Positivity is a strong assumption 

as it rules out the possibility that treatment status has no variation (i.e., at either 0 or 1) 

 
 
 
7 DAGs represent assumptions about nonparametric relationships between variables (in contrast to path 
diagrams that reflect linear structural equations) (see Pearl [2009] and Morgan and Winship [2014] for 
background on the use of DAGs). Edges are directed, such that an arrow indicates the effect of one variable 
on another, such as the effect of W on Y. They are also acyclic, such that there are no feedback loops. 
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at some covariate values. The latter might happen by chance even if positivity holds in the 

population. For example, while there may be young adults from families in the top income 

decile who did not attend college, such youth may fail to appear in a particular sample. 

Moreover, near violations of positivity (e.g., very few treated/untreated units at some 

covariate values) can result in unstable estimates of causal effects for subgroups of the 

population. In practice, we often trim observations with very high and low estimated 

treatment probabilities to reduce instability in our estimated effects, or those outside the 

region of common support, leading to effect estimates that do not fully represent the 

population. This is an example where we  sacrifice a degree of external validity to enhance 

internal validity.  

Under the assumptions of unconfoundedness and positivity, researchers draw on 

various methods to estimate causal effects, such as regression-imputation, propensity score 

matching (PSM), and inverse probability weighting (IPW) (see Imbens [2004] or Gangl 

[2010] for a review of these methods). Using regression-imputation, the researcher fits a 

regression model for the conditional mean of the outcome 𝑌 given treatment status 𝑊 and 

pretreatment covariates 𝑋, 𝜇'(𝑋) = 𝐸[𝑌|𝑊, 𝑋], “imputes” the potential outcomes under 

treatment and control for each unit, �̂�"(𝑋!) = 𝐸:[𝑌|𝑊 = 1, 𝑋!] and �̂�#(𝑋!) = 𝐸:[𝑌|𝑊 = 0, 𝑋!], 

and estimates the ATE using the average difference between these imputed outcomes: 

�̂�$%& =
"
(
∑ <�̂�"(𝑋!) − �̂�#(𝑋!)=(
!)" ,    (9) 

where 𝑛 is the sample size. If the outcome model 𝜇'(𝑋) is additive in 𝑊 and 𝑋, �̂�$%& will 

reduce to the coefficient on 𝑊 in the regression model.  

Using PSM and IPW, the researcher fits a model for the propensity score, i.e., the 

conditional probability of treatment given the pretreatment covariates, 𝑝(𝑋) =

Pr[𝑊 = 1|𝑋], and obtains the estimated propensity score for each unit,  �̂�(𝑋!) (Rosenbaum 

and Rubin 1983). With PSM, the researcher then matches treated and control units with 
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similar values of the propensity score and use their differences to estimate effects (Abadie 

& Imbens 2016; Caliendo & Kopeinig 2008; Imbens 2015). Matching algorithms differ 

primarily in how researchers define the distance between units (e.g., propensity scores), 

select the number of control units, select controls with or without replacement, and weight 

multiple control units (Austin & Stewart 2017; Morgan & Harding 2006; Morgan & Winship 

2014). Decisions regarding how many controls to use and whether to match with or without 

replacement involve a bias-variance tradeoff.8 With IPW, the researcher estimates the ATE 

using a weighted difference in means: 

�̂�$%& =
"
(
∑ @'!*!

+,(.!)
− ("0'!)*!

"0+,(.!)
A(

!)" .    (10) 

By weighting each unit by the inverse estimated propensity (i.e., 1/�̂�(𝑋!) for treated units 

and 1/(1 − �̂�(𝑋!)) for untreated units), researchers create a weighted sample in which 

treatment status is expected to be independent of all pretreatment covariates. In other 

words, if the propensity score model is correct, we expect that treated and control units are 

balanced in their covariate values. 

Regression-imputation, PSM, and IPW involve modeling different parts of the data 

distribution. While regression-imputation depends on a correctly specified outcome model, 

PSM and IPW depend on a correctly specified propensity score model. However, correctly 

specifying either model is difficult, especially when the vector of pretreatment covariates 𝑋 

is high-dimensional. When the outcome or propensity score model is misspecified, the 

corresponding regression-imputation or matching or IPW estimates can be biased. 

Misspecification may arise either (1) because we have many potential (observed) 

 
 
 
8 More control units lead to greater efficiency and greater bias, while fewer control units lead to less efficiency 
and less bias. Allowing replacement increases the average quality of the matches but reduces the number of 
unique control units used to estimate the counterfactual mean, increasing the estimator's variance (See An & 
Winship [2017], Imbens [2015], and Imbens & Rubin [2015] for discussion of matching procedures).  
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confounders of the treatment-outcome relationship in the data; or (2) because the researcher 

is agnostic about the functional form in which treatment status and the covariates affect 

the outcome. Both scenarios are common in sociological research. Given the second scenario, 

researchers may experiment with higher-order and interaction terms. Imbens and Rubin 

(2015) propose an iterative approach to produce a flexible specification of the propensity 

score specification. Scholars have also advocated using flexible machine learning methods 

to fit the outcome or propensity score models. For example, researchers have used 

classification and regression trees (CART), random forests, and ensemble methods to 

estimate propensity scores (e.g., Brand et al. 2021; Lee et al. 2010; McCaffrey et al. 2004; 

Westreich et al. 2010).9 Scholars should draw on theory in the selection of covariates to 

include (Cinelli et al.2022; Elwert & Winship 2014; Elwert 2015; Pearl 2009). 

In each scenario, however, we face complications because these methods were 

generally not designed for causal inference. Supervised machine learning methods are 

designed to minimize prediction errors rather than estimate causal effects. For example, a 

LASSO regression for the outcome tends to select a subset of the covariates highly predictive 

of the outcome. Such a subset, however, may not be the optimal subset for estimating the 

ATE. Furthermore, if we omit covariates highly predictive of treatment status, even if their 

correlations with the outcome are modest, substantial bias may arise in our treatment effect 

estimates (Belloni et al. 2014). Similarly, if we use an off-the-shelf machine learning method 

to fit the propensity score model for matching or IPW, it will seek a model that minimizes 

 
 
 
9 An (2010) describes Bayesian propensity score estimators that model the joint likelihood of both propensity 
scores and outcomes in one step to incorporate the uncertainty in propensity score estimation. Simulations 
show that this approach corrects for overly conservative inference based on standard propensity score 
estimators.  
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the error of predicting treatment status, which may not be the model that yields the optimal 

propensity score estimates for balancing covariates between the treated and control units.  

Researchers have adapted existing machine learning methods to estimate causal 

parameters to mitigate these and other concerns central to causal inference. First, to adapt 

machine learning to the regression-imputation approach, Belloni et al. (2014) propose a 

“double selection” procedure, in which we fit two LASSO regressions, one for the outcome 

and one for treatment status. After that, we fit an ordinary least squares regression of the 

outcome on treatment status and the union of the selected covariates in the first two LASSO 

regressions. In doing so, researchers adjust for covariates that are important in predicting 

either the outcome or treatment status, avoiding the bias resulting from a single LASSO 

regression of the outcome. Künzel et al. (2019) propose a metalearner that can take 

advantage of any supervised learning algorithm to estimate average treatment effects. They 

show that the X-learner, using random forest and BART as base learners, performs 

favorably. 

Second, to adapt machine learning for IPW, McCaffrey et al. (2004) proposed fitting 

the propensity score model using gradient boosting machines (GBM). This approach is a 

precursor to a literature on calibrated propensity scores (e.g., Imai and Ratcovkic 2014) and 

balancing weights (e.g., Hainmueller 2012; Zubizarreta 2015; Fong et al. 2018; Athey et 

al.2018; Zhou & Wodtke 2020). Using optimization methods, researchers choose a set of 

weights such that in the weighted sample, the treated and control units are either exactly 

or approximately balanced in pretreatment covariates (by a prespecified balancing metric). 

