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ABSTRACT OF THE DISSERTATION

Wakes of underwater hills : Vortex dynamics, Form drag and Turbulence

by

Pranav Puthan Naduvakkate

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2021

Professor Sutanu Sarkar, Chair
Professor Eugene Pawlak, Co-Chair

Wakes of three-dimensional topographies in the abyssal ocean are sites of enhanced
flow variability and mixing. To investigate the attendant vortex dynamics, internal waves and
turbulence, a three-phased approach is adopted. In the first phase, a steady current impinges
on a conical abyssal hill in a stratified environment. The sensitivity of the flow to boundary
conditions (slip and partial-slip instead of no-slip) on the flat wall and on the obstacle surface
is examined. Significant changes occur in the structure of lee vortices and wake turbulence
when the boundary condition (BC) is changed. For instance, the boundary layer on the flat

bottom in the no-slip case suppresses the unsteady behavior of the separated boundary layer

Xiv



behind the hill. In contrast, unsteady shedding of vortices from the body in a high Reynolds
number flow is captured by slip and partial-slip BCs.

In the second phase, tidal modulations are superimposed on the steady flow to study
the changes in vortex dynamics in the abyssal hill wake. The strength of the tidal modulations
relative to the mean flow (R) and the tidal excursion number (Ex) are varied to reveal tidal
synchronization of wake vortices. The ratio of the natural shedding frequency to the tidal
frequency (f™) varies from 0.1 to 1 when Ex is varied, at R = 1. Wake vortices are observed at
the subharmonics of the tidal frequency when 0.25 < f* < 1. Even weak tidal modulations
(R ~ 0(0.1)) can alter the frequency of these wake vortices. Qualitative changes are observed
in the spatial organization of the vortices, which influences form drag and dissipation.

In the third phase, a statically unstable disturbance (originating from internal wave
propagation) over a slope with inclination [ and background buoyancy frequency N is con-
sidered. The energy exchange occurs between four energy reservoirs, namely the mean and
turbulent components of kinetic energy (KE) and available potential energy (APE). When [3
is non-zero, a mean flow is initiated at a frequency of N sin 3 accompanied by an oscillatory
energy exchange between the mean KE and APE reservoirs. The energy transfer between the

mean and turbulent reservoirs of KE and APE is explored.
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Chapter 1

Introduction

Turbulent mixing in the ocean interior is a key control on the meridional overturning
circulation (Wunsch and Ferrari, 2004) and quantification of mixing in the ocean is critical to
predictions related to the ocean circulation (Saenko and Merryfield, 2004). Turbulent dissipa-
tion is intensified by encounters of stratified flow with rough topography, a finding that has
often been attributed predominantly to topographic internal waves. However, the contribution
of mixing from wakes of underwater multiscale topography has received less attention in obser-
vational studies. With the advent of computing power and improved simulation techniques, our
ability to model wakes of flow past topography has advanced. Wakes of islands and seamounts
have been simulated using ocean circulation models with early efforts by Beckmann and
Haidvogel (1997); Coutis and Middleton (2002) and more recent work by Dong et al. (2007);
Liu and Chang (2018); Perfect et al. (2018). Flow separation and eddy formation off coastal
topography has been examined for the California Undercurrent (Molemaker et al., 2015), the
Gulf Stream (Gula et al., 2015), and for tidally modulated currents past Three Tree Point in
the context of form drag (Warner and MacCready, 2014). Notably, submesoscale eddies with
large vertical vorticity (relative to the inertial frequency) are injected into the flow. On the

other hand, measurements in the abyssal ocean reveal strong boundary currents and elevated



turbulent dissipation rates at bottom mixed layers (Polzin et al., 2014; Ruan et al., 2017;
Garabato et al., 2019). The increasing resolution of ocean models also reveal the importance
of topographic features, e.g., enhanced tracer mixing as the Antarctic Circumpolar Current
(ACC) passes through the Drake Passage (Mashayek et al., 2017) and enhanced submesoscale
vortices as the ACC negotiates the Kerguelen Plateau in the South Indian Ocean (Rosso et al.,
2015).

Stratification, rotation and tidal forcing are key elements of geophysical wakes. When
a tidally modulated flow encounters an underwater obstacle, the wake structure is governed
predominantly by the obstacle Froude number (Fr,), the tidal excursion number (Ex;), the

Rossby number (Ro.) and velocity ratio (R) :

U, U, U,
L ; Ro, = — ; !

U,
Fe : “ToDp D U’

Nh

where U, and U; are the mean and tidal constituents of the barotropic flow respectively, N is the
background buoyancy frequency, ; = 2nf; is the tidal frequency, f is the inertial frequency,
h is the height of the obstacle and D is the obstacle base diameter.

The topographic length scale can vary significantly in the ocean. Large seamount
wakes span over distances of O(50km) while the signature of wakes generated by smaller
topographies, including small island wakes, extend upto O(4km). Underwater topography
is 3D with multiple length scales, e.g. see fig. 1.1 which shows 3D bumps at O(1 — 10) km
horizontal scale in the double-ridge Luzon Strait. Recent observations of eddy formation in
the wake of Palau island (Zeiden et al., 2019; MacKinnon et al., 2019) depicts wake eddies
formed by a complex interaction of a tidally modulated current with the island (see fig. 1.2).
These eddies possess relative vorticity of the O(~ 30f) and the tide has an excursion length
of O(8km), where f is the inertial frequency. Similar strong eddies were observed by Chang

et al. (2019) at Taiwan’s, Green Island. The cross-stream tidal flow is observed to affect the



vortex shedding frequency although its amplitude is five times weaker than the background
Kuroshio current impinging on the island. The shedding of vortices occurs at M2 frequency
instead of the natural period of shedding.

In unstratified environments, a hill with a 3D geometry does not shed vortices similar
to the vertically coherent lee eddies which are observed in the ocean. Instead a standing
horseshoe vortex and periodic hairpin vortices are observed downstream at low Reynolds
number (Rep) (see Acarlar and Smith, 1987) which become indistinct at higher Reynolds
number (Garcia-Villalbaa et al., 2009). A low Fr. (Fr. < 1) flow is constrained to move
around rather than over the obstacle, owing to the large potential energy barrier. This leads to
roll-up of the lateral shear layer into lee vortices (Hunt and Snyder, 1980).

Topographic wakes are also affected by planetary rotation. A relatively large planetary
rotation rate (small Ro.) induces asymmetry in the strength of cyclonic and anticyclonic eddies
shed from the topography (Dietrich et al., 1996). Dong et al. (2006) attributed the loss in
symmetry to centrifugal instabilities in the wake. Perfect et al. (2018) and Srinivasan et al.
(2018) showed that the change in vertical structure of wake vortices is governed by the Burger
number Bu, defined as (Ro./Fr.)?. Their idealized simulations show decoupling of vortices
along their vertical extent owing to loss of geostrophic balance, when Bu > 12.

The regime of weak rotation and strong stratification (or equivalently, large Bu ) applies
to wakes behind abyssal hills. For example, consider the abyssal hills in the Brazil Basin
(Ledwell et al., 2000; Nikurashin and Legg, 2011). The bottom topographic roughness is
O(1 km) in the horizontal. For an obstacle with D = 1.5 km, buoyancy period of 1 hr and
U. = U; = 10 cm/s, the tidal excursion number is Ex; ~ 0.5 for the M2 tide and the average
value of Fr, lies close to 0.2. The value of Rossby number is Ro. ~ 3, at 15°S latitude. The
resolution of GCMs is insufficient to resolve these hills. Thus, parametrization of the wake
dynamics at these length scales is critical.

Owing to numerical constraints, idealized simulations often ignore tidal forcing. Yet,



in situ observations affirm that tides can significantly influence flow separation at islands,
continental slopes and submerged topography. Observations by Black and Gay (1987) showed
the formation of ‘phase’ eddies in the continental shelf of Great Barrier Reef. Denniss
et al. (1995) and Chang et al. (2019) reported lee eddies shed past islands at the dominant
tidal frequency. This phase-locking phenomenon is observed even when the tidal velocity
amplitude is small relative to the mean flow. A lack of numerical studies exploring these
findings motivates this research on numerical modeling of abyssal hill wakes. We perform
turbulence-resolving simulations of wakes past an idealized conical underwater hill to explore
the vortex dynamics, form drag and turbulence in this realm. Planetary rotation, stratification
and tidal forcing are included for accurate representation of the abyssal ocean environment.
Thus, these simulations capture the essential features of a class of turbulent flows that exists in
the ocean. Numerical challenges in modeling these wakes are also addressed.

This dissertation is organized as follows. Chapter 2 presents simulations of a steady
current impinging on a conical abyssal hill. Numerical challenges in modeling abyssal wakes
are discussed to highlight the effect of numerical boundary conditions on the characteristics
of the shed lee vortices. Additionally, the progenitors of lee vorticity and their relative
contributions are assessed to reveal the role of stratification in such wakes. In chapter 3, a
tide with strength equal to the mean is added to the background flow. In this parametric
study, the relative magnitude of the natural shedding frequency to the tidal frequency is varied.
Far wake vortices were found to be tidally synchronized. Specifically, these vortices were
observed at tidal subharmonics, a novel result. Notable changes were also observed in the
spatial organization of vortices and form drag. The vortex shedding patterns are classified into
three distinct regimes. A detailed investigation of form drag in each regime is presented in
chapter 4.

