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SEQUENTIAL IMPULSE MODEL OFWDIRECT REACTIONS

Bruce H. ”Mahanf W. E. W. Ruska, and John S. Winn.
Department of Chemlstry, and Materlals ‘and Molecular

Research Division of the Lawrence Berkeley Laboratory,
‘University of California, Berkeley, California 94720 :-

ABSTRACT

A-model in whioh the reaction A(BC, CjHAB
occurs as the -result of a sequence of two hard
sphere'elastlc impulses between the A-B and B-C
pairs‘is analyzed. It is shown that the limits of
the product veloc1ty vector dlstrlbutlon can be
readlly obtalned from the analytlc geometry of the
impulse sequence, and that an analytical expre551on
for.the deteiled product distribution for all mass
combinatione and energies can he‘deduced.i.The

- reeults show a propensity for proceSSes in uhich
the velocity of the C atom is chenged very little
and which.therefore lead tobnroducts'near the
spectator stripping_velocity. The angular distri-
bution is‘dependent on, but relatlvely 1nsen51t1ve
to, the ratio of the mutual hard sphere d1ameter of

. B and C to thelr bond dlstance. The predlctlons of
the model are generally con51stent with the features'
found in the experlmental 1nvest1gat10ns of hlgh

energy ion- molecule reactlons



It has proved to be of value. to deébribé the dynamic
mechanism of an elementary bimolécular chehical reaction as.
involving either a-short-lived-direct intéraction:of collision
partners, or. a long-lived colliéion complex: In the formerr
case,'th§ c61iisibh partners are close for a time comparable
to a vibrational peripd, but less than a full ¥otafional
period. In the latter case,.thé partners are close and
strongly iﬁterécting forvsevéralfrotatiOnal periqu. The
dividing line between fhe two classificatiohsfis in general
somewhat diffuse, Moreover,'evén when'a.réaction proceéds
predbminantly.by the long lived complex meéhaniém,lfhere will
be a distfibution of lifetimes, and a sqbstahfial component
of the reactive events may'occur by whatbare effectively ‘
direct interactiohs. Examples of'ibn-molecule reactions
which fallﬁinto each extreme classification are now known,l_.’2
and reactions which displéy infermediate behavior have been
investigated.s’4

Reactibns which prbceed by direct interaction havev
produét veiocity vector distfibutiqné which are usually
asymhetric about the't90° axis in the barycentric -system.
The shape of such a distribution depends_oh'the relative
energy at which the reaction is Tun, fhé.masseé ofthe‘atomé
in the system, and of coufsé-on the idenfity of the reaction
itself, since each chemical system has a potential‘energy

surface which is in some or many respects unique. By

choosing a trial potential energy surface,ithén calculating
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the results of many classicél'trajectOries generated from a
properly weightéd set of'ihitia1¥condit10ns;'if iSHpOSQibiéhjv
to obtain a theoretical prbduét velocify*vegfor distribution
which may be compared with experimental results. The effects
of various.poféntihl energy surface features on the product -
-distribufions have been explored in thié‘manner}s

Another way to analyze the features of product velocity -
distributions is to use simplified models of the.dynamic
prbéesses. It must be recognized that such models may have '
intrinsic limitations which prevent them from'ébcountiné for °
all features of the produbtiaigtribution. Nevértheless, they
have the virtue of simplicity, and may sometimes stand as
rigorous limiting cases which illumihaté'experiméntal results -
even when they do not reproduce them exactly.

A number of simplé models for the atom transfer process-
have.been proposed, and ét least paftially tested.against.

molecular beam scattering data.®™13

The sequential impulse
model proposed by Batés, Cook, and'Smith6 is conceptually
simple, ‘and has the capacity for considerable refinement.

In this model, the reaction A(BC, C) AB is viewed as an event
in which A hits B impulsively and elaétically, B then hits C
in a like manner, and fheq A‘combines‘with B if fﬁéir.energy
of relative motion 1is 1e$svthan the dissociation energy of -
the product molecule. Suplins]gas;8 éﬁd Georgé'and Supl_inskas9
have elaborated.the.mpdel, and havé shown that it can repro-

duce the major features of the Ar® - D2 reactive scattering.



Gillen, Mahan, and Winn14

found that a version of the model
in which the atoms interact via hard sphere pofentiais is
consistent with the distributions of the:produéts of the
reaction of Q+ with D, and HD'iﬁ the regime of high relative
energiés{_' I _ ’ : .'f . |

The foregoing applicatid‘nss’g’1'4

involved calculation

of the final}product veldcities’from‘sampied initial condi-
Vtions.by using large digital computers; That is,:despite

the Simpliéity,of the model, its predictiops were obtained

by execufing trajectdry calculations., It wouid be a valuable
aid to the analysis of prdduct'distribufions.if»there wére a
_methdd of finding the collection_of frajecfories which
contribute to the product inténSity at any given point in
velocity space. it has been pointed out that the'éequential
impulse model does in féét allow such ah_"ihverted" analysis

of the product distribution.