This procedure ensures that bias due to covariate imbalance is slight. Zhou (2019), for 

example, adapts this approach to assess the effect of college completion on intergenerational 

income mobility.  
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 Finally, machine learning methods are particularly attractive when combined with 

the so-called “doubly robust estimators” of average treatment effects (Robins and Rotnitzky 

1995; Robins, Rotnitzky, and Zhao 1994). Consider the following doubly robust estimator 

of the ATE: 

�̂�$%& =
"
(
∑ @�̂�"(𝑋!) − �̂�#(𝑋!) +

'!(*!012"(.!))
+,(.!)

− ("0'!)(*!012#(.!))
"0+,(.!)

A(
!)" . (11) 

Under the assumptions of SUTVA, unconfoundedness, and positivity, it is consistent for 

the ATE if either the outcome model 𝜇'(𝑋) or the propensity score model 𝑝(𝑋), but not 

necessarily both, is correctly specified (Scharfstein et al. 1999). The double-robustness 

property occurs because the bias of equation (11) as an estimator of the ATE is governed 

by the product of two bias terms: (1) the bias of the fitted outcome model �̂�'(𝑋) and (2) 

the bias of the fitted propensity score model �̂�(𝑋). Provided one of the two biases converges 

to zero, the bias of equation (11) will converge to zero. This property motivates what 

Chernozhukov et al. (2018) call debiased machine learning (DML) of the ATE, i.e., the use 

of flexible machine learning methods to construct estimates of 𝜇'(𝑋) and 𝑝(𝑋) in equation 

(11) (see also van der Laan & Rubin [2006]). Due to the data-driven nature of machine 

learning methods, they generally do not provide root-n consistent estimates of the 𝜇'(𝑋) 

and 𝑝(𝑋) functions.10 However, because of the multiplicative structure of its bias expression, 

equation (11) itself remains a root-n consistent estimator of the ATE under mild 

conditions. 11 By contrast, the biases of the regression-imputation and IPW estimators 

(equations 9 and 10) do not have such a multiplicative structure, preventing root-n 

consistent estimation of the ATE when researchers use machine learning to estimate the 

 
 
 
10 Root-n consistency means that the estimator converges on the true value at a rate of 𝑛$%/'. 
11 This is true if the product of the convergence rates of the machine learning estimators of 𝜇((𝑋) and 𝑝(𝑋) 
is faster than 𝑛$%/'. We can achieve this property when, for example, both converge to the truth at a faster-
than 𝑛$%/) rate, which is attainable for many machine learning methods. 
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outcome or the propensity score model. In a recent application of this approach, Zhou and 

Pan (Forthcoming) employed a DML approach to assess the heterogeneous effects of college 

attendance and BA completion on earnings for Black and White Americans. 

When DML is used, it is advisable to use sample splitting, whereby, for example, a 

portion of the data is used as a training sample to estimate the outcome and propensity 

score models, and another portion is used to evaluate equation (11). This procedure removes 

the “overfitting bias” of machine learning estimators of the outcome and propensity score 

models.12 However, a conventional sample splitting procedure would involve a waste of data. 

To retain efficiency, researchers may draw on cross-fitting, which includes the following 

steps (Chernozhukov et al. 2018): (1) randomly partition the sample into 𝐽 folds, 𝑆", 𝑆3, … 𝑆4, 

where 𝐽 is a small number such as five; (2) for each 𝑗, obtain a fold-specific estimate of the 

ATE using only data from 𝑆5, but with the outcome and propensity score models estimated 

from the remainder of the sample (𝑆\𝑆5); and (3) average these fold-specific estimates to 

form a final estimate of the target parameter.  

Finally, researchers should routinely consider how the results obtained under the 

unconfoundedness assumption would change if we relaxed that assumption. One common 

approach is to conduct sensitivity analyses by subtracting a bias term from the point 

estimate and confidence interval of the estimated treatment effects (VanderWeele & Arah 

2011; Gangl 2015). The bias term is equal to the product of two parameters: 

𝐵 = 𝛾𝜆,      (12) 

where 

 
 
 
12 Machine learning methods attend to the issue of overfitting more than conventional statistical models 
(Athey & Imbens 2019). The goal is to select flexible models that fit well, but not so well that out-of-sample 
prediction is compromised. Regularization techniques calibrate machine learning methods to minimize a loss 
function and avoid overfitting.  
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𝛾 = 𝐸(𝑌|𝑈 = 1,𝑊, 𝑋) − 𝐸(𝑌|𝑈 = 0,𝑊, 𝑋)    (13) 

and 

𝜆 = 𝑃𝑟(𝑈 = 1|𝑊 = 1, 𝑋) − 𝑃𝑟(𝑈 = 1|𝑊 = 0, 𝑋).   (14) 

That is, g is the mean difference in the outcome associated with a unit change in an 

unobserved binary confounder, U, and l is the mean difference in the unobserved confounder 

between treated and control units. See Cinelli and Hazlett (2020) for additional measures 

and graphical tools for assessing sensitivity to unobserved confounding. 

 

2.4. Quasi-Experimental Designs 

In settings where researchers deem the unconfoundedness assumption (8) implausible, they 

may seek to identify causal effects using quasi-experimental designs, such as instrumental 

variables or regression discontinuity. Instrumental variables (IV) are widely used in 

randomized experiments with imperfect compliance and in “natural experiments” using 

observational data (Angrist, Imbens, and Rubin 1996; Imbens and Angrist 1994). As an 

example of the latter, several studies have used proximity to a local college as an IV for 

college attendance to assess the effects of attendance on wages (Card 2001; Deaton 2010). 

Figure 2 is a DAG representation of the IV design, where an unobserved confounder U may 

affect both the treatment 𝑊 and the outcome 𝑌. The instrumental variable 𝑍 affects W and 

can affect Y only indirectly through its effect on W. Exogenous variation in 𝑍, which induces 

changes in 𝑊, is used to identify the causal effect of 𝑊 on 𝑌. An IV analysis is typically 

implemented using two-stage least squares (2SLS). In the first stage, a linear model is used 

to predict treatment status given the IV and a set of pretreatment covariates 𝑋. In the 
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second stage, the outcome 𝑌 is regressed on 𝑋 and the fitted values of 𝑊	from the first 

stage, whose coefficient represents the causal effect of 𝑊 on 𝑌.13 

[Figure 2 about here] 

The IV approach allows for unobserved confounding of the 𝑊-𝑌 relationship but 

relies on other stringent assumptions. First, conditional on the pretreatment covariates 𝑋, 

the instrument must be exogenous. That is, no unobserved confounding exists for the 𝑍-𝑊 

and 𝑍-𝑌 relationships (i.e., the independence assumption). Second, we assume that the IV 

affects the likelihood of treatment, even if it does so within a small range (i.e., the relevance 

assumption). Third, we assume that the IV affects the outcome only indirectly through the 

treatment (i.e., the “exclusion restriction”). Finally, allowing for heterogeneous treatment 

effects, we assume that although the instrument may not affect some people, all those 

affected are affected in the same direction (i.e., the “monotonicity” assumption). With these 

assumptions in place, researchers have suggested that the 2SLS identifies the local average 

treatment effect (LATE) for a binary treatment W (Angrist & Pischke 2009): 

𝜏6$%& = 𝐸[𝑌" − 𝑌#|𝑊" > 𝑊#],    (15) 

where 𝑊# and 𝑊" denote the potential value of treatment when the instrumental variable 

𝑍 takes the value of 0 and 1, respectively. In actual social settings, the inducement effect of 

an IV is often small. Low inducement can be a major limitation in IV analysis because it 

can subject the causal effect estimate to large variance, substantial finite-sample bias, and 

high sensitivity to violations of the exclusion restriction (Bound et al. 1995). Felton and 

Stewart (2022) contend that while sociologists have increasingly adopted IV as a strategy, 

assumptions underlying the model often go unstated and robust uncertainty measures are 

rarely used. Moreover, the 2SLS approach relies on correct specification of the treatment 

 
 
 
13 See Steiner et al. (2017) for a discussion of graphical models for quasi-experimental designs.  
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and outcome models, which can be difficult to justify when the pretreatment covariates 𝑋 

are high-dimensional. Blandhol et al. (2022) show that a saturated specification for 2SLS 

that correctly specifies the relationship between the instruments and the covariates 

(including interactions) is necessary for the estimator to be interpreted as an average of 

covariate-specific LATEs. Chernozhukov et al. (2018) outline a DML approach for 

estimating the LATE, which involves fitting three models: (1) a model for 𝐸[𝑍|𝑋]; (2) a 

model for 𝐸[𝑊|𝑍, 𝑋]; and (3) a model for 𝐸[𝑌|𝑍, 𝑋]. In contrast to 2SLS, the DML approach 

allows all these models to be fit using flexible machine learning methods, thus reducing 

model dependency. This approach offers a more principled method for estimating the LATE.  