Although tidal synchronization is found here when the tidal velocity is as strong as

the background current, the influence of weaker tidal modulations on wake vortices is still



unknown. To this end, the magnitude of the tidal modulation relative to the mean flow is
varied in chapter 5 to examine the onset of synchronized wake vortices. The underlying
mechanisms responsible for changes in the wake vortex frequency are discussed. Chapter 5
concludes with a brief discussion on dissipation ‘hot-spots’ in the lee of the hill. The discussion
of turbulence and dissipation is incomplete when the contribution of IW driven mixing is
excluded. Therefore to complete the picture, a statically unstable disturbance at a slope 3
generated by IW propagation is considered in chapter 6. The flow evolution involves energy
exchange between four energy reservoirs, namely the mean and turbulent components of
kinetic energy (KE) and available potential energy (APE). The influence of 3 and initial

disturbance amplitude on the energy exchange are investigated in this parametric study.
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Figure 1.1: Rough underwater topography in the ocean: (a) A central section of the east ridge
of Luzon Strait, a steep double-ridge system. Although the topography is elongated in the
north-south direction so as to present a quasi-two dimensional geometry akin to a ridge, there
are several three-dimensional topographic features. (b) Barotropic (depth-averaged) velocity
in a zoom of the rectangular box in part (a) shows flow in a channel with submerged 3D hills
(from Pinkel et al. (2012)) (c) Barotropic velocity at points P1 and P2 show asymmetry with
mean and oscillating components of the same order. (d) Vertical vorticity of the boundary
flow around three-dimensional features is large (~ 20f). (b) and (c) based on simulation
data provide by M. Buijsman and reported by Buijsman et al. (2012)
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eastward flow with flow separation evident in the lee. b) Velocities averaged over 130-260m

with westward flow and wake/eddy structure evident to the west of the tip. Data provided by

MacKinnon et al. (2019)



Chapter 2

The wake of a three-dimensional
underwater obstacle: effect of bottom

boundary conditions

Three-dimensional (3D) obstacles on the bottom are common sites for the generation
of vortices, internal waves and turbulence by ocean currents. Turbulence-resolving simulations
are conducted for stratified flow past a conical hill, a canonical example of 3D obstacles.
Motivated by the use of slip boundary condition (BC) and drag-law (effectively partial slip)
BC in the literature on geophysical wakes, we examine the sensitivity of the flow to BCs
on the obstacle surface and the flat bottom. Four BC types are examined for a non-rotating
wake created by a steady current impinging on a conical obstacle, with a detailed comparison
being performed between two cases, namely NOSL (no-slip BC used at all solid boundaries)
and SL (slip BC used at all solid boundaries). The other two cases are as follows: Hybrid,
undertaken with slip at the flat bottom and no-slip at the obstacle boundaries, and case DL.
wherein a quadratic drag-law BC is adopted on all solid boundaries. The no-slip BC allows the

formation of a boundary layer which separates and sheds vorticity into the wake. Significant



changes occur in the structure of the lee vortices and wake when the BC is changed. For
instance, bottom wall friction in the no-slip case suppresses unsteadiness of flow separation
leading to a steady attached lee vortex. In contrast, when the bottom wall has a slip BC (the
SL and Hybrid cases) or has partial slip (DL case), unsteady separation leads to a vortex
street in the near wake and the enhancement of turbulence. The recirculation region is shorter
and the wake recovery is substantially faster in the case of slip BC. In the lee of the obstacle,
turbulent kinetic energy (TKE) for case NOSL is concentrated in a shear layer between the
recirculating wake and the free stream, while TKE is bottom-intensified in the other three
cases. The sources of lee vorticity are also examined in this study for each choice of BC. The
sloping sides lead to horizontal gradients of density at the obstacle, which create vorticity
through baroclinic torque. Independent of the type of BC, the baroclinic torque dominates.
Vortex stretch and tilt are also substantial. An additional unstratified free-slip case (SL-UN) is
simulated and the wake is found to be thin without large wake vortices. Thus, stratification is

necessary for the formation of coherent lee vortices of the type seen in geophysical wakes.

2.1 Introduction

Wakes are generated as the flow separates at three-dimensional (3D) steep, multiscale
bathymetry, e.g. at Luzon Strait (Zheng et al., 2008; Pinkel et al., 2012; Buijsman et al.,
2014). Separated flow and wake eddies in stratified water, for example, at the headlands of
Three Tree Point (Pawlak et al., 2003; Canals et al., 2008) and Palau (MacKinnon et al., 2019)
lead to form drag and, additionally, to turbulent dissipation and mixing. Stratification exerts
significant dynamic control in these examples and in the model problem simulated here, unlike
the more studied configuration of island wakes in shallow, well-mixed water. The role of wake
vortices and attendant flow variability in flow past submerged topography has received less

attention than internal waves, motivating the present study of a canonical problem of stratified



flow past a conical hill with a focus on wake dynamics. Consider a current of characteristic
speed U, = Uy in a stratified background with buoyancy frequency N and Coriolis frequency
f. As the current flows past an obstacle of horizontal length scale D and height A, a flow
is established with dynamics governed by the following non-dimensional parameters: (1)
Reynolds number (Rep) defined as UpD /v where V is the viscosity, (2) topographic Froude
number (Fr.) defined as Uy/Nh, (3) topographic Rossby number (Ro) defined as Uy / fD, and
(4) topographic slope #/D. The value of Fr, is quite variable in deep water. For example, in
the Southern Ocean, a current with Uy = 0.1 ms~! that flows over a hill of 200 m height in
backgrounds with N = 1072 —1073 s~ ! has Fr. = 0.05—0.5, e.g. Nikurashin and Ferrari
(2010).

Previous studies of atmospheric lee vortices in mountain wakes are relevant. Baro-
clinic generation, namely, the production of horizontal vorticity by baroclinic torque and its
subsequent tilt towards the vertical, appears to be the favored mechanism for lee vortices rather
than the vorticity injected by boundary layer separation. This mechanism was proposed by
Smolarkiewicz and Rotunno (1989), prompted by their simulation of flow past a bell-shaped
hill. Their model, which used a slip BC on all solid boundaries (therefore, no boundary layer),
exhibited an attached lee vortex when Fr. was decreased below ~ 0.5. The flow pattern was
similar to that in laboratory experiments at similar Fr. by Hunt and Snyder (1980). Subsequent
work, e.g., Rotunno et al. (1998); Epifanio and Rotunno (2005) has further developed this
explanation by analysis of vorticity and potential vorticity (PV) balances. Alternate mecha-
nisms for lee vortices in the case of slip BC have been proposed, e.g., streamline curvature of
the boundary flow (Smith, 1989) and dissipative production of PV (Schar and Durran, 1996).
No-slip BC has been employed by Ding and Street (2002) and their Fr, = 0.2 simulation
conducted at Rep = 730 exhibits a steady attached vortex pair in the lee with little turbulence.
Unlike the quasi-steady lee vortex found in several numerical models of the atmospheric hill

wake, Schar and Durran (1996); Vosper (2000) report an unsteady vortex street. Laboratory



experiments of stratified flow past obstacles (Hunt and Snyder, 1980; Vosper et al., 1999)
report unsteady vortex shedding at Fr, sufficiently below 1, but the cutoff value of Fr, varies
and is likely sensitive to Rep, obstacle shape and free-stream disturbances.

In this chapter, we consider a low Froude number of Fr, = 0.2 where predominant hor-
izontal flow is anticipated, along with a relatively steep slope of #/D = 0.3, which accentuates
flow separation. Since Fr. is not < 1, some of the oncoming fluid can go over the obstacle to
generate internal waves. Our study examines a model oceanic wake problem in this regime
and, rotation effects and tidal forcing are excluded in this paper so as to focus on stratification
effects. The literature review shows that stratified oceanic flows in a regime with both internal
waves and some upstream blocking and, additionally, at high Rossby numbers have received
less attention. We are thus motivated in the present study to examine the sensitivity of a

non-rotating wake to various BCs with parameters as described by table 2.2.

2.2 Problem Formulation

2.2.1 Governing equations

E)ui
5 =0 2.1)
Ju; du;  1dp* gp* oT;j
a Yo, T Tpodn  po P T ax, @2)
ap op axj
3 e = A (2.3)
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The density field is decomposed as :

p:p0+pbg(z)+p*(x7yvz7t)a (24)

where P, is a linear function of z, leading to a constant N in the simulations. The large eddy
simulation (LES) technique is employed to model the effect of unresolved scales of the flow.

Thus, T;; and ) ; include the contribution from both molecular viscosity and the subgrid-scale

stress.

Sponge

Sponge

Ly

L -

Figure 2.1: Setup of the problem (not to scale): Uniform steady stratified flow encounters
a conical obstacle. Ly, L, and L, are the streamwise, spanwise and vertical domain sizes.
The uniform current Uy is oriented in the streamwise (x) direction. The obstacle is placed
at x = 0, with L, being the upstream domain length and L, being the downstream distance
traversed by the flow before reaching the outlet.

2.2.2 Simulated Cases

The setup of the problem is illustrated in fig. 2.1. The flow is initialized with uniform
velocity, u = (Up,0,0), which also serves as the inlet BC. At solid boundaries, the velocity
vectors can be decomposed as uy,, u;, and u;,, where u, is the velocity normal to the wall and

uy, & u, are the wall-tangential velocities. The BCs are varied among cases. In particular, the
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Figure 2.2: Left : Incoming fluid velocity profile shown for cases with § =0 and S = 1 at an
upstream location x* = —2.4, Right : Three-dimensional representation of the obstacle.

solid boundaries are either assigned as no-slip walls or slip walls :

No-slipwall (§=0):  u, =0, u, =0, u,=0. (2.5)

Impermeable slip wall (S =1):  u,=0, (T-n)-t;=0, (T-n)-t;=0. (2.6)

In the above equations, S is a parameter used to distinguish between a slip wall (where

S = 1) and a no-slip wall (§ = 0) as shown in eq. (2.6).