‘Some of the conclusions which
can be reached merely by vector analysis have been discussed.

In‘the following sections we review these velocity veétof"

relationships and show how the product~intensity‘distribution,'

can be caléulated._

Velocity Vector Analfsis e

We assume that the atoms A, B,;and C interact pairwise
only through squére well poténtials of fhe same depth. Thus
vthe potential enérgy sufface for the triatomic System is a
squafe trough with a flat bottom and one‘infinite wall which

corresponds to the hard sphere core interaction of the atoms.

16



The outer wall of the;trough has a height equal to the
dissociation energy.of the reactant$BC diatOm"or thewproduct-
AB molecule This attractive branch of the potential serves

only to hold the BC molecule together before reaction :andi

~the AB molecule together after reaction.' Ail 51gn1f1cantA

velocity changes occur as a result of the collisions of the.
hard sphere cores of the’nolecuies}

To expose the essential'features of the model,‘we shall
temporarily assume that.the collisions occur such that the
three atoms remain-in a plane. This assumption Will-later
be eliminated in order to‘complete'the nodel.. An example of:
a sequence of events nhich may lead to a reaction is shown in
Fig. 1. Initialiy, the diatom BC (particies 2:and 3,
respectively) is stationary in the laboratory, and A (particle
1) moves toward it with a constant veloCity V1 ‘Particles
1 and 2 undergo an 1mpu151ve elastic collision, and as'a
result the1r relative veloc1ty vector undergoes a rotation
about the center of mass of the A-B system. This means that
particle 1 acquires a new laboratory ve10c1ty Vl' which,iies

somewhere on a circle of radius v B/(A+B) whose origin is at

the A-B centr01d Here we are letting A, B, and C stand_for

- the masses of the atoms, and using a prime to denote the

fact that one impulsive event has‘occurred._ The corresponding
laboratory‘velocity of the B-atom, YZ" lies somewhere on a
circle of radius VlA/(A+B), which has its origin at the A-B

centroid. The magnitude of y?' is

1 o . X .
V' s zgp vy sintp (1)



where X; is the Scatterihg angle in the center of méés bf the .
A-B system. If the_fuli three diwensionai case wére‘being
conSidered, both the ciréles’referred to would be'épheres.
We}now'canider particlé ZLméving with its constant

velocity,Yi' fowar& particle_S,‘ If the laffer’i§4proper1y
positioned; an impulsiVe'elastiC colliéion oCcurs, particle i
acquires a new velocity YZH éndiparticleIS aséumes,the Véloéity
y3"; bin this second'impﬁlsive event, the 2-3 relative Veloéity
vector'(initiéily jﬁst YZ') is rbtated thiough an anglé Xy
about the 2-3 @entroid. The magnitude of.y3" is given bf .

" | B . XZ
Vi = 20 V' osin(m)

o vy sl sinch. @

- To decide whether'qr nof‘this seduence of iﬁpulses'leads
to the reaction A(BC, C) AB,‘we apply é-simple”criferioﬂ:
the tip of the velocity vector YS" must lie iﬁ A.stability
zone14 which has iimits determined by the requirement_fhat
the mblecule,AB must have an internal (vibrational and rota-
tional) energy which is gfeater than or équal to zero,:and
less than its‘dissociétion‘energy. Byvenergy conserﬁation,
these 1imits'can}be expressed as Vaiués @f the translational
exoergicity Q, and thesé aré_éhowh.foi a speciél case invFig. 1.
It is clear that the direction as weil as tﬁe magnitude of
Y3" is important to the determihation Qf-wﬁether a reactioﬁ-‘

has occurred.



Having found one sequencevof impulses which produce a
particular V3", we must flnd all other 1mpulse sequences which
lead to the same final result We note that all p0551ble
values of V2 lie on a c1rc1e of radius V A/(A+B) whose__
origln is at the 1-2 barycenter The locus of all p0551b1e
2-3 centr01d velocities can be found by multiplying all
possible values of YZ by B/(B+C), and is a circle of radius

‘R=(j\é—§)(§§f) v ®

t

with its center on Yi at a distance R from the origin. We

call this locus the centroid circle.

