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PREFACE

The effect of a deformable compliant surface wrapped around a bluff

body in an incompressible flow is explored in this thesis. To study the interaction

between the flow and the compliant surface, we consider a canonical bluff body and

an infinitely long circular cylinder wrapped with a compliant surface. Flow past

the compliant cylinder is studied numerically using direct numerical simulation

(DNS) for both laminar and turbulent flow. Incompressible flow past a compliant

cylinder for both 2D and 3D flows is described in the first two chapters.

Chapter I: Accurate simulation of unsteady 2D flow past a compliant cylinder

In this chapter, results for the laminar flow are presented. Simulations

were performed at a Reynolds number of 80 based on the cylinder diameter and

the free stream velocity. At this Reynolds number, the von Karman vortex shed-

ding pattern is observed in the wake of the cylinder. This flow is laminar, two-

dimensional and unsteady, with vortices generated alternately in the wake region.

This flow pattern is used to validate the code in the laminar 2D case. Further,

statistics for flow past a compliant cylinder are presented for different values of sur-

face compliance. For modeling the compliant surface, a simple spring-mass-damper

system is used which is governed by a decoupled 2nd order ordinary differential

equation for each grid point. As the surface is made more compliant, a decrease in

the peak lift coefficient and an increase in the Strouhal number and time average

drag are observed.

Chapter II: Direct numerical simulation of turbulent 3D flow past a circular

cylinder with a compliant surface

In this chapter, results for turbulent flow past a circular cylinder at

Reynolds number 300 are presented. At a Reynolds number of approximately

xiii



180, flow past a cylinder becomes three-dimensional, and at a Reynolds number

of 300, fully turbulent 3D vortex shedding in the cylinder wake is observed. The

Reynolds number 300 case is used for validation of the 3D turbulent code. Flow

statistics for turbulent flow past a cylinder with a compliant surface are also pre-

sented. As in the 2D case, a spring-mass-damper system is used to model the

compliant surface. Similar to the 2D case, a drop in the peak lift coefficient and

an increase in time average drag is seen as the surface is made compliant.

Chapter III: An iterative left/right LP method for the efficient optimization of a

highly constrained resistor network

In this chapter, a new method to optimize a highly constrained PDE

system is introduced. Optimization of a variable channel width/porosity liquid

cooled heat exchanger, modeled by a electrical network of resistors was studied

and a solution method was developed that is scalable and passes efficiently to

the PDE limit. The full problem is a quadratically constrained quadratic program

(QCQP). By fixing certain variables and allowing others to be free, the full problem

can be cast into two alternate linear programs (LP). This method scales well with

problem dimension and provides us with a tool for optimizing other similar large

scale highly constrained PDE system optimization problems.
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ABSTRACT OF THE DISSERTATION

New algorithms for the direct numerical simulation of turbulent flows past

compliant bodies and the optimization of highly constrained PDE systems

by

Anish Avinash Karandikar

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2008

Professor Thomas R. Bewley, Chair

This work develops an efficient and accurate new method for direct nu-

merical simulation of laminar and turbulent flow past a circular cylinder with a

deformable (compliant) surface. It studies the interaction of the incompressible

flow with the compliant cylinder. From the outset, this is defined as an optimiza-

tion problem, in which we seek to minimize aeroacoustic noise generated by dipole

sound sources on the compliant surface at low Mach numbers.

We build on a unique method developed in our lab for simulating turbu-

lent flow in a channel with compliant walls. This method is accurate and efficient

for large surface deformations. We adapt this method for the cylindrical polar

coordinate system to study flow past a compliant cylinder. In this method, a

time-dependent coordinate transformation is used to map the deformed flow do-

main to a regular computational domain. The governing Navier Stokes equations

are formulated in the cylindrical polar form and not the contravariant form, as the

latter is computationally expensive to simulate. The compliant surface is modeled

by a simple spring-mass-damper system.

As surface compliance is increased, a decrease in the peak lift coefficient

xvii



for the compliant cylinder is observed both in the laminar 2D case at Re = 80, as

well as the turbulent 3D case at Re = 300. On the other hand, the frequency of

vortex shedding and the time-average drag both increase with surface compliance.

This work also develops a new method for optimizing highly-constrained

PDE systems by splitting up the governing equations into parallel linear programs,

thus achieving scalability. It explores optimization of a single-phase fluid heat ex-

changer to minimize the power required to drive coolant through it by appropri-

ately adjusting the channel width or channel porosity. The Stokes flow in the heat

exchanger is modeled as a resistor network, while the flow rate and pressures in the

flow are analogous to currents and voltages in the resistor network. The method

developed and demonstrated on the resistor network problem extends naturally to

the optimization of the variable channel width/porosity distribution in the heat

exchanger model.
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I

Accurate simulation of unsteady

2D flow past a compliant cylinder

1



2

I.A Introduction

In this paper, we develop an efficient and accurate method to perform two

dimensional Direct Numerical Simulation (DNS) of flow past a circular cylinder

with a compliant, deformable surface. The surface and flow interact with each

other causing flow-structure interaction. We start by defining the problem in

an optimization context, in which, we aim to minimize the aeroacoustic noise

generated by the flow past a compliant cylinder by appropriately changing the

surface compliance parameters. Section I.B describes the problem setup in detail

including the optimization cost function definition and the compliant surface model

used for this simulation. In section I.C we describe the equations that govern

the incompressible flow and the method used to transform the irregular physical

domain to a regular computational domain. Section I.D describes the numerical

algorithm used to perform DNS of the flow. In section I.E, we describe the results

for validation of the code for a solid cylinder case with compliance turned off for

Reynolds number 80. At this Reynolds number, flow past a circular cylinder is

unsteady and two dimensional with alternate vortex shedding in the wake. Finally,

in section III.F we summarize the results of the DNS performed for the compliant

surface cases at Reynolds number 80 for different surface compliance parameter

regimes.

I.A.1 Turbulent flow in a channel with compliant walls

Turbulent flow in a channel with deformable walls has been extensively

studied by, for example Carlson et al (15) and Mito et al (16). The presence of

a compliant surface has been proven to delay laminar-to-turbulent transition in

channel flow. This has been studied analytically by Carpenter et al in (19), (20)

& (21) using linear stability methods. But the linear stability theory does not shed

much light on the fully turbulent regime, and so numerical methods must be used

for simulation of turbulent flow in compliant channels.
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In (12), Endo et al performed direct numerical simulation of turbulence

in a channel with a compliant surface and reported 2 to 3% drag reduction. This

result was challenged by Rempfer et al in (3) for the reason of insufficient av-

eraging time. Rempfer et al found no discernible impact of wall compliance on

long term turbulence statistics. Our lab has developed an alternative numerical

scheme (see (1) and (2)) for DNS of turbulent flow in a channel with compliant

walls. This scheme differs in some significant details from previous methods, and

is stable and accurate even for large deformations of the compliant channel walls.

The results obtained in our study were consistent with those of Rempfer et al for

small wall deformations. A new structural paradigm called a tensegrity fabric was

also introduced in this work to model the compliant channel walls. Unfortunately,

a parameter regime for the wall compliance properties has not yet been identified

using this code that indicates the possibility for sustained drag reduction in fully

developed turbulent channel flow using a compliant surface.

The present work extends the method developed in (1) to cylindrical polar

coordinates. We handle the arbitrarily moving bluff body surface with care and

accuracy to simulate flow past a compliant cylinder.

I.A.2 Two dimensional flow past a compliant cylinder

As mentioned above, this work performs DNS of two dimensional flow

past a compliant cylinder. We use a velocity-pressure formulation, with a time-

dependent domain transformation to handle the moving cylinder surface. Spatial

differentiation is performed using a Discrete Fourier Transform in the azimuthal

direction, while radial derivatives are computed using a second order central fi-

nite difference scheme. Temporal integration is performed using a low storage

RKW3/CN scheme, with certain wall normal derivatives handled implicitly, and

other terms explicitly. The fractional step method is used to project the interme-

diate velocity field to a divergence-free subspace at the end of each RK substep.

The resulting Poisson equation is solved in Fourier space iteratively.
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In a larger context, this is set up as an optimization problem to minimize

the aeroacoustic noise produced by the dominant dipole sources on the surface,

similar to (5) and (14). In future work, we plan to use a derivative-free optimization

method based on the Surrogate Management Framework (SMF) (18) to minimize

the noise generated by the flow past the compliant bluff body. This method is

especially suited to optimize problems with expensive function evaluations. Our

method extends the idea of n-dimensional sphere packing to increase efficiency of

the optimization routine.

I.B Problem statement

To set the stage for follow-on work, we will pose the present formulation

in an optimization context. We consider two-dimensional incompressible flow past

a nominally circular cylinder. The cylinder has a solid core (See Figure I.1) and is

surrounded by a compliant surface. The flow interacts with the compliant surface

on top of the cylinder and vortex shedding occurs in the wake of the cylinder.

The imposed inflow boundary conditions are uniform flow from left to right. The

flow structure interaction and the flow itself produce aeroacoustic noise. For an

acoustically compact surface, the noise generated is governed by Curle’s extension

to Lighthill’s acoustic analogy. The cost function in the optimization is an integral

of the source terms in Lighthill’s equation on the surface of the cylinder. The

independent parameters to be optimized are physical properties of various regions

of the compliant surface that determine how soft any particular region of the

compliant surface is. The surface is modeled by a simple spring-mass-damper type

system with associated stiffness and damping coefficients.

The main part of this problem is accurate simulation of the flow in the

wake of the compliant cylinder. The boundary conditions for this flow at the

cylinder wall are dynamic, and have to handled correctly. We use a domain trans-

formation method to simulate the flow, by first transforming the governing Navier
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Stokes equations together with the continuity equation to the computational do-

main while incorporating the moving irregular boundary of the domain.

Solid coreCompliant surface

rest position

Compliant surface Spring damper

compliance model
U

n
if

o
rm

 f
lo

w

Radiated

noise

Vortex shedding

Figure I.1: Schematic of problem statement

I.B.1 Noise generation

We first begin by examining the cost function that we are optimizing.

According to Ffowcs-William and Hawkings, the density fluctuation (ρ′) for an

observer locate at position x in the presence of arbitrarily moving walls is,

ρ′(x, t) =
1

4πc0

[
∂2

∂xi∂xj

∫ ∫

ν(τ)

(
Tij

r|D|

)

τe

dσ −
∂

∂xi

∫ ∫

s(τ)

(
fi

r|D|

)

τe

ds(σ)

−
∂

∂xi

∫ ∫

νc(τ)

(
ρ0ai

r|D|

)

τe

d(σ) +
∂2

∂xi∂xj

∫ ∫

νc(τ)

(
ρovivj

r|D|

)

τe

dσ

]

where, Tij is the Lighthill tensor, ν(τ) is the source region, fi is the

force due to interaction of the flow with the moving surface s(τ), and ai and vi

are acceleration and velocity of the volume νc(τ) enclosed by surface s(τ). The

distance between acoustic source and observer is r, while D is the Doppler factor
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given by,

D = 1 −
r

c0r

∂y

∂τ

See (4) for further details. For subsonic flows, the noise generation is dominated

by dipole sources on the surface as shown in (5) and (14). In this case, the acoustic

density (ρ) can be expressed as,

ρ ≈
M3

4π

yi

|y|2
∂

∂t

∫

S

njpij(x, t−M |x|)d2x

where, M is the free stream Mach number, nj is the direction cosine of

the outward normal to the cylinder surface S, and pij = pδij−τij is the compressive

stress tensor.