2.2.2.1 LES model

Large eddy simulations (LES) are conducted with effects of the unresolved fine scales
represented with a subgrid scale (SGS) model. Thus, the viscous stress and density flux vector
in eq. (2.1) and eq. (2.3) are computed as :

ou; ap

Tij = (V+ngs)$ v Xji= (+ ngs)g- (2.7)
J J

Here, V4 1s estimated using the dynamic eddy viscosity model of Germano et al. (1991)

as Vygs = CSZZGI, where |S| = 1/28;;S;;. The coefficient Cy is dynamically computed (Lilly,
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Table 2.1: Notation used in the model formulation and analysis of results.

Xi = position vector (x,y,z)

t = time

u; = velocity vector (u,v,w)

(u,v,w) = streamwise, spanwise and vertical velocity components
(x*,y*,2") = (x/D,y/D,z/h)

t* =tU/D

o =% jkg%’; = vorticity vector (@, ®,,®;)

W;©; = enstrophy

(@, y, 0;) = streamwise, spanwise and vertical components of the vorticity vector
n,ty,t; = wall normal vector and two mutually orthogonal tangent vectors
Pre(2), Po = background density profile and reference density (resp.)
p, p* = density and density deviation

b=—gp"/po = buoyancy

N=,/ g—gi—g = Brunt-Viisila frequency

p* = pressure deviation from hydrostatic

g = gravitational acceleration

v = kinematic viscosity

K = thermal diffusivity

Tij = stress tensor

Xi = density flux vector

Sij=1% (g—;‘; + 3—2) = rate of strain tensor

Vsgs = subgrid scale eddy viscosity

Ksgs = subgrid scale eddy diffusivity

A = LES filter applied to A

A = LES filter length

Cs = Smagorinsky coefficient

1992). The customary smoothing of C; is performed in this problem with Lagrangian averag-
ing (Meneveau et al., 1996) along particle trajectories using an exponential weighting function.
Lagrangian averaging is effective in flows which do not have a homogeneous spatial direction
to implement smoothing. In all simulations, the subgrid Prandtl number (Prsg; = Vg5 / Ksgs) 18
fixed as unity.

The mean value (Reynolds average) of any field variable is obtained by averaging in
time after the initial transient has subsided. The mean value of the parameter ¢ is denoted by

(¢), and the fluctuating field becomes ¢’ = ¢ — (¢). The turbulent kinetic energy is denoted by
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Table 2.2: Simulation parameters for different cases in this study. The streamwise domain
size (split into values, upstream and downstream of the obstacle) is as given in the table, and
the other domain sizes (L, and L;) are fixed at 6D and 20k, respectively, for all cases. The
grid sizes in the corresponding directions are N,, Ny and N,. The slip parameter S is either 0
or 1. The Reynolds number (Rep) for all cases is 15,000.

Case |L,|L{ | Nx | Ny | N, | Fr. Description
NOSL | 3D | 14D || 1280 | 1024 | 430 || 0.2 No-slip (S = 0) BC everywhere
SL 8D | 14D || 1536 | 1024 | 400 || 0.2 Slip (§ = 1) BC everywhere
Hybrid || 8D | 14D || 1536 | 1024 | 400 || 0.2 | S =0 on obstacle & S = 1 on bottom wall
SL-UN || 8D | 14D || 1536 | 1024 | 400 || Inf | Unstratified & Slip (S = 1) BC everywhere
DL 8D | 14D || 1536 | 1024 | 400 || 0.2 Quadratic drag law BC everywhere

_ @ Boundary points
O Fluid points

~/\ Forcing points

Figure 2.3: Generalized interpolation stencil used in IBM for implementing the appropriate
BC on the forcing points. Here, B is the boundary point, F represents the forcing point and P
is the interpolation point. BF line segment is normal to the fluid-solid interface (dark black

line).

K = (uu)) /2
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2.3 Flow velocity

2.3.1 Streamlines

Figure 2.4: Instantaneous streamlines which originate from upstream are plotted at r* = 100:
(a) NOSL and (b) SL. The streamlines are colored with the vertical velocity. The silver blue
colour represents the isosurface u = 0, which demarcates the recirculation zone behind the
obstacle upto x* = 2.2 downstream.

Figure 2.4 shows instantaneous streamlines in NOSL and SL. These streamlines

originate upstream of the body and are colored with the vertical velocity (w) value. One set
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of streamlines originates from a vertical line (y* = —0.01 and x* = —0.6) located centrally
and upstream. Some of the upper streamlines in this set (those that originate above z5) have
sufficient positive (red) w to surmount the obstacle after which they slope downward to follow
a downslope jet. The subsequent oscillation of these streamlines is indicative of a lee wave.
Streamlines that originate below z; on the vertical line are unable to surmount the obstacle and
their lateral (sideways) deflection can be seen as they negotiate the obstacle. Another set of
streamlines in fig. 2.4 originates from a spanwise-oriented upstream line located at z* = 0.066
(a height below z;) and x* = —0.6. These streamlines illustrate the downward and lateral
motion of fluid that originates from the blocked region. The isosurface of u = 0 is plotted in
silver blue and serves to demarcate the recirculation zone.

Flow separation in NOSL has a pattern that is distinct from SL, although both cases
exhibit upstream blocking. Fluid in NOSL experiences viscous drag and, owing to the larger
reduction of flow speed, separates earlier relative to SL. The streamlines in SL show that the
fluid is able to navigate around the obstacle curvature for a longer distance and curve inward
before eventual separation. Consequently, the separation line, which is the intersection of the
u = 0 isosurface in silver blue with the obstacle, has a smaller lateral size in SL.

The post-separation flow is strikingly different between NOSL and SL. The recircula-
tion region is significantly shorter in SL. The small-scale corrugations in the u = 0 isosurface
and the rapid changes in the direction of w along streamlines indicate that the near wake in
SL has stronger turbulence than NOSL. Figure 2.4 (b) shows that some of the streamlines
adjacent to the bottom exhibit large lateral excursion around the recirculation region. These
excursions illustrate unsteady, large-amplitude lateral meanders of fluid in the wake that are

prominent in SL and absent in NOSL.
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2.3.2 Mean velocity

To investigate the influence of the BC on the flow statistics, we examine the mean
streamwise and vertical velocity fields, shown in fig. 2.5. Initially, the flow in the downstream
wake is allowed to become statistically steady. The equilibrium time needed to attain this
state is estimated to be 70D /Uy. After t* = 70D /Uy, statistics are recorded and the temporal
average is performed over a time span of Ar = 40D/U,. Comparison among fig. 2.5(a-d)
shows that the recirculation bubble in the lee of the obstacle is largest in NOSL, followed by
DL & Hybrid and then SL. The unblocked layer of fluid, which is able to traverse the obstacle
vertically, generates steady lee waves with phase lines that are prominent in the vertical
velocity contours of fig. 2.5(e-h). The lee waves far away from the obstacle (beyond x* = 2.5)
are similar in the centerplane (y* = 0) among the three cases. However the lee-wave near field
is different in NOSL (fig. 2.5 e) relative to the other cases. Here, the larger recirculation zone
does not allow the lee waves to penetrate into a substantial portion of the near wake. However,
in SL, DL and Hybrid, the lee-wave phase lines in fig. 2.5 (f-h) that are downstream of x* = 2

(end of the recirculation region), extend close to the flat bottom.
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(fourth row) show substantial differences in the size of the recirculation region of the wake

Figure 2.5: Mean streamwise velocity (a-d) and vertical velocity (e-h) in the centreplane
(a-d) and the penetration of the internal waves into the wake (e-h) at the same Rep and Fr,.
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Note that the aspect ratio is changed for better visualization. The dotted white line denotes

the u = 0 contour.
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Although the Hybrid and DL cases exhibit a slightly larger recirculation zone down-
stream, the wake in these cases is qualitatively similar to SL. Therefore, the comparison in

subsequent sections will be primarily between cases SL and NOSL.

2.3.3 Velocity Spectra

0.24
T T T TTTTT
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Figure 2.6: Spectra at a location (x* = 1, y* = 0.39, z* = 0.166) close to the obstacle
compared between NOSL and SL cases: (a) streamwise velocity (S,,), and (b) spanwise
velocity S,,.

- SL

10-10 - -

1 1 1l 1l 11
75 80 t* 85 90 1071 100 St 10!
Figure 2.7: Spanwise velocity at a far downstream location (y* =0, x* =9, z* = 0.5) is
contrasted between NOSL and SL cases: (a) time history, and (b) corresponding velocity
spectra. At this downstream location, the turbulent fluctuations in the flow have diminished
leaving behind a clear signature of the instabilities of the velocity profile of a quasi-two
dimensional wake.

In Figure 2.6, the spectra of streamwise (#) and spanwise (v) velocity are plotted at a
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downstream location (x* = 1, y* = 0.39 and z* = 0.166) close to the obstacle. Case SL shows
a broadband spectrum with a wide separation of time scales in the flow, indicative of a fully
turbulent flow. In contrast, the amplitude of the spectrum in NOSL is smaller by a factor
of 103 and, furthermore, spans a narrower range of frequencies. The amplitude of S,,, and
S,y are comparable in SL. Both S, and S,,, in SL reveal a discrete peak at St = St. = 0.24
which corresponds to the shedding frequency of the lee vortices off the obstacle. The observed
St = 0.24 is close to the estimate of St = 0.264 computed from the St — Rep relationship
proposed by Williamson and Brown (1998) for cylinder wakes. There is no such periodic
component in NOSL at this location.

Moving to a further downstream location, we find a periodic signal in both components
of horizontal velocity and a corresponding spectral peak in both SL. and NOSL. This temporal
periodicity is illustrated by Figure 2.7(a) for the v component at a downstream location:
x*=9,y*=0and z* = 0.5. In NOSL, the spectral peak of v at this location is at St = 0.5, and
corresponds to the barotropic sinuous instability of the quasi-two-dimensional wake (Lesieur,
2008). The barotropic instability of wakes and jets takes the form of a sinuous mode that
evolves into two staggered rows of vortices of opposite sign (Maslowe, 1991; Perret et al.,
2011) and, under forcing, also a varicose mode with two non-staggered vortex rows. The
frequency of this instability in NOSL is found to vary with height so that St takes values
between 0.4 and 0.8. However for case SL, the vortex shedding frequency does not change

with height.

