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A Role for Adenosine Deaminase
in Drosophila Larval Development
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Adenosine deaminase (ADA) is an enzyme present in all organisms that catalyzes the irreversible deamination of
adenosine and deoxyadenosine to inosine and deoxyinosine. Both adenosine and deoxyadenosine are biologically
active purines that can have a deep impact on cellular physiology; notably, ADA deficiency in humans causes severe
combined immunodeficiency. We have established a Drosophila model to study the effects of altered adenosine levels
in vivo by genetic elimination of adenosine deaminase-related growth factor-A (ADGF-A), which has ADA activity and is
expressed in the gut and hematopoietic organ. Here we show that the hemocytes (blood cells) are the main regulator
of adenosine in the Drosophila larva, as was speculated previously for mammals. The elevated level of adenosine in the
hemolymph due to lack of ADGF-A leads to apparently inconsistent phenotypic effects: precocious metamorphic
changes including differentiation of macrophage-like cells and fat body disintegration on one hand, and delay of
development with block of pupariation on the other. The block of pupariation appears to involve signaling through the
adenosine receptor (AdoR), but fat body disintegration, which is promoted by action of the hemocytes, seems to be
independent of the AdoR. The existence of such an independent mechanism has also been suggested in mammals.

Citation: Dolezal T, Dolezelova E, Zurovec M, Bryant PJ (2005) A role for adenosine deaminase in Drosophila larval development. PLoS Biol 3(7): e201.

Introduction

Adenosine deaminase (ADA) is an enzyme present in all
organisms that catalyzes the irreversible deamination of
adenosine and deoxyadenosine to inosine and deoxyinosine.
It is a critically important enzyme for human survival because
its congenital absence causes severe combined immunodefi-
ciency disease (SCID). ADA deficiency accounts for about
20% of all types of SCID [1]. It is one of the most severe
human immunodeficiencies and is associated with depletion
of all three major categories of lymphocytes: T cells, B cells,
and natural killer cells, resulting in impaired cellular
immunity and decreased production of immunoglobulins
[2]. Without intervention, the affected individuals die from
opportunistic infections within the first few months of life.

ADA occurs as a soluble monomer in all human cells, but
also exists as ‘‘ecto-ADA,’’ bound to the membrane glyco-
protein CD26/dipeptidyl peptidase IV, and it has been
suggested that this form of ADA regulates extracellular
adenosine levels [3]. ADA deficiency is accompanied by
greatly elevated levels of the ADA substrates adenosine and
deoxyadenosine, both of which are biologically active purines
that can have a deep impact on cellular physiology.
Adenosine is not just a metabolite; it is also a signaling
molecule that regulates numerous cellular functions by
binding to G protein-coupled adenosine receptors (A1, A2a,
A2b, and A3 in mammals) that can regulate intracellular
cyclic adenosine monophosphate [4]. Deoxyadenosine is a
cytotoxic metabolite released by various cell populations that
undergo programmed cell death; it can kill cells through a
mechanism that includes disturbances in deoxynucleotide
metabolism [5].

Extracellular adenosine is now considered an important
stress hormone that is released in excessive amounts in the
vicinity of immune cells during both systemic and cellular
stress [6]. The predominant source of extracellular adenosine

during systemic activation of the stress system is the
sympathetic nervous system [7]. Specific inflammatory stimuli
such as bacterial products are also capable of triggering
adenosine release from immune cells [8]. These data are in
line with evidence demonstrating a dramatic increase in
extracellular adenosine levels under conditions associated
with multiple organ failure, which is the cause of 50%–80%
of all deaths in surgical intensive care units [6].
ADA is not the only adenosine deaminase in mammalian

cells. Recently, the cat eye syndrome critical region protein 1
(CECR1) gene was identified and shown to encode a protein
representing a subfamily of proteins related to but distinct
from classical ADAs [9]. The duplication of a small region of
chromosome 22 containing this gene is associated with ‘‘cat
eye syndrome,’’ a disorder characterized by hypoplastic
kidneys, congenital heart malformation, and anomalous
pulmonary venous connections. The founding member of
this subfamily is encoded by insect-derived growth factor (IDGF)
[10], and homologs have been described in various organisms
[11–14].
We have previously found six Drosophila genes with

sequence similarity to the CECR1 subfamily [15]. Their
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products are mitogenic on Drosophila cells, and at least two of
them (ADGF-A and ADGF-D) exhibit strong ADA activity,
which is necessary for their mitogenic function. We therefore
named them adenosine deaminase-related growth factors
(ADGFs). We also demonstrated that adenosine functions as a
negative signal for cell proliferation and concluded that
ADGFs stimulate cell growth in vitro by depletion of
extracellular adenosine [16]. Drosophila also contains a gene,
termed Ada, with sequence similarity to human ADA, but as
we have previously shown the product of this gene is most
likely not an active ADA [16].

In this report we show that a null mutation in Drosophila
ADGF-A gene leads to dramatically increased levels of
adenosine and deoxyadenosine in the larval hemolymph.
This increase leads to larval death associated with the
disintegration of fat body and the development of melanotic
tumors. We present a detailed analysis of the hematopoietic
defects associated with the adgf-a mutation, show a genetic
interaction of this mutation with signaling through the
Drosophila adenosine receptor (AdoR, encoded by the gene
CG9753) and with regulation of premetamorphic changes by
ecdysone, as well as a genetic interaction of ADGF-A with a
major innate immunity regulator—the Toll signaling path-
way.

Results

Mutation in the ADGF-A Gene Causes Larval Death and
Melanotic Tumors

We produced mutations in five of the six ADGF genes by
homologous recombination mutagenesis [17] and showed that
loss of the most abundantly expressed gene, ADGF-A, leads to
death in the larval or pupal stage. Under optimal conditions
(20–30 isolated homozygous larvae per vial), about 60% of
larvae homozygous for the adgf-a mutation reach the third
instar. Development during the third larval instar is
significantly delayed, and wandering homozygous larvae
usually appear 2 d after their heterozygous siblings, which
start wandering at about 5 d of development. Some
homozygous third-instar larvae can be found alive in the vial
even after 10 d of development. Mutant third-instar larvae
show fat body disintegration (Figure 1A and 1B) and multiple
melanotic tumors (Figure 1C), predominantly in the caudal
part of the body and accompanied by disintegration of the fat
body. Melanization of the lymph glands was never observed in
these larvae, and the imaginal discs and brain appear normal.
Less than 30% of homozygotes eventually pupate. Homo-
zygous pupae usually die soon after pupariation; in some
cases they develop normal head and thorax imaginal
structures; however, abdominal parts usually do not develop.
There is also an abnormal curvature (to the right) of the
pupal abdomen (Figure 1D). Less than 2% of mutant pupae
develop normally and eventually emerge as adults without
any obvious abnormalities besides the abdominal curvature;
some of them are sterile.