Thus, a cost function proportional to power of radiated acoustic noise per

unit span of the cylinder can be stated as,

J1 =

(
∂

∂

∫

S

njp1j(x, t)d2x

)2

+

(
∂

∂

∫

S

njp2j(x, t)d2x

)2

where, the overbar indicates time-averaged values, after the flow has

reached statistical steady state.

I.B.2 Compliant surface model

The compliant surface is modeled by a simple spring-mass-damper sys-

tem. Each point on the compliant surface is assumed to be attached to a spring-

damper system which is only allowed to deform in the wall normal (radial) direc-

tion (See Figure I.2). The dashed line shows the nominal (rest) position of the

compliant surface, with no forces acting on it, and the solid line is the compliant

surface.

The spring-damper system has an associated stiffness coefficient (k),

damping coefficient (c) and mass (m). The governing equation for dynamics of

this system is given by a second order decoupled ODE for each grid point on the

surface of the cylinder,

m
∂2η

∂t2
+ c

∂η

∂t
+ kη = f
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Figure I.2: Compliant surface model

where f is the external force applied to the system and η is the diplacement of the

compliant surface from the nominal (rest) position. In the present flow structure

interaction, this force is generated by the fluid flow, and appears in the form of

pressure at the cylinder surface (p′).

On dividing by m, the above equation can be written as,

∂2η

∂t2
+

( c

m

) ∂η

∂t
+

(
k

m

)

η =
p′

m

In the code, the dynamics of the flow are simulated for one timestep, then

the pressure at the cylinder surface is used as input to compute the dynamics of

the compliant surface for one timestep. Then, the position and velocity of the

compliant surface are input as boundary condition for the flow solver, and so on

back and forth between the flow solver and the structure dynamics solver.

For optimization, the surface of the cylinder is divided into three zones

(See Figure I.3). Considering θ = 0 as the downstream stagnation point, with the

flow going from left to right, Zone I is defined by |θ| ∈ [2π/3, π]. Zone II is defined

by |θ| ∈ [π/3, 2π/3] and Zone III is defined by |θ| ∈ [0, π/3].

The free variables in the optimization are the scaled stiffness coefficient

(k/m) and damping coefficient (c/m) for the three zones, defined as,

x =

[(
k

m

)

I

,

(
k

m

)

II

,

(
k

m

)

III

,
( c

m

)

I
,
( c

m

)

II
,
( c

m

)

III

]
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Figure I.3: Zones of compliance model

I.B.3 Cost function definition

The overall cost function for the optimization is defined as a combina-

tion of the cost related to noise generation (Section I.B.1), and the compliance

parameters (Section I.B.2). The reason for adding compliance parameters to the

cost function is to prevent the surface from becoming arbitrarily soft. Thus, the

optimization algorithm has a finite amount of compliance (softness) that it needs

to distribute appropriately over the surface on the zones of the cylinder. Thus, the

negative of the stiffness and damping ratios (k/m) and (c/m) are penalized in the

second part of the cost function.

J2 = C −
∑

i∈ [I,II,III]

[(
k

m

)

i

+
( c

m

)

i

]

where C is a heuristically determined constant.

Thus, the final cost function is defined as,

J = α1 J1 + α2 J2

where, α1 and α2 are appropriately chosen weights. Thus, the overall optimization

problem is to find a x that minimizes J(x).
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I.B.4 Domain transformation

An important part of this code is the handling of the arbitrarily moving

cylinder surface. The physical domain is irregular. We use a time-dependent

coordinate transformation similar to (1) to map the irregular physical domain to a

regular computational domain. We have developed a new flow solver from scratch

which is significantly different from previous works to accurately capture the flow-

structure interaction.

Physical domain Computational domain

Figure I.4: Domain transformation

Figure I.4 shows the ciruclar cylinder with deformed compliant surface at

the left. The dashed line shows the nominal (rest) position of the cylinder. The grid

is stretched only in the radial (r) direction. Due to this nonorthogonal coordinate

transformation, the contravariant formulation of the Navier Stokes equations is

very involved, and computationally expensive to compute. So, in this present

work, as in (1), we use a simple cylindrical polar coordinate system formulation

as detailed in Section I.C. The regular computational domain is shown in Figure

I.4 on the right. Similar to (1), the wall parallel derivatives in the azimuthal

direction are computed spectrally, using the Discrete Fourier Transform. In the

wall normal (radial) direction, the derivatives are computed using a second-order

finite difference scheme. This allows us to treat most of the derivatives in the radial
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direction implicitly in the time integration scheme, thus increasing the stability of

the code in the presence of wall fluctuations.

I.C Governing Equations

The governing equations are the incompressible Navier Stokes equations

together with the continuity equation in cylindrical polar coordinates.

∂ur

∂t
= −

1

r

∂ (rurur)

∂r
+
u2

θ

r
−

1

r

∂(uruθ)

∂θ
−

2ν

r2

∂uθ

∂θ
+
ν

r2

∂2ur

∂θ2
(I.1)

+ ν

{
1

r

∂

∂r

(

r
∂ur

∂r

)

−
ur

r2

}

−
1

ρ

∂p

∂r

∂uθ

∂t
= −

1

r

∂ (ruruθ)

∂r
−
uruθ

r
−

1

r

∂(uθuθ)

∂θ
+

2ν

r2

∂ur

∂θ
+
ν

r2

∂2uθ

∂θ2
(I.2)

+ ν

{
1

r

∂

∂r

(

r
∂uθ

∂r

)

−
uθ

r2

}

−
1

ρ

1

r

∂p

∂θ

∇ · u =
1

r

∂(rur)

∂r
+

1

r

∂uθ

∂θ
= 0 (I.3)

The coordinate transformation is nonorthogonal, as the grid is deformed

only in the radial direction. As defined in Section I.B.2, η(θ, t) is the displacement

of the compliant cylinder surface from its nominal position, the following time-

dependent coordinate transformation may be used to map the irregular physical

onto a regular cylindrical domain

r = (ξr −RI) ·

[
RO − (RI + η)

RO − RI

]

+ (RI + η)

θ = ξθ

t = τ

where (r, θ) denote cylindrical polar coordinates, and (ξr, ξθ) denote transformed

coordinates in the computational domain. RI is the nominal position of the cylin-

der surface at rest, and RO is the outer radius of the computational domain. The

Jacobian of the spatial transformation, and its determinant are,
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C =
∂x

∂ξ
=





∂r
∂ξr

∂r
∂ξθ

∂θ
∂ξr

∂θ
∂ξθ



 =





∂r
∂ξr

∂r
∂ξθ

0 1





J = |C| =
∂r

∂ξr
=
RO − (RI + η)

RO − RI

The inverse spatial transformation is,

C−1 =
∂ξ

∂x
=





1
J

− 1
J

∂r
∂ξθ

0 1



 =





∂ξr

∂r
∂ξr

∂θ

∂ξθ

∂r
∂ξθ

∂θ





Defining the nontrivial elements of C−1 as,

φr = 1/J = 1

/(
∂r

∂ξr

)

=
RO − RI

RO − (RI + η)

φθ =
∂ξr
∂θ

= −
1

J

∂r

∂ξθ
= −

RO − RI

RO − (RI + η)
·

(
RO − ξr
RO − RI

)

ηθ

= −
RO − ξr

RO − (RI + η)
ηθ

φt =
∂ξr
∂t

= −
1

J

∂r

∂t
= −

RO − RI

RO − (RI + η)
·

(
RO − ξr
RO − RI

)

ηt

= −
RO − ξr

RO − (RI + η)
ηt

and using the chain rule, we can apply the substitutions,

∂

∂t
→

∂

∂τ
+ φt

∂

∂ξr
∂

∂θ
→

∂

∂ξθ
+ φθ

∂

∂ξr
∂

∂r
→ φr

∂

∂ξr

to express the derivatives in (I.1), (I.2) and (I.3) in terms of the new

coordinate system. With these substitutions, the transformed r and θ momentum

equations, and the conitnuity equation, are written out explicitly in Section I.G.
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I.D Numerical algorithm

The numerical algorithm used for solving the unsteady incomspressible

Navier Stokes equation is similar to the one used in (1), in which turbulent flow

in a channel with deformable walls is simulated using DNS. In (1), the grid

was deformed only in the wall normal direction (y), as in this code the grid is

deformed only in the radial direction. We use a hybird pseudospectral/finite-

difference method for spatial discretization, and a mixed low storage Runge-Kutta-

Wray/Crank-Nicholson (RKW3/CN) method for temporal discretization with cer-

tain terms of (I.1) and (I.2) treated implicitly using CN, and other terms treated ex-

plicitly (see Section I.G for details). In addition to the flow variables, the geometry-

related time-varying coefficients, φr, φθ, and φt need to be spatially discretized.

The azimuthal direction is naturally periodic for the O-type grid used.

No-slip and no-penetration boundary conditions are assumed at the cylinder sur-

face. Uniform flow is imposed on the upstream side of the outer boundary with a

velocity of U∞, while physical outflow boundary conditions as in (7) are used in

the downstream side of the boundary.

A fractional step method is used to advance the flow and pressure fields

in time. At each RKW3 substep, an intermediate flow field is computed which

is not divergence-free. A Poisson equation with scaled divergence as right hand

side is solved, and the solution is used to project the flow field to the divergence

free supspace, and to compute the pressure update. The Poisson equation has

to be solved in Fourier space, but as the various Fourier modes can not be fully

decoupled, the pressure equation needs to be solved iteratively. Details for this

algorithm are provided in Section I.D.3.

I.D.1 Spatial discretization

The grid is chosen to be evenly spaced and non-staggered in the azimuthal

(ξθ) direction so that spatial derivatives can be computed spectrally. In the wall-
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normal direction (ξr), the grid is staggered and stretched using a hyperbolic tangent

function, to give sufficient grid resolution in the near-wall region. The variables

uθ and p are discretized on the family of grid points j = 0, 1, ..., NR, where j = 0,

corresponds to the cylinder surface and j = NR corresponds to the outer edge of

the computational domain. The variables ur, φr, φθ and φt are discretized on the

family of grid points j = 1
2
, 1+ 1

2
, ..., NR− 1

2
, where gridpoint j = n+ 1

2
is midway

between the gridpoints j = n, and j = n+ 1.

With the arrangement of the discrete variables on the numerical grid as

described above, the two components of the momentum equation are enforced at

the grid points at which the corresponding velocity components are discretized,

and the continuity equation is solved on the cells centered at the pressure points.

I.D.2 Temporal discretization

A low storage 3rd-order Runge-Kutta-Wray/Crank-Nicholson scheme is

used to advance the flow from time step m to the next time step m+ 1. At each

RK substep k (k = 1, 2, 3), a fractional step method as in (8) is used to march the

flow and project the flow field onto a divergence-free subspace. Certain terms in

the momentum equations are treated implicitly using the CN scheme, while other

terms are treated explicitly using the RKW3 scheme. The details of these terms

are given in Section I.G.

I.D.3 Fractional step method

During each RK substep, while marching the current velocity field (uk)

to the velocity field at the next time step (uk+1), an intermediate flow field, u∗,

is obtained. This velocity field is not divergence free. After this step, a projec-

tion equation is solved to make the velocity field divergence free. This projection

equation is a Poisson equation with its right hand side given by divergence of the

intermediate velocity field scaled by a factor,
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∇2φ =
1

2βk∆t
(∇ · u∗)

The solution to this equation is also the pressure update to get the new

pressure field as,

pk+1 = pk + φ

Also, the intermediate velocity is projected onto the divergence free space

as,

uk+1 = u∗ − (2βk∆t)∇φ

The Laplacian, divergence and gradient operators in the transformed co-

ordinate system are defined explicitly in Section I.G.