In a regression discontinuity (RD) design, access to treatment is determined by a 

cutoff value 𝑐 on a continuous running variable 𝑋 (see Cattaneo et al. [2019] and Cattaneo 

&Titiunik [2022]). The RD design assumes that the average response of units just below the 

cutoff provides a good approximation to the average response that we would have observed 

for units just above the cutoff had they not been assigned to treatment. Under this 

assumption, a comparison between units just below and above the cutoff mimics a 

randomized experiment and reveals a local treatment effect, i.e.:  

𝜏78 = 𝐸[𝑌" − 𝑌#|𝑋 = 𝑐].             (16) 

To estimate this quantity, we fit two local linear regressions, one for units below the cutoff 

and one for units above the cutoff and use their difference in the predicted outcome at 𝑋 =

𝑐 as an estimate of 𝜏78 (Imbens & Lemieux 2008). For example, suppose students were 

admitted to college based on a minimum score on an admission test. Students just above 

the minimum score are arguably comparable to those just below the minimum score in 

terms of other characteristics that predict college-going. Around the test score cutoff, we 

can compare the outcomes of those who are and are not admitted. Yet, we can imagine 

situations where not everyone admitted to college would choose to attend, in which case we 
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would have a fuzzy rather than a sharp RD design. This situation allows the cutoff to 

change treatment status for some yet not all units, i.e., compliers. A fuzzy RD design allows 

the researcher to identify a local treatment effect among compliers (Hahn et al. 2001), i.e.:  

𝜏78(9) = 𝐸[𝑌" − 𝑌#|𝑋 = 𝑐,𝑊" > 𝑊#],     (17) 

where 𝑊# and 𝑊" denote the potential value of treatment when the running variable 𝑋 is 

just below and above the cutoff. We can estimate equation (17) using a combination of 

2SLS and local linear regressions (Imbens & Lemieux 2008).14 Researchers should assess the 

validity of the underlying assumptions using supplementary analyses to test for evidence of 

the manipulation of the cutoff variable and for discontinuities in average covariate values 

at the threshold. RD methods can have high internal validity for an observational study, 

but low external validity. Several approaches have been proposed to enable valid 

extrapolation (Cattaneo & Titiunik 2022).  

 

3   Causal Effect Heterogeneity 

As we note above, individuals differ not only in pretreatment characteristics (i.e., 

pretreatment heterogeneity) but also in how they respond to a common treatment (i.e., 

treatment effect heterogeneity). Analyses that estimate heterogeneous treatment effects can 

yield insights into how scarce social resources are distributed in an unequal society and how 

events differentially impact populations with different expectations of their occurrence (e.g., 

Brand 2022; Heckman et al. 2018). In some cases, we may hypothesize that an event has 

significant consequences for some subgroups but less or no effect among others (e.g., Brand 

et al. 2019b). Scholars may aim to identify the most responsive subgroups to determine 

 
 
 
14 Researchers need also to consider bandwidth selection in RD designs (see Imbens & Lemieux [2008] or Lee 
& Lemieux [2010] for a discussion). 
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which individuals benefit most from treatment so that policymakers can better assign 

different treatments to balance competing objectives, such as reducing costs and maximizing 

outcomes for targeted groups (Athey & Imbens 2019; Manski & Garfinkel 1992; Zhou and 

Xie 2019, 2020). An important feature of the potential outcome framework is that it allows 

for general heterogeneity in treatment effects from the outset. Attending to treatment effect 

heterogeneity can also help extrapolate findings to diverse populations and contexts.  

 

3.1 Estimating Heterogeneous Causal Effects  

Social scientists employ a variety of approaches to estimate heterogeneous effects. Most 

commonly, researchers partition their samples into subgroups defined by individual 

characteristics, like gender, race, or social class, to explore variation in treatment effects. 

Yet, for questions of causal inference, the association between the treatment effect and 

treatment propensity constitutes a key axis of heterogeneity (Heckman et al. 2006; Brand 

et al.2013; Xie 2013). One way to identify heterogeneity by selection into treatment is to 

compare different population parameters. For example, the ATE and ATT may differ. If 

ATE > ATT, those with a lower propensity of treatment have larger estimated treatment 

effects, and if ATT > ATE, those with a higher propensity of treatment have larger 

estimated treatment effects. Or we might directly assess how treatment effects vary by the 

estimated propensity score (Brand et al. 2013; Xie et al. 2012). For example, Cheng et al. 

(2021) use growth curve models to assess how the effects of college on long-term wages vary 

across strata of the estimated likelihood that individuals complete a degree. Alternatively, 

we can obtain matched differences between treated and control units, plot them along a 

continuous propensity score axis, and then use local polynomial smoothing to observe 

variation in effects by the likelihood of treatment. For example, Brand and Simon Thomas 

(2014) use this approach to explore how the effects of job displacement on children’s 
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educational attainment vary by the likelihood of losing a job. Economists also often compare 

IV (LATE) estimates with OLS estimates to assess differential response patterns. As we 

indicate above, with treatment effect heterogeneity, the LATE can differ from the ATE and 

the ATT.15 

Researchers tend to base decisions as to which subgroups to explore in analyses of 

effect heterogeneity on theoretical priors. For example, researchers may stratify by gender 

or race because they are interested in sociodemographic variation. In contrast to this 

approach, emerging machine learning methods allow researchers to explore sources of 

variation that they may not have previously considered (Lundberg et al. 2022; Shu & Ye 

2022). For example, we can search for effect heterogeneity by adapting a variable selection 

algorithm such as LASSO, which automatically selects the more predictive interactions 

between the treatment and covariates (Imai and Ratkovic 2013). Social scientists have also 

employed tree-based methods to uncover differential responses to treatment. Decision trees, 

a widely used machine learning approach, recursively split data into increasingly smaller 

subsets where data bear greater similarity (Brand et al. 2020).16 Decision trees are attractive 

for social research because they are easily interpretable. Causal trees, i.e., decision trees 

adapted for causal inference, partition the data to minimize heterogeneity in within-leaf 

treatment effects (Athey & Imbens 2016; Brand et al. 2021).17 We split the data and 

 
 
 
15 Bloome and Schrage (2021) describe an approach for estimating heterogeneous treatment effects using 
covariance regression models. They demonstrate the approach by analyzing the effects of sharing information 
about income inequality on redistributive preferences. 
16 At each decision, splits are chosen by selecting a covariate and threshold that minimize an in-sample loss 
function. This partitioning process is repeated until a regularization penalty selected through cross-validation 
limits the depth of the tree. 
17 Causal trees bear similarity to kernel regression or matching methods. We can think of the leaf as defining 
the set of nearest neighbors for a given target observation in a leaf, and the estimator from a single tree as a 
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construct a tree using a training sample and estimate leaf-specific treatment effects using 

an estimation sample. This approach allows researchers to uncover subpopulations of 

interest that they had not prespecified with greater flexibility by searching over high 

dimensional functions of covariates.18 We can then use several methods described above, 

such as weighting, matching, or machine learning, to estimate leaf-specific effects in the 

presence of observed confounding. For example, Brand et al. (2021) estimate the effects of 

college completion on reducing low-wage work with a causal tree. They find that individuals 

who had the largest effects of college on reducing low-wage work are those with 

disadvantaged backgrounds and low psychosocial skills. 