To confirm that the mutant phenotype is caused solely by a
mutation in the ADGF-A gene, we created transgenic flies
carrying the ADGF-A gene under a heat-shock promoter (HS-
ADGF-A). The adgf-a homozygous flies carrying the HS-ADGF-
A construct showed survival rates significantly higher than
adgf-a even without heat shock, probably due to leaky
expression of the HS-ADGF-A construct (Figure 2A). However,

while non-heat shocked animals still produced many mela-
notic tumors, only 22% of animals that were heat shocked as
late embryos/early first instar developed these tumors (Figure
2B). This result confirms that the mutant phenotype is caused
by the mutation in the ADGF-A gene. This conclusion is
further supported by the even more efficient rescue achieved
by expression of transgenically provided ADGF-A in the
lymph glands using the Gal4/UAS system (see below).

The adgf-a Mutant Phenotype Is Associated with Elevated
Levels of Adenosine and/or Deoxyadenosine
Using liquid chromatography and mass spectrometry of

deproteinated hemolymph samples, we measured adenosine
concentrations in hemolymph of mutant and wild-type third-
instar larvae. The adenosine concentration in the adgf-a
mutant was 1.14 6 0.26 lM compared to less than 0.08 lM in
the wild type, and the deoxyadenosine concentration in
mutants was 1.66 6 0.99 lM compared to an undetectable
level in the wild type.

The Catalytic Activity of ADGF-A Is Required for Its
Function
To test whether the function of ADGF-A in vivo is also

dependent on its catalytic activity, we produced two versions

Figure 1. adgf-a Mutant Phenotype

(A and B) Fat body disintegration visualized by GFP expression driven
by Cg-Gal4 driver in the fat body. While adgf-a/+ heterozygous third
instar larvae have normal flat layers of fat body (A), adgf-a mutant
showed extensive fat body disintegration into small pieces of tissue
(B).
(C) Multiple melanotic tumors present in adgf-a mutant third-instar
larva.
(D) An adgf-a mutant pupa with typical abdominal curvature.
DOI: 10.1371/journal.pbio.0030201.g001
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of the UAS-ADGF-A construct [18]: one carrying wild-type
cDNA of ADGF-A and one carrying an ADGF-A cDNA with a
mutation causing a substitution of two amino acids (H386G
and A387E) in the catalytic domain [16]. Two different lines
carrying the wild-type UAS-ADGF-A expression construct
together with an Actin-Gal4 driver (providing ubiquitous
expression) both completely rescued the mutant phenotype,
whereas larvae with UAS-ADGF-A but without the driver
showed the typical mutant phenotype. However, neither of
the two lines carrying the mutated version of the UAS-ADGF-
A (producing full-length protein detected by anti-myc anti-
body; see Materials and Methods) showed any rescue of the
mutant phenotype. This result therefore demonstrates that
the catalytic activity of ADGF-A is required for its function in
vivo.

Hemocyte Development Is Affected in the adgf-a Mutant
We investigated the number and morphology of hemocytes

(blood cells) in the hemolymph of the adgf-a late third-instar
larvae (Figures 3 and 4). These larvae contain an average of
seven-fold more hemocytes in circulation than wild-type
larvae (Figure 3). In contrast to normal larval plasmatocytes,
which remain rounded after settling down on the substrate
(Figure 4A), most of the cells in the adgf-a mutant (more than
75%) are strongly adhesive and, after they are deposited in a
drop of hemolymph on a microscope slide, develop filamen-
tous and membranous extensions (Figure 4B–4D). An average
of 7% of hemocytes in the adgf-a mutant are lamellocytes
(Figures 3 and 4E), large flat cells that are not present in
circulation of wild-type larvae under normal conditions [19].
Crystal cells were also detected in excess, with mutant larvae
carrying several hundred while there are fewer than a
hundred of these cells in the wild type (Figure 5). The lymph
glands normally do not release hemocytes into the hemo-
lymph before metamorphosis [20]; instead, they are released
during metamorphosis when the lymph glands disperse [19].
However, the lymph glands of adgf-amutant larvae are already
dispersed in the late third instar. This process is similar to
normal metamorphic changes, in which the hemocytes are
first released from the front lobes, and the posterior lobes
disperse later.
To analyze hemocytes in living larvae, we used the

Hemolectin marker (Hml) [21]. We compared the number and
distribution of hemocytes stained by GFP in flies carrying
hml-Gal4 UAS-GFP in wild-type and mutant backgrounds.
While there are relatively few hemocytes, mostly free-floating
in the hemolymph, in early third-instar wild-type larvae (see
Figure 4I), a much higher number of hemocytes, which are
mostly attached to the tissues under the integument

Figure 2. Rescue of the adgf-a Mutant Phenotype by Expression of

ADGF-A in Different Tissues

(A) Percentage of pupae (blue bars) and adult flies (purple bars)
demonstrating the larval and pupal survival, respectively, of the adgf-a
mutant flies rescued by expression of transgenic ADGF-A in different
tissues. Along the x-axis (which is shared with [B]), the rescue
experiments are shown (marked by the Gal4 driver used for expression
of ADGF-A except for first three sets of bars—the first set presents only
an adgf-a mutant, the second an adgf-a mutant carrying HS-ADGF-A
construct without heat shock, and the third with heat shock) and the y-
axis represents percentage of pupae and adult flies out of the total
number of transferred first-instar larvae of particular genotype. Each
experiment was repeated at least four times (with 20–30 animals in each
vial) and the standard error is shown.
(B) Percentage of late third-instar larvae with melanotic tumors. The x-
axis is shared with (A) (described above). The y-axis shows the
percentage of larvae with tumors out of all larvae of each genotype
examined for (A).
DOI: 10.1371/journal.pbio.0030201.g002

Figure 3. Number of Circulating Hemocytes in Late Third-Instar Larvae

Genotypes are shown along the x-axis, and the number of hemocytes/
larva along the y-axis. Each bar shows the number of all circulating
hemocytes, and the gray part of the bars represent the lamellocyte
population. Each count was repeated five to ten times and the standard
error is shown.
DOI: 10.1371/journal.pbio.0030201.g003
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(described as sessile hemocytes in [19]), was observed in
mutant larvae (see Figure 4J). A similar behavior was detected
later in wild-type larvae, toward the end of the third instar
(see Figure 4H). At this stage, the Hml marker disappeared
from the most of the hemocytes in mutants (see Figure 4F
and 4G).