) . . ' " :
Because the 2-3 collision is elastic, vV, is the base

of an isosceles trienglé whose other sides areibf length
' B/(B+C). The perpendicular bisector of'V3" muSt pass
through the 2-3 centroid and this centr01d must 11e on the :
centroid circle. Thus for the in- plane 51tuation displayed
in Fig. 1, there are Just two centr01ds which satisfy both
these conditions, and accordingly, there are at most only
two in-plane sequences that can lead to_a given value of ys"
One of these sequences corresponds to‘a large”xl, and a small
Xy with the two engles being relatedpby Eq. (2)} The other
sequence results when the values of X1 and X2 are interchanged.
Once we recognize that'V2 need not lie in the plane of
vy and YSH; the origin of other sequences which lead to V3
becomes clear. When out- of plane events are con51dered the
centroid circle becomes a centroid sphere, and the perpendicular

1t

bisector of_y3 becomes a planc. The intersection of this



bisecting plane with the centroid sphere is a ''magic circle"
perpendicular to'the'yl'f'YS" plané. As’ one ﬁo&es élohg the
magic_sirCIe,'all thé X1 - X, pairs that can lead to scatterihg
at Y3" are:encountered.: The ex?reme'valﬁes of X, and’Xz |
occur when yl;'yz'} énd st allfliejin the same plane. |

~ The foregoing analysis applies to'the ﬁrocess A(BC, C) AB,
in which_A_evéntually.is,bbund to the étom it strikes first.
. This "right atom" event is not the pnly possibility, however.
If parficle 2 is scattered into the apper;iate zone»of
stabiiity, the molesﬁie AC is formed; fIf the ﬁassés of B
and C'ars_equal,'this "wrong atom' event is siﬁply related

the “right'atom" event just discussed. Inspection of Fig.'1

2
in the stability zone is one in which the scattering angle

shows that for. a given V,', the event which would place V

is ghe supplement of the angle X, which would have placed Y3"
at the séme point in the "right atom" procéss._ ThevcsnseQUence
of this is that whenlthe individual events are described by
the hard sphere'differential scattering cross section;sWrsng
atom reactive processes afeyjuSt as probable as right atomv
processes. When the m;sses of B énd'Cvare unequal, this
observation is no longer Valid; since.fright atom" and "wrong
atom" process are not'described by:the same magic circle.

We should also remark fhat'this model does not take into’
account prbceSses in which A hits'B, then C, and fhen reacts
with B. It is difficult to argue on glpréofi grounds that
such‘processes’are“unimportant, and their QCcurrencevin real

systems may léadvto failures of the model. On the other hand,



George and Suplinskas9 found'these ooliisioh sequences to be
relatively unimportant in their'tfajeetory'analysis-of'the
kinematic reaction model for the'Ar+(D 'D)TArD+vreacfion.

For this and 51mllar mass comblnatlons this cOllisiOﬁ“Sequence
will place the product veloc1ty very closeé to the" locus
predlcted by,the,elastlc spectator model. In the h1gh energy

regime, where spectator or elastic speotator process do not

lead to stable products, the A hits B, A hits C; A reéots With

B sequence will certainly not be(importéh@.

A number of useful conclusions can be drawn directly

from Fig. 1. First, there will be certain V," vectors for -

~3

‘which the perpendicular bisector does not intersect the

centroid sphere. Even thooghefhese values of V " might be

3
consistent with the total ehergy and momentum conservation
laws, they can not'be'produoed by a‘sequence of two elastic

impulses. For example, events in which YSH is directed at

180° in the laboratory coordinate'system can not occur. Thus

there 'is no exactly backward recoil of perficie C, and no
exactly forward recoil of the AB product. This observation

is of interest in connection with deviations from the ideal"

12,17

spectator stripping phenomenon. Forward recoil could

occur if, prior to the A-B impulse, tpe“vector Yl were in-
creased in magnitude with the center of mass velocity of the
total system held constant. This coold occur if there were
an attractive potential between reactants ‘and this is in
fact the mechanism-for forward recoil proposed in the

so-called modificd stripping modol.12



One can also see that forward recoil could occur 1if,
during the B o colllslon, the B-C relatlve veloc1ty vector
were increased in 1ength,‘so that this collision would appear
to be.sﬁper—elastic.' This could occur in a real system if
there were a fépuléive energy rélease between B and C as the
products Separated" This is the basic idea involved in the
so-called direct 1nteract10n with product repu151on (DIPR)

10,13

model for reaction dynamics. The velocity vector analysis

connected:with the seqﬁentiallimpuISe modél clearly shows

that more than one prbpefty of a potential‘energy_sgrfacg'can
produce a given feature of the product velocity distribution.
— It is clear that V. vectors directed at angles other-'

3

thah-lSOf are accessible only if the magnitude of.ysu

small enough so that there is an intersection of the bisecting

is

plane and the centroid sphere. If we consider the in—plane
scattering sequence we find from Fig. 1 fhat‘the angles'g+
and §_ between“yl}and thé two values of Yz' which are defined
By‘thé intersection of the centroid circle and the bisector |

of Y3'>are given by

1" b "

v." 2 1/2

' V- \'f
coszg+-= %(sinze + Zi cose) ¢+ %[(sinze:+ Zé cose)2 —4(2%—)] . (4
The corresponding valueé of_xzkare given by
PR T |
cos (--—2-)+ = 1-(Vg /4Rcos£t) .o (5).