Single decision trees benefit from interpretability but can be unstable and do not 

allow causal effects to change more smoothly across covariates. A causal forest builds on 

the causal tree algorithm by averaging over many trees (Breiman 2001; Wager & Athey 

2018; Atheyet al. 2019).19 In principle, every individual has a distinct estimate. Using this 

strategy, researchers may consider effect heterogeneity by ranking estimated individual 

treatment effects and then considering the characteristics of groups in the highest and lowest 

ranked categories. Recent approaches also combine supervised learning of the response 

variable with supervised learning of the propensity score to estimate treatment effect 

heterogeneity. For example, Nie and Wager (2021) describe a general class of two-step 

algorithms for heterogeneous treatment effect estimation in observational studies.  

 
 
 
matching estimator with alternative ways of selecting the nearest neighbor to a treated unit (Athey and 
Imbens 2019). 
18 We also may include the propensity score as an input variable (e.g., Hahn et al. 2020). 
19 Building on the comparison to kernel regression or matching, we can think of a causal forest as an average 
of matching estimators. 
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Complementing these forest approaches is a DML approach proposed by Semenova 

and Chernozhukov (2021). Instead of detecting effect heterogeneity from many covariates, 

this approach allows researchers to directly estimate conditional average treatment effects 

(CATEs) given a few prespecified covariates. The method is helpful in applications where 

the researcher wants to see how the treatment effect differs by selected characteristics such 

as gender, race, or social class categories. For example, Zhou (2022a) adapts the DML 

approach to study group-based heterogeneity in the total effect of college attendance and 

its direct and indirect effects via degree completion (see also Zhou & Pan [Forthcoming]). 

Closely related to treatment effect heterogeneity is an emerging literature on “policy 

learning” (Athey & Wager 2021). In this case, researchers learn in a data-driven way the 

optimal assignment of treatment to specific subgroups defined in terms of observed 

characteristics (e.g., parental income categories). Accordingly, policymakers can target 

those for whom the treatment effects are largest. Policy learning is especially useful in 

settings where we aim to optimize an outcome for a costly treatment (e.g., a social 

intervention with limited funds to cover treatment costs). Yadlowsky et al. (2021) propose 

a rank-weighted average treatment effect to determine treatment prioritization rules based 

on responsiveness to treatment. 

In studies considering treatment effect heterogeneity, researchers should consider 

how unobserved selection may contribute to heterogeneous response patterns. Localized 

sensitivity analyses should be routinely performed for analyses that involve effects stratified 

by unit characteristics, propensity scores, or machine learning generated categories. 

Notably, Zhou and Xie (2019, 2020) also describe the relationship between heterogeneity by 

observed and unobserved selection into treatment and consider the policy implications under 

different scenarios as the treated population composition shifts.  
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3.2 Implications of Heterogeneous Causal Effects for Extrapolation 

If effects were the same for everyone, it would be easy to generalize an effect estimate from 

a sample to a population. Effect heterogeneity complicates the generalizability of average 

treatment effect estimates. Researchers should consider the population of interest when 

interpreting treatment effect estimates from heterogeneous subgroups. Social scientists who 

aim to minimize confounding may draw on experimental or quasi-experimental methods. 

Yet as a researcher attempts to extrapolate or generalize from a specific group of subjects 

under study to a target population, the average effects may differ due to compositional 

differences (Hartman et al. 2015; Kern et al. 2016; Manski & Garfinkel 1992; Westreich et 

al. 2019). In other words, researchers often face a tradeoff between internal and external 

validity. Internal validity is our degree of confidence that a causal relationship exists 

between the treatment and the outcome. External validity is our ability to generalize 

findings to other populations (Manski 1995; Manski & Garfinkel 1992). The literature in 

causal inference is primarily concerned with internal validity of a causal relationship, which 

must be complemented by a focus on generalizable knowledge. Social science and public 

policy demand greater attention to external validity (Egami & Hartman 2020; Findley et 

al. 2021). 

As described in Section 2, researchers use a variety of strategies to claim the internal 

validity of their effect estimates. For example, a randomized controlled trial may give us 

sample average treatment effects free from pretreatment heterogeneity bias. However, we 

may be limited in our ability to extrapolate and provide estimates of population average 

treatment effects (Hartman et al. 2015; Stuart et al. 2015; Xie 2013). Indeed, the population 

of units for which we credibly assess causal effects might be quite small. For example, some 

experimental effect estimates may only apply to treated units in the specific geographical 
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setting in which the study was conducted, such as the 1962–67 HighScope Perry Preschool 

Program conducted in Ypilanti, Michigan (Xie et al. 2020). 

Compositional differences may also arise in a dynamic setting where treatment 

gradually expands over successive segments (Xie 2013). In this case, units with higher 

treatment propensity are likely overrepresented when the population treated is small. As 

the treated population expands, the overrepresentation of high propensity treated units 

declines. This compositional shift among newly recruited units, typically from high to lower 

propensity units, will impact treatment effect estimates from an experimental study that 

targets those at the “margin” of being treated. In a social intervention on a graduated 

schedule where participation is need-based, the poorest individuals may be chosen first and 

benefit most from the intervention. Researchers may calculate an ATE for the 

subpopulation subject to the experiment. Yet under these conditions, individuals selected 

at later stages (i.e., becoming eligible only after the eligibility cut-point is moved up the 

income distribution) would exhibit lower average treatment effects. Low external validity 

is problematic for policy purposes, as policymakers require evidence of the effectiveness of 

interventions for target populations that may differ from those represented by experimental 

participants. 

Similarly, if we adopt an IV design, and have a valid IV, we may have a stronger 

basis for asserting internal validity than a standard regression approach without an IV, but 

only for a small segment of the subpopulation induced by the IV. Thus, we may not be able 

to extrapolate from those induced into treatment to a broader population. For example, we 

may use college proximity as an instrument for college attendance to assess the effects of 

college attendance on wages. If those induced into college have different effects than average 

college-goers, we cannot extrapolate the findings to the broader population (Mogstad & 

Torgovitsky 2018). With regression discontinuity designs, researchers also need to consider 
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under what conditions we can extrapolate estimated effects to populations further away 

from the threshold (Angrist & Rokkanen 2015; Bertanha & Imbens 2020; Dong & Lewbel 

2015).20  

Several approaches may help us move from the sample to the population average 

treatment effect, such as bias-corrected matching (Hotz et al.2005), propensity score 

weighting (Cole & Stuart 2010; Stuart et al. 2011), propensity score subclassification 

(Tipton 2013; Tipton et al. 2014), entropy weighting (Hartman et al. 2015), machine-

learning-based estimation of heterogeneous treatment effects (e.g., Kern et al. 2016), and 

calibration methods to generate balancing weights (Josey et al. 2022). A propensity score 

approach, for example, models membership in the population versus the experimental 

sample, and then the propensity scores are used to make the sample subjects resemble the 

target population (e.g., Xie et al. 2020). This approach can work well when the covariates 

strongly predict membership in the target population and treatment effect heterogeneity 

(Pearl & Bareinboim 2014). Machine learning methods can automate the detection of 

treatment-by-covariate interactions. Kern et al. (2016) show that BART performs 

reasonably well for extrapolating from the sample to a target population when observed 

covariates are sufficient for accounting for treatment effect heterogeneity.  