Numerically, the Poisson equation has to be solved in Fourier space iter-

atively. This has to be done because the Laplacian, divergence and gradient op-

erators cause coupling of wavenumbers in the azimuthal direction. This happens

due to the non-constant coeffiecients φr and φθ. We split the Laplacian operator

into two parts. The terms with the various Fourier modes decoupled are treated

implicitly (Limp(·)), while the rest of the terms are treated explicitly (Lexp(·)), such

that, L = Limp + Lexp. The following algorithm describes the numerical method

used to solve the pressure update Poisson equation iteratively in Fourier space.

Algorithm for iterative pressure update Poisson equation solver

• Compute scaled divergence in d

• Set φ0 to zero or initial guess

• For i = 0 : itmax

• Compute right hand side, r = d− Lexp(φi), in physical space

• Convert r to Fourier space, r̂
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• Solve Limp(φ̂i+1) = r̂, for ˆphi
i+1

• Convert φ̂i+1 to physical space, φi+1

• Compute residual, e = d− L(φi+1)

• If norm of residual, |e| is less than tolerance, Exit For Loop

• End For Loop

• Set, uk+1 → u∗ −∇φ

• Set, pk+1 → pk + φ

I.E Code validation

Simulations of laminar flow over a circular cylinder with no compliance

(solid surface) were performed at a Reynolds number of 80. The Reynolds number

was based on free stream velocity (U∞) and the cylinder diameter (D = 2RI).

Results from two simulations with different grid sizes are presented here for veri-

fication of the code. In Case 1, the grid size chosen was 64× 64 grid points in the

radial and azimuthal directions. In the Case 2, 128× 128 grid points in the radial

and azimuthal direction were considered. Re = 80 is a well known test case for

flow past a circular cylinder, producing alternate positive and negative vortices, in

the wake region. Various flow quantities were measured for the two cases, and are

presented in Table I.1. For both cases, the nominal cylinder radius was taken as,

RI = 0.5, and the radius of the outer edge of the computational domain was taken

as, RO = 30.

For the two cases, the parameters considered were mean drag coefficient

(C̄D), maximum lift coefficient (Cmax
L ), and Strouhal number (St) which is defined

as,

St =
f D

U∞
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Table I.1: Validation results for solid cylinder with Re = 80

Case NR NTH C̄D Cmax
L St

1 64 64 1.18 0.22 0.17
2 128 128 1.2 0.23 0.16

Reference (11) - - 1.05 0.2 0.16

where f is the vortex shedding frequency. Also the computational domain size for

the two cases are given as NR and NTH in the radial and azimuthal directions.

Figure I.5 shows instantaneous isocontours of axial vorticity (ωz) for 2D

flow past a solid circular cylinder at Re = 80 for Case 2 (NR = 128, NTH = 128)

at tU∞/D = 107. Both positive and negative vorticity values are plotted for the

range ωz ∈ ±[0.5, 8]. The center of the circular cylinder is located at (0,0) with

radius, RI = 0.5.
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Figure I.5: Isocontous of z-vorticity in Case 2 for solid surface (no compliance)

and Re = 80. The plot is at tU∞/D = 107. The dark lines show positive vorticity

values, and the light lines show negative vorticity values.

Figure I.6 shows instantaneous isocontours of axial vorticity (ωz) for 2D
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flow past a solid circular cylinder at Re = 80 for Case 2 (NR = 128, NTH = 128)

at tU∞/D = 110. Both positive and negative vorticity values are plotted for the

range ωz ∈ ±[0.5, 8]. The center of the circular cylinder is located at (0,0) with

radius, RI = 0.5.
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Figure I.6: Isocontous of z-vorticity in Case 2 for solid surface (no compliance)

and Re = 80. The plot is at tU∞/D = 110. The dark lines show positive vorticity

values, and the light lines show negative vorticity values.

I.F Results and discussion

We ran the simulation for two cases with the surface compliance turned

on. These will be referred to as Case 3 and Case 4. For both cases, the grid size

employed was 64 × 64 grid points. Case 1 is as defined in Section I.E for a solid

cylinder. Case 3 has (k/m) = (c/m) = 10 for all three compliance zones. Case 4

has (k/m) = (c/m) = 1 for all three compliance zones.

Figure I.7 shows a comparison of the lift coefficients for cases 1, 3 and 4.

Case 1 is denoted by solid line, Case 3 by dashed line and Case 4 by dash-dot line.

The X-axis denotes non dimensional time (tU∞/D). We can see that the peak lift
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Figure I.7: Comparison of lift coefficient for Cases 1, 3 and 4. The X axis is

nondimensional time (tU∞/D). Case 1 is denoted by solid line, Case 3 by dashed

line and Case 4 by dash-dot line.

coefficient goes down as the values of (k/m) and (c/m) are decreased, i.e. softness

of the structure is increased. This is in agreement with Endo et al (11).

Figure I.8 shows a comparison of the drag coefficients for cases 1, 3 and 4.

Again, Case 1 is denoted by solid line, Case 3 by dashed line and Case 4 by dash-

dot line. The X-axis denotes non dimensional time (tU∞/D). We can see that

after statistical steady state has been reached, the time average drag increases,

as the values of (k/m) and (c/m) are decreased. In other words, as the surface

becomes more compliant, the time average drag increases.

Figure I.9 shows the shape of the compliance structure at tU∞/D = 100

for Case 3. The dashed line shows the nominal position of the cylinder.

Figure I.10 shows instantaneous streamline plots together with the com-

pliant structure deformation (denoted by the circles) for one shedding cycle for
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Figure I.8: Comparison of drag coefficient for Cases 1, 3 and 4. The X axis is

nondimensional time (tU∞/D). Case 1 is denoted by solid line, Case 3 by dashed

line and Case 4 by dash-dot line.

Case 4. Figure I.11 shows the displacement, velocity and normalized pressure

force at each grid point on the compliant cylinder surface for Case 4 for one com-

plete shedding cycle. Note that the snapshots in Figures I.10 and I.11 correspond

to the same six time instants and represent one complete vortex shedding cycle.

I.G Transformed momentum and continuity equa-

tions

In the momentum equations, the terms treated explicitly, using RKW3

scheme are denoted by Ar and Aθ, while the terms treated implicitly with the

CN scheme are denoted by Br and Bθ. The pressure terms, handled by the frac-
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Figure I.9: The shape of the compliance structure (solid) together with the nominal

position of the cylinder (dashed) for Case 3 at tU∞/D = 100.

tional step update, are denoted by Pr and Pθ. Then, the complete transformed

momentum and continuity equations are written out as,

∂ur

∂τ
= Ar +Br + Pr

∂uθ

∂τ
= Aθ +Bθ + Pθ

0 =
φr

r

∂(rur)

∂ξr
+

1

r

∂uθ

∂ξθ
+
φθ

r

∂uθ

∂ξr

where,

Ar = −φt
∂ur

∂ξr
−

1

r

∂(uruθ)

∂ξθ
−
φθ

r

∂(uruθ)

∂ξr
+
u2

θ

r
−

2ν

r2

∂uθ

∂ξθ
−

2νφθ

r2

∂uθ

∂ξr
−
φr

r

∂(rurur)

ξr
+ Sr

Br = ν

[
φ2

r

r

∂

∂ξr

(

r
∂ur

∂r

)

−
ur

r2

]

Pr = −
φr

ρ

∂p

∂ξr
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Figure I.10: Instantaneous streamline plots for one shedding cycle for Case 4
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Figure I.11: Instantaneous plots of cylinder surface displacement (circle), surface

velocity (solid) and normalized pressure (dashed) as a function of position on

cylinder (θ) for Case 4
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where the last term of Ar is computed as,

Sr =
ν

r2

∂2ur

∂θ2
=

ν

r2

∂h

∂ξθ
+
νφθ

r2

∂h

∂ξr
, h =

∂ur

∂θ
=
∂ur

∂ξθ
+ φθ

∂ur

∂ξr

and,

Aθ = −φt
∂uθ

∂ξr
−
φr

r

∂(ruruθ)

∂ξr
−
uruθ

r
−

1

r

∂(uθuθ)

∂ξθ
−
φθ

r

∂(uθuθ)

∂ξr
+

2ν

r2

∂ur

∂ξθ
+

2νφθ

r2

ur

ξr
+ Sθ

Bθ = ν

[
φ2

r

∂

∂ξr

(

r
∂uθ

∂ξr

)

−
uθ

r2

]

Pθ = −
1

ρ

1

r

∂p

∂ξθ
−

1

ρ

φθ

r

∂p

∂ξr

where the last term of Aθ is computed as,

Sθ =
ν

r2

∂2uθ

∂θ2
=

ν

r2

∂k

∂ξθ
+
νφθ

r2

∂k

∂ξr
, k =

∂uθ

∂θ
=
∂uθ

∂ξθ
+ φθ

∂uθ

∂ξr

The transformed Laplacian operator is defined as,

L(φ) =
1

r

∂

∂r

(

r
∂φ

∂r

)

+
1

r2

∂2φ

∂θ2

=
φ2

r

r

∂

∂ξr

(

r
∂φ

∂ξr

)

+
1

r2

∂Lθ

∂ξθ
+
φθ

r2

∂Lθ

∂ξr

where,

Lθ =
∂φ

∂ξθ
=
∂φ

∂ξθ
+ φθ

∂φ

∂ξr

The transformed implicit part of Laplacian is defined as,

Limp(φ) =
1

ξr

∂

∂ξr

(

ξr
∂φ

∂ξr

)

+
1

ξ2
r

∂2φ

∂ξ2
θ

It follows that the explicit part of the Laplacian is given by,

Lexp(φ) = L(φ) − Limp(φ)
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The transformed divergence operator is given by,

∇ · u =
1

r

∂

∂r
(r ur) +

1

r

∂uθ

∂θ

=
φr

r

∂

∂ξr
(r ur) +

1

r

∂uθ

∂ξθ
+
φθ

r

∂uθ

∂ξr

The transformed gradient operator is given by,

∇φ =

(
∂φ

∂r
,

1

r

∂φ

∂θ

)

=

(

φr
∂φ

∂ξr
,

1

r

∂φ

∂ξθ
+
φr

r

∂φ

∂ξr

)

Thus, it can be verified that ∇·(∇φ) = ∇2φ in the transformed coordinate

system, which is necessary for the fractional step method to correctly remove

divergence form the intermediate flow field.

I.H Conclusion

We have developed a new method for accurate direct numerical simulation

of incompressible flow past a circular cylinder with a deformable surface based

on (1) and (2). We have validated the code for the 2D unsteady vortex shedding

case at Re = 80. We have also presented results for flow past a compliant cylinder

for different values of the surface compliance parameters. Our results show that

the Strouhal number increases and the peak lift coefficient decreases as compliance

(or softness) of the cylinder surface is increased. This result is in agreement with

Endo et al (11). Our results show that the time average drag increases as the

surface is made more compliant.

In future work, this method will be used for optimization of 2D unsteady

flow past compliant cylinders to minimize the aeracoustic noise generated by the

flow-structure interaction. In a follow up paper, we describe the validation and

results for incompressible turbulent 3D flow past a compliant cylinder forRe = 300.

This chapter, in full, has been submitted for publication to Journal of
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Computational Physics as, Anish Karandikar and T. R. Bewley, Accurate simula-

tion of unsteady 2D flow past a compliant cylinder.
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II.A Introduction

This work performs direct numerical simulation of incompressible turbu-

lent flow past a circular cylinder with a deformable surface. A time-dependent

coordinate transformation is applied to map the deformed cylindrical polar do-

main to a regular computational domain. We employ a pseudospectral method to

compute spatial derivatives in the periodic azimuthal and axial directions. Deriva-

tives in the radial (wall-normal) direction are computed using a second order finite

difference scheme.