The adgf-a Mutant Phenotype Is Rescued by Expression of

ADGF-A in the Lymph Glands
To distinguish which tissues require ADGF-A expression

for proper development, we tested for rescue of adgf-a
lethality by expressing ADGF-A in specific subsets of larval
tissues. A transgenic line carrying the UAS-ADGF-A construct
on Chromosome II was crossed to lines expressing the Gal4
driver [18] in different tissues (Table 1). Since ADGF-A is
normally expressed in the larval lymph glands [16], and the
mutant phenotype is characterized by abnormal hemocyte
development, special consideration was given to lines
expressing the Gal4 driver in the lymph glands and/or
circulating hemocytes. No line expressing the Gal4 driver
exclusively in the lymph glands has been reported, so we used
a combination of lines sharing in common the feature of Gal4
driver expression in the lymph glands. The results (see Figure
2 and Table 1) clearly demonstrate that expression of ADGF-
A in the lymph glands (driven by Cg-Gal4, e33C-Gal4, or c564-
Gal4), but not in any other tissue examined, is necessary and
sufficient to fully rescue the adgf-a lethality. In e33C-Gal4/UAS-

ADGF-A, strong expression of ADGF-A in all lobes of
developing lymph glands (but not in circulating hemocytes)
reduces the number of hemocytes in the hemolymph to
almost normal levels (see Figure 3). The number of hemocytes
is also reduced, but to a lesser extent in larvae rescued by Cg-
Gal4/UAS-ADGF-A. However, when assayed by survival rate
and melanotic tumor formation, the rescue by Cg-Gal4 is full
and similar to that of e33C-Gal4 (see Figure 2). The difference
in effectiveness may be explained by the different expression
patterns of the drivers. Cg-Gal4 is expressed only in certain
compartments of lymph gland lobes containing relatively
mature hemocytes, and strongly in most circulating hemo-
cytes [22, 23]. The C564-Gal4 driver is not expressed as
strongly as e33C-Gal4, but is still uniformly expressed in the
lymph glands; it also fully rescued the mutant phenotype. We
have tried two different insertions of the Dot-Gal4 construct.
The Dot-Gal411C on Chromosome II, which shows weak
expression [24], did not rescue the phenotype, but a Dot-
Gal443A insertion on Chromosome X, which shows stronger
expression, rescued approximately half of the mutant animals
(Figure 2). Nearly all rescued individuals were males,
suggesting that expression of the Gal4 driver was influenced
by X-chromosome dosage compensation, and expression in
females heterozygous for Dot-Gal4 was not strong enough for
rescue.
Expression of ADGF-A in salivary glands and fat body (as

well as in other tissues) is not required for full rescue, as

Figure 4. Hemocyte Abnormalities in adgf-a Mutant Larvae

(A–E) Differential interference contrast microscopy of living circulating hemocytes (magnification 2003; scale bar, 10 lm). Round, nonadhesive
plasmatocytes from wild-type larva (A). Hemocytes from the adgf-a mutant developing filamentous extensions (B and C) or membranous extension
surrounding the cell (D). Large flat lamellocyte from the adgf-a mutant (E).
(F and G) Differential interference contrast and fluorescent microscopy (merged image) of living circulating hemocytes stained by the Hml-GFP marker
(magnification 1003; scale bar, 10 lm). While most of the cells from wild-type larvae are GFP-positive (F), just few of the cells from late third instar adgf-a
larvae are stained by GFP at this stage (G).
(H–J) Fluorescence microscopy of living larvae with Hml-GFP stained hemocytes (magnification 403; scale bar, 100 lm). Posterior part of late third-instar
wild-type larva (H). Middle sections of early third-instar larvae of wild type (I) and adgf-a mutant (J).
DOI: 10.1371/journal.pbio.0030201.g004
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demonstrated by use of the Cg-Gal4, Dot-Gal4, but especially
by e33C-Gal4 driver, and is also not sufficient to rescue the
phenotype at all, as demonstrated by T110-Gal4 and Lsp2-Gal4
(Table 1).

Since ADGF-A is strongly expressed in embryonic meso-
derm [16], we have tried to rescue the phenotype by the
expression of ADGF-A in embryonic and larval muscle cells
using the Dmef2-Gal4 driver [25]. No rescue of the phenotype,
including body shape of escaping pupae, was observed.

The only line showing significant (but not complete) rescue

of adgf-a survival without expression in the lymph glands was
GawB5015 (see Figure 2), which expresses the Gal4 driver very
strongly and specifically in the ring gland and salivary glands
(as well as very weak and spotty expression in imaginal discs
[unpublished data]). However, expression of ADGF-A driven
by GawB5015 does not prevent the formation of melanotic
tumors (see Figure 2B).

Ablation of Hemocytes in Mutant Larvae Reduces Fat
Body Disintegration and Melanotic Tumor Formation
The l(3)hematopoiesis missing (l[3]hem) mutation reduces cell

division in larval proliferating tissues and thus dramatically
reduces the number of hemocytes in larvae. It also suppresses
the hemocyte overproliferation and associated defects ob-
served in the hopscotchTumorous-lethal mutant [26]. We therefore
used the l(3)hem1 mutation to test whether the reduction of
hemocyte number in the adgf-a mutant affects the phenotype.
We recombined this mutation onto the chromosome con-
taining the adgf-a mutation and found that in homozygous
l(3)hem1, adgf-a double mutants the number of hemocytes is
significantly reduced compared to the adgf-a single mutants
(see Figure 3). Furthermore, while 90% of adgf-a mutant
larvae showed disintegration of fat body, only 40% of l(3)hem1,
adgf-a double mutants (total number of counted animals was
82) show the disintegration (Figure 6A). Similarly, melanotic
tumor formation is significantly suppressed by l(3)hem1, with
only 55% of double mutants showing melanotic tumors
compared to more than 83% in adgf-a (Figure 6A). However,
the delay in development and block of pupariation (Figure
6B), as well as the pupal body shape, were not influenced by
this mutation. This shows that the effect on hemocyte
development is related to only one other aspect of the adgf-
a phenotype—namely, fat body disintegration—and the
developmental arrest of adgf-a mutants is probably independ-
ent of this process.