2.3.4 Turbulent Kinetic energy

To quantify the influence of BCs on the wake turbulence, snapshots of TKE are shown
in the central vertical plane (y* = 0) in fig. 2.8. Additionally, mean velocity vectors are shown
at selected streamwise locations to illustrate the overall flow structure. In NOSL, there is

strong bottom shear in the recirculation region. However, the bottom boundary layer is quasi-
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Figure 2.8: Spatial organization of turbulent kinetic energy (K = (u/u}) /2) normalized by U}
in the vertical plane y* = 0: (a) NOSL, and (b) SL. Vectors representing the mean velocity

field are also shown at selected cross-sections.
laminar at this moderate Re and, furthermore, bottom friction restricts the lateral meander
of the wake that would generate turbulent fluctuations. Therefore, in the near-bottom region
of 0 < z*¥ < 0.2, NOSL exhibits small TKE. In the upper region, a shear layer forms at the
boundary of the recirculation zone with the downslope jet and lee wave to support turbulent
fluctuations, shown by a zone of enhanced TKE (fig. 2.8a), which spreads vertically with
increasing x*. These fluctuations also trigger instability of the horizontal shear in the wake
to eventually allow the spanwise oscillation (fig. 2.7) which is seen further downstream. In
SL, the recirculation zone is small. The slip BC allows near-bottom lateral meanders close to

the body as well as broadband fluctuations which are reflected in the high TKE content of the
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flow in the lee of the obstacle. Unlike NOSL, a strong upper shear layer does not develop and

the TKE is bottom-intensified.

2.4 Vortex Dynamics

2.4.1 Lee wake vortices

The organization of vertical vorticity (®;) in NOSL is strikingly different from SL,
DL and Hybrid cases, while the latter three cases resemble each other. Figure 2.9 illustrates
the difference by showing ®, contours on horizontal planes at four different heights in the
wake.

In NOSL (fig. 2.9a), there is a pair of counter-rotating vortices at z* = 0.066 close
to the bottom. These lee vortices are found to be steady in time and take the form of an
attached recirculation bubble. The presentation of these vortices resembles the lee vortex pair
found near the bottom in the laboratory experiment of Hunt and Snyder (1980) and also in
aerial observations by Smith and Grubisic (1993) of the wake of Hawaii. At the somewhat
higher location of z* = 0.33 too, there is a steady recirculation bubble. However, at the even
higher location of z* = 0.66, the recirculation bubble, while remaining attached, displays
unsteadiness at its tail end, and coherent lee vortices appear further downstream. The size
of the lee vortices at a given height is proportional to the local diameter (d(z)) of the conical
obstacle. This large-scale unsteadiness, observed further downstream, sets in at heights above
Zz* = 0.2 through barotropic sinuous instability (Lesieur, 2008) of the velocity profile of a
quasi-two-dimensional wake that develops into coherent vortices.

In contrast, the bottom slip wall in SL allows unsteady shedding of alternating opposite-
signed Karman vortices from the obstacle. Their instantaneous presentation is qualitatively
different from NOSL, as can be seen by comparing the z* = 0.066 and 0.33 planes (fig. 2.9b)

to the corresponding planes in NOSL (fig. 2.9a). The shedding of Karmén vortices from
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Figure 2.9: The organization of the lee vortices is affected by the boundary conditions. Lee

vortices are shown by contours of normalized vertical vorticity (®,) at t* = 100: (a) NOSL,

and (b) SL
the body leads to lateral flapping of the wake which is manifested by the lateral meanders
in the streamlines and the oscillation of the centerline lateral velocity which were described

previously. At z* = 0.93, the lee waves interfere strongly with the coherent structures in the

wake, thereby disturbing the vortex street.
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To summarize, lee vortices form behind the obstacle, independent of the BC. Further-
more, their lateral size at a given height is proportional to the local diameter of the obstacle.
The critical difference introduced by the type of BC is that the lee vortices in SL are shed off
the body unsteadily to result in a Kdrmén vortex street while, in NOSL there is a quasi-steady,

attached vortex pair.

s

Figure 2.10: Spatial organization of vertical vorticity ®, in the horizontal plane z* = 0.25 at
time t* = 75.8: (a) NOSL, (b)SL, (c) DL, and (d)Hybrid.

The results of previous sections on the mean velocity show that the behavior of DL
resembles SL and Hybrid. Figure 2.10(c) depicts contours of ®, in the horizontal plane
Z* = 0.25 in the drag-law case. The corresponding ®, contours for the other BCs , which
are included for comparison in fig. 2.10, demonstrate that DL, Hybrid and SL cases are

qualitatively similar in terms of vortex dynamics.

2.4.2 Unstratified wake

We have seen that, for all BCs considered here, there are coherent wake vortices in
low-Fr. flow past a conical obstacle, and they take the form of unsteady Karmén vortices,

shed from the body, in the SL case. Both body curvature and baroclinicity have been advanced
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Figure 2.11: Comparison of spanwise vorticity (0,) between cases with different BCs: (a)
NOSL and (b) SL. Instantaneous contours of @, are depicted on a vertical plane (y* = 0)
and a horizontal plane (z* = 0.13). The black dotted line represents the intersection between
the vertical and the horizontal plane.
in the past as potential origins of the wake vorticity. To exclude the effect of baroclinicity,
an unstratified counterpart (SL-UN) has been simulated with the slip BC. Vorticity can

be induced by solely body curvature, and is proportional to the tangential slip velocity of

the flow at the obstacle (Leal, 1989; Legendre et al., 2009). To demonstrate curvature-
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induced vorticity, consider free-slip flow past a circular shear-free cylinder of radius a in
polar coordinates (r,0). Since u, = 0 and T, = 0 at r = a, it follows that dug/dr = ug/a
and ®, = (dug/dr + ug/r),—, = 2ug/a. Here, ug represents the surface tangential velocity.
As elaborated below, the unstratified counterpart is qualitatively different from the stratified
cases. In particular, although curvature alone does give rise to vorticity, lee vortices with size
comparable to the body do not form in the wake.

Figure 2.12(a) shows that, for case SL-UN, flow separation in the vertical centerplane
(y* =0) occurs at x* = 0.35 and z* = 0.3. This is in contrast to the near-apex separation in the
corresponding stratified case SL (left column of fig. 2.5). Figure 2.12(b) shows that separation
is also delayed in the horizontal (z* = 0.066) plane where it occurs close to the rear stagnation
point. The flow remains attached to the sloping and curved geometry in SL-UN for a long
distance before separation because of the following reasons: (a) absence of viscous loss of
momentum at the boundary, and (b) lack of a lee wave and its imposition of an adverse pressure
gradient on the boundary flow. It is worth noting that, in previous work on unstratified flow
past a 3D obstacle with a no-slip BC, e.g. Garcia-Villalbaa et al. (2009), flow separation at the
obstacle occurs substantially upstream relative to SL-UN and there is a large recirculation zone
followed by a turbulent wake. The recirculating flow at the junction of the bottom and central
lee of the obstacle generates a narrow wake that develops a sinuous instability in the horizontal
plane. Figure 2.12(b) and (c) show the streamwise and spanwise velocity, respectively, in a
horizontal plane z* = 0.066. Here, this narrow region of attached low-velocity fluid in the lee
can be noticed along with the subsequent sinuous instability.

The three components of vorticity are shown in fig. 2.12(d-f) on a horizontal plane. The
location of the plane at z* = 0.066 is sufficiently below the apex so as to include the separated
flow in the lee of the obstacle. There is vertical vorticity at the body in fig. 2.12(d) owing
to its curvature in the horizontal plane. However, the wake behind the body is narrow and

does not exhibit the large lee vortices seen in the stratified cases. This observation confirms
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Figure 2.12: Flow in case SL-UN is shown at r* = 101. Left column shows normalized
velocity components on different planes: (a) streamwise velocity on the vertical centerplane,
(y* = 0), (b) streamwise velocity on a horizontal plane (z* = 0.066), and (c) lateral velocity
on the same horizontal plane shown in (b). Right column shows normalized vorticity
components on this horizontal plane, z* = 0.066: (d) vertical vorticity, (e) spanwise vorticity
and (f) streamwise vorticity.

that curvature alone, without baroclinicity, is insufficient for the emergence of large lee wake

vortices that have been observed in geophysical flows.

2.4.3 Sources of vorticity

The vorticity transport equation, obtained by employing the curl operator on eq. (2.2),

is as follows:
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On the right hand side (r.h.s.) of Eq. (2.8), the first term represents vortex stretching/tilting and
the second term is the baroclinic torque. The third and fourth terms are molecular diffusion and
the modeled subgrid diffusion, respectively; both are lumped together into a single diffusion
term in the results.

Figure 2.13 shows the streamwise evolution of y — z plane-integrated values of enstro-
phy components (@2, co% and u)g) in fig. 2.13(1a-c), vortex stretching in fig. 2.13(2a-c), vortex
tilting in fig. 2.13(3a-c), diffusion term (includes viscous diffusion and the contribution from
eddy diffusivity) in fig. 2.13(4a-c), and baroclinic torque in fig. 2.13(5a-b). Inrow 3 of fig. 2.13,
the vortex tilting term (ty, #,,7;) is shown for each vorticity-component equation, for example, #,
denotes the vortex tilting term in the ®, equation computed as ®,0w/dx + ®,dw/dy. Similarly,
in row 4 of fig. 2.13, the diffusion term (dy,d,,d;) is shown for each vorticity-component
equation. The absolute value of each term in the vorticity equation is taken before computing
the area integral. This allows estimation of their relative importance; the sign does not matter
for this analysis. In SL-UN, the enstrophy components are limited to the obstacle with neg-
ligible values in the lee. Fluid can flow over the obstacle since stratification, which diverts
oncoming fluid sideways around the obstacle, is absent. Hence, the spanwise vorticity (®y)
is much larger than ®,. The component, ®,, is generated by tilting of ®, and ®,. Owing to
viscous dissipation, the magnitude of each vorticity component decreases eventually.