In Section II.A.1 we present a brief survey of previous work done in the

DNS of turbulent flow in a channel with compliant walls. This work extends some

of the methods used in compliant channel flow to simulate flow past a compliant

cylinder. In Section II.A.2, we describe the model used for the compliant sur-

face, and an introduction to the domain transformation method used is given in

Section II.A.3. The governing equations for the turbulent flow are the full three

dimensional incompressible Navier Stokes equations which are described in detail

in Section II.B. In this section, we also describe the coordinate transformation as

applied to the Navier Stokes equations to account for the moving cylinder surface.

In Section II.C, we describe the numerical method used to perform DNS of tur-

bulent flow past a compliant cylinder. This section describes in detail the spatial

and temporal discretization methods employed in the present code, and also de-

tails of the fractional step method used to enforce continuity at the end of each

Runge-Kutta substep.

We present validation results for the code at Reynolds number 300 for a

solid cylinder, with no surface compliance in Section II.D.1. At this Reynolds

number, flow past a circular cylinder is three dimensional and turbulent with

alternate vortex structures in the wake region. The statistics produced by our code

match well with results presented in (5) for turbulent flow past a solid circular

cylinder at Reynolds number 300. Finally, in Section II.D.2, we present results
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for turbulent flow past a cylinder with a compliant surface. We found that as the

compliance (or softness) of the cylinder surface is increased, the peak lift coefficient

goes down, while the time average drag increases.

The 3D Navier Stokes equations and the continuity equations in trans-

formed coordinates are explicitly written out in the appendix Section II.E.

II.A.1 Turbulent flow in a compliant channel

In this work, we perform DNS of turbulent flow past a cylinder with a

compliant surface. This work is a conceptual extension of previous studies involving

turbulent flow in a channel with compliant walls. Many researchers have studied

this problem before, see for example Carpenter et al (8), (9) & (10), which deal

with, among other things, the delay of laminar to turbulent transition in compliant

channels. Endo et al (11) performed direct numerical simulation of turbulent

flow in a compliant channel and reported 2 to 3% drag reduction in the presence

of deformable walls. Rempfer et al (4) challenged this result for the reason of

insufficient averaging time. Rempfer et al found no discernible change in long

term turbulence statistics due to the presence of compliant walls in a channel flow.

In (1) and (2), Luo & Bewley developed an alternative numerical scheme

for direct numerical simulation of turbulent flow in a channel with deformable walls.

This scheme is stable and accurate for large deformations of the channel walls. The

results obtained in these studies were consistent with the results of Rempfer et al

for small wall deformation. Also, a new structural paradigm called a tensegrity

fabric was introduced in (1) and (2) to model the compliant channel walls. The

present work extends the method developed by Luo & Bewley to cylindrical polar

coordinates. We handle the effects of the arbitrarily moving cylinder surface on the

flow with care and accuracy to simulate turbulent flow past a compliant cylinder.
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II.A.2 Compliant surface model

The compliant surface is modeled by a simple spring-mass-damper sys-

tem. Each point on the compliant surface is assumed to be attached to a spring-

mass-damper system which is only allowed to deform in the radial direction (See

Figure II.1). The dashed line shows the nominal (rest) position of the compliant

surface with no forces acting on it. This system has an associated stiffness co-

efficient (k), damping coeffiecient (c) and mass (m). The governing equation is

given by a second order decoupled ODE for each grid point on the surface of the

cylinder, as,

m
∂2η

∂t2
+ c

∂η

∂t
+ kη = f

where f is the external force applied to the compliant surface, and η is the dis-

placement of the surface from its rest position. In this flow structure interaction,

the external force acting on the compliant surface appears as the normalized pres-

sure force acting on the surface due to the flow field surrounding it (p′). Then, the

equation is divided by m to get,

∂2η

∂t2
+

( c

m

) ∂η

∂t
+

(
k

m

)

η =
p′

m

Figure II.1: Compliant surface model

In the numerical code, the dynamics of flow are simulated for one full

timestep, and the pressure at the cylinder surface is used as input to compute
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dynamics of the compliant surface for one timestep. Then, the position and velocity

of the surface are used as boundary conditions for the flow solver, and so on, back

and forth.

The cylinder surface is divided into three zones, defined as,

Zone I: 2π/3 ≤ |θ| ≤ π
Zone II: π/3 ≤ |θ| ≤ 2π/3
Zone III: 0 ≤ |θ| ≤ π/3

and the physical parameters defining the compliant surface are assumed constant

over each of these three zones. Thus, the stiffness coefficient (k/m) and damping

coefficient (k/m) for each zone defined above constitute the problem parameters.

Note that θ = 0 corresponds to the downstream stagnation point with the flow

over the cylinder going from left to right.

II.A.3 Domain transformation

An important part of this code is to accurately capture the effect of the

arbitrarily moving cylinder surface on the flow. The physical domain is irregular

in this problem. The inner edge of this warped domain is illustrated in Figure II.2.

Note that the grid is stretched only in the radial direction, and there is no stretching

in the azimuthal or axial directions. The nonorthogonal coordinate transformation

makes the contravriant formulation of the Navier Stokes equations is very involved

and expensive to compute. Thus, in the present work, we use a simple cylindrical

polar coordinate system as detailed in Section II.B and a time-dependent coor-

dinate transformation similar to (1) to map the irregular physical domain to a

regular computational domain (Figure II.3). The wall parallel derivatives in the

azimuthal and axial directions are computed spectrally using the Discrete Fourier

Transform. In the wall normal (radial) direction, the derivatives are computed us-

ing a second-order central finite difference scheme. This allows us to compute most

of the derivatives in the radial direction implicitly in the time integration scheme,

thus increasing the stability of the code in presence of large wall deformations.
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Figure II.2: Inner edge of the irregular physical domain (compliant surface)

Figure II.3: Inner edge of the regular (transformed) computational domain
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II.B Governing Equations

The governing equations are the incompressible Navier Stokes equations

together with the continuity equation.

∂ur

∂t
= −

1

r

∂ (rurur)

∂r
+
u2

θ

r
−

1

r

∂(uruθ)

∂θ
−

2ν

r2

∂uθ

∂θ
−
∂(uruz)

∂z
(II.1)

+ ν

[
1

r

∂

∂r

(

r
∂ur

∂r

)

−
ur

r2
+

1

r2

∂2ur

∂θ2
+
∂2ur

∂z2

]

−
1

ρ

∂p

∂r

∂uθ

∂t
= −

1

r

∂ (ruruθ)

∂r
−
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r
−

1
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∂(uθuθ)

∂θ
+

2ν
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∂ur

∂θ
−
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1

r

∂

∂r

(
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∂uθ
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)

−
uθ

r2
+

1

r2

∂2uθ

∂θ2
+
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−
1

ρ

1
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∂p

∂θ

∂uz

∂t
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1
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−
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(II.3)
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[
1

r

∂

∂r
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r
∂uz
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+
1

r2

∂2uz

∂θ2
+
∂2uz

∂z2

]

−
1

ρ

∂p

∂z

∇ · u =
1

r

∂(rur)

∂r
+

1

r

∂uθ

∂θ
+
∂uz

∂z
(II.4)

The coordinate transformation is nonorthogonal, as the grid is deformed

only in the radial direction. As defined in II.A.2, η(θ, z, t) is the displacement of

the compliant cylinder surface from its nominal position. Then, following time-

dependent coordinate transformation may be used to map the irregular physical

onto a regular cylindrical domain

r = (ξr −RI) ·

[
RO − (RI + η)

RO −RI

]

+ (RI + η)

θ = ξθ

z = ξz

t = τ

where (r, θ, z) denote cylindrical polar coordinates, and (ξr, ξθ, ξz) denote trans-

formed coordinates in the computational domain. RI is the nominal position of
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the cylinder surface at rest, and RO is the outer radius of the computational do-

main. The Jacobian of the spatial transformation, and its determinant are,

C =
∂x

∂ξ
=








∂r
∂ξr

∂r
∂ξθ

∂r
∂ξz

∂θ
∂ξr

∂θ
∂ξθ

∂θ
∂ξz

∂z
∂ξr

∂z
∂ξθ

∂z
∂ξz








=








∂r
∂ξr

∂r
∂ξθ

∂r
∂ξz

0 1 0

0 0 1








J = |C| =
∂r

∂ξr
=
RO − (RI + η)

RO − RI

The inverse spatial transformation is,

C−1 =
∂ξ

∂x
=








1
J

− 1
J

∂r
∂ξθ

− 1
J

∂r
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0 1 0

0 0 1








=








∂ξr

∂r
∂ξr
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∂θ
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∂ξz

∂θ
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Defining the nontrivial elements of C−1 as,

φr = 1/J = 1

/[
∂r

∂ξr

]

=
RO − RI

RO − (RI + η)

φθ =
∂ξr
∂θ

= −
1

J

∂r

∂ξθ
= −

RO −RI

RO − (RI + η)
·

[
RO − ξr
RO −RI

]

ηθ

= −
RO − ξr

RO − (RI + η)
ηθ

φz =
∂ξr
∂θ

= −
1

J

∂r

∂ξz
= −

RO − RI

RO − (RI + η)
·

[
RO − ξr
RO −RI

]

ηz

= −
RO − ξr

RO − (RI + η)
ηz

φt =
∂ξr
∂t

= −
1

J

∂r

∂t
= −

RO −RI

RO − (RI + η)
·

[
RO − ξr
RO −RI

]

ηt

= −
RO − ξr

RO − (RI + η)
ηt

and using the chain rule, we can apply the substitutions,
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∂

∂t
→

∂

∂t
+ φt

∂

∂ξr
∂

∂θ
→

∂

∂ξθ
+ φθ

∂

∂ξr
∂

∂z
→

∂

∂ξz
+ φz

∂

∂ξr
∂

∂r
→ φr

∂

∂ξr

to express the derivatives in (II.1), (II.2), (II.3) and (II.4) in terms of

the new coordinate system. With these substitutions, the transformed r, θ, z

momentum equations, and the conitnuity equation, are written out explicitly in

Section II.E.

II.C Numerical algorithm

The numerical algorithm used for solving the unsteady incomspressible

Navier Stokes equation is similar to the one used by Luo & Bewley in (1), in which

DNS of turbulent flow in a channel with deformable walls is performed. In this

code, we use a hybird pseudospectral/finite-difference method for spatial discretiza-

tion, and a mixed low storage Runge-Kutta-Wray/Crank-Nicholson (RKW3/CN)

method for temporal discretization. In addition to the flow variables, the geometry-

related time-varying coefficients, φr, φθ, φz and φt need to be spatially discretized.

The azimuthal direction is naturally periodic for the O-type grid used.

For simulating an infinitely long cylinder, we consider a cylinder with a finite

length and apply periodic boundary conditions in the axial direction. No-slip and

no-penetration boundary conditions are assumed at the cylinder surface. Uniform

flow is imposed on the upstream side of the outer boundary with a velocity of U∞,

while physical outflow boundary conditions as in (7) are used in the downstream

side of the boundary.

As the various Fourier modes can not be fully decoupled, the pressure
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equation needs to be solved iteratively. Details of this algorithm are discussed in

Section II.C.3.

II.C.1 Spatial discretization

The grid is chosen to be evenly spaced and non-staggered in the azimuthal

(ξθ) and axial (ξz) directions so that spatial derivatives can be computed spectrally.