Block in Activation of Macrophages Suppresses
Disintegration of Fat Body
Previous results suggest that fat body disintegration might

be caused by the action of hemocytes. Embryonic macro-
phages express the scavenger receptor encoded by croquemort
(crq), which allows them to bind and remove apoptotic corpses
[27]. We therefore tested whether a mutation in the crq gene
would block the suggested interaction between hemocytes
and fat body in adgf-a mutant larvae. We used the mutation

Table 1. Gal4 Drivers—Expression Pattern and Rescue of the adgf-a Phenotype

Expression in:

Gal4

Line

Average Survival

Rate (%)

Lymph

Glands

Embryonic

Hemocytes

Salivary

Glands Fat Body

Lymph Gland

Expression Details Expression in Other Tissues

Cg 94 + + � + Only mature cells No

e33C 89 + +/� � � Strong, uniform Malpighian tubules, trachea, optic lobes, gut, brain

c564 88 + � + + Medium, uniform Imaginal discs, gut, brain

GawB5015 44 � � + � Ring gland, imaginal discs

Dot43A 38 + � + � Variable expression Proventriculus, pericardial cells

T110 16 � � + � Malpighian tubules, gut, brain, imaginal discs; weakly ring gland

Dmef2 0 � � � � Embryonic and larval muscles

Lsp2 0 � � � + No

DOI: 10.1371/journal.pbio.0030201.t001

Figure 5. Crystal Cells in Late Third Instar Larvae

Crystal cells were visualized by heating larvae of different genotypes at
60 8C for 10 min [46]. (A) Wild-type larva, (B) adgf-a single mutant, (C)
adoR adgf-a double mutant (scale bar, 0.5 mm).
DOI: 10.1371/journal.pbio.0030201.g005
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crqKG01679, caused by a P-element insertion in the first
untranslated exon of crq, which leads to pupal lethality. The
number of crystal cells was not increased and lamellocytes
were not detected in crq, adgf-a double mutants (see Figure 3).
The double mutants showed a lower number of circulating
hemocytes than the single mutant, but there was still a
significant increase in this number compared to wild type (see
Figure 3), and the cells showed increased clumping. None of
the double-mutant larvae showed either disintegration of fat
body or melanotic tumor formation (Figure 6A). Even the

adgf-a mutant larvae heterozygous for the crq mutation (crq/
CyO GFP; adgf-a/adgf-a) showed significant suppression of the
fat body disintegration, with most of the tissue staying
compact in bigger pieces and never disintegrating to single
adipose cells; melanotic tumors were rarely observed. This
shows that the block of the putative interaction between fat
body and macrophage-like cells (which are still present in
double mutants) suppresses the fat body disintegration,
further strengthening the hypothesis that the disintegration
is caused by hemocytes. In addition, the absence of
lamellocytes and the normal number of crystal cells in the
double mutant strongly suggest that the differentiation of
these cells and thus melanotic tumor formation is a secondary
reaction to fat body disintegration, rather than a primary
effect of the adgf-a mutation.

Mutation in a Putative Adenosine Receptor Suppresses
the Block of Pupariation in adgf-a
We have identified a putative homolog of the mammalian

adenosine receptor family in the Drosophila genome, AdoR,
and produced a null mutation in this gene using homologous
recombination (adoR; ED, unpublished data). The adoR
mutants are fully viable. We used this mutant to test the
hypothesis that the increased level of adenosine in the adgf-a
mutant contributes to the mutant phenotype by its effect on
signaling through the adenosine receptor. The results show
that introducing the adoR mutation into the adgf-a back-
ground significantly increases pupariation, as well as adult
emerging rate, compared to the adgf-a single mutant (Figure
6B). When the earlier lethality was avoided by picking up
larvae after molt to the third instar, the pupariation rate of
adoR, adgf-a double mutant was comparable to wild type as
well as to the single adgf-a mutant treated with ecdysone
(Figure 7A). Development during the third instar is much less
delayed in the double mutant, with most of the larvae
pupariating within 1 d after their heterozygous siblings
(Figure 7A).
The adoR mutation also significantly reduced melanotic

tumor formation in the adgf-a mutant (see Figure 6A), but
disintegration of the fat body appeared at the same rate as in
the single mutant (see Figure 6A). While the number of
macrophage-like cells in circulation is not significantly
changed in the double mutant, the number of lamellocytes
is decreased (see Figure 3), but the number of crystal cells is
normal (see Figure 5A and 5C).
These results demonstrate that adenosine signaling

through the adenosine receptor is involved in the devel-
opmental arrest of adgf-a mutant, but that it does not play a
role in fat body disintegration and macrophage differ-
entiation.

Hormonal Regulation in the adgf-a Mutant
The delayed development and low pupariation rate in the

adgf-a mutant larvae (see Figures 2A and 7A) could be caused
by an effect on hormonal regulation of development. The
main source of developmental hormones in the Drosophila
larva is the ring gland, composed of the prothoracic gland,
corpus allatum, and corpus cardiacum [28]. The prothoracic
gland releases the steroid molting hormone ecdysone, which
is converted to an active form, 20-hydroxyecdysone (20E), by
the fat body as well as some of the target organs [29]. The
block of pupariation in the adgf-a mutant suggested that the

Figure 6. Suppression of the adgf-a Mutant Phenotype by Mutations in

Other Genes

(A) Percentage of late third-instar larvae with melanotic tumors (black
bars) and fat body disintegration (green bars). The x-axis (which is shared
with [B]), shows the genotype. The y-axis shows the percentage of larvae
with tumors and fat body disintegration.
(B) Survival rate of double mutants compared to single adgf-a mutant.
The y-axis shows the percentage of the pupae (blue bars) and adult flies
(purple bars) demonstrating the larval and pupal survival, respectively.
Each experiment was repeated at least four times (with 20–30 animals in
each vial) and the standard error is shown.
DOI: 10.1371/journal.pbio.0030201.g006
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level of ecdysone in these larvae might not be sufficient to
initiate pupariation. To test this possibility, we tried to rescue
the phenotype by feeding mutant larvae 20E, which can
initiate pupariation in the ecd1 mutant, which has an
extremely low level of ecdysone [30,31]. The results (Figure
7A) clearly demonstrate that the adgf-a mutant larvae are
responsive to ecdysone and that this treatment restores the
pupariation frequency to almost wild-type level. The delay in
development is also significantly reduced (Figure 7A).

Since the adgf-a mutant shows certain precocious meta-
morphic changes (macrophage differentiation and fat body
disintegration), we speculated that a reduced ecdysteroid

level could be caused by precocious degeneration of the
prothoracic part of the ring gland. However, the overall
structure of the ring gland is not visibly affected even in the
oldest larvae (10 d, i.e., 5 d after the heterozygous siblings
pupariated) with a fully disintegrated fat body (Figure 7B and
7C).
We also used a transgenic line carrying the SgsD3-GFP

construct, which was previously used to monitor the effects of
ecdysteroid levels on glue protein expression in salivary
glands [32]. All analyzed adgf-a mutant larvae carrying the
SgsD3-GFP construct showed normal expression of Sgs-GFP in
salivary glands (Figure 7D). Mutants that pupariated usually
showed typical GFP expectoration, indicating the presence of
a high premetamorphic peak of ecdysteroids (Figure 7E). In
some cases, GFP was secreted into the lumen of salivary
glands, but was not expectorated (Figure 7F), which is similar
to the defect seen in animals expressing the dominant-
negative form of ecdysone receptor driven by the Sgs3-Gal4
driver [33]. These results demonstrate that the target tissues
of adgf-a mutants are normally responsive to ecdysteroids and
that they are probably capable of releasing ecdysteroids,
although the level of ecdysteroids might vary.