The SL case is strikingly different from SL-UN although the same boundary condi-
tions are in play. Each vorticity component increases in magnitude from its upstream zero
value as the fluid flows past the obstacle. Figure 2.13(1a) shows that that there is significant
enstrophy in both horizontal components, not just ®,. Baroclinic torque (absent in SL-UN) is
a source of both horizontal components and, as shown by fig. 2.13(5a), it exceeds other sources
of vorticity. Note, that the range of the vertical axis is larger for row 5 (baroclinic torque),
relative to the rows showing the other sources. The vortex tilting term (¢;) and vortex stretching

term (,0w/dz) in rows 3 and 2 of fig. 2.13(a), respectively, are also substantial. Thus, the
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simulations demonstrate that baroclinic torque produces horizontal vorticity which is tilted
and stretched to give ®;,, in accord with the lee-vortex mechanism proposed by Smolarkiewicz
and Rotunno (1989). Vortex tilting reduces in magnitude with increasing downstream distance,
which lowers the magnitude of ®; relative to the other components as shown in fig. 2.13(1a).
Furthermore, the vortex tilt/stretch terms are isotropic with no directional preference for any
particular component suggesting that these terms are operative at smaller scales of motion.
Baroclinic torque generated by density anomalies in the horizontal is also dominant in
NOSL shown in fig. 2.13(5b). However, unlike SL, the magnitude of w, far exceeds the other
components as seen in fig. 2.13 (1b). The reason is that the bottom boundary boundary layer,
which injects spanwise vorticity into the flow, persists over the entire streamwise extent, while
the wake vorticity, which is the primary source of the other vorticity components, is dissipated

by viscosity.

2.5 Summary and Discussion

Four numerical simulations are performed, with focus on two main cases, namely
NOSL (no-slip BC used across all boundaries) and SL (slip BC used on all boundaries). The
other two cases are described as follows : case Hybrid, undertaken with slip flat bottom and
no-slip obstacle and case DL wherein a quadratic drag-law BC is adopted on all boundaries.
The no-slip BC allows the formation of a boundary layer which separates and sheds vorticity
into the wake. Significant changes occur in the structure of the lee vortices and wake when the
BC is changed. For instance, wall friction in the no-slip case suppresses unsteadiness of flow
separation leading to a steady attached lee vortex. In contrast, when the bottom wall is made
shear-free, unsteady separation leads to a vortex street in the near wake and the enhancement
of turbulence. The recirculation region is shorter and the wake recovery is substantially faster

in the case of slip BC. Turbulent kinetic energy (TKE) in the lee is bottom intensified in
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the case of slip BC while, for the no-slip BC, it is concentrated in a shear layer between the
recirculating wake and the free stream. The sources of lee vorticity are also examined in this
study for each choice of BC. The sloping sides lead to horizontal gradients of density at the
obstacle, which create vorticity through baroclinic torque. Independent of the type of BC,
the baroclinic torque dominates. Vortex stretch and tilt are also substantial. An additional
unstratified ease free-slip case (SL-UN) is simulated and the wake is found to be thin without
large wake vortices. Thus, stratification is necessary for the formation of coherent lee vortices
of the type seen in geophysical wakes. A drag law is often employed in numerical models of
geophysical flows that do not resolve the boundary layer. Application of a quadratic drag law
(analogous to partial slip) leads to wake dynamics qualitatively similar to that found for the
slip BC.

Both no-slip and slip BCs have been employed in past studies of stratified flow past an
isolated obstacle. No-slip is the physically correct BC. However, when the computational grid
is too coarse to resolve the physical boundary layer, application of the no-slip BC results in an
incorrect numerical boundary layer. As an alternative, geophysical wakes at high Reynolds
number have been simulated with a slip BC or by the imposition of a drag law which can be
viewed as a partial-slip boundary condition.

The stratified flow at F'r, = 0.2 exhibits flow blocking upstream of the obstacle, stream-
lines that are diverted to go around rather than over the obstacle, an accelerated downslope jet,
flow separation followed by recirculation, a lee wave, and wake vortices with organized o,
in the lee. Many of these flow features are substantially altered by the type of BC. Notably,
the lee vortices in NOSL take the form of an attached counter-rotating vortex pair with little
unsteadiness in most of the recirculation region behind the body while, in SL, DL and Hybrid,
counter-rotating vortices are shed off the body to form a Karman vortex street. SL, DL and
Hybrid exhibit lateral flapping of the wake which periodically transports fluid with higher

streamwise momentum to the centerline and, consequently, the mean value of centerline defect
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velocity decreases substantially faster in the near wake relative to NOSL. At the selected
Rep = 15,000, bottom friction evidently exerts a strong constraint on the wake that reduces
unsteadiness near the body in NOSL. It is only further downstream (x/D of this location
increases with increasing depth) that the wake develops a sinuous barotropic instability.

The lee wake vortices show vertical variability in size. Independent of the BC, their
horizontal size is proportional to the local diameter (d(z)) of the conical obstacle. The
frequency of the vortex shedding that occurs in SL, DL and Hybrid does not vary with
vertical location in the simulated cases. Spectra of streamwise (#) and lateral velocity (v) in
the near-wake region of SL show discrete peaks at the vortex shedding mode, quantified as
St = fD/U =~ 0.24. Although there is no discrete peak in the near-wake region of NOSL,
farther downstream there is a peak in the v-spectrum at St = fD/U ~ 0.5 which is visually
apparent as a sinuous instability of the wake in the horizontal plane.

The boundary layers on the flat and sloping bottom are resolved in NOSL. Therefore,
a laboratory experiment conducted with the present obstacle geometry and Rep = 15,000
and Fr. = 0.2 would be expected to match the results of NOSL and not SL, DL or Hybrid.
Indeed, for similar parameters of Fr. = 0.2 and Rep = 13,700, Hunt and Snyder (1980) report
a quasi-steady recirculation zone containing an attached counter-rotating vortex pair with
some irregular unsteadiness in the wake.

At the moderate Re of the present simulations, the boundary layer is laminar and
it imposes a wall shear (7,,) that is steady in time and has a drag coefficient of ~ 0.02.
Geophysical flows are at high Re with a turbulent boundary layer and a lower Cp, and a
drag-law BC is often used to represent the boundary layer. The DL case in our study is
undertaken with Cp = 0.0025, and gives results similar to SL. and Hybrid.

Boundary-layer vorticity, curvature of the body and baroclinicity have been advanced
as potential generators of the lee wake vortices. An unstratified simulation (SL-UN) is

conducted to rule out baroclinicity as a generator of vorticity. In SL-UN, the flow remains
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attached over a much larger region, the wake that emerges is narrow, and large organized
lee vortices are absent. Unstratified simulations with no-slip BC have not been conducted
here, since there are prior laboratory experiments and simulations with the no-slip BC of the
unstratified configuration. The prior studies show vortical structures different from the present
lee vortices: a standing horseshoe vortex and periodic shedding of hairpin vortices at low
Rep (Acarlar and Smith, 1987) which changes to intermittent shedding of vortex patches at
high Rep (Garcia-Villalbaa et al., 2009). Therefore, we conclude that, independent of the
choice of BC, unstratified flow does not demonstrate lee wake vortices of the type observed in
geophysical wakes or in stratified-flow laboratory models of said wakes.

All components of the vorticity are prevalent in the flow as shown by the streamwise
evolution of the squared magnitude (enstrophy) of each vorticity component. Owing to BL
vorticity, the spanwise vorticity () dominates the other two components upstream and
downstream of the hill in the no-slip case. However, the increase in vorticity at the obstacle is
similar among the different BCs. Instantaneous streamlines shows opposite-signed vertical
motion in the aft and lee as the fluid moves past the obstacle leading to the horizontal density
gradients which are necessary for the baroclinic torque to be operative in the vorticity balance.
Sources in the equation for each vorticity component are quantified and it is found that
the baroclinic torque (operative only in the balances for horizontal vorticity components)
is dominant, independent of the BC type. Vortex stretch and tilt are also substantial. The
simulation result, namely, that horizontal vorticity is produced by the baroclinic torque and
tilted into the vertical, supports the lee-vortex mechanism proposed by Smolarkiewicz and
Rotunno (1989).

Turbulence is quantified through the TKE. The lateral meanders of the wake in SL
lead to high TKE in the wake. In NOSL, there is a zone of TKE that originates in the vertical
shear layer between the fluid in the recirculation zone and the flow above associated with the

lee wave and the separating downslope jet.
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Figure 2.1(3: Streamwise variation of y — z plane-integrated vorticity (normalized by Ug) and
vorticity budget terms represented in eq. (2.8) (also normalized by UOZ) at t* = 101. Columns
are (a) SL, (b) NOSL, and (c) SL-UN. Row 1 (top) shows the three components of squared
vorticity (enstrophy). Row 2 shows the vortex stretching term, row 3 the vortex tilting term,
row 4 the lumped diffusion term, and row 5 the baroclinic torque. In each figure of rows
2-5, terms in the ., ®, and ®, equations are represented by green, blue and pink lines,

respectively.
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Chapter 3

Tidal synchronization of lee vortices in

geophysical wakes

N =445x1073 51

Bathymetric elevation (z/h) Non dimensional parameters:

Ro. =5.5,Fr.=0.15,R=1

0 0.5 1

Figure 3.1: Model setup : A stratified tidally-modulated current encounters a conical obstacle
located at x = 0.