 

4   Causal Effect Mediation 

While traditional sociological approaches to mediation analysis relied on parametric 

structural equation models to define and estimate direct and indirect effects (e.g., Duncan 

 
 
 
20 Regression model estimates from representative samples of the population also face external validity 
problems, as the units in the sample contribute to the causal effects to differing extents (see Aronow & Samii 
[2016]). 
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1966; Alwin & Hauser 1975; Baron & Kenny, 1986; Bollen 2014), a large body of research 

has emerged within the causal inference literature that disentangles the tasks of causal 

definition, identification and estimation. Causal mediation analysis seeks to uncover 

whether and how a treatment affects an outcome by quantifying the pathways through 

which a causal effect operates. Building upon the potential-outcomes framework and 

graphical causal models (Pearl 2009), a new body of research has provided model-free 

definitions of direct and indirect effects (Robins & Greenland 1992; Pearl 2001), established 

the assumptions needed for identifying these effects (Pearl 2001; Robins 2003), and 

developed an array of estimation strategies (e.g., VanderWeele 2015, 2016). These tools can 

help researchers discover mechanistic explanations, build theory, and design policy 

interventions. Sociologists would do well to consider these conceptual and computational 

tools in any study involving mechanisms. This section provides a brief review of the causal 

approach to mediation analysis and its recent developments. 

 

4.1. Estimating Direct and Indirect Effects in a Causal Mediation Analysis 

Let 𝑀 denote a mediator hypothesized to transmit the effect of the treatment W on the 

outcome Y. For example, Wodtke and Parbst (2017) investigated how school poverty 

mediates the effect of living in a disadvantaged neighborhood on a student’s academic 

achievement. In this context, 𝑊 is neighborhood disadvantage, 𝑌 academic achievement, 𝑀 

school poverty, and 𝑋 a set of background characteristics. Figure 3 is a DAG representing 

the causal relationships involving these variables. Note that the pretreatment covariates 𝑋 

may confound not only the treatment-outcome relationship but also the treatment-mediator 

and mediator-outcome relationships.   

[Figure 3 about here] 
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 The most common approach to assessing causal mediation involves decomposing the 

total effect of 𝑊  on 𝑌  into two components: an indirect effect operating through the 

mediator 𝑀  and a direct effect operating through alternative pathways not explicitly 

considered in the analysis. In Figure 3, we capture the indirect and direct effects by the 

causal paths 𝑊 → 𝑀 → 𝑌  and 𝑊 → 𝑌 , respectively. These effects can be defined more 

formally using the potential-outcomes notation. Specifically, if we use 𝑌:; to denote the 

potential outcome under treatment status 𝑤 and mediator value 𝑚, and 𝑀: to denote the 

potential value of the mediator 𝑀 under treatment status 𝑤, we can write the ATE of 𝑊 

on 𝑌 as: 

𝜏$%& = 𝐸[𝑌"<" − 𝑌#<#],       (18) 

which we can then decompose into the natural indirect effect (NIE) and natural direct effect 

(NDE): 

𝜏$%& = 𝐸U𝑌"<" − 𝑌"<#VWXXXXYXXXXZ
=*+,

+ 𝐸U𝑌"<# − 𝑌#<#VWXXXXYXXXXZ
=*-,

.    (19) 

The NIE is the expected difference in the outcome if each unit were treated (𝑊 = 1) and 

subsequently exposed to the mediator value they experienced as a result of being treated 

(𝑀") rather than the mediator value they would have experienced had they not been treated 

(𝑀#). For example, in Wodtke and Parbst’s (2017) study, the NIE gauges the effect of 

neighborhood disadvantage operating through school poverty by fixing the level of 

neighborhood disadvantage (𝑊 = 1 ) for each student and then comparing students’ 

academic achievements under the levels of school poverty that they would have “naturally” 

experienced with neighborhood disadvantage ( 𝑀" ) versus without neighborhood 

disadvantage (𝑀#). The NDE, by contrast, reflects the average effect of treatment if the 

mediator for each unit were fixed at its “natural” level under the reference treatment level 

(𝑊 = 0). 
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Both the NIE and NDE depend on 𝑌"<#, a variable in which two different levels of 

𝑊 (0 and 1) are nested within the counterfactual for Y. Consequently, this counterfactual 

does not correspond to any experimental intervention on W and M. That is, to know the 

value of 𝑀	" for a unit, it is necessary to set W to 1, but then this precludes setting W to 0 

for M. The counterfactual 𝑌"<# is thus called a “cross-world” counterfactual (Robins et al. 

2022). 

 To identify the ATE from observational data, we invoke the unconfoundedness 

assumption, which states that after adjusting for a set of pretreatment covariates X, no 

additional confounders exist that affect both treatment status and the outcome. To identify 

the NIE and NDE, such an unconfoundedness assumption is needed for not only the 

treatment-outcome relationship but also the treatment-mediator and mediator-outcome 

relationships. Specifically, the NDE and NIE are nonparametrically identified if, after 

adjusting for pretreatment covariates 𝑋, there is (a) no unobserved treatment-outcome 

confounding, (b) no unobserved treatment-mediator confounding, and (c) no unobserved 

mediator-outcome confounding (Imai et al. 2010; VanderWeele & Vansteelandt 2009). 

Under these assumptions, the mean of the counterfactual 𝑌:<.∗ for any 𝑤,𝑤∗ ∈ {0,1}  can 

be identified using Pearl’s (2001) mediation formula: 

𝐸U𝑌:<.∗V = ∫ 𝐸[𝑌|𝑥, 𝑤,𝑚]𝑑𝑃(𝑚|𝑥, 𝑤∗)𝑑𝑃(𝑥),   (20) 

where 𝑃(⋅) represents the cumulative distribution function of a random variable. We can 

use equation (20) to identify the NIE and NDE by setting 𝑤 and 𝑤∗ at different values. 

  Given identification assumptions (a)-(c) and the mediation formula (20), we can use 

a variety of strategies to estimate the NIE and NDE. Imai et al. (2010) propose a regression-

simulation estimator that involves first modeling the conditional mean of the outcome 

(𝐸[𝑌|𝑥, 𝑤,𝑚]) and the conditional distribution of the mediator (𝑃(𝑚|𝑥, 𝑤)) and then 

evaluating equation (20) through Monte-Carlo draws from the estimated conditional 
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distribution of the mediator. This estimator can be viewed as a plug-in estimator of equation 

(20). Alternatively, one can rewrite equation (20) as 𝐸[𝐸[𝑌|𝑥, 𝑤,𝑀]|𝑥, 𝑤∗], which leads to 

a regression-imputation estimator that involves modeling only the conditional means of the 

outcome (Vansteelandt, Bekaert, and Lange 2012), or as	𝐸[@('):)
+A𝑤B𝑋C

+(<|.,:∗)
+(<|.,:)

𝑌], which leads 

to a weighting estimator that models the treatment's and the mediator's conditional 

distributions (VanderWeele 2009). Finally, drawing on semiparametric theory, Tchetgen 

Tchetgen and Shpitser (2012) develop a “triply robust” estimator of equation (20) that 

involves fitting three models: (1) a model for the conditional distribution of the treatment 

given pretreatment covariates (i.e., a propensity score model), (2) a model for the 

conditional distribution of the mediator given the treatment and pretreatment covariates, 

and (3) a model for the conditional mean of the outcome given the treatment, mediator, 

and pretreatment covariates. The resulting estimator is triply robust in that it is consistent 

if any two of the three models are correctly specified. Moreover, like the doubly robust 

estimator for the ATE, this triply robust estimator is particularly suitable for using flexible 

machine learning methods to estimate its nuisance functions (e.g., the treatment, mediator, 

and outcome models). This fact makes it highly attractive in high-dimensional settings. 