ADGF-A Genetically Interacts with Toll Signaling Pathway
The antimicrobial response of Drosophila includes at least

two distinct signaling pathways [34]—the Toll signaling
pathway, which leads to the activation of two nuclear factor
kappa B (NF-jB) factors, Dorsal-related immunity factor (DIF)
and dorsal (DL); and the immune deficiency protein pathway
activating the third NF-jB factor, Relish (REL). A zygotic null
mutation in cactus (cact; a Drosophila inhibitor of NF-jB) leads
to hyperproliferation of hemocytes, melanotic tumor for-
mation, disintegration of fat body, and slower larval develop-
ment, with 60% larval lethality, as well as a thin body-shape
phenotype [35]. All of these phenotypes are strikingly similar
to the abnormalities seen in adgf-a mutants, which was our
first clue as to a possible interaction of ADGF-A with the Toll
signaling pathway. We hypothesized that the activity of
ADGF-A is suppressed by Toll signaling, resulting in similar
phenotypes of the adgf-a mutation and constitutive activation
of Toll pathway.
To test this hypothesis, we crossed transgenic flies carrying

ADGF-A gene under the control of a heat-shock promoter on
Chromosome II (HS-ADGF-A) with cactE8 (a lethal allele of cact
on Chromosome II, which, in combination with cactD13, results
in a zygotic null combination, or, with cactIIIG, results in
zygotic hypomorphic combination).
Overexpression of ADGF-A in animals with a hypomorphic

cact combination (cactE8/cactIIIG) increased the adult survival
rate almost 4-fold (Figure 8A). The rescue could be increased
by multiple heat shocks before pupariation to 7-fold
(unpublished data). The suppression of melanotic tumor
formation is also significant (from more than 80% down to
26%, Figure 8B). The most severe cact null mutation (cactE8/
cactD13), leading to developmental arrest in larvae (less than
8% pupate), is partially rescued in animals with over-
expression of ADGF-A when the pupariation rate is increased
3-fold (Figure 8A).
These results demonstrate that ADGF-A overexpression

can partially rescue the effects of constitutively active Toll
signaling in larvae, mainly the developmental arrest, but also

Figure 7. Ecdysone Regulation of Development in adgf-a

(A) Larvae of different genotypes were collected after L2/L3 molt, and the
number of puparia was counted at different time points (x-axis: hours
after egg laying). The y-axis shows the percentage of puparia out of all
collected third-instar larvae (three vials each with 30 animals; the
standard error is shown).
(B and C) Ring gland morphology in arrested adgf-a larvae.
Approximately 8-d old mutant larva (i.e., 3 d after normal pupariation)
with very extensive fat body disintegration (note the transparency of
larva in the middle part with small white pieces of fat body) (B). The
ring gland dissected from this larva (C) shows morphology of the
normal ring gland before the degenerative changes of prothoracic
gland starts (compare to schematic diagram to the left of [C], from
[28]).
(D–F) Expression of GFP-marked glue protein (SgsD3-GFP) in salivary
gland of the adgf-a mutant larvae and pupae. All late third-instar larvae
express the glue protein as shown on dissected salivary gland (D). Some
mutants show typical expulsion from the glands with GFP totally external
to the puparial case (E), while others do not expel glue proteins even
after puparium formation (F).
DOI: 10.1371/journal.pbio.0030201.g007
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the melanotic tumor formation, in the case of hypomorphic
cact mutants.

Discussion

ADA Deficiency in Drosophila Causes Abnormal Hemocyte

Development, Melanotic Tumor Formation, Fat Body

Degeneration, and Delayed Development
We have established an ADA deficiency model in Drosophila

in order to study the effects of altered adenosine levels in
vivo. We produced a loss-of-function mutation in the ADGF-A
gene, which produces a product (ADGF-A) with ADA activity.
When homozygous, the mutation causes abnormal hemocyte

development, leading to melanotic tumor formation [36], as
well as fat-body disintegration associated with death during
the larval stage or delayed transition to the pupal stage of
development. In agreement with our previous study using
cells cultured in vitro [16], here we have shown that ADA
enzymatic activity is essential for ADGF-A function in vivo,
when this function is assayed by testing for rescue of the
mutant phenotype. Just as increased levels of both ADA
substrates, adenosine and deoxyadenosine, are found in
blood of SCID patients [5], adgf-a mutant larvae also have
elevated levels of adenosine and deoxyadenosine, indicating
that the mutant phenotype is caused by disturbance in the
turnover of these nucleosides.
Expression of ADGF-A only in the lymph glands is

sufficient to fully rescue the mutant phenotype, indicating
that the hemocytes within the lymph glands play a major role
in regulation of adenosine levels in the hemolymph. A similar
regulatory role has also been attributed to blood cells in
humans [5]. This suggests a function for ADGF-A within the
lymph gland. However, ADGF-A behaves as a soluble growth
factor and could be released from the lymph gland to activate
targets elsewhere in the larval body. Our results show that
ADGF-A functions by limiting the level of extracellular
adenosine, and in this way the protein could have a systemic
function even if it were restricted to its tissue of origin.
Although our tests did not exclude a role for ADGF-A in
circulating hemocytes (which constitute a separate lineage
from the lymph gland hemocytes [20]), we showed that
expression of ADGF-A in circulating hemocytes is not
required for rescue of the adgf-a mutant phenotype, since
e33C-Gal4/UAS-ADGF-A—which expresses ADGF-A in the
lymph gland but not in circulating hemocytes—fully rescued
the phenotype.

ADGF-A Is Involved in Hemocyte Differentiation in the
Lymph Glands
Late third-instar larvae homozygous for the adgf-amutation

contain, on average, seven times more hemocytes in
circulation than wild-type larvae, and most of these cells
show strong adhesive properties compared to normal larval
plasmatocytes, which remain rounded after settling down on
the substrate. Although these cells share other characteristics
with plasmatocytes, they are normally not seen in circulation
until they are released from the lymph glands at the onset of
metamorphosis under the regulation of ecdysone to serve as
phagocytes for histolysing tissues during metamorphosis—
thus, they are referred to as pupal macrophages [19]. In
agreement with the presence of these cells in circulation, at
least the first lobes of the lymph glands are usually completely
dispersed in late third-instar mutant larvae. This indication
of precocious metamorphic changes [36] in the mutant is
further supported by the finding that hemocytes aggregate in
a segmental pattern in early rather than late third instar (see
Figure 4H–4J), and that the hemocytes lose expression of
Hemolectin in late third-instar larvae rather than at the onset
of metamorphosis (see Figure 4G) [21].
Recent studies show that the Toll signaling pathway, which

is already known to be involved in the control of innate
immunity of both Drosophila and mammals [34], may also be
involved in the control of hemocyte differentiation in the
Drosophila larva. Constitutive activation of Toll signaling leads
to developmental arrest and hematopoietic defects associated