The situation in wh1ch the dlscrlmlnant of Eq (4)'is zero

corresponds to thc biscctor Dalng tangent to the centroid circle.

10



- For a given 1ab6ratory scattering angle e for particle 3,

\"
| 3 |
be produced by an elastic impulse sequence. Setting the

this corresponds to the greatest magnitude of V which can

discriminant equal to zero, we find

14,

(VS") = 2R(cose+l). I (6)
max ' ' '
3" describe a cardioid which

has a cusp at the origin of laboratory coordinate system.

Thus the limiting values of V

There is a corresponding cardioid which gives the maximum
velocity of the AB product in the center of mass system, and
_this is illustrated'in Fig. 2. It is of interest fo note
that AB product at the cusp of the cardioid is moving with
fhe spectator stripping velocity. One very simple picture
of product,velocity'distributions is provided byAthe elastic
spectator model, in which the product speed relative to the
center of mass is exbected to be at all angles equal to the
spectator stripping velocity. . Such a distribution would
oécur if the AB product were formed by the spectator stripping
_proceés, and then rebounded elastiéally as a unit from the C
atom. Observed deviations from this elastic spectator model
are then_to be attributed to inelasticity or.superelasticity
of the collision of AB with C. The reflection—spectator12
and‘DIPR models10 afe_variations of this elasticwspectator
model theme. The limiting cardidid derivéd for»the sequential

impulse model shows that apparently superelastic deviations

from the elastic spectator medel can occur quite naturally
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without the intervention of special types of reacfant attrac-
tion or product repulsion. |
The'acéesSible pért of4the product stabilitf zone 1is
bounded on the outside by the iimiting cardibid,'and on the
‘inside by a éirélé whose radiué is determihed*by"Qmin, the
smallést.value of the translational exergicity which canllead
to a stable AB product. The size of the limiting cardioid
is'ﬁroportiohaibtd R, and thﬁs scales with the initial
velocity Vl‘ The sizevof the inner stability circie is
detefmined by»gubtracting a fixed quantity (the AB diSébciatioﬂ
‘energy) from the initial relative energy,'and’taking thé
square'root of the rgsult. Thus the size of the Qmin‘Circlé
does not scale with Vl. The size of the kiheﬁatically
accessible zone can be déscribed at all energies‘By‘one
cardioid, if the'unitsvof thevdiagram are changed as the

energy changes. However, as the initial energy is increased,

-

on such a diagram, fhe radius of the inner stability circle
ircreases énd the size of the stability’zone decfegses,-~This
ié shown in Fig. 2 by several inner stability circles which
.correspondvto different initial relative energies.

As the initialbrelativé energy incfeases,.the inner
Stability circle expahds and eventually intersects the
limiting cardioid at the cﬁsp. This.situation corresponds
tqrthe critical energy at which the spectator stfipping peak
thch is prominent in many pfoducé distrébhtions is expécted’

to be lost. In most ion-molecule reactions which have been

-’

investigated, the product.scattered in the dircction of the
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initial projectile is in fact retained, but.movesvto.speeds

.which are greater than the spectator stripping value,. and

which lie the stability zone. As indicated above, the cause
of this forward recoilfis to be found in features that. are
not 1nc1uded in the strlct hard sphere sequentlal 1mpulse
model. We note that all reactions wh1ch exhibit forward

rec01117 19 at high energies are substantlally exoerglc

and those that do not show forward rec01114 20

are thermo-
neutral or weakly exoergic.' This suggests that exoergicity
is the factor which promotes forward recoil. eItiis in general
an open question as to whether this forward recoil comes from
reactant aftraction or product repulSion, Experimenfation
with velocity vector diagrams of the type ofiFig. 1 soggests
that producf repulsion is the most efficient way in which
reaction exoergicity can be used to stabilize the reaction
product. In the so-called modified‘stripping.model,lz’zl it
is proposed that the small difference of the polarization
attraction between fhe reactants and products accounts for
the minuscule deviations of the product intensity peak from
the spectator stripping veiocity which are ooserved for ion-

molecule reactions at very low energy. In view of the other

possible mechanisms of forward recoil, this proposal seems

very speculative.