 The identification assumptions (a)-(c) are strong and unverifiable, and the estimated 

NIE and NDE can be biased whenever unobserved confounding exists for any of the causal 

relationships involved. In practice, to assess the robustness of mediation analysis results to 

different forms of unobserved confounding, one can employ a set of general-purpose bias 

formulas developed in VanderWeele (2010) and VanderWeele and Arah (2011) (see Brand 

et al. [2019a] for a recent sociological application). 
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4.2. Treatment-Induced Confounding 

Among identification assumptions (a)-(c), (c) is especially restrictive because it requires 

that there must not be any observed or unobserved confounders of the mediator-outcome 

relationship that are affected by the treatment. This assumption is plausible if the treatment 

and mediator are temporally and mechanistically proximate to each other but likely violated 

in other settings. For example, Klein and Kühhirt (2021) investigated the role of parental 

cognitive ability in mediating the effect of grandparents’ education on grandchildren’s 

cognitive ability. In this case, it is likely that some posttreatment variables, such as 

grandparents’ income and occupational status, are affected by the treatment (grandparents’ 

education) and affect both the mediator (parental cognitive ability) and the outcome 

(children’s cognitive ability). Figure 4 depicts a DAG where 𝐿 is a treatment-induced 

confounder of the mediator-outcome relationship. 

[Figure 4 about here] 

 Treatment-induced confounders pose a dilemma for causal mediation analysis. If they 

were omitted, our estimated effects of the mediator on the outcome, and by extension, the 

estimated NIE and NDE, would be biased. However, controlling for treatment-induced 

confounders is also problematic because it blocks causal pathways and potentially unblocks 

noncausal pathways from the treatment to the outcome, leading to biased estimates of the 

NIE and NDE (Elwert & Winship 2014). In fact, the NIE and NDE are not 

nonparametrically identified in the presence of treatment-induced confounding. Scholars 

have proposed several strategies to address this challenge. First, the NIE and NDE can be 

identified in the presence of treatment-induced confounding if we impose an additional 

assumption positing that the treatment and mediator have no interaction effect on the 

outcome for each unit (Imai & Yamamoto 2013; Robins 2003). This assumption, however, 

is implausible in most applications because the no-interaction assumption must hold for 
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every unit. To overcome this limitation, these scholars have developed sensitivity analysis 

methods for assessing the robustness of findings to potential violations of the no-interaction 

assumption. 

Second, scholars have proposed an alternative class of estimands known as 

interventional direct and indirect effects (see Nguyen et al. [2021] for a review). Unlike the 

NIE and NDE, interventional effects can still be nonparametrically identified in the presence 

of treatment-induced confounding. Among interventional effects, a special case is the 

controlled direct effect (CDE), which measures the strength of the treatment-outcome 

relationship when the mediator is fixed at a given value for all units (Acharya et al. 2018; 

Pearl 2001; Robins 2003). A nonzero CDE thus implies that the effect of the treatment on 

the outcome does not operate exclusively through the mediator of interest. For example, in 

Klein and Kühhirt’s (2021) study, a nonzero CDE would imply the effect of grandparent 

education on grandchildren’s cognitive ability does not operate solely through parental 

cognitive ability.  

Apart from the CDE, another set of interventional effects are the so-called 

randomized interventional analogs to the NDE (rNDE) and the NIE (rNIE) (Didelez et al. 

2006; Geneletti 2007; VanderWeele et al. 2014). The rNDE and rNIE are like the NDE and 

NIE except that, instead of setting the mediator to the level it would have naturally been 

for each unit under a particular treatment status, these estimands involve setting the 

mediator to a value randomly drawn from its population distribution under a given 

treatment status. The rNDE and rNIE thus evaluate the effects of a hypothetical 

intervention on the distribution of a putative mediator. For example, Wodtke et al. (2020) 

used the rNDE and rNIE to assess the extent to which school quality mediates the effect of 

neighborhood disadvantage on children’s academic achievement. 
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Researchers can estimate interventional effects such as the CDE, rNDE, and rNIE 

via several alternative methods, such as sequential g-estimation (Vansteelandt 2009) and 

IPW (VanderWeele et al. 2014). More recently, Zhou and Wodtke (2019) proposed the 

regression-with-residuals (RWR) method, which is algebraically equivalent to sequential g-

estimation in special cases, but, unlike the latter, can accommodate several types of effect 

moderation (see also Wodtke and Zhou [2020]). RWR has been applied in several 

sociological studies (e.g., Levy et al. 2019; Wodtke et al. 2020; Klein & Kühhirt 2021; 

Wodtke et al. 2022). Nonetheless, as with sequential g-estimation and IPW, RWR is 

premised on a set of strong modeling assumptions, which, when violated, can lead to biased 

estimates. Scholars have recently leveraged semiparametric theory to reduce model 

dependence and develop more robust estimators of interventional direct and indirect effects 

(Díaz et al. 2021; Xia et al. 2021). Like the doubly robust estimator for the ATE and the 

triply robust estimator for the NDE and NIE, researchers can combine these estimators 

with machine learning to yield optimal performance. 

 

4.3. Causal Mediation Analysis with Multiple Mediators 

Researchers often aim to test several “competing hypotheses” of underlying processes when 

analyzing causal mechanisms, leading to multiple mediators of interest. In the presence of 

multiple mediators, the prevailing practice is to treat different mediators as causally 

independent (i.e., assuming they do not affect each other) and then estimate the NIE for 

each mediator separately. In many applications, however, the mediators are likely causally 

dependent. In general, if two mediators are present and one mediator affects both the other 

mediator and the outcome, treating these mediators as causally independent may lead to 

biased estimates of the NIE for the second mediator. This is true because it fails to account 

for the first mediator as a potential confounder of the relationship between the second 
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mediator and the outcome. However, to the extent that the first mediator is affected by the 

treatment, it is a treatment-induced confounder, which renders the NIE for the second 

mediator non-identifiable without functional form assumptions. In such cases, we could 

attempt to evaluate the NIE via additional assumptions and sensitivity analysis (Imai & 

Yamamoto 2013) or consider interventional effects such as the rNIE.21 

Apart from interventional effects, other mediation estimands that can still be 

identified in the presence of multiple causally dependent mediators are path-specific effects 

(PSEs; Avin et al. 2005), in what Duncan (1966) called “a simple causal chain” in path 

analysis. Specifically, suppose we have 𝐾 causally ordered mediators 𝑀", 𝑀3, … 𝑀F that lie 

on the causal paths from 𝑊  to 𝑌 . Then, under the assumption that no unobserved 

confounding exists for any of the treatment-mediator, treatment-outcome, and mediator-

outcome relationships, the ATE can be decomposed into 𝐾 + 1 PSEs: one “direct effect” 

and 𝐾 mutually exclusive indirect effects that each reflect the contribution of a specific 

mediator beyond the contributions of its preceding mediators (Daniel et al. 2015; Zhou & 

Yamamoto 2022). Like the NIE and NDE, researchers can estimate these PSEs via 

regression-simulation (Miles et al. 2017), regression-imputation (Zhou & Yamamoto 2022), 

IPW (VanderWeele et al. 2014), or multiply robust methods that are amenable to machine 

learning estimation of its nuisance functions (Miles et al. 2020; Zhou 2022b). In a recent 

study, Ahearn et al. (2022) investigated the pathways through which college attendance 

increases voting, focusing on three sets of causally ordered mediators: degree completion, 

family formation and stability, and socioeconomic status (SES). Using the regression-

imputation approach, they estimated the corresponding PSEs.  