Ocean currents are seldom steady. They often consist of high and low frequency
components. In this chapter, wake vortices in tidally modulated currents past a conical hill in a
stratified fluid are investigated using large-eddy-simulation. The vortex shedding frequency is
altered from its natural steady-current value leading to synchronization of wake vortices with

the tide. The relative frequency (f™), defined as the ratio of natural shedding frequency (f; ) in

35



a current without tides to the tidal frequency (f;), is varied to expose different regimes of tidal
synchronization. When f* increases and approaches 0.25, vortex shedding at the body changes
from a classical asymmetric Karmén vortex street. The wake evolves downstream to restore
the Karméan vortex-street asymmetry but the discrete spectral peak, associated with wake
vortices, is found to differ from both f; and f; ., a novel result. The spectral peak occurs at the
first subharmonic of the tidal frequency when 0.5 < f* < 1 and at the second subharmonic

when 0.25 < f* < 0.5.

3.1 Introduction

Steep underwater bathymetry in the deep ocean is a site of enhanced turbulence,
mainly attributed to internal waves but potentially also to lee eddies. An example of steep
topography is Luzon strait, where highly energetic internal tides (Alford et al., 2015) at the
semi-diurnal M2 frequency and fast tidally modulated currents at submerged three-dimensional
hills (Pinkel et al., 2012) have been observed. Additionally, barotropic tides are responsible
for the separation of transient lee eddies from obstacles, such as headlands (Signell and Geyer,
1991; Pawlak et al., 2003; MacKinnon et al., 2019) and submerged topography (Girton et al.,
2019). These lee eddies (or lee vortices) are coherent patches of vertical relative vorticity (®;).
Vortex dynamics has received considerably less attention than internal waves in the literature
on tide-topography interaction.

The flow behind underwater obstacles is observed to resemble either a von Kdrméan
wake, as noted in the lee of small islands and/or in near-equatorial locations (see Wolanski
et al., 1984; Kimura et al., 1994; Hasegawa et al., 2004; Chang et al., 2019) or a Rossby wake
(Chen et al., 2015; Vic et al., 2015), where rotation, as measured by the inertial frequency
(f), induces asymmetry in the strength of cyclonic and anticyclonic eddies shed from the

topography. Most numerical studies have focused on Rossby wakes in a steady current U,
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(Dietrich et al., 1996; Dong and McWilliams, 2007; Perfect et al., 2018; Srinivasan et al.,
2018), where vertical vorticity ®; injected into the wake has near-inertial values. On the other
hand, von Karman wakes are characterized by higher vortical Rossby numbers (Rog > 1,
where Rog, = @,/ f). The spatio-temporal behavior of vortices at higher Rog, is significantly
different from Rossby wakes and has received little attention, especially in the presence of
tidal modulation.

A steady current sheds wake vortices off an obstacle at a distinct frequency f; . which,
by analogy with bluff-body wakes, is often estimated as f; . o< U./D by prescribing the
Strouhal number St. = f; .D/U.. For unstratified vertical-cylinder wakes, St. = 0.273 —
1.11Re51/ 2 + 0.482Re[)1 (Williamson and Brown, 1998). At the Rep = 20,000 of this study,
the estimate is St, = 0.265 which changes by less than 1% at larger Rep. In unstratified flow,
a 3D hill with sloping sides does not shed vertical-vorticity lee eddies. Instead, there is a
standing horseshoe vortex and periodic hairpin vortices at low Rep (Acarlar and Smith, 1987)
which become indistinct at higher Rep (Garcia-Villalbaa et al., 2009). Stable stratification
with Fr. < O(1), which constrains the flow to go around rather than above the obstacle, is
necessary for lee eddies in 3D-hill geometries (Hunt and Snyder, 1980).

Excursion number (Ex;) quantifies the advection time scale D/U; with respect to the
tidal period. For wake vortices, a new but related parameter, the relative frequency f* = f; ./ fi,
is useful. The parameter f* is related to Ex; as f* = f; ./ fi = 2nSt.Ex, /R. For example, when
Ex; is 0.47 and St. is 0.27, f* is close to 0.8 for equal mean and tidal velocity components
(R=1).

Observations by Black and Gay (1987) and Signell and Geyer (1991) indicate eddies
are formed at specific phases in a tidal cycle leading to the term ‘phase-eddies’. Denniss et al.
(1995) observed that small oscillations at the diurnal frequency in the current generates eddies
at the same frequency in the lee of Bass Point, Australia. A similar phase-locking phenomenon

was observed by Chang et al. (2019) on the lee side of Taiwan’s Green Island. Ship-based
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experiments and ADCP data showed eddies of Rog, ~ 20 shed at near-M2 frequencies.
Alterations to the shedding frequency due to tidal synchronization can lead to sig-
nificant temporal changes in bottom drag, turbulence and mixing. These changes must be
accurately parametrized for their inclusion in GCMs. When the natural shedding frequency is
comparable to or smaller than the tidal frequency, a central question remains unanswered: how
does the tidal component of the flow influence flow separation and eddy shedding frequency?
Thus motivated, we numerically study how variation of f* affects wake characteristics. Sec-
tion 3.2 introduces the numerical model, while the spatial organization of vortices and the

tidal synchronization phenomenon are discussed in Section 3.3 and Section 3.4, respectively.

3.2 Model Setup

3.2.1 Simulation parameters

In the computational model, a barotropic current U, = U, + U, sin(21 f;¢) encounters
an axisymmetric conical obstacle (fig. 3.1) of height 4 and base diameter D. The values of
Ro. = 5.5 and Fr. = 0.15, which are kept constant, correspond to weak rotation and strong
stratification. Weak rotation (Ro. > O(1)) is characteristic of flow-topography interactions
past O(1km) obstacles, especially in near-equatorial locations (Liu and Chang, 2018; Rudnick
et al., 2019). Strong stratification (Fr. < 1), which is typical of deep-ocean submerged
topography, favors the formation of coherent lee vortices (MacCready and Pawlak, 2001).
Tidal and mean currents of equal magnitude are considered so that R = U, /U, = 1.

The relative frequency f* = f; ./ f; ranges between 0.1 and 1 in the parametric study.
The objective is to examine vortex dynamics when the natural vortex shedding frequency f; .
in a steady current is comparable to or smaller than the tidal frequency f;. The relationship,

f* =2nSt.Ex, /R simplifies for the present value of St, = 0.265 landR=1toa simple

!To confirm the value of Sz, an additional simulation of a steady current past the conical obstacle is performed
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proportionality: f* = 1.66Ex;. Thus, f* between 0.1 and 1 leads to Ex; between 0.06 and 0.6,
values of relevance to oceanic flows (Signell and Geyer, 1991; Edwards et al., 2004; Musgrave
et al., 2016). For a given tidal frequency, larger values of f*, equivalently Ex;, are associated
with larger background velocity and smaller obstacles.

The parameters and results are discussed in non-dimensional form for ease of applica-
bility to a wide range of specific oceanic examples with similar non-dimensional parameters.
For concreteness, consider the following specific example of dimensional values. The conical
obstacle is of height 4~ = 150 m and diameter D = 500 m. The tidal amplitude and mean
current are both are set to 0.1 m/s, within the range of wake observations by MacKinnon et al.
(2019). The inertial frequency is set to its value at 15° N latitude, yielding Ro. = 5.5. The
buoyancy frequency of N = 4.45 x 1073 s~! leads to Fr, = U./Nh = 0.15.

We note that stratified tidally-modulated wakes have not been studied in previous
experiments or simulations. However, in unstratified fluid, a cylinder in a current having
oscillatory modulation has been investigated (Barbi et al., 1986; Griffin and Hall, 1991;
Konstantinidis and Balabani, 2007; Konstantinidis and Liang, 2011), albeit at lower Reynolds
numbers. Experiments of Barbi et al. (1986), later confirmed by simulations, have demon-
strated “locking” of wake vortices to an external forcing frequency (f;) when f; is near 2f; ..
These previous studies have differences (unstratified fluid, cylinder in contrast to a sloped
hill, lower Re) with this work. Nevertheless, we will explore the possibility of lock-on in

geophysical hill wakes.

3.2.2 Numerical method

Large-eddy-simulation (LES) is employed to solve for the velocity u,, (m =1,2,3 are

in the x,y and z directions, respectively), pressure p and density p. The density is further

in the absence of tidal modulation and keeping Ro. = 5.5 and Fr. = 0.15. At heights (up to z* =~ 0.8) with
distinct shedding of coherent wake vortices, it is found that S7. = 0.265.
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decomposed into the reference density po, background density p,(z) and deviation p’. The
LES involves solving the 3D Navier-Stokes equations under the Boussinesq and f-plane
approximation. The equations for conservation of mass, momentum and density are given as

follows :

ou,,

PR 3.1
al/tm a(unum) B 1 apl gp/ aTmn
o + ox, — f€mn3 (l/ln - Ubsnl) = _&E - ESmC& + o, +Fb(t)5m1 , (3.2)

9 . Awp) _ A
ot ox,  Ox,

(3.3)

Here, p’ represents the deviation of pressure from its background value in a stationary fluid in

a rotating frame. The stress tensor 7T,,;, and density flux vector A, are given by :

ou,, OJu, B op
= ) (FEHGE) A= () Gd

where Vg 1s the subgrid viscosity and Ky is the subgrid diffusivity. The subgrid viscosity
Vsgs 18 computed using the WALE model of Nicoud and Ducros (1999) and Ky is set to Vigs.
The forcing term Fy, (1) = 2nf;U; cos(27 f;t) sustains the barotropic tidal component.