In the strict sequentlal 1mpulse model the potential
surface represents the possible 1nteract10n of hard spheres,

and there is no mechanism for exactly forward recoil of the

AB product. Thus the product distribution assumes a crescent
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shape when the initial energy is high'enqugh to make spectator
stripping impossible. As the energy is ihcreaSed stili further,
the inner stability circle makes a second intersection with

the limiting cardioid at 180°. Thus accordingvto the sequentiai
impulsevmodei“it is the‘rebdundfscattering which is lost

after thé stripping coﬁtributibn has disappeared. It should

be noted that for many mass combinations, the predictions of
the sequential impuls¢ model will fail iﬁ the large:angle
region;'betause fhis region.may be populaped by product whicﬁ

is formed byvmultiple or "thatterihg".collisionsl6 in which B
reboundé bétween A and C several times. vThis accounts, at

- least partially; for the observationsl4’20

of product in the
large angle regidn at very high energies. o |

It is of intefeét to examine the type of impulse sequence
which leads to AB produCt with no internaliexcitation. For
the thermoneutral potentia1 surfaces we afé trgatiné, this
corresponds to a translational exoergicity Q equal to.zerd.
‘More significantly, it corresponds to impulse sequences'which
produce equalvVelocities‘for A and B; A sphere in Velocity
spacebcan be dfawn with-its origin.gt the center of mass
velocity of the ABC system, and ifs_rédiﬁs equal to the AB
-speed which corresponds to Q = 0. A.;econd sphere which is
the locus of all possible velocities of A after the A-B
collision CAn also be'drawn with';adius V1 B/(A+B), centered
on V; A/ (A+B). Since the_?elocityfof A in all sequehces is
completely determined by the result of thé.first impuise,

and since in a Q = 0 event A and B and their mutual center
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of mass must have velocities on ther = 0 sphere, the.only
double impulse sequences which can produce nnexeited products
lie on the intersection-(if anf) of’the Q =0 sphere and the
yl' sphere. The intersection of the spheres produces a c1rc1e
whose plane is perpendicular to V1 After working out the
analytic geometry, we find that according to ‘the sequential
impulse model, Scattering to give uneXCited AB pfoduct occurs

only at a barycentric angle eo given by

2.2 2.2
coso, - ABCM+2A“C“-B“M : S

2AC[AC(A+B) (B+C)]1/ 2

if it occurs at all. We note also that the C product will
appear at the supplement to this angle which is also a p01nt
of tangency between the limiting cardioid and the Q =

circle for the C product. This must be true, since the
1imiting cardioid is the highest veloeity allowed by‘the
sequential impulse model, and Q = 0'corresponde to the highest
relative velocity allowed by any model.

Since the limiting cardioid-and the Q = 0 circle afe
tangent only at the barycentric given by Eq. (7), it is at
this angle that the acceseible part of the stability zone is
| widest. For the N+ - H2 system this éngle is 51°, and for
0" - H, it is 47°, It is also useful to realize that as the
initial projectile velocity increases toward infinity, the
Q = 0 circle and the limiting cardioid scale together and
- maintain their tangency. However, the inner stability circle

intercepts greater and greater fractions of the limiting

15
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cardioid as the energy increases, as Fig. 2 inditatés{ As
thé limit of infinite relative velocity, is épproaChed, the
accessible part_qf the stability zone contracts to the point
on the cardio%d at 60. It is tﬁis contraction that is

responsiblé for the product intensity lobesyobsered14’20

in
the vicinity of 60 in the N' - H2 and 0° - HZ systems at high
relative energies. ‘ '

' 'We have discussed the events in which an A-B collision

is followed by a B-C collision. In order for this sequence
. _ 2
and the BC bond axis must be less than n/2. For a > 7/2,

to occur, the angle o between the intermediate velocity v

the motion of B most often will tend to carry it away from C,
and there will be no B-C collision possible. If the AB

produét in such evenfs is étable, it will appear at the
spectator‘strippingrveloéity. Stripping is also poséible fof'
values of o somewhat smaller than w/2 if the mutual hard éphere.
diametér of the B-C péir is less than the impact parameter

for the second collision. Thus, for this hard sphere potential
surface, over half of the total reactive events can'appear at
the spectafor stripping velocity.

"These observations make it clear-how spectator stripping
can be so prominent in the product velocity vector distribu--
tions ‘'of ion-molecule reactions. We note thét in real systems,
the potential energy surféces mustvhéve only é weak-dependence
on the ABC angle if they are to produce diétributions which

are comparable to those derived from the hard sphere model.
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Such behavior will be facilitated if there is a strong 1ong
range attraction between A and B intthe product channel, as
there is‘when\A is an alkali atom and B is a hélogen. However,
if the potential surface 1is angie independent; stripping is
possible eVen:when“A and B collide essentially- head-on. Thus
if spectator stripping is described as involving graiing
collisions, it is the B-C interéction, and not necessarily

the A-B interaction which must be of the grazing type.