In the wall-normal direction (ξr), the grid is staggered and stretched using a hyper-

bolic tangent function, to give sufficient grid resolution in the near-wall region. The

variables uθ, uz and p are discretized on the family of grid points j = 0, 1, ..., NR,

where j = 0, corresponds to the lower wall and j = NR corresponds to the upper

wall. The variables ur, φr, φθ, φz and φt are discretized on the family of grid points

j = 1
2
, 1 + 1

2
, ..., NR − 1

2
, where the j = n + 1

2
gridpoint is midway between the

gridpoints j = n, and j = n+ 1.

With the arrangement of the discrete variables on the numerical grid as

described above, the three components of the momentum equation are enforced

at the grid points at which the corresponding velocity components are discretized,

and the continuity equation is solved on the cells centered at the pressure points.

II.C.2 Temporal discretization

A low storage 3rd-order Runge-Kutta-Wray/Crank-Nicholson scheme sim-

ilar to the one used by Bewley et al in (12) is used to advance the flow from time

step m to the next time step m+1. At each RK substep k (k = 1, 2, 3), a fractional

step method (Bewley et al, 2001) is used to march the flow and project the flow

field onto a divergence-free subspace.

Let the operators Ar, Aθ and Az represent the terms treated explicitly

(RKW3) and Br, Bθ and Bz represent the terms treated implicitly (CN) in the

Navier Stokes equations.
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uk+1
r − uk

r

∆t
= βk(B

k+1
r +Bk

r ) + γkA
k
r + ζkA

k−1
r − 2βkP

k
r

uk+1
θ − uk

θ

∆t
= βk(B

k+1
θ +Bk

θ ) + γkA
k
θ + ζkA

k−1
θ − 2βkP

k
θ

uk+1
z − uk

z

∆t
= βk(B

k+1
z +Bk

z ) + γkA
k
z + ζkA

k−1
z − 2βkP

k
z

Note that Pr, Pθ and Pz represent the pressure gradient terms in the three compo-

nents of the Navier Stokes equations which are treated explicitly. All the operators

in the above equations are explicitly written out for the transformed coordinate

system in Section II.E. For the RKW3/CN constants, βk, γk and ζk, the reader is

referred to (12).

II.C.3 Fractional step method

During each RK substep, while marching the current velocity field (uk)

to the velocity field at the next time step (uk+1), an intermediate flow field, u∗,

is obtained. This velocity field is not divergence free. After this step, a projec-

tion equation is solved to make the velocity field divergence free. The projection

equation is a Poisson equation with its right hand side given by divergence of the

intermediate velocity field scaled by a factor,

∇2φ =
1

2βk∆t
(∇ · u∗)

The solution to this equation (φ) is the pressure update to get the new

pressure field,

pk+1 = pk + φ

Also, the intermediate velocity is projected onto the divergence free space

as,
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uk+1 = u∗ − (2βk∆t)∇φ

The Laplacian (∇2 ·), divergence (∇·) and gradient (∇) operators in the

transformed coordinate system are defined explicitly in Section II.E.

The Poisson equation has to be solved in Fourier space iteratively. This

has to be done because the Laplacian, divergence and gradient operators cause

coupling of wavenumbers in the azimuthal direction, due to the presence of non-

constant coeffiecients φr, φθ and φz. We split the Laplacian operator into two

parts. The terms with the various Fourier modes decoupled are treated implicitly

(Limp(·)), while the rest of the terms are treated explicitly (Lexp(·)), such that,

L = Limp +Lexp. The following algorithm describes the numerical method used to

solve the Pressure update Poisson equation iteratively in Fourier space.

Algorithm for iterative pressure update Poisson equation solver

• Compute scaled divergence in d

• Set φ0 to zero or initial guess

• For i = 0 : itmax

• Compute right hand side, r = d− Lexp(φi), in physical space

• Convert r to Fourier space, r̂

• Solve Limp(φ̂i+1) = r̂

• Convert φ̂i+1 to physical space, φi+1

• Compute residual, e = d− L(φi+1)

• If norm of residual, |e| is less than tolerance, Exit For Loop

• End For Loop

• Set, uk+1 → u∗ −∇φ

• Set, pk+1 → pk + φ
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II.D Results and discussion

II.D.1 Code validation

We ran the flow code to simulate turbulent flow past a solid circular

cylinder at Reynolds number of 300 with compliance turned off. At Reynolds

numbers greater than Re ≈ 200, the flow becomes three dimensional with large

streamwise structures developing in it. Around reynolds number of 260, spanwise

vortical structures are observed in the flow. The grid size used for this test case

was (NR,NTH,NZ) = (64 × 64 × 64) grid points. The nominal inner radius of

the solid cylinder was taken as RI = 0.5, and the radius of the outer edge of the

computational domain was taken as RO = 20. The flow was initialized with a

uniform flow, and was run till tU∞/D = 50 by which time, all initial transients

had washed out of the domain.

Figure II.4 shows isosurfaces of streamwise vorticity (ωx) in a three-

dimensional view at a time instant tU∞/D = 45.1. Figure II.5 shows isosurfaces of

streamwise vorticity (ωx) in a top view for the same time instant, while Figure II.6

shows isosurfaces of streamwise vorticity (ωx) in a side view. Figures II.7 to II.10

show isocontours of streamwise vorticity for this time instant at 4 equispaced z-

locations for values of ωx = ±0.7. The positove contours are plotted with dark

lines, and the negative contours with light lines.

Figure II.11 shows isosurfaces of streamwise vorticity (ωx) in a three-

dimensional view at a time instant tU∞/D = 47.6. Figure II.12 shows isosurfaces of

streamwise vorticity (ωx) in a top view for the same time instant, while Figure II.13

shows isosurfaces of streamwise vorticity (ωx) in a side view. Figures II.14 to II.17

show isocontours of streamwise vorticity for this time instant at 4 equispaced z-

locations for values of ωx = ±0.7. The positove contours are plotted with dark

lines, and the negative contours with light lines.

These two time instants (tU∞/D = 45.1 and tU∞/D = 47.6) for which the

vorticity plots are shown, correspond to two extremes on the lift coefficient (CL)
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Figure II.4: 3D view of isosurfaces of streamwise vorticity for solid cylinder at

tU∞/D = 45.1 for ωx = +1 (black) and ωx = −1 (grey)

evolution for the flow (See Figure II.20). For all plots, the solid circular cylinder is

at (0, 0) with a nominal radius of RI = 0.5. The X-axis is the streamwise direction

and the Z-axis is the axial direction.

Figure II.18 shows time-average and span-average streamwise velocity

(ux/U∞) for different downstream locations, at x/D = 1.2, 1.5, 2, 2.5 and 3. Fig-

ure II.19 shows time-average and span-average crossflow velocity (uy/U∞) for dif-

ferent downstream locations, at x/D = 1.2, 1.5, 2, 2.5 and 3. These results match

well with the results presented by Kravchenko et al (5) for turbulent flow past a

solid circular cylinder at a Reynolds number of 300.

II.D.2 Results for compliant cylinder case

We ran the code with compliance turned on for tU∞/D = 10 time units

with the flow field initialized by a fully developed turbulent flow past cylinder at

Re = 300. The same grid size and cylinder and domain dimensions as in the
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Figure II.5: Top view of isosurfaces of streamwise vorticity for solid cylinder at

tU∞/D = 45.1 for ωx = +1 (black) and ωx = −1 (grey)

Figure II.6: Side view of isosurfaces of streamwise vorticity for solid cylinder at

tU∞/D = 45.1 for ωx = +1 (black) and ωx = −1 (grey)
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Figure II.7: Isocontours of streamwise vorticity for solid cylinder at tU∞/D = 45.1

at z = 0 for ωx = +0.7 (dark) and ωx = −0.7 (light)
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Figure II.8: Isocontours of streamwise vorticity for solid cylinder at tU∞/D = 45.1

at z = π/2 for ωx = +0.7 (dark) and ωx = −0.7 (light)



43

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure II.9: Isocontours of streamwise vorticity for solid cylinder at tU∞/D = 45.1

at z = π for ωx = +0.7 (dark) and ωx = −0.7 (light)
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Figure II.10: Isocontours of streamwise vorticity for solid cylinder at tU∞/D = 45.1

at z = 3π/2 for ωx = +0.7 (dark) and ωx = −0.7 (light)
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Figure II.11: 3D view of isosurfaces of streamwise vorticity for solid cylinder at

tU∞/D = 47.6 for ωx = +1 (black) and ωx = −1 (grey)

Figure II.12: Top view of isosurfaces of streamwise vorticity for solid cylinder at

tU∞/D = 47.6 for ωx = +1 (black) and ωx = −1 (grey)
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Figure II.13: Side view of isosurfaces of streamwise vorticity for solid cylinder at

tU∞/D = 47.6 for ωx = +1 (black) and ωx = −1 (grey)
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Figure II.14: Isocontours of streamwise vorticity for solid cylinder at tU∞/D = 47.6

at z = 0 for ωx = +0.7 (dark) and ωx = −0.7 (light)
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Figure II.15: Isocontours of streamwise vorticity for solid cylinder at tU∞/D = 47.6

at z = π/2 for ωx = +0.7 (dark) and ωx = −0.7 (light)
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Figure II.16: Isocontours of streamwise vorticity for solid cylinder at tU∞/D = 47.6

at z = π for ωx = +0.7 (dark) and ωx = −0.7 (light)
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Figure II.17: Isocontours of streamwise vorticity for solid cylinder at tU∞/D = 47.6

at z = 3π/2 for ωx = +0.7 (dark) and ωx = −0.7 (light)
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Figure II.18: Time-avearged mean streamwise velocity (ux/U∞) at 5 different

downstream locations for solid cylinder case. The average velocities are plotted for

x/D = 1.2 (solid), x/D = 1.5 (+), x/D = 2 (◦), x/D = 2.5 (∗), & x/D = 3 (×) .

These values compare well with the results of Kravchenko et al. at Re = 300.
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Figure II.19: Time-avearged mean crossflow velocity (uy/U∞) at 5 different down-

stream locations for solid cylinder case. The average velocities are plotted for

x/D = 1.2 (solid), x/D = 1.5 (+), x/D = 2 (◦), x/D = 2.5 (∗), & x/D = 3 (×) .

These values compare well with the results of Kravchenko et al. at Re = 300.
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validation case were used for the compliant surface case. The surface parameters

were set to (c/m) = (k/m) = 1 for all three compliance zones. The velocity of the

compliant surface in the radial direction was used as inner boundary conditions for

the radial velocity field to satisfy no penetration boundary conditions. The flow

field was initialized with a fully developed turbulent flow past a solid cylinder at

Reynolds number of 300.

Figure II.20 shows the evolution of the lift coefficient for the solid cylinder

and compliant cylinder cases. The solid line shows lift coefficient for turbulent

flow past a solid cylinder for Reynolds number 300 and the dashed line shows lift

coefficient for flow past a compliant cylinder with (k/m) = 1 and (c/m) = 1 for

all three compliance zones for the same Reynolds number. We see a drop in the

peak lift coefficient but no significant decrease in the Strouhal number as seen in

the 2D case. The X-axis denotes nondimensional time tU∞/D, and the compliant

cylinder plot is shifted ahead to match with the fully developed solid cylinder plot.

This result is similar in nature to 2D flow past a compliant cylinder as seen in (3).

Figure II.21 shows the evolution of the drag coefficient for the two cases.

The solid line shows drag coefficient for turbulent flow past a solid cylinder for

Reynolds number 300 and the dashed line shows drag coefficient for flow past a

compliant cylinder with (k/m) = 1 and (c/m) = 1 for all three compliance zones

for the same Reynolds number. We see an increase in time-average drag for the

compliant cylinder case. The X-axis denotes nondimensional time tU∞/D. The

compliant cylinder drag is plotted from tU∞/D = 50 to tU∞/D = 60 and is

denoted with a dashed line. The solid cylinder drag evolution is denoted by a solid

line.