The computational domain is 9.5 km in the streamwise (x) direction, 3.8 km in the
spanwise (y) direction and 2 km in the vertical (z) direction. For convenience, height 4 and
diameter D are used to normalize vertical and horizontal distances: x* = x/D, y* = y/D and
7" = z/h. The base of the obstacle is centered at the origin. The domain extends from x = —4D
upstream to x = 15D downstream. In the lateral direction, the domain extends from y = —4D
to y =4D. To resolve the wake turbulence, 1536 x 1280 x 322 grid points are used in the x,y
and z directions, with stretching in x and z. The quadratic drag-law BC for the bottom stress is
prescribed on the flat bottom and obstacle, following Rapaka and Sarkar (2016). For density,

the no-flux BC is imposed to keep the system adiabatic. All the simulations have been run for
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at least 50 cycles, with the exception of the f* = 1 case which was run for 25 tidal cycles.

3.3 Opverall flow characteristics

In the absence of tidal flow, the body-generated lee waves are steady at Froude numbers
of 0(0.1) as shown in experiments (Hunt and Snyder, 1980; Dalziel et al., 2011) and numerical
simulations (Ding et al., 2003; Puthan et al., 2020). However, tidal oscillation leads to transient
lee waves (Bell, 1975). Vortex dynamics is modifed, for instance, from organized eddy trains
to trapped eddy pairs past elongated islands (Wolanski et al., 1984), and periodic phase eddies
(Signell and Geyer, 1991). In this section, the velocity and vorticity fields (fig. 3.2) for the
case f* =1 are used to illustrate the salient flow characteristics at three different time instants:
T\ =9.4T, T, =9.75T and T3 = 10T where T denotes the tidal period.

Figure 3.2a shows a developing lee wave field at t = 77, visualized by u/U, at the mid-
centerplane y* = 0. The low-level jet at the topographic apex generates steepened isopycnals
and there is a hydraulic jump. There is significant isopycnal deformation along the entire
obstacle height. The wake is illustrated by a horizontal cut of u/U, (fig. 3.2b) at the same
instant. The recirculation region extends out to x* = 1, beyond which the wake grows laterally
and there are large velocity fluctuations associated with enhanced near-field turbulence. A
locally adverse streamwise pressure gradient induces flow separation and lee vortices. Two
coherent opposite-signed vortices are seen behind the body at + = T (fig. 3.2c). Vortex
formation involves streamwise flow reversal, followed by lateral flapping in the wake, as in a
von Karméan wake. During 77 to T3, the tide-associated pressure force acts in the upstream
direction to decrease the far-field velocity to zero. For the lower-speed fluid in the lee, the same
pressure force is able to locally advect high-vorticity fluid upstream. For instance, the large
anticyclonic vortex in panel d was driven in the —x direction during 77 to 7> and deflected

in the +y direction by the body. Additional cyclonic vorticity is also generated from the

41



roll-up of the shear layer formed between the locally upstream flow and the obstacle sides.
This mechanism results in the formation of two vortex dipoles, one on each lateral side of
the obstacle. During the subsequent acceleration phase and the re-emergence of downstream
velocity, the dipoles separate from the obstacle and move downstream (fig. 3.2e).

It is evident that the near-body vortex pattern, in particular the dipole at each side,
differs significantly from the alternate shedding of monopoles from each side in a Karmén
vortex street. Indeed symmetric, antisymmetric and asymmetric near-wake modes were
observed by Barbi et al. (1986), although in unstratified fluid and for a cylinder, in a current
with along-flow sinusoidal perturbations. Here, at f* = 1, a dipole forms at the body in each
tidal cycle. However, the dipole disintegrates within a short distance after interaction with
opposite-signed vorticity, and is not seen in the far wake. Clearly, investigation of wake vortex

dynamics over a range of f* values is warranted, and will be the focus of the next section.

3.4 Temporal oscillations in the wake

Figure 3.2(c-e) qualitatively showed that tidal oscillation influences vortex shedding
from the body. The vortex dynamics at the body and further downstream in the wake are
quantified for the f* = O(1) regime by plotting the vertical vorticity (®,) at 8 phases (fig. 3.3a-
h) for the f* = 5/6 case and velocity spectra in (i) and (j). Since the tidal period is shorter than
the natural vortex-shedding period, completion of the Strouhal shedding cycle to form a full
vortex pair is not possible. During the phase of downstream tide, which precedes the sequence
that begins in fig. 3.3a, an asymmetric attached vortex pair is observed similar to that shown
in fig. 3.2c. As the barotropic velocity decelerates to zero at = 11.75T (not shown), wake
vorticity is advected upstream and a secondary dipole begins to separate in the +y direction. A
fraction of negative (anticyclonic) vorticity from the primary recirculation zone is isolated and

forms the coherent patch close to the centerline at x = 2 in fig. 3.3a (r = 127'). At this instant,
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Figure 3.2: Flow visualization for the f* = 1 case: (a) Streamwise velocity in the vertical

x —z plane at y* = 0 and t = T; (b) Streamwise velocity in the horizontal x — y plane at

7* =0.25 and t = T7; (c-e) Vertical vorticity in the horizontal x —y plane at z* = 0.25 and at

three time instants 77, 7> and 73. Header shows the barotropic velocity Up(7).
the dipole and anticyclonic vortex are well developed. Note that Ro, for these vortices is as
large as 16-20. By t = 12.25T (fig. 3.3b), the anticyclonic vortex has advected downstream
and a new Strouhal pair begins to form in the lee of the obstacle. By t = 12.57 (fig. 3.3¢c), the
secondary dipole observed at r = 12T has largely disintegrated, while the anticyclonic vortex
remains coherent and continues to move downstream.

Between r = 12.75T and 13T (fig. 3.3d,e), a new secondary dipole is generated in

the -y direction including a portion of positive vorticity from the primary Strouhal vortex.
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Figure 3.3: Eddy formation as depicted by the normalized vertical vorticity (®,/f) in the
f*=15/6 case: (a-d) Development of eddies during the 12" tidal cycle; (e-h) Consistent for-
mation of dipoles at the body during each following tidal cycle. (i,j) Normalised streamwise
velocity spectra %, = S,,/U? and spanwise velocity spectra S}, = S,,/U? at locations P1
and P2, respectively. The locations of P1 and P2 are marked in (d) and their coordinates are
given in the header of (i) and (j), respectively. The blue dash-dotted line at frequency of
5f;/6 denotes the natural shedding frequency.

Analogous to what was observed for the vortex with negative ®, generated in the previous

cycle, a portion of the positive vorticity separates and forms a coherent patch that subsequently
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advects downstream, as highlighted by the dashed box in fig. 3.3f. By t = 14T (fig. 3.3f),
the anticyclonic vortex formed in the prior tidal cycle (was shown at r = 137 by the dashed
box) has moved out of the computational domain. In the next cycle, r = 14T (fig. 3.3f), a
new secondary dipole is again formed in the positive y-direction and an anticyclonic vortex
is observed to move downstream, repeating the sequence. This recurring pattern, involving
disintegration of the near-body dipole and formation of a persistent anticyclonic and cyclonic
vortex on opposite sides during successive tidal cycles, accounts for the far-field wake-vorticity
pattern. Comparison of ®, at intervals of 27 in fig. 3.3 reveals the recurring pattern. Opposite-
signed vortices in the wake thus occur with the time offset of a tidal cycle so that a complete
Strouhal pair is formed over two tidal cycles.

The appearance of coherent wake vortices has consequences on the energy spectra
shown in fig. 3.3(i,j). Spectra of streamwise and spanwise velocity were recorded at 2 spatial
probes, P1 at (x*,y*,z*)=(1,-0.1,0.25) and P2 at (x*,y*, 7*)=(4.5,0,0.25), which are marked in
fig. 3.3d. While there is a spectral bump at the inertial frequency f, the dominant peak is at
fi in S}, (green curve) and its first subharmonic (f;/2) in S, (red curve). The subharmonic
corresponds to the previously discussed completion of a wake-vortex cycle in two tidal cycles.
This result of a peak at the subharmonic is robust over the entire height of the obstacle (from

near the bottom to z* ~ 0.8) where coherent wake vortices are distinct. The S},

, and S}, spectra
are broad-banded at the probes owing to smaller-scale turbulence.

An important result, illustrated by fig. 3.3, is the locking of the wake-vortex frequency
to the first subharmonic of the tidal frequency when f* = 5/6. To delineate differences with
the natural shedding frequency (f5,.), we define the following quantity: fy, which denotes the
frequency of wake vortices observed in the simulations and St = f;D/U, as the corresponding
Strouhal number. When f* = f; ./ f; = 5/6, the value of f;/f; is 0.5.

We now examine the velocity spectra for all simulated cases. Figure 3.4(a-f) shows

normalized v-spectra at location P2 computed from the flow history over several tidal cycles.
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For example, 40 tidal cycles of data are used at f* =1/10,42 at f*=1/6, and 16 at f* =1/2.
To compute spectra, a time record with a small uniform time step (e.g. f;At = 0.025 for the
case with f* = 1/10) was created from the simulation data whose non-uniform step for time
advance is much smaller. By definition, f* = 1/10 and f* = 1/6 correspond to natural vortex
shedding being much slower than the tidal oscillation frequency, i.e. large obstacles and slow
flows. Since f; and f; are widely separated, vortex shedding is unaltered from its natural
no-tide value of f; . so that f;/ f; coincides with f*. At these small values of f*, the excursion
length of the fluid over a tidal cycle is small. Therefore, the strength of the vortices produced
over a single cycle is small and also the tidal vortices do not migrate into the wake. Since the
accumulated effect of tidal vorticity on wake dynamics is small, wake vortices are seen at the
natural frequency, f; .. Figure 3.4(a,b) shows a strong peak in S}, at f; /10 for case f* = 1/10,
and at f; /6 for case f* = 1/6. In the f* = 1/3 case, the wake dynamics are more complex.
The near wake has a symmetric mode owing to tidal dipoles. The separation vorticity that is
not destroyed in the near field, subsequently organizes into a sequence of Strouhal vortices in
the far wake (location P2) displaying a frequency of f; /4 (fig. 3.4c). This pattern is evident
in the f* =0.25 and f* = 0.42 cases as well and leads to a spectral peak at f; /4 (shown for
f*=0.42 in fig. 3.4d).