Product Intensity Distributions
To fbrmulate the product intensity distfibution, we note

~first that the total rate at which A-B collisions occur is
& = 01 (g5 Vy | - ®

where'o12 is the total ctoss section for A-B collisidns, and
ny and n,; are the concentrations.of projectile and target.
molecules respectively. These collisions produce vérious
values of Yz'which terminate on a sphere in velocity space.
The.corresponding'céntroids of the 2-3 system all lie on the
centroid sphefe. In a polar coordinate system centered at R,
the origin of the centroid sphere, the distribution of 2-3
centroids is uniform. Thefefore, thé probability that'thel

centroid velocity will lie in 6, 6+do, ¢, ¢+d¢o is

2. _ 1 _. | |
d“P; = 17 51n9d6d¢. ‘ _ (9)

It is convenient to take the polar axis of:this system

’ ' Tt
parallel to YS

17



Now we find the probability that a 2-3 collision will
occur in which the scattering angle 1is XZ‘ For a specified
yz',-the scattering angle X, will depend on the orientation -
of the B-C bond axis with respe@t to yz'.- According to Fig. 3,
the probability of a orientation expressed by the angles a
ahd Y is |

2 21 .
d P2 = T sinadady.
Since sina = b/ro, where b is the impact parameter and‘ro is

the equilibrium 2-3 bond distance, we can write

a’p, = -1 bdbdy | an
27 2 2 177
o (1- =)
ro

By making use of the relation

2 ' : o
23 d70,q o (1)

bdbdy = I
where 123 is the'differentiél scattering cross section for
the second impulse, and d2w23 is the differential solid angle
in the 2-3 barytentric system, we can deduce the expression
) 4 . .
2, 1239 wgs
P, 1/2

d“p, =
: 2 2,
4nro (1-b /r0 )

2

Thus, the differential rate for collisions in which the 2-3

centroid is in d6, d¢ and the 2-3 scattering is 1n dzw'z3 is

18
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. : 2 2
d'|f = (nl) (nzs) Vl O'1-2 d Pl d PZ
. | I Hdzm .sinéded | |
4 23° 923 i (12)

d'f - (n)(ny2) Vy 0y, A

2. .2 172 °
 %6ﬂ r, (1-b /?o

2

It is now necéssary to eliminate the differential solid

angle element dzm in favor of?dZQ the solid'angle element

23 3’
for particle 3 in the laboratory coordinate system. The

necessary relation is

d293 | u32 . Xz'
s g sinGp)
°d wy3 VS“

where Ug is the speed of particle'S in the 2-3 barycentric
system, and we have discontinued the prime notation. Since
_ X,
V3 = 2u3 sin —

we have

X

2 _ . 2 2
= 4 sin(—%) d 93. _ | (13)

d wsg

In addition, we wish to eliminate de in favor of dVS' From

. Fig. 4 we see that
VV3/2R -<cos§ = CcOs@. _ (14j
Therefore'
dVS/ZR = -sinbde.

We take the absolute value.of this expression and substitute it,
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together with Eq. (13) in Eq. (12) and obtain

X
. 2
: I sin(—=)d¢
Y SO - Y12723 2 2 2
: 8t'r "V, R 2 2
: o 3 ' (1—b'/rO )
To obtain the total rate of collisions which produce V,
in (V3)2 dV3 dZQ3 it is only necessary to integrate Eq. (15)
over the magic circle. If we introduce the relations
_ = g2
T3 = da35/4
2 _ 2 2.2
b™ = d23 cos (—7)
which hold for hard sphere scattering, integrate ovér ¢ and
rearrange, we find
X
- 2 27 . 2
1 d3r _ 91293 sin — d¢ (16)
() (n,,)V 3. 2 2., 2 Z ' :
1 23 1 d Vs 327 r, V.“R d23 RS 1/2 |

3 o}

The quantity on the left is the rate of product formation_per
unit projectile flux, per target gas molecule, per unit
velocity space volume. It is, therefore, equal to the specific

intensity I which is reported in maps’ of product velocity

vector distributions.18

We note that the total intensity of a procesé other than

2

spectator stripping is proportional to the factor 012(d§3/ro ),

which is the cross section for the first impulse times the
' . . PR | -2
chance that the sccond impulse will occur.” The factor of Vs
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tends to promote a high prodﬁef ihtehsity near the spectator
stripping veloeity; and this is modified'by the value of the
integral over the magic circle. | '