Figures II.22 to II.25 show surface plots for the compliant surface for

four different time instants, tU∞/D = 5.1, 6.5, 7.6 and 9.3. The first and third

time instants correspond to the maximum and minimum lift coefficients in the

alternate vortex shedding cycle. The other two time instants occur in the middle

of the shedding cycle. See Figure II.20 for evolution of the lift coefficient in the
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Figure II.20: Comparison of lift coefficient for solid cylinder case (solid) and com-

pliant cylinder case (dashed) for Re = 300
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Figure II.21: Evolution of drag coefficient for solid cylinder case (solid) and com-

pliant cylinder case (dashed) for Re = 300

compliant cylinder case.
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Figure II.22: Compliant surface at tU∞/D = 5.1 for Re = 300. The X-axis axis

shows axial coordinate (z), and the Y-axis shows azimuthal coordinate (θ)
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Figure II.23: Compliant surface at tU∞/D = 6.5 for Re = 300. The X-axis axis

shows axial coordinate (z), and the Y-axis shows azimuthal coordinate (θ)
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Figure II.24: Compliant surface at tU∞/D = 7.6 for Re = 300. The X-axis axis

shows axial coordinate (z), and the Y-axis shows azimuthal coordinate (θ)
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Figure II.25: Compliant surface at tU∞/D = 9.3 for Re = 300. The X-axis axis

shows axial coordinate (z), and the Y-axis shows azimuthal coordinate (θ)
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II.E Transformed momentum and continuity equa-

tions

In the momentum equations, the terms treated explicitly, using RKW3

scheme are denoted by Ar, Aθ, and Az while the terms treated implicitly with

the CN scheme are denoted by Br, Bθ and Bz. The pressure terms, handled by

the fractional step update, are denoted by Pr, Pθ and Pz. Then, the complete

transformed momentum and continuity equations are written out as,

∂ur

∂τ
= Ar +Br + Pr

∂uθ

∂τ
= Aθ +Bθ + Pθ

∂uz

∂τ
= Az +Bz + Pz

0 =
φr

r

∂(rur)

∂ξr
+

1

r

∂uθ

∂ξθ
+
φθ

r

∂uθ

∂ξr
+
∂uz

∂ξz
+ φz

∂uz

∂ξr

where the r-momentum terms are given by,

Ar = −φt
∂ur

∂τ
−
φr

r

∂(rurur)

∂ξr
+
u2

θ

r
−

1

r

∂(uruθ)

∂ξθ
−
φθ

r

∂(uruθ)

∂ξr
−

2ν

r

∂uθ

∂ξθ
−

2ν

r
φθ
∂uθ

∂ξr

−
∂(uruz)

∂ξz
− φz

∂(uruz)

∂ξr
+
ν

r2

∂hrθ

∂ξθ
+
ν

r2
φθ
∂hrθ

∂ξr
+ ν

∂hrz

∂ξz
+ νφz

∂hrz

∂ξr

Br = ν

[
φ2

r

r

∂

∂ξr

(

r
∂ur

∂ξr

)

−
ur

r2

]

Pr = −
1

ρ
φr
∂p

∂ξr

where,

hrθ =
∂ur

∂θ
=
∂ur

∂ξθ
+ φθ

∂ur

∂ξr

hrz =
∂ur

∂z
=
∂ur

∂ξz
+ φz

∂ur

∂ξr
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The θ-momentum terms are given by,

Aθ = −φt
∂uθ

∂ξr
−
φr

r

∂(ruruθ)

∂ξr
−
uruθ

r
−

1

r

∂(uθuθ)
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∂
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∂uθ
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∂uθ
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∂z
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∂uθ
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∂uθ
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The z-momentum terms are given by,

Az = −φt
∂uz
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where,

hzθ =
∂uz

∂θ
=
∂uz

∂ξθ
+ φθ

∂uz

∂ξr

hzz =
∂uz
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The transformed Laplacian operator is defined as,

L(φ) =
1

r

∂

∂r

(

r
∂φ

∂r

)

+
1

r2

∂2φ
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∂r

)

+
1

r2

∂
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∂
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where,
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∂φ

∂ξr

Lz =
∂φ

∂z
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∂φ
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∂φ

∂ξr

The transformed implicit part of Laplacian is defined as,

Limp(φ) =
1

ξr

∂

∂ξr

(

ξr
∂φ

∂ξr

)

+
1

ξ2
r

∂2φ

∂ξ2
θ

+
∂2φ

∂ξ2
z

It follows that the explicit part of the Laplacian is given by,

Lexp(φ) = L(φ) − Limp(φ)

The transformed divergence operator is given by,

∇ · u =
1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+
∂uz

∂z

=
φr

r

∂

∂ξr
(rur) +

1

r

∂uθ

∂ξθ
+
φθ

r

∂uθ

∂ξr
+
∂uz

∂ξz
+ φz

∂uz

∂ξr

The transformed gradient operator is given by,

∇φ =

(
∂φ

∂r
,

1

r

∂φ

∂θ
,
∂φ

∂z

)

=

(

φr
∂φ

∂ξr
,

1

r

∂φ

∂ξθ
+
φr

r

∂φ

∂ξr
,
∂φ
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∂φ
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Thus, it can be verified that ∇ · (∇φ) = ∇2φ in the transformed coordi-

natesystem, which is necessary for the fractional step method to correctly remove

divergence form the intermediate flow field.

II.F Conclusion

We have developed an accurate and stable method to perform direct

numerical simulation of turbulent flow past a circular cylinder with a compliant

surface. This work is an extension of a previous method developed by us for DNS of

2D unsteady flow past a compliant cylinder (see (3)). We have validated the code

for flow past a solid cylinder at a Reynolds number of 300. We have also presented

results for turbulent flow past a circular cylinder with a compliant surface in this

work. According to our results, the peak lift coefficient of 3D flow past a cylinder

decreases as surface compliance is increased. Also, the time average drag increases

as compliance is added.

In future work, we plan to use this method together with an efficient sur-

rogate management framework based (see (13)) optimization routine to minimize

the aeroacoustic noise produced by the turbulent flow. This method can further

be used to minimize blade vortex interaction noise in helicopter blades, and to

minimize sound produced by a submarine in its wake.

This chapter, in full, has been submitted for publication to Journal of

Computational Physics as, Anish Karandikar and T. R. Bewley, Direct numerical

simulation of turbulent 3D flow past a circular cylinder with a compliant surface.
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III.A Introduction

The present work was motivated by the recent advent of porous-media

heat exchangers with porosity that may be tailored for any given application,

thus apparently providing the opportunity to significantly improve efficiency of

distributed heat exchangers for electronics cooling applications. In simple con-

figurations, such as when all the heat producing components are localized in one

specific area, the porosity distribution in such a heat exchanger can be optimized

by inspection. In the more general case, the distribution of porosity that leads

to the most efficient coolant flow is not obvious, and an efficient optimization

procedure is necessary.

Figure III.1: Schematic of an electronic circuit board that needs to be cooled with

hot spots marked with dark circles. The flow of the coolant is in a variable-width

channel within the printed circuit board from left to right.

A similar configuration in which tunable cooling can be acheived is a

variable channel width heat exchanger. This configuration is, in fact, significantly

more efficient for liquids with high thermal conductivity. Figure III.1 shows a

schematic for a liquid-cooled electronic circuit board with certain hot spots spread

out over the domain as indicated by the dark circles. The coolant flows from left

to right. The optimization problem considered is to deteremine the width of the

channel, δ, as a function of x and y that produces the optimal cooling. [Note that
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Table III.1: Electrical analogy for variable width channel flow

Flow (Cooling) Problem Electrical (Heating) Problem
Pressure Voltage
Flow rate Current

Inverse of channel width Resistance
h(x, y) = Heating input (specified) —–
T (x, y) ≤ Tmax (Max. temperature) H(x, y) ≥ Hmin(x, y) (Min. heating)

the origin is assumed to be at the bottom-left corner of the circuit board, and

the x-axis is aligned with the bottom boundary]. By optimal cooling we mean

a distribution of channel widths in the heat exchanger such that the maximum

coolant temperature is bounded everywhere in the domain (say ≤ 80◦C), and the

power required to drive the coolant through the heat exchanger is minimum.

The development of efficient interior point linear programming (LP) solvers

have made available a powerful tool to simplify constrained quadratic minimiza-

tion problems for PDE systems. The benefits garnered should extend to a range

of other problems in flow control. See (1) and (2) for further discussion.

In order to study the essential ingredients of the variable porosity or vari-

able channel width heat exchanger problems, we examine a warm-up problem with

a similar structure, a heating blanket problem. We apply the electrical analogy

to a low Reynolds number Stokes flow in a channel, and consider as a first model,

a grid of horizontal and vertical resistors. The resistances in the electrical prob-

lem correspond to the inverse of channel width / porosoity in the fluid case. The

currents in the heating problem correspond to the velocity or flow rate in the flow

problem. The voltages in the electrical problem correspond to the pressures in

the flow case. Finally, instead of minimizing the power required to drive the flow

through the heat exchanger (while staying below a maximum allowed coolant tem-

perature) as done in the flow problem, we minimize the power required to drive the

total current in the circuit while maintaining a minimum heating requirement at

specified locations on the heating grid. This analogy is summarized in Table III.1.
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In section III.B we describe, the notation used for the heating blanket

problem, and also give a formal statement of the optimization problem. In sec-

tion III.C we describe, the solution method adopted to solve the heating blanket

optimization problem by splitting the problem into two parallel left/right linear

programming problems. In section III.D, we describe an alternate method for

solving the heating blanket optimization problem by splitting the problem into

an inner LP problem and an outer gradient based optimization problem, and also

illustrate some of the difficulties faced in this approach. In section III.E, we solve

a 10×10 sized heating blanket problem using the left/right LP solver and compare

the solution with a full nonlinear optimization solver (SNOPT). In section III.F we

summarize, the results for three problems of increasing grid size (32× 32, 64× 64

and 128 × 128) in each direction using the left/right LP solver.

III.B The resistor network

In this section, as a warm-up to solving the heat exchanger problem, we

examine a heating blanket in the form of a grid of horizontal and vertical resistors

(See Figure III.2) with a specified minimum heating requirement on certain loca-

tions on the grid. The notation for the resistor grid heating blanket is specified in

the following subsection.

III.B.1 Notation for resistor network

Referencing Figure III.2, the following notation is used:

Interior nodes: {i, j} for i = 1, . . . , N − 1; j = 0, . . .M ;

Interior cells: {i+ 1/2, j + 1/2} for i = 0, . . . , N − 1; j = 0, . . .M − 1;

Horizontal paths: {i+ 1/2, j} for i = 0, . . . , N − 1; j = 0, . . .M ;

Vertical paths: {i, j + 1/2} for i = 1, . . . , N − 1; j = 0, . . .M − 1.
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{0,M} {N,M}

Vin Vout

{0, 0} {N, 0}

Figure III.2: A simple resistor network. We first optimize the values of the resistors

and the total voltage drop Vin − Vout to minimize the total power expended while

a prespecified heating distribution.

The voltage V i,j is defined on every interior node. A horizontal resistor R
i+1/2,j
1

and current component I
i+1/2,j
1 are defined for every horizontal path and a vertical

resistor R
i,j+1/2
2 and current component I

i,j+1/2
2 are defined for every vertical path.