 

 
 
 
21 See Reardon and Raudenbush (2013) for discussion of multisite, multiple-mediator IV models. 
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5   Temporal and Spatial Interference 

Many sociological questions involve the study of effects over time or interactions within 

networks. Indeed, historical or life cycle variation and network interactions lie at the center 

of sociological inquiry. But these settings complicate the definition and identification of 

causal effects. Just as sociologists studying temporal variation or network settings should 

consider causal processes, causal inference scholars should consider the complications 

involved in allowing treatments and effects to vary over time and interference between units 

under study. The stable unit treatment value assumption (SUTVA) posits that one unit’s 

outcome is not affected by the treatment status of other units in the population. However, 

we are often faced with temporal or spatial interference that renders SUTVA untenable. In 

this section, we briefly review causal inference methods developed to study temporal and 

spatial interference.  

 

5.1. Estimating Treatment Effects in the Presence of Temporal Interference 

Temporal interference may arise in settings with time-varying treatments in which 

treatment status at a given time has not only contemporaneous effects, i.e., effects on 

outcomes measured immediately thereafter, but also carry-over effects, i.e., effects on 

outcomes at later time points. For example, exposure to family instability in early childhood 

may differ from exposure in adolescence, and exposure may have both short-term and long-

term effects on a child’s cognitive and socioemotional development (Lee & McLanahan 

2015). A common strategy to incorporate temporal interference in causal analysis is through 

Robins’ (1986, 1997) extension of the potential-outcomes framework to time-varying 

treatments. Consider a study with 𝑇 ≥ 2 time points where we are interested in the effect 

of a time-varying treatment 𝑊G on an end-of-study outcome 𝑌. Apart from a set of baseline 

or time-invariant confounders 𝑋, there is also a vector of observed time-varying confounders, 
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𝐿G, that may be affected by prior treatments. Note that 𝐿G may also include current or past 

measures of the outcome (Brand & Xie 2007). See Figure 5 for a DAG representation of 

this setting when 𝑇 = 2. In Lee and McLanahan’s (2015) study of the relationship between 

family instability and child development, 𝑊G  denotes a family transition at time 𝑡 , 𝑌 

denotes a child’s developmental outcome at time 𝑇, 𝑋 includes a set of time-invariant 

covariates (e.g., mother’s education), and 𝐿G includes a set of time-varying covariates (e.g., 

poverty status). Following Robins et al. (2000), we use overbars to denote treatment 

histories such that  𝑊 = (𝑊", …𝑊%) represents the observed treatment history until the 

end of the study and 𝑌: represents the potential outcome under a given treatment history 

𝑤. This notation allows us to consider various treatment effects based on contrasts between 

different potential outcomes. For instance, with two time points (𝑇 = 2), we could consider 

the distal treatment effect (DTE), defined as  

𝜏8%& 	= 	𝐸[𝑌".# − 𝑌#.#],     (21) 

which captures the average effect of receiving treatment only at time 1 rather than never. 

Alternatively, we could consider the following treatment effects (Wodtke et al. 2020): 

𝜏I%& = 𝐸[𝑌:"," − 𝑌:",#],      (22) 

𝜏J%& = 𝐸[𝑌"," − 𝑌#,#], and     (23) 

𝜏@K& = 𝐸[(𝑌"," − 𝑌",#) − (𝑌#," − 𝑌#,#)].   (24) 

where 𝜏I%& is the proximal treatment effect (PTE), 𝜏J%& is the cumulative treatment effect 

(CTE), and 𝜏@K&  is the interaction effect (INE). Note that if there is no temporal 

interference, i.e., if the potential outcome 𝑌:",:0 	depends only on treatment status at time 

2, the DTE and the INE will both be zero, and the PTE will equal the CTE. 

 To identify the various causal contrasts considered above, it suffices to identify the 

expected potential outcome 𝐸[𝑌:] for every treatment sequence 𝑤. A key identification 

assumption for this quantity is sequential ignorability, which states that treatment at each 
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time point is unconfounded conditional on past treatments and observed confounders. 

Although it does not allow for unobserved confounding, the assumption of sequential 

ignitability allows for both carryover effects (past treatments affect current outcomes) and 

feedback effects (past outcomes affect current treatments). These are typically assumed 

away in fixed-effects models (Imai & Kim 2019).22 Under sequential ignorability, we can 

estimate the expected potential outcome 𝐸[𝑌:]  via a range of parametric and 

semiparametric methods. A common method is inverse-probability-weighted (IPW) 

estimation of marginal structural models (MSMs) (Robins et al. 2000; see Wodtke et al. 

[2011] for a sociological application).23 Apart from MSMs, time-varying treatment effects 

can also be assessed through structural nested mean models (SNMMs) and their associated 

estimators, such as the g-estimator (e.g., Naimi et al. 2017; Vansteelandt 2009; Vansteelandt 

& Sjolander 2016) and the RWR estimator (Wodtke 2020; Wodtke et al. 2020). These 

estimators involve modeling the conditional mean of the outcome as well as the conditional 

means and distributions of time-varying confounders. As with IPW, these methods are based 

on a set of strong modeling assumptions, which, when violated, can lead to biased estimates. 

To reduce model dependence, Bang and Robins (2005) propose a semiparametric estimator 

 
 
 
22 Elwert and Pfeffer (2019) incorporate future treatments as a proxy for an unmeasured confounder to address 
selection bias and discuss the conditions under which future values of the treatment can reduce or fully remove 
bias. 
23 The method of IPW involves modeling the conditional distribution of treatment at each time point 𝑡 given 
past treatments and observed confounders. It is thus difficult to use when the treatment is continuous, in 
which case estimates of the conditional density functions tend to be unstable and highly sensitive to model 
misspecification. Moreover, even if models for these conditional distributions are correctly specified, IPW is 
often inefficient and susceptible to large finite sample biases. To overcome these limitations, Zhou and Wodtke 
(2020) propose an alternative method of constructing weights for MSMs called “residual balancing,” which 
requires modeling the conditional means of the post-treatment confounders rather than the conditional 
distributions of treatment and is therefore easier to use with continuous treatments. It can be viewed as an 
extension of balancing weights (see Section 2) to longitudinal settings with temporal interference.  
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for the expected potential outcome 𝐸[𝑌:]. This estimator involves fitting 2 ⋅ 𝑇 models: a 

propensity score model at each time point and a model for an iteratively imputed outcome 

at each time point. This estimator is multiply robust in that it is consistent whenever the 

first 𝑘 propensity score models and the last 𝐾 − 𝑘 “outcome models” are correctly specified, 

where 𝑘 can be any integer from 0 to 𝐾 (Rotnitzky et al. 2017). The estimating equations 

are amenable to using DML.24 Given its reduced dependence on model specification and 

complementarity with machine learning, we expect this semiparametric estimator (Bang & 

Robins 2005) and its variants (e.g., van der Laan & Rose 2018) to be more widely used in 

future research.25 

 

5.2 Estimating Treatment Effects in the Presence of Spatial Interference 

Spatial interference may arise in settings where units under consideration are not isolated 

but connected by a common physical or social space, such as schools, neighborhoods, and 

friendship networks, leading to “spillover effects.” In such settings, one unit’s potential 

outcome is a function of not only its own treatment status but also the treatment status of 

other related units (Aronow & Samii 2017; Athey et al. 2018; Tchetgen Tchetgen & 

VanderWeele 2012; VanderWeele 2015). Such interferences, or interactions, are prevalent 

in social settings (An 2018; An & VanderWeele 2022; Egami 2021). For example, 

encouraging an individual to vote by some intervention can increase the turnout for 

 
 
 
24 Specifically, if cross-fitting is used and the estimators of the propensity score and outcome models all 
converge to the truth at a faster-than-𝑛$%/)  rate, the Bang-Robins estimator will be root-n consistent, 
asymptotically normal, and semi-parametrically efficient. 
25 We may also be interested in situations in which both the treatment and an effect moderator vary over 
time. Wodtke and Almirall (2017) describe moderated intermediate causal effects and structural nested mean 
models for analyzing effect moderation in a longitudinal setting. Using this approach, they examine whether 
the effects of time-varying exposure to poor neighborhoods on the risk of adolescent childbearing are moderated 
by time-varying family income.  
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members of the household (Imai and Jiang 2020). In some cases, such interactions are the 

focus of analysis; in other cases, they are considered a nuisance to estimating treatment 

effects (given the assumption of no interference) (Hong & Raudenbush 2015; Ogburn et al. 