Figure 8. Genetic Interactions of Toll Signaling and ADGF-A

Survival rate and melanotic tumor formation were compared in mutants
in the Toll signaling pathway and in similar mutants with overexpression
of ADGF-A using the HS-ADGF-A construct.
(A) The bar graph shows the percentage of the pupae (blue bars) and
adult flies (purple bars) demonstrating the larval and pupal survival of
each genotype. The x-axis shows the genotypes and is shared with (B).
Flies heterozygous for the cact mutation were used as a control.
(B) Percentage of late third instar larvae presenting melanotic tumor
formation.
DOI: 10.1371/journal.pbio.0030201.g008
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with melanotic tumor formation [35], similar to the pheno-
type of the adgf-a mutant. Our work also shows that forced
expression of the ADGF-A gene can rescue the effects of
overactive Toll signaling, suggesting that ADGF-A might
function downstream of Toll signaling to control its effects.
This conclusion is consistent with the existence of a putative
binding site for Dorsal (one of two known effectors of Toll
signaling) in the ADGF-A promoter (Figure 9). It will be
important to explore this connection further, since recent
studies suggest an interaction between adenosine signaling
and the NF-jB signaling pathway, which is the mammalian
counterpart of the Toll pathway [37].

Precocious Fat-Body Disintegration Caused by Mutant
Hemocytes

One of the most remarkable features of the adgf-a mutant
phenotype is the disintegration of the fat body in third-instar
larvae, another indication of precocious metamorphic
changes since the disintegration normally occurs much later,
during pupal life. Furthermore, our study of this mutant
provides strong evidence that the fat body disintegration is
promoted by the action of hemocytes. Fat body disintegration
was significantly suppressed when the hemocyte number was
reduced using the l(3)hem1 mutation [26], and fully blocked by
the croquemort (crq) mutation [27] which affects a CD36-related
receptor (Croquemort) expressed on macrophages and
required in phagocytosis of apoptotic cells. Human CD36 is
a scavenger receptor which, in combination with the macro-
phage vitronectin receptor and thrombospondin, binds
apoptotic cells. A similar role of Croquemort for removing
histolysing tissues during Drosophila metamorphosis has not
yet been tested, but seems likely since the crq mutant used in
this study (crqKG01679) is lethal in pupae.

The idea that hemocytes are involved in fat body
dissociation in Drosophila is further supported by work on
the flesh fly Sarcophaga. Natori’s group showed that proteinase
cathepsin B was released from pupal hemocytes when they
interacted with the fat body, and that this enzyme digested
the basement membrane of the fat body, causing the tissue to
dissociate [38,39]. They also showed that the interaction of
hemocytes with the fat body is mediated by a 120-kDa
membrane protein localized specifically on pupal hemocytes
[40]. This protein was suggested to be a scavenger receptor,
but it does not seem to be homologous to Drosophila
Croquemort (unpublished data). Work by Franc et al. [27] is

consistent with the idea that more than one scavenger
receptor is involved in this process.

Possible Signaling Role for Adenosine
The precocious metamorphic changes that appear to occur

in response to elevated adenosine in the adgf-a mutant larvae
lead to the suggestion that adenosine may act as a regulatory
signal for these processes during normal development. One
possibility is that adenosine acts as a downstream effector of
ecdysone-regulated prepupal changes, and that the increase
in adenosine concentration is mediated by ecdysone-induced
down-regulation of ADGF-A expression. This is supported by
the presence of multiple sites for ecdysone-inducible tran-
scription regulators in the ADGF-A promoter (Figure 9).
Adenosine could serve as a signal for macrophage differ-
entiation, and the lack of adenosine deaminase activity due to
the adgf-a mutation could cause precocious differentiation of
these cells in mutant larvae. We are now carrying out direct
tests of the idea that the differentiation of hemocytes in
mutant larvae is caused by elevated adenosine. If confirmed,
this effect would have general significance, since in ADA-
deficient mice, inflammatory changes in the lungs include an
accumulation of activated alveolar macrophages [41], and this
could also be mediated by elevated adenosine.

Elevated Adenosine Delays Development and Inhibits
Pupariation
The elevated adenosine in the adgf-a mutant larvae leads to

precocious changes (hemocyte differentiation and fat body
disintegration) resembling those normally occurring at the
time of metamorphosis, but it also is associated with an
apparently opposite effect, in that it causes a significant delay
in progress through the third larval instar and a decrease in
the frequency of successful pupariation (formation of the
puparium from the larval cuticle), which is one of the earliest
steps in metamorphosis. We conclude that the mutation has
additional effects on the hormonal regulation of develop-
ment.
One possible explanation for the developmental delay and

failure to pupariate is that the adgf-a mutation affects the
production or release of ecdysteroid hormones from the
major endocrine organ of the Drosophila larva—the ring
gland. This is supported by the fact that pupariation rate and
survival of the adgf-a mutant can be significantly improved by
expression of transgenic ADGF-A in the ring gland and

Figure 9. Schematic Map of the ADGF-A Gene with Promoter Analysis

The ADGF-A gene contains four exons and two transcriptional starts [17,47]. We analyzed sequences preceding both transcriptional starts for the
presence of known transcriptional factor binding sites using the software program Gene2Promoter (Genomatix Software GmbH). Selected sites are
represented by color bars in approximate positions of promoter regions. The legend under the sequence show the names of transcription factors
binding to matching colored binding sites.
DOI: 10.1371/journal.pbio.0030201.g009

PLoS Biology | www.plosbiology.org July 2005 | Volume 3 | Issue 7 | e2011221

Adenosine Deaminase in Drosophila



salivary glands. We suggest that this somehow interferes with
the regulation of hormone release. Other mutants with
hormonal dysregulation show delayed larval development
and failure to pupariate [42,43]. Presumably the elevated
adenosine in the adgf-a mutant blocks the production or
release of ecdysone from the ring gland by an unknown
mechanism. This idea is supported by our finding that both
pupariation rate and survival of the adgf-a mutant can also be
improved by feeding the mutant larvae with 20E in the diet
(see Figure 7A). Thus it is clear that the adgf-a mutant is
arrested in development due to an effect of the mutation on
hormone production from the ring gland.