Kirchoff’s current law (KCL) for every interior node may be written as,

(I
i+1/2,j
1 − I

i−1/2,j
1 ) + (I

i,j+1/2
2 − I

i,j−1/2
2 ) = 0. (III.1)

The voltage drop for every horizontal and vertical path, respectively, may be writ-

ten as,

(V i+1,j − V i,j) +R
i+1/2,j
1 I

i+1/2,j
1 = 0 (III.2a)

(V i,j+1 − V i,j) +R
i,j+1/2
2 I

i,j+1/2
2 = 0. (III.2b)

The boundary conditions on this system are given by,

V 0,∗ = Vin, V N,∗ = Vout, I
∗,−1/2
2 = I

∗,M+1/2
2 = 0, (III.3)

where a star (∗) in the superscript means all values of the index for which the

corresponding variable is defined. Without loss of generality, we define Vout = 0.

The range of acceptable resistor values are:

R ≤ R∗,∗
1 ≤ R, R ≤ R∗,∗

2 ≤ R. (III.4)
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The heating requirement on every interior cell is given by

1

2

[(

V i+1,j − V i,j
)

I
i+1/2,j
1 +

(

V i+1,j+1 − V i,j+1
)

I
i+1/2,j+1
1

+
(

V i,j+1 − V i,j
)

I
i,j+1/2
2 +

(

V i+1,j+1 − V i+1,j
)

I
i+1,j+1/2
2

]

≥ H i+1/2,j+1/2,
(III.5)

where we have defined the boundary resistor values R0,∗
2 = RN,∗

2 = 0.

Defining the total current in the network as

Itotal =

M∑

j=0

I
i+1/2,j
1 for any i. (III.6)

III.B.2 Problem statement

We now give our first formal statement of the heating blanket problem.

Problem A: Given specifications on the minimum and maximum resistor values

R and R and the required heating distribution H∗,∗ > 0, minimize the total power

consumed,

J = (Vin − Vout)Itotal,

with respect to the resistor values R∗,∗
1 and R∗,∗

2 and the voltage drop Vin−Vout while

satisfying the equality constraints (III.1)-(III.3) and the inequality constraints

(III.4)-(III.5).

We can assume, without loss of generality, that Vout = 0. Thus, the

modified cost function is,

J = Vin · Itotal (III.7)

At the outset, this looks like a fairly easy problem. Indeed, if R = ∞, one

can minimize the power consumed simply by setting R∗,∗
2 = ∞ (so the current on

each vertical path is zero) and selecting the voltage drop Vin−Vout to be sufficiently

large. In this case, it is possible to apply (III.5) as an equality constraint on

every cell and effectively ignore the inequality constraints (III.4), as none of these

inequality constraints will be binding in the optimized solution for sufficiently large

Vin −Vout. Problem A then converts to a reduced set of nonlinear equations which
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is easily solved via standard techniques, such as Newton-Raphson. As the power

consumed on each cell is the minimum that meets the specifications (III.5), this

solution is globally optimal.

Similarly, if R = 0, one can minimize the power consumed by setting

R∗,∗
2 = 0 (so the voltage on each vertical line is constant) and selecting the voltage

drop Vin − Vout to be sufficiently small. In this case, it is also possible to apply

(III.5) as an equality constraint on every cell and effectively ignore the inequality

constraints (III.4), as none of these inequality constraints will be binding in the

optimized solution for sufficiently small Vin − Vout. Problem A then converts to a

reduced set of nonlinear equations which is easily solved via standard techniques.

As the power consumed on each cell is the minimum that meets the specifications

(III.5), this solution is also globally optimal.

When the range of acceptable resistor values is small, such as R/R = 10,

the many binding inequality constraints on this problem appear to make it much

more difficult. However, there is a novel way to get around this problem which we

describe in the following section.

III.C Solution method

The optimization problem described by (III.1) - (III.7) is a quadraticlaly

constrained quadratic programming problem (QCQP). QCQP’s are, in the general

case NP-hard problems. They do not scale well with problem dimension. For the

heating blanket problem, the heating requirement (III.5) is a quadratic inequality

constraint. Kirchoff’s Voltage Law (III.2) are the quadratic equality constraints.

The cost function itself (III.7) is of course quadratic as it is given by Vin · Itotal.

To reduce the computational effort involved in solving the optimization

problem and finding a local minimum, we split the problem into two parallel Linear

Programming (LP) problems: LeftLP and RightLP. The strategy is to split the

free variables into two sets, left and right, such that the governing equations (and
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cost function) are linear in any particular set of variables, while the other set is

held constant.

One complete iteration of the left/right solver comprises of one run of a

LP solver for the LeftLP for a specified number of maximum iterations and one

run of LP solver for the RightLP for a specified number of maximum iterations.

Further, the solution procedure can be modified to first solve for the given heating

requirement on a coarse grid (say 8× 8 grid of resistors), then use this solution to

initialize a solve on a finer grid (say 16×16 grid), and so on till required refinement

of the solution is achieved.

III.C.1 LeftLP

The free and fixed variables for the LeftLP are defined as,

Free:







Vin

V ∗,∗

R∗,∗
1

R∗,∗
2







Fixed:





Itotal

I∗,∗1

I∗,∗2





In the LeftLP, x are the free variables while yc are fixed. The governing equations

are linear in x, and the problem can be cast as an LP. Kirchoff’s Voltage Law (III.2)

is linear in the voltages and resistances with fixed currents. For convenience, they

are listed here again with the fixed variables marked.

(V i+1,j − V i,j) +R
i+1/2,j
1

fixed
︷ ︸︸ ︷

I
i+1/2,j
1 = 0

(V i,j+1 − V i,j) +R
i,j+1/2
2 I

i,j+1/2
2

︸ ︷︷ ︸

fixed

= 0.

The acceptable range of resistance values (III.4) are bounds on the resis-

tance part of x. Also the inequality constraints (III.5) are linear in voltages. Thus
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the LeftLP can be expressed as,

min cT
1 x (III.8)

s.t. Ax = 0

B x ≥ h1

In the LP formulation, the cost function vector, c1, comes from (III.7)

The A-matrix is a function of yc and comes from a combination of Kirchoff’s

Volatge Law (III.2), Kirchoff’s Current Law (III.1) and the equation enforcing

total current in the network (III.6). The B-matrix (which is also a function of yc)

and h1 come from the heating requirement (III.5). Thus the constraint matrices

on the LeftLP are imposed by a solution of the RightLP and vice versa.

Figure III.3 shows a typical sparsity pattern for an equality matrix (A)

for the LeftLP for a 10 by 10 grid. Figure III.4 shows a typical sparsity pattern

for an inequality matrix (B) for the LeftLP for a 10 by 10 grid.
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Figure III.3: Sparsity pattern for equality matrix of LeftLP (10 × 10 grid)
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Figure III.4: Sparsity pattern for inequality matrix of LeftLP (10 × 10 grid)

III.C.2 RightLP

To cast the right problem as a linear program, we have to define a new

set of free variables, conductance (G), defined as,

G∗,∗
1 =

1

R∗,∗
1

, G∗,∗
2 =

1

R∗,∗
2

where G1 is the conductance of horizontal resistors, and G2 is the conductance of

vertical resistors.

Thus, Kirchoff’s Voltage Law (III.2) can be written in terms of conduc-

tances as,

fixed
︷ ︸︸ ︷

(V i+1,j − V i,j) G
i+1/2,j
1 + I

i+1/2,j
1 = 0 (III.9a)

(V i,j+1 − V i,j)
︸ ︷︷ ︸

fixed

G
i,j+1/2
2 + I

i,j+1/2
2 = 0. (III.9b)

for horizontal and vertical path. Note that (III.9) is exactly equivalent to (III.2).

Now, for the RightLP, the free and fixed variables are,
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Free:









Itotal

I∗,∗1

I∗,∗2

G∗,∗
1

G∗,∗
2









Fixed:

(
Vin

V ∗,∗

)

Notice that, the RightLP mirrors the LeftLP. The y variables are free while xc

are fixed. The governing equations (with (III.2) which is in terms of resistances

replaced by (III.9) which is in terms of conductances) are linear in the free variables,

and the right problem can be cast as a linear program.

Kirchoff’s Voltage Law, recast as (III.9) is linear in the conductances

and currents on the horizontal and vertical resistors with fixed voltages. Kirchoff’s

Current Law (III.1) is also linear on the currents in the resistors. Also, the equation

(III.6) enforcing total current in the network for any i is a linear relation. These

three things together constitute the linear equality relations of the LP. As in the

LeftLP, the heating requirement (III.5) poses the linear inequality relations in the

linear program. Note that the bounds on the conductances are flipped with respect

to the bounds on resistances (III.4), due to the reciprocal relationship between

resistance and conductance. By taking reciprocal of (III.4) we have,

1

R
≥

1

R∗,∗
1

≥
1

R
,

1

R
≥

1

R∗,∗
2

≥
1

R

Defining the lower (G) and upper (G) limits for conductances as,

G =
1

R
, G =

1

R

we have the bounds on the conductance part of y as,

G ≤ G∗,∗
1 ≤ G, G ≤ G∗,∗

2 ≤ G. (III.10)

Now, after this manipulation, the RightLP can be expressed as a linear
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program as,

min cT
2 y (III.11)

s.t. C y = 0

D y ≥ h2

Again, the cost function vector c2 comes from (III.7). The equality matrix C is a

function of xc comes from the restatement of Kirchoff’s Voltage Law in terms of

conductance (III.9), Kirchoff’s Current Law (III.1) and the equation enforcing total

current in the circuit (III.6). The inequality matrix D (which is also a function

of xc) and h2 for the LP come from the heating requirement (III.5). Thus the

constraint matrices on the RightLP are imposed by a solution of the LeftLP and

vice versa.

Figure III.5 shows a typical sparsity pattern for an equality matrix (C)

for the RightLP for a 10 by 10 grid. Figure III.6 shows a typical sparsity pattern

for an inequality matrix (D) for the RightLP for a 10 by 10 grid.

Note that each complete iteration for the left/right LP solver consists of

1 LeftLP run for a specified number of maximum inner iterations and 1 RightLP

run for a specified number of maximum inner iterations.

With the left and right LP’s defined, each LP is solved for a predetermined

number of iterations alternately. First a few iterations of the LeftLP are performed,

and then the solution is imposed as constraints (through the constraint matrices)

on the RightLP. Then the RightLP is iterated for a few steps and its solution is

imposed on the LeftLP through its constraint matrices, and so on.

III.D Alternate method (sensitivity analysis) and

its problems

Another possible method to solve this problem is detailed in this sec-

tion. In this method, the problem variables are split into inner and outer parts
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Figure III.5: Sparsity pattern for equality matrix of RightLP (10 × 10 grid)

0 50 100 150 200 250 300 350

0

20

40

60

80

Figure III.6: Sparsity pattern for inequality matrix of RightLP (10 × 10 grid)

instead of left and right LPs. Note that for a given current distribution, Kirchoff’s

Voltage Law (III.2), the inequality heating requirement (III.5) and the objective

function (III.5) are all linear in the voltages and resistances in the circuit. Thus,

the inner/outer formulation of the problem is given as,
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Inner Problem: Given specifications on the minimum and maximum resistor

values R and R, the required heating distribution H∗,∗ > 0, and a prescribed (fea-

sible) current distribution parameterized by {Itotal, I
∗,∗
1 , I∗,∗2 }, minimize the total

power consumed, J (defined in (III.7)), with respect to Vin, V
∗,∗, R∗,∗

1 , and R∗,∗
2 ,

subject to the equality constraints (III.2)-(III.3) and the inequality constraints

(III.4)-(III.5).