2022). Yet ignoring interference can lead to biased estimates of causal effects and incorrect 

statistical inferences (An 2018; Basse & Airoldi 2018; Lee & Ogburn 2021).  

When the pattern of interference is unconstrained, spillover effects are hard to study 

because (a) the number of counterfactuals for each unit increases exponentially as the 

number of units increases, leading to many causal contrasts that can be hard to estimate 

nonparametrically; and (b) the outcome of different units will be dependent, complicating 

statistical inference. Given these challenges, researchers often study spillover effects under 

two simplifying assumptions. First, the partial interference assumption posits that 

individuals are clustered in groups so that interference is limited to individuals within the 

same group (Sobel 2006). Second, the stratified inference assumption posits that within the 

same group, the effect of other units’ treatment status on a focal unit’s outcome operates 

through a known summary function 𝑔 (e.g., the mean treatment status among other units 

in the same group) (Hudgens & Halloran 2008). The stratified inference assumption is quite 

strong, but it helps simplify the analysis, especially when there are more than a few units 

within each group. For example, when studying the spillover effect of grade retention on a 

child’s test scores, Hong and Raudenbush (2015) invoke both assumptions by specifying a 

student’s test score to be a function of their retention status and the retention rate of their 

peers in the same school. 

 Under the assumptions of partial interference and stratified interference, we can 

denote a unit’s potential outcome as 𝑌:,L, where 𝑤 denotes the unit’s treatment status and 

𝑔 denotes a summary value of peer treatment status. The average individual effect can be 

defined as 
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𝐸[𝑌",L − 𝑌#,L]     (25) 

 and the spillover effect can be defined as  

𝐸[𝑌:,L∗ − 𝑌:,L],     (26) 

where 𝑔∗ denotes an alternative value of peer treatment status (VanderWeele 2015). As 

shown in Hudgens and Halloran (2008), these effects can be identified and unbiasedly 

estimated using an experimental design with a two-stage randomization procedure (i.e., first 

at the group level and then at the individual level within groups). To identify these effects 

in observational studies, one needs to invoke a group-level unconfoundedness assumption, 

i.e., conditional on a set of group-level covariates (which may include their individual-level 

components), the treatment assignments of all units within a group are independent of their 

potential outcomes (Tchetgen Tchetgen & VanderWeele 2012). Under this assumption, 

researchers can estimate the average individual and spillover effects through various 

strategies such as IPW, regression-imputation, and doubly robust methods (Liu et al. 2019). 

They can combine the doubly robust approach with DML to yield optimal performance 

(Park & Kang 2022).  

 In many social settings, people interact with each other through multiple channels 

and networks, such as friends, family, neighbors, and others. It is important to estimate the 

spillover effects that arise through each network; however, oftentimes those network 

interactions are unobserved, rendering unbiased estimation of spillover effects difficult. 

Egami (2021) develops sensitivity analysis methods for assessing the potential influence of 

unobserved networks on causal findings. Relatedly, An (2018) emphasizes the importance 

of collecting data on treatment diffusion to properly measure treatment interference, and 

then to estimate the direct treatment effect, treatment interference effect, and the treatment 

effect on interference.  
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6   Conclusion  

Over the past three decades, causal inference has been an active research area in sociology 

and related disciplines such as economics, statistics, computer science, and political science. 

While earlier developments in causal analysis, in the form of path analysis and structural 

equations, were developed primarily in sociology (e.g., Duncan 1966) and then exported to 

other fields, much of what constitutes today’s sociological methodology on causal inference 

has heavily borrowed knowledge from other disciplines.  

 Our review updates the latest advances in causal inference methodology. Given the 

large size of this literature, we chose to focus on four topics: causal effect identification and 

estimation in general, causal effect heterogeneity, causal effect mediation, and temporal and 

spatial interference. Our choice reflects long-standing sociological interests in these topics: 

population heterogeneity (e.g., Brand & Xie 2010; Xie 2013; Xie et al. 2012), causal 

mechanisms (e.g., Duncan 1966), and the importance of historical or life cycle variation and 

social context (e.g., Mason et al. 1983). As we reviewed, identifying and estimating causal 

components – a perennial objective in sociology – is no easy task with a counterfactual 

framework. There is no simple, one-size-fits-all solution. Causal inference with observational 

data, including quasi-experimental data, is a proposition specific to each research context. 

Often, researchers must invoke unverifiable assumptions and make consequential research 

decisions to draw causal conclusions. What makes sense for one research setting may not 

make sense for another. In applying new methods, we recommend that researchers 

thoroughly understand their underlying assumptions and tradeoffs to apply them 

judiciously. Researchers should also assess how effects vary across the population and 

whether the results of their study and sample generalize to a broader population. 

Sociological inquiry also invites the careful analysis of mechanism linking treatments to 

outcomes. 
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The past literature on causal inference has primarily been concerned with 

identification issues, while machine learning is often tasked with executing heavy 

computations with large data sets. The merge of the two strands of literature is facilitated 

by a long-recognized insight we discussed in the article: causal effects can be highly 

heterogeneous across different units. We review the latest developments in causal inference 

that utilize machine-learning methods to learn about heterogeneous treatment effects. We 

also describe how researchers can use machine learning to minimize biases in estimating 

population-level quantities of interest, including direct and indirect effects and effects with 

temporal and spatial interference. 

Moving forward, we expect the continuation of fruitful cross-disciplinary fertilization 

in this area. We also anticipate increases in the use of machine-learning methods in causal 

inference to reduce estimation biases and detect causal effect heterogeneity. Machine-

learning methods are particularly attractive and feasible considering future improvements 

in computational power as well as increasing availability of large administrative, 

commercial, and digital trace data (often called “big data”) for social science research. 

However, we caution the reader that no computational method, machine-learning methods 

included, can solve what Holland (1986) called “the fundamental problem in causal 

inference,” i.e., we never observe counterfactual outcomes. Good research design is primary. 

Computation is useful but only secondary. Hence, the bridge between machine-learning 

methods and causal inference can be productive only with innovative and appropriate 

research designs to address social-scientifically sensible research questions.   
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Figure 1: Direct Acyclic Graph under Unconfoundedness 

Note: 𝑊 denotes treatment status, 𝑌 denotes the outcome of interest, and 𝑋 denotes 
observed pretreatment confounders. 
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Figure 2: Direct Acyclic Graph under the Instrumental Variable (IV) Design 

Note: 𝑊 denotes treatment status, 𝑌 denotes the outcome of interest, 𝑍 denotes an 
instrumental variable, and 𝑋 denotes observed pretreatment confounders. 
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Figure 3: Causal Mediation Analysis without Treatment-Induced Confounding 

Note: 𝑊 denotes treatment status, 𝑌 denotes the outcome of interest, 𝑀 denotes a 
putative mediator, and 𝑋 denotes observed pretreatment confounders. 
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Figure 4: Causal Mediation Analysis with Treatment-Induced Confounding 

Note: 𝑊 denotes treatment status, 𝑌 denotes the outcome of interest, 𝑀 denotes a 
putative mediator, 𝑋 denotes observed pretreatment confounders, and 𝐿 denotes 
treatment-induced confounders. 
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Figure 5: Causal Inference with Temporal Interference 

Note: 𝑊G denotes treatment status at time 𝑡, 𝑌 denotes the outcome of interest, 𝑋 denotes 
baseline confounders, and 𝐿G denotes time-varying confounders at time 𝑡. 
 
 