The arrest of development in the adgf-a mutants was
significantly suppressed by loss of the adenosine receptor
caused by the adoR mutation: larvae simply homozygous for
adgf-a pupated after two or more days, whereas larvae also
homozygous for adoR pupated within 1 d after their
heterozygous siblings (see Figure 7A). Therefore, adenosine
signaling through the AdoR must play a role in the
developmental arrest of the adgf-a mutant, and this is most
likely mediated by signaling to the ring gland, where AdoR is
expressed (ED, unpublished data). The mutation in AdoR
does not block macrophage differentiation and fat-body
disintegration, so this effect must involve another, as yet
uncharacterized mechanism independent of AdoR signaling.
Work using adenosine-receptor deficient mammalian cells
also suggested the existence of a novel, undefined adenosine
signaling mechanism [44]. However, we cannot exclude the
role of elevated deoxyadenosine in these effects. Drosophila,
now with the advantage of the well-characterized adgf-a
mutant, could serve as an ideal model system in which to
investigate this mechanism.

Concluding Remarks
In our previous work using cells cultured in vitro, we

showed that, as in mammals, adenosine can block prolifer-
ation and/or survival of some Drosophila cell types [16]. In the
present work, we have established a Drosophila model to study
altered levels of adenosine and deoxyadenosine in vivo, and
we have shown that loss of ADGF-A function causes an
increase of these nucleosides in larval hemolymph. Although
the adgf-a mutation leads to larval or pupal death, we have
shown that this is not due to the adenosine or deoxyadeno-
sine simply blocking cellular proliferation or survival, as the
experiments in vitro would suggest. Rather, this mutation
leads to an increase in number of hemocytes at the end of
larval development due to the differentiation and release of
hemocytes from the lymph glands. Hemocytes also differ-
entiate and are released from the lymph glands during
systemic infection [19]. Together with our result suggesting
an interaction between Toll signaling and ADGF-A, this leads
to the hypothesis that adenosine controls hemocyte differ-
entiation in response to infection, and that it signals through
the adenosine receptor to postpone the next developmental
step, metamorphosis. This would be consistent with the role
of adenosine as a ‘‘stress hormone’’ in mammals [6]. A similar
process of hemocyte differentiation and release from the
lymph glands normally takes place at the onset of metamor-
phosis, when pupal macrophages remove histolyzing tissues.
The ADGF-A promoter contains consensus binding sites for
effectors of both Toll and ecdysone signaling. This raises the

possibility that adenosine plays a role in the control of
metamorphosis as well as in the response to stress.

Materials and Methods

Fly strains and genetics. For standard procedures, flies were raised
at 25 8C on a standard cornmeal-agar-yeast-molasses diet supple-
mented with 0.3% Nipagin to retard mold growth. Oregon flies were
used as the wild-type Drosophila strain, but in most cases the y w strain
was used as a control since most mutations were carried in the y w
background. A mutation in the ADGF-A gene on Chromosome III was
obtained as described earlier [17]. In this study, the mutation
described as adgf-akarel was used in all experiments and is referred to
here as adgf-a. A mutation in the adenosine receptor gene on
Chromosome III was produced by the ends-out targeting method (ED,
unpublished data) and is referred to here as adoR. Transgenic flies
carrying HS-ADGF-A, UAS-ADGF-Amyc, and UAS-mutADGF-Amyc con-
struct (see description below) were produced by a modified P-element
transformation method [45]. HS-ADGF-A, UAS-ADGF-Amyc[2A], UAS-
ADGF-Amyc[7A], UAS-mutADGF-Amyc[1A], and UAS-mutADGF-Amyc[3B],
all insertions on Chromosome II, were isolated and used in this work.
The following markers and mutations were obtained from the
Bloomington stock center, accessible at http://fly.bio.indiana.edu/
(stock numbers provided in parentheses): Hml-GFP marker (Hml-
Gal4/UAS-GFP) expressing GFP in embryonic and larval hemocytes
on Chromosome II (BL-6397), the l(3)hem1 mutation on Chromo-
some III (BL-6184), and the crqKG01679 mutation in the crq gene on
Chromosome II (BL-14900). Mutants in Toll signaling pathway were
obtained fromDr. S. Govind: cactE8, cactIIIG, and cactD13mutations in the
cact gene on Chromosome II. The Gal4/UAS [18] system was used for
protein misexpression. The following were obtained from the
Bloomington stock center (stock numbers in parenthesis): Cg-Gal4 on
Chromosome II (BL-7011), Pfw+mW.hs=GawBg5015 on II (BL-2721),
Pfw+mW.hs=GawBgc564 on II (BL-6982), Pfw+mW.hs=GawBgT110 on II
(BL-6998), Hml-Gal4 on II (BL-6396), Dot-Gal443A on X (BL-6903), Dot-
Gal411C on II (BL-6902), and Lsp2-Gal4 (BL-6357) on III. The Pfen2.4-
GAL4ge33C lethal insertion on Chromosome III was obtained fromDr.
N. Perrimon’s lab, and the Dmef2-Gal4 driver on II from Dr. A.
Michelson. Expression information of these Gal4 drivers is provided in
Table 1. A stock carrying the ubiquitous actin-Gal4 driver (P-actin-Gal4
UAS-GFP/CyO; lethal insertion on Chromosome II) was obtained from
Dr. R. Sousa. To recognize homozygous larvae, balancer chromosomes
with the GFP marker were used: CyO Pfw+mW.hs=Ubi-GFP.S65TgPAD1
(BL-4559) and TM3 Pfw+mC=ActGFPgJMR2 Ser (BL-4888). Transgenic
flies SgsGFP-1 (insertion on Chromosome X) and SgsGFP-2 (insertion
onChromosome II) containing the chimeric gene construct SgsD3-GFP
were obtained from Dr. A. J. Andres. For expression of ADGF-A using
theHS-ADGF-A construct, flies were heat shocked as late embryos/early
first instars at 37 8C for 30 min. In all rescue experiments, 30 freshly
hatched homozygous first-instar larvae were selected using a GFP
dissectingmicroscopeand transferred into fresh vials (at least four vials
for each variant). They were left to develop at 25 8C and examined as
wandering third-instar larvae, pupae, and adults.

Ecdysone treatment.Mutant larvae were raised on plates with yeast
paste at 25 8C and transferred to vials with glucose-yeast medium
(control) or with glucose-yeast medium containing 20-hydroxyecdy-
sone (H-5142; Sigma-Aldrich, St. Louis, Missouri, United States) at a
concentration of 0.5 mg/ml shortly after the L2/L3 molt. Numbers of
puparia were counted at 12-h intervals after the 120-h time point
(when the first control larvae start to pupariate). The ecd1 flies
(Bloomington stock BL-218) served as a control for the functional
20E diet [31]: flies were raised at 22 8C (permissive temperature for
the temperature-sensitive ecd1 mutation) and transferred to vials with
control or 20E-containing diet and raised at 29 8C (restrictive
temperature).