In order to perform the 1ntegrat10n over the magic c1rcle
the relatlon between ‘9 and the scatterlng angle y must be found.
However, in the special case that d23 i this relation.is
unnecessary, and Eq. (16) immediately reduces to

i = diz ‘ R (17)
16V32R S
where we have used 015 = ndiz. In Ehis special casey all 1-2
impulses lead to 2-3 impulses if a < m/2. The intensity
distribution is controlled only by the factor of Véz and the
stability limits. -To recover the total cross seetion'for all
processes in which two impulses occur, we execute
o = IJI iV32 av, dq = %3 —%3 [IJ av, a%q (18)
where the integration includes everything inside the limiting
cardioid. Therefore
i diz " .
=7 R [ R(1+cose{ sinede
o _
=3 az, (19)

which is half of the cross section for 1-2 collisions. The

12

missing fraction of o©
the second impulsc does not occur, since o> n/2. The

corresponds to collisions in which-

21
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contributioﬁ from such collisions.appears exaétly at the
spectator_strippihg velocity. To obtain the total cross
section for reaction only, one must integrate over the fégion
between the inher product étabiiity circle and the limiting
cardioid. A partiéularly simplé case occurs at the critical
energy above which spectator stripping ieads to product | | T
instability. At this energy, the stability circle for
particle 3 has a radius of, and is centered at, V, A/M,_‘
where M is the totai mass. Therefdre

V) | = zvl(A/M) cose (20)

min .

with 0 < ¢ < /2. If the masses are such that the only:ihter—

section of the cardioid and the circle is at V, = 0, the

3
total reaction cross section at this critical energy'is

d2' ( ™ : n/2
m 12 ' . ‘ i
o= g R J (V3) " sinede - l ‘(V3) sinede
7 max o min ‘
L ‘0 o
1 a2 |, L B B+0)
=7z 42 |1 - T : (21)
As the initial energy increaées'still‘more; the size of the
accessible stability zone continues to decrease. In the 1limit ..

of infinite initial relative energy, the stability circie and
the limiting cafdibid afe taﬁgent at one point, and the
reaction Cross section is zero. It must be stressed that

Eq. (21) 1is valid pnly at one energy, and énly for mass

combinations for which thu stability circle intersects the
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cardioid only at the cusp._:For highér energies, there will
‘be two intersectidns, and for certain hass combinations

(A > B < C} the stability ciftle may intersecﬁ the cérdioid
first at its extremum, and not at its cuSp; It is,of course,
still possib1é>to calculate totéi reaction cross sections

for these Situations,.but the éedmetry of the 1ihiting
‘cardioid and stability circle must be examined carefully in
order to determine the proper domain of integration.

In order to obtain the intensity distribution by inte-
gration of Eq. (16), a relation Between leand the angle ¢
must be found. The basic expression, derived from the
geometry of the magic circle and the 2—3 elastic'scattering
btriangle éhown in Fig. 4 1is |

cot? (22 - (%%)2 = (8%+p%-20pc0s9) (2/V5)° (22)

Here p is the radius of the magic circle, and & is the

perpehdicular distance of its center from the vector YS‘ By
introducing the quantity
az, |
n=1- — ' _ . (23)
T : o
)
the integral in Eq. (16) can be written
: 2m , | , - ‘

1%
°  (1+nctn® (-2))
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Substitutioh'of Eq. (22) leads to

T '
- d¢ | TS
= 2 (25)
° L (a-bcose) -

with

a =1+ an(elepl) /v | (26)
- and | |
b= 8ngp/V.Z. - @n

22

The integral is known; and can be written

4 1 2b -
S - Fog, 2y : (28)
: (a+b)I72 - ~2? a+b |
where-F(%, m) is the complete elliptic integral ofxthe first
kind. The specific intensity of the C product in velocity

space is therefore

2b
01, (1-MF (7, 535)

I = 4 — . T (29)
€ gnfv 2R(a+b)/? |

Thus; once the éizes of the particles have been specified, thé
intensity distribution can be obtained readily with‘the aid
of standard tables4of>fhe elliptic integral. '

" The intensity distribution function fqr particle C was
.evaluated at points on a réctanguiar grid,vand then lines of
‘constant intensity:were drawn using a visuhl interpolation
procedure. The results for'twd'valqu of d23/ro are plotted

in Fig. 5. While some accuracy is lost by usihg a finite size



&

25

grid, this ﬁfocedUre to some degree mimics the lbss of resolution
imposed by any real experiﬁbntal apparatus or by the bin size
in a trajectory calculation. The distributiQn of pafticlé C
is, of course, equivalent to thét of the molecule AB, and is
a somewhat mofé gohvenient représeniation Of the'feéction
dynamics, for reasons which will become evident in the
Subsequeht:discussiOn. |

| For values of V3 which are weii inside the limiting
cardioid, the intensity contours in Fig. > ars very nearly
circular, and have values which fall off almost exactly as
ng; The reéson for this is that the elliptic integral in