Outer Problem: Minimize the optimized power consumption, J , with respect to

the current distribution {Itotal, I
∗,∗
1 , I∗,∗2 }, where the feasibility of a particular cur-

rent distribution and the corresponding optimized power consumption J is found

by solving problem B.1.

As noted above, the inner problem is linear in its unknowns and can be

solved effeciently as an LP. Thus given an initial feasible current distribution, the

outer problem can be solved by repeated solution of the inner problem. Also, in

addition to solving the inner problem the LP algorithm gives gradient information

which incorporates the binding feasibility constraints, thus guiding the next step

in the iterative solution refinement of the outer problem.

The unknowns in the inner and outer problems are defined as,

xinner =











Vin

V ∗,∗

R∗,∗
1

R∗,∗
2











and youter =








Itotal

I∗,∗1

I∗,∗2








An important requirement for the success of this algorithm is the ability

for the LP solver to determine gradient information from the inner problem, so

that the outer gradient based solver can use this information to reduce function

evaluations. This gradient information is derived from the sensitivity analysis of

the inner LP. But the sensitivity of the inner LP to perturbations of the constraint

matrices or the right hand sides is a nonsmooth function. This can be seen in a

simple example.
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III.D.1 Nonsmoothness of LP optimum with respect to

perturbations to right hand side of constraints

Consider an LP in canonical form,

min J = cT x

s.t. Ax ≤ b0, x ≥ 0

We consider a test case, called model LP with,

c =








−5

−4

−6







, A =








1 −1 1

3 2 4

3 2 0







, b0 =








20

30

30








The optimum of this base LP is, x∗ = [ 0 15 0 ]T with optimum cost

function, J∗ = −60. We now perturb the second element of the RHS vector, b0

by a small amount t as,

b = b0 + t ·








0

1

0








The amount of perturbation is t = ±0.1 in intervals of 0.01. For each perturbed

right hand side, the LP is solved and optimal cost function is plotted against

perturbation. The analytical slope of the cost function with respect to RHS per-

turbations is given by sensitivity analysis as,

∂J∗

∂t
= −λi (III.12)

where λi is the Lagrangian multiplier corresponding to the i-th constraint. In this

case i = 2. See (3) for more details.

Figure III.7 shows that there is a discontinuity in the slope at t = 0 in

the cost function as a function of perturbation. The optimal cost function (J∗) is

nondifferentiable with respect to pertubration t at t = 0. The predicted slope of

the cost function does not match the numerically computed slope as (III.12) only
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Figure III.7: Analytical (solid) and numerical (circle) sensitivities of optimal cost

function of a model LP w.r.t to perturbations in right hand side
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holds for non-degenrate point, and t = 0 corresponds to a degenerate LP. Thus we

can not compute slope of the cost function for the outer problem from sensitivity

analysis of the inner LP.

III.D.2 Nonsmoothness of outer cost function

As a further illustration of nonsmoothness of the outer problem, with re-

spect to its variables, we consider a surface plot of the outer cost function as defined

above, with respect to two of the outer variables in the inner/outer formulation.

We restate the governing equations by parameterizing all current distri-

butions which satisfy Kirchoff’s Current Law by a streamfunction, ψ, defined on

all interior cell. The relationship between streamfunction and currents is given by,

I
i+1/2,j
1 = (ψi+1/2,j+1/2 − ψi+1/2,j−1/2)

I
i,j+1/2
2 = −(ψi+1/2,j+1/2 − ψi−1/2,j+1/2),

(III.13)

with boundary conditions on ψ given by,

ψ∗,−1/2 = 0, ψ∗,M+1/2 = Itotal

We then examine combinations of Itotal and ψ3/2,1/2 for a grid with N =

3,M = 1. The various current distributions arising as a result, are imposed as

constraints on the inner LP, and the corresponding optimum points are visualized

as a surface plot in Figure III.8. If the inner LP is infeasible for a particular

combination of (Itotal, ψ
3/2,1/2), the cost function for that point is set arbitrarily to

300 for aiding visualization.

From the plot, we can see that outer problem is a nonconvex, nonsmooth

function of the currents (expressed as Itotal and ψ∗,∗), thus gradient based tech-

niques alone can not be used to solve this inner/outer formulation of the problem.
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Figure III.8: Nonsmoothness of outer cost function in the inner/outer formulation.

III.E Comparison of left/right LP solver with

full nonlinear solver (SNOPT)

We perfomed a comparison of the left/right LP solver with a general

nonlinear solver (SNOPT) for a 10 × 10 heating grid. In both cases, the heating

requirement was the same. The imposed heating requirement for both problems is

plotted in Figure III.9. There were two points on the grid with non-zero heating

requirements as shown in the figure. Both problems had acceptable resistor limits

of R = 1 and R = 10, giving a restrictive resistor limit ratio of 10. For details on

the nonlinear solver used, the reader is referred to (4).

III.E.1 Left/Right LP solver case

For the first case, we used a left/right LP solver as described in sec-

tion III.C. The solver was run for 50 complete iterations. Each complete iteration

comprised of one LeftLP run using an LP solver run for a maximum of 10 iterations,

and one RightLP run with a maximum of 10 iterations.
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Figure III.10 shows the actual heating produced by the solution of the

left/right solver after 50 complete (one LeftLP + one RightLP) iterations. It also

shows a superposition of actual and required heating for the 10 × 10 grid in the

left/right solver case.

III.E.2 Nonlinear solver case

For comparison, the same problem (with the same heating requirement

as shown in Figure III.9) was posed and solved as a nonlinear program using the

SNOPT general nonlinear optimization algorithm for 50 iterations. See (4) for

details on SNOPT. The nonlinear program was posed as,

Figure III.9: Heating requirement on a 10 × 10 grid of resistors in watt
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Figure III.10: Actual heating produced by left/right LP solver (top) and superim-

position of actual and required heating (bottom) for a 10 × 10 grid

min f(x)

s.t. g1(x) = 0, lg ≤ g2(x) ≤ ug,

lA ≤ Ax ≤ uA, lb ≤ x ≤ ub
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where the x vector is defined as,

x =




















Vin

V ∗,∗

R∗,∗
1

R∗,∗
2

Itotal

I∗,∗1

I∗,∗2




















The nonlinear (quadratic) cost function is simply Vin · Itotal from (III.7),

assuming Vout = 0 wihtout loss of generality. The nonlinear function g1(x) cor-

responds to the nonlinear equality constraints in the governing equations, namely

Kirchoff’s Voltage Law (III.2). This also is a quadratic function. The nonlinear

function g2(x) corresponds to the inequality constraints in the problem, i.e. the

heating requirement (III.5) which are again quadratic in nature. Kirchoff’s Cur-

rent Law (III.1) and the equation enforcing total current in the circuit (III.6) are

incorporated in the A-matrix with the lower and upper bounds (lA and uA) set to

0 to enforce equality. The lower and upper bounds on the variables themselves (lb

and ub) come from the acceptable resistor values (III.4).

Figure III.11 shows the actual heating produced by the solution of the

nonlinear solver (SNOPT) after 50 iterations on a 10 × 10 grid. It also shows a

superposition of actual and required heating for the 10 × 10 grid in the nonlinear

solver case.

III.E.3 Comparison of left/right LP solver with nonlinear

solver

Figure III.12 shows a comparison of convergence history of the two solvers

for 50 iterations. We can see that, the left/right LP solver is competitive with the

full nonlinear (SNOPT) solver. The solution obtained by the nonlinear solver is
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Figure III.11: Actual heating produced by nonlinear solver (top) and superimpo-

sition of actual and required heating (bottom) for a 10× 10 grid

slightly better than the left/right solver. But it is important to note that for bigger

grid sizes, (e.g. 64 × 64 or 128 × 128), the left/right LP solver quickly converges

to good solutions, while the nonlinear solver is not able to handle such big grids

as the length of the solution vector is ≈ O(106).
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Figure III.12: Comparison of convergence history of left/right LP solver (solid)

and nonlinear solver (dashed)

III.F Results and discussion

We ran the left/right LP solver for three grid sizes, 32 × 32, 64 × 64

and 128 × 128. These three cases will be referred to as Case 1, Case 2 and Case

3 respectively. For all three cases, the heating requirement was specified at the

start, and the solver was run for 20 iterations. The range of acceptable resistor

values for all three cases was R = 0.1 and R = 10.

Case 1: In this case, the grid size was chosen to be 32 × 32 grid points in the

X and Y directions. Figure III.13 shows the heating requirement imposed on the

solver together with the actual heating produced by the circuit as optimized by the

left/right LP solver after 20 iterations. Figure III.14 shows the resistor distribution

in the circuit. It is an isocontour plot of average horizontal and vertical resistance

values at all nodes of the circuit.

Case 2: In this case, the grid size was chosen to be 64 × 64 grid points in the
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Figure III.13: Case 1: Required heating (top) and actual heating produced (bot-

tom) by left/right LP solver for 32 × 32 grid.
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Figure III.14: Isocontours of average of horizontal and vertical resistance values

for 32 × 32 grid. Isocontours for resistance values of 2, 4, 6 and 8 are plotted.
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X and Y directions. Figure III.15 shows the heating requirement imposed on the

solver together with the actual heating produced by the circuit as optimized by the

left/right LP solver after 20 iterations. Figure III.16 shows the resistor distribution

in the circuit. It is an isocontour plot of average horizontal and vertical resistance

values at all nodes of the circuit.

Figure III.15: Case 2: Required heating (top) and actual heating produced (bot-

tom) by left/right LP solver for 64 × 64 grid
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Figure III.16: Isocontours of average of horizontal and vertical resistance values

for 64 × 64 grid. Isocontours for resistance values of 2, 4, 6 and 8 are plotted.

Case 3: In this case, the grid size was chosen to be 128 × 128 grid points in the

X and Y directions. Figure III.17 shows the heating requirement imposed on the

solver together with the actual heating produced by the circuit as optimized by the

left/right LP solver after 20 iterations. Figure III.18 shows the resistor distribution

in the circuit. It is an isocontour plot of average horizontal and vertical resistance

values at all nodes of the circuit.

III.G Conclusion

We have illustrated a powerful new method to optimize a highly con-

strained resistor network problem, which passes efficiently to the PDE limit. This

heating resistor network serves as a good model for a low Reynolds number liq-
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Figure III.17: Case 3: Required heating (top) and actual heating produced (bot-

tom) by left/right LP solver for 128 × 128 grid
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Figure III.18: Isocontours of average of horizontal and vertical resistance values

for 128 × 128 grid. Isocontours for resistance values of 2, 4, 6 and 8 are plotted.
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uid cooled heat exchanger with variable cahnnel width or variable porosity. In

future work, the left/right LP solver method will be extended to solve the variable

channel width/porosity heat exchanger problem by extending the resistor network

analogy to low Reynolds number Stokes flow.

One of the issues in the current solution method is the non-smoothness

of the resistor distribution in the solution produced by the left/right LP solver.

We plan to solve this problem by enforcing smoothness on the allowable solutions

for the resistor distribution (See Figures III.14, III.16 and III.18). This will be

done by using fewer grid points to specify the resistances in the circuits, and using

a smooth interpolant to determine resistor values in between these grid points.

Essentially, the resistances in the network, will be defined on a coarse grid, with

fewer grid points in each direction (by a factor of 2 or 4), while the rest of the

governing equations will be defined on the fine grid. Another issue that needs

addressing is the decoupling between horizintal and vertical resistor values. Once

these issues are appropraitely handled, this method will be extended to solve the

liquid cooled heat exchanger problem.

This chapter, in full, has been submitted to SIAM Journal of Control and

Optimization as, Anish Karandikar and T. R. Bewley, An iterative left/right LP

method for the efficient optimization of a highly constrained resistor network.
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