Fat body observation. Living late third-instar larvae were washed
and examined in PBS using a standard dissecting microscope with
transmitted light. For finer analysis, the fat body was dissected from
larvae in PBS and observed using a dissecting microscope. GFP-
stained fat body was observed in living, etherized larvae in PBS
solution on a standard microscopic slide with a coverslip under a
fluorescence microscope.

Hemocyte counts and observations. Circulating hemocytes were
obtained by opening two late third-instar larvae in 30 ll of PBS. This
allowed us to collect all hemolymph from the larvae in a defined
volume. The solution with circulating hemocytes was mixed by gently
pipetting, and part was transferred into the chamber of an improved
Neubauer hemocytometer. Cell number was recounted to one animal
equivalent. Hemocyte morphology was observed by differential
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interference contrast microscopy of living cells in Shields and Sang
Insect Medium (Sigma-Aldrich) obtained by the same procedure as
for counting. To observe hemocyte morphology, samples were
analyzed at least 10 min after the deposition of solution with
hemocytes, in order to allow the cells to adhere to the surface of the
slide. Crystal cells were visualized by heating larvae at 60 8C for 10
min in a water bath [46]. GFP-stained hemocytes were observed in
living, etherized larvae in PBS solution on a standard microscopic
slide with a coverslip under the fluorescence microscope or by
deposition of hemocytes in PBS as for counting and observing under
the fluorescence microscope.

Transgenic constructs. Wild-type cDNA for ADGF-A was amplified
by PCR using proofreading DNA polymerase (ProofStart; Invitrogen,
Carlsbad, California, United States) from a pOT2 vector containing
the ADGF-A EST-clone (GH08276) using the following primers: 59-
CGTCTAGAATGTCGCCAGTCATCCGCC-39 (59 end primer with
XbaI tail) and 59-GCTGATCATCAATCGATCCGTTGACTGGGGGA-
39 (39 end primer with BclI tail). The PCR product was cloned into the
pGEM-T Easy vector (Promega, Madison, Wisconsin, United States),
and the resulting plasmid (ADGF-A-pGEM) was cut by NotI/SpeI
restriction enzymes. The ADGF-A fragment was then cloned into the
pfCaSpeR-hs) vector cut by NotI/XbaI to obtain the HS-ADGF-A
construct. The myc tag was added to the C terminus of the ADGF-A
protein for detection by anti-c-Myc antibody (Sigma-Aldrich). To
produce a UAS-ADGF-Amyc construct, the ADGF-A fragment was
amplified (by ProofStart from pOT2 vector) using the following
primers: 59-AATCTCGAGCTCATCATGTCGCCAGTCATC-39 (59 end
with XhoI tail) and 59-TATCTAGATCGATCCGTTGACTGGGGG-39
(39 end with XbaI tail). The fragment was cut by XhoI/XbaI and cloned
into the pUAST vector modified by MZ. The sequence encoding the
myc-tag 59-GAGCAAAAGCTCATTTCTGAAGAGGACTTG-39 plus a
stop codon was inserted into XbaI site of pUAST (using the XbaI site
on the 59 end and the NheI site on the 39 end) cut by XhoI/XbaI. A
mutated version—UAS-mutADGF-Amyc—was prepared in the same
way as UAS-ADGF-Amyc, but pBLUESCRIPT containing mutated
ADGF-A cDNA was used as a template. The mutated version of
ADGF-A (carrying a mutation causing the substitution of two amino
acids—His386 and Ala387 for Glu and Leu, respectively) in the
catalytic domain, shown to abolish adenosine deaminase activity [16],
was prepared by recombinant PCR using the following recombinant
primers: 59-TCTACTTCGAGCTCGGAGAAACAAACTGGTTCGGT-
39 and 59-CTCCGAGCTCGAAGTAGAAATCAATGTCATCG-39 and
the same 59 and 39 end primers as above.

Adenosine and deoxyadenosine concentrations measurement. The
detection method used liquid chromatography and mass spectrom-
etry (LC/MS method) of deproteinated hemolymph samples. Larval
hemolymph was collected from several larvae and centrifuged to
pellet the hemocytes. 1 ll of hemolymph was diluted in 99 ll of
buffer. The sample was introduced in CH3CN-0.05% TFA (50:50)
either via a syringe pump at 3 ll/min or via an RP-C18 150 mm 3 1
mm Symmetry C8 column at 50 ll/min employing an LCQ electro-
spray ion source operated at 4.2 kV. The peaks were then identified
using the electrospray MSN mass spectra obtained by the collision-
induced decomposition of the MH+ ion and its product ions in a
series of MSN experiments that were performed with the ion trap
mass spectrometer. The sugar moiety was cleaved off the adenosine

molecule and produced ion with a molecular weight of 136 (adenine),
which was then detected by MS.

Supporting Information
Accession Numbers

The FlyBase (http://flybase.bio.indiana.edu/) accession numbers for
the genes and proteins discussed in this paper are: Ada
(FBgn0037661), ADGF-A (FBgn0036752), ADGF-A cDNA
(FBtp0018801), adgf-a mutation (FBal0157461), adgf-akare l

(FBab0038650), ADGF-D (FBgn0038172), AdoR (the CG9753 gene;
FBgn0039747), c564-Gal4 (FBti0002592), cactD13 (FBal0001509), cactE8

(FBal0030706), cactIIIG (FBal0001515), cactus (FBgn0000250), Cg-Gal4
(FBtp0012452) , croquemort (FBgn0015924), crqKG01679 (FBal0147219),
Dmef2-Gal4 (FBtp0006434), Dorsal (FBgn0000462), Dorsal-related
immunity factor (FBgn0011274), Dot-Gal411C (FBti0024024), Dot-
Gal443A (FBti0024023), e33C-Gal4 (FBti0002599), ecd1 (FBal0003500),
GawB5015 (FBti0001256 ), Hemolectin (FBgn0029167), HS-ADGF-A
(FBtp0018800), l(3)hem1 (FBal0010873), Lsp2-Gal4 (FBti0018531),
Relish (FBgn0014018), SgsD3-GFP (FBtp0013370), Sgs3-Gal4
(FBtp0016397), and T110-Gal4 (FBti0002605).

The GenBank Nucleotide database accession numbers for the
genes and proteins discussed in this papers are: cathepsin B (496316),
IDGF (1402633), and pupal hemocyte 120-kDa membrane protein
(7023974).

HUGO Gene Nomenclature Committee (HGNC; http://www.gene.
ucl.ac.uk/nomenclature/) accession numbers for the genes and
proteins discussed in this paper are: CECR1 (1839) and human
CD36 (1663).

Online Mendelian Inheritance in Man (OMIM; http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM) accession num-
bers for the conditions discussed in this paper are: cat eye syndrome
(115470) and SCID (102700).
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