In the cases with f* = 1/2 and 1, the values of f;/f; lock-on to 1/2 (fig. 3.4 e,f),
similar to case f* = 5/6 discussed in fig. 3.3. The observed lock-on of wake-vortex frequency
to f;/2 and f; /4 can be understood as follows. A current without tides produces a Karman
wake with lateral meanders that possess the following spatio-temporal symmetry: u(x,y,z,t) =
u(x,—y,z,t +T5/2), where Ty = 1/ f; is the time period of wake vortices. A superposed tidal
oscillation induces temporal periodicity u(x,y,z,t) = u(x,y,z,t +nT), where n = 1,2, .. denotes
the number of tidal cycles, and additionally a lateral symmetry u(x,y,z,1) = u(x, —y,z,t) since
the entire flow is equally forced by the tide. Thus, the tide imposes u(x,y,z,t) = u(x, —y,z,t +

nT'). The injection of near-wake vorticity by fast tidal oscillation averages out over T . until f*
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increases to about 0.25, at which point the wake is affected. Specifically, the period of vortices
in the downstream wake is modified such that nT = T;/2, or equivalently f;/f; = 1/2n so that
not only the symmetry of the tidal oscillation, u(x,y,z,t) = u(x,—y,z,t +nT), is maintained
but also the spatio-temporal symmetry of the Karman wake, u(x,y,z,t) = u(x, —y,z,t + Ty /2),
is reinstated. Thus, the wake-vortex frequency synchronizes with the tidal frequency by
becoming its subharmonic. To achieve synchronization, near-wake vorticity shed near the
body at each tidal cycle adjusts to establish the spatial asymmetry of the Karman vortex
street as was demonstrated earlier for f* = 5/6. The results here show a preference for tidal
synchronization to f;/2 (n = 1) or f; /4 (n = 2), with the specific value selected so that it is
close to but not larger than f; ..

Figure 3.4g summarizes the overall behavior in a plot of f;/f; against f*. At low
f7, the tidal oscillation is much too fast to affect the wake vortices, f; remains equal to f; .,
and fy/ f; increases linearly with increasing f*. The situation changes when f* reaches 0.25.
Between f* = 0.25 and f* = 0.5, the wake vortices synchronize to f; /4, and eventually to
fi/2 for 0.5 < f* < 1. Equivalently, the observed St( blue curve in fig. 3.4g) deviates from
its natural value of S7. in the cases exhibiting tidal synchronization. The value of St. serves
as an upper limit on Sz. The frequency locking to f; /2 is prevalent over a larger range of f*
values. Such f; /2 tidal synchronization to the M2 tide with a period of 12.42h would result in
wake vortices at a period of 24.84h, which could be misinterpreted as the K1 tide (23.92h)
in observations. It is thus necessary to distinguish the subharmonic of M2 from the diurnal

frequency in observational data on flow-topography interactions.

3.5 Conclusions

The interaction of a tidally modulated current, U, = U, + U, sin(2mf;t ), with a conical

obstacle having base diameter D is examined on an f-plane. The wake of a stratified tidally
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Figure 3.4: Tidal synchronization in all simulated cases. (a-f) Spectra of spanwise velocity
(Sy,) at P2 shown for various f*. (g) The observed value of normalized wake-vortex frequency
fs/f: ( #) and observed Strouhal number St ( ®) are plotted against f*. Here, St. = 0.265
corresponds to natural shedding without tides. The shaded region represents the parameter
space with tidal synchronization. The green bar in (a)-(f) shows the 95% confidence interval
of the spectrum.

modulated current has received little attention relative to a uniform, strongly stratified steady
current where coherent lee vortices are formed downstream. It is worth noting that the
configuration of these coherent lee vortices is qualitatively different from the horseshoe and
hairpin vortices formed in an unstratified environment. These lee vortices are shed at a constant

shedding frequency f; . which is o< U, /D to form a Kdrmén vortex street in the steady-current

case of a stratified wake. The wake changes qualitatively in response to tidal modulation,
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parameterized here by the relative frequency f* = f ./ f; which is varied between 0.1 and
1. When f* approaches about 0.25, instead of the typical asymmetric shedding of vortex
monoples, vortices separate laterally from the obstacle from each side during every tidal
cycle to form periodic vortex dipoles. These dipoles are unstable and break down within
few diameters of the obstacle, as described for f* = 5/6. A Kdrman vortex street with
asymmetrically placed vortices develops downstream, but with frequency f; in the wake
altered from f; .. The tidal oscillations alter the temporal wake evolution, which may also have
significant ecological implications through their effect on the retention of water and nutrients.

When 0.5 < f* < 1, wake vortices appear at the first subharmonic of the tidal frequency,
i.e the wake synchronizes to f;/2. However, when f* exceeds 0.25 but is less than 0.5,
synchronization to f;/4 is observed. The periodicity and lateral symmetry imposed by the
tidal forcing on the near wake is different from the spatio-temporal symmetry of a Kdrmén
vortex street. As a result of tidal synchronization, the spatio-temporal symmetry of a Kdrman
wake is re-established while respecting the temporal periodicity of the tide by modifying
the wake-vortex frequency to f;/(2n) (n = 1,2). While f;/2 is the preferred frequency of
wake vortices for cases with 0.5 < f* < 1, the value of f; /4 is the preferred frequency when
0.25 < f* < 0.5. It is interesting that tidal oscillations that are faster than natural shedding act
to slow down the observed shedding frequency from its natural value through synchronization
to a tidal subharmonic. The larger tidal period in the regime of f* > 1, not examined here,
allows for wake vortices at the natural frequency f; .. Exploration of the interaction of these

wake vortices with the tide is deferred to future work.
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Chapter 4

High drag states in tidally modulated

stratified wakes

Large eddy simulations (LES) are employed to investigate the role of time-varying
currents on the form drag and vortex dynamics of submerged 3D topography in a stratified
rotating environment. The current is of the form U, + U, sin(2n f;t), where U, is the mean, U,
is the tidal component and f; is its frequency. A conical obstacle is considered in the regime of
low Froude number. When tides are absent, eddies are shed at the natural shedding frequency
fs.c. The relative frequency f* = f; ./ f; is varied in a parametric study which reveals states of
high time-averaged form drag coefficient. There is a two-fold amplification of the form drag
coefficient relative to the no-tide (U; = 0) case when f™ lies between 0.5 and 1. The spatial
organization of the near-wake vortices in the high drag states is different from a Karmén vortex
street. For instance, the vortex shedding from the obstacle is symmetric when f* =5/12 and
strongly asymmetric when f* = 5/6. The increase in form drag with increasing f* stems from
bottom intensification of the pressure in the obstacle lee which is linked to changes in flow

separation and near-wake vortices.
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4.1 Introduction

Rough bottom topography in the abyssal ocean contributes significantly to enhance-
ment of drag and turbulent dissipation. Egbert and Ray (2000, 2001) estimate that up to 1
TW of power is lost in-situ from tide-topography interactions in the abyssal ocean. When
abyssal flow encounters rough topography, energy is lost in two ways: (1) through skin friction
resulting from tangential stress at the boundary and (2) via pressure/form drag resulting from
normal stress. Energy loss from friction is usually small, with estimates in the 0(0.02 mW/m?)
or approximately 7 GW on a global scale (Jayne and Laurent, 2001), accounting for less
than 1% of the 1 TW estimate of Egbert and Ray (2000, 2001). Recent studies of Zhang
and Nikurashin (2020) and Klymak (2018) highlight the crucial role played by multiscale
topography in extracting momentum (through topographic form stress) from the background
flow and maintaining a dynamic balance in the abyssal ocean. Thus, form drag is often
the primary mechanism of energy extraction from the barotropic tide, especially at steeper
topographies (McCabe et al., 2006; Howritz et al., 2021).

In situ measurements in literature show that the loss of momentum associated with
form drag is enhanced by obstacles in the coastal ocean such as headlands (Edwards et al.,
2004; Magaldi et al., 2008; Warner et al., 2012; Warner and MacCready, 2014) and continental
shelves (Nash and Moum, 2001; Wijesekera et al., 2014). However, observational studies of
form drag estimates from the abyssal ocean are limited. Lack of information on the magnitude
and spatial distribution of form drag presents a challenge for form drag parameterizations in
global climate models (GCMs). Numerical studies can play an important role in bridging this
gap. Warner and MacCready (2009) performed numerical simulations with the hydrostatic
ROMS model of a non-rotating tidal flow past a Gaussian headland to examine different
components of form drag. They showed that while the normalized separation drag (the average

drag coefficient) increased with an increase in the aspect ratio of the headland, it does not
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depend on the tidal excursion or the headland size. In the present work, we examine form
drag in tidally modulated flow past an underwater obstacle. Turbulence resolving simulations
enable us to study the time varying flow past obstacles without compromising on the accuracy
of their representation. The characterization of flow separation and pressure distribution on
the obstacle allows us to link underlying physical mechanisms to any changes in the observed
form drag.

Form drag on an obstacle is dependent on the ambient stratification. When a steady
current encounters a 3D ridge, the flow transitions to a state of high drag when the Froude
number reduces below 1, e.g. Epifanio and Durran (2001); Vosper et al. (1999). In situ tidal
measurements of form drag are challenging and there are few such<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>