Eq. (29) is a.slowly varying function of V, and s,'except at

3
very small values of V. Thus the intensity distribution
is controlled prinéipally by the limiting cardioid, the
factor of ng, and any inner stability'circle determined by
the dissociation energy of the AB product. Figure 5 shows
that the distribution is relatively insensitive to the value
of‘the mufual hard sphere diameter chosen foriparticles 2 and
3. As d23 is made smaller, the total intensity‘associated
with the double impulse sequence becomes smaller, and is more
sharply peaked near Ve = 0. |

The masses of the atoms appear in Eq. (29) only throﬁgh
the factor R.. Thus Fig. 5 can be made to répresent the
product distribution for any mass coﬁbinétioﬁ merely by placing
the projectile velocity and center of ma;s'velocity'properly
with fespect to the vector R. When C > B;lthe cardioid and

centroid sphere tend to be small compared with V particle

1’
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C will tend to be concentrated near zero velocity in the
laboratory, and AB will be forward sééttered. When C < B,
the centroid sphere and limiting cardioid are large, and AB
‘tends to appear at larger cente? of mass scattering angles.
When B = C <<“A, product yelocify vector»diétributions will
be very insensitivé'to isotopic mass variations. The

' + + +

reactions of N,*, 0,7, ¢*, N*, and 0" with H,, D,

and HD
have displayed isotope effects of.these'kinds in the high
relative energy, direct interaction regime.

As a check o% the validity of the analytical treatment
of the sequential impulse model we evéluéted the product
velocity vector distfibutién by carryingfout classical:.
trajéctory calculafions for the hard sphere model. The>
radii of fhe spheres were taken to bé 0.48 K»for the
projeétile'A,.and 0.25 R for B and C,bwhich corfespond to
values intermediate between the extremes used in‘Fig. 5,

The diatom was initial stationary with a bond distan¢e of
0.75 R. Frdm a‘properly Qeighted set of initial oriéntétions
and impact parameters, trajectories were calculated, and the
number terminating in various bins,in-velocity space were
counted. In order to make maximum usé of the trajectories,
an azimuthal integration was pérformed by collecting all -
events in which _V3 and thevéngle € hqd fixed values in one
bin which was then weighted with avfactor of (V3 siné)_l.

| The'resulting‘distribution was plottgd'as the contour.
map shown in Fig. 6. The lower half of the map shows the

bin sizec and the weighted amplitudes collected in each bin.
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Approximately‘six thousand trajectories were used to construct
the map. When allowance is made for statistical fluctuations
and the bin size, the resemblance of Fig. 6 to Fig. 5 is very
close. Other sets of trgjectory calculafionsvwere Tun, and

found to be consistent with thevmajor results of ‘the analyticall

'sequential impulse model: the laboratory distribution of

particle C was insensitive to variation of the masses and

mutual radii of the particles. It is obvious, but still

_ worth stressing, that the analytical treatment revéaled'these

properties much more clearly than could any finite set of
trajectory calculations.

A few remarks are in order concerning "wrong atom'" or

" knock-out processes in which A hits B, but reacts with C.

As we have noted, when the masses of B and C are equal, the

velocity vector distribution for AC fbrmed by the wrong atom

process is identical to that of AB formed by the right atom

process. This is not true if B and C have unequal masses.

The magic circle for wrong atom processes proves to be given

by the intersection of the centroid sphere with a second
sphere of radius |YV2" (l-Yz)l, which is centered ét
YZ"/(l-YZ), where y is the mass ratioAC/B. When y is unity,
this second sphere attains an infinite radius, and becomes |
the bisecting plane discussed above. . The limiting cardioid
for the wrong atom process is givenvby

(VZ") = 2R(cose+y)
max s
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which reduces té an expression equivélent:to Eq. (6) when thé
masses of B and Ciafe equal, From the 1imiting cardioid

alone it is possible to deduce certain general. characteristics
of the product distriBution for wrong atom reactions. These
prove to be qﬁalitétively consiétent with the results of
trajectofy calculations in which the wrong atom processes

are identified. However, thesefchafacteristics are‘ihcon-
sistent with experimentélly determined product distributions
for the 0" -HD and N'-HD systenms. Apparently, wrong atom 
processes are not important in real systeﬁs. Consequently,

we have not pursued the significantly more complicated problem

of an analytical treatment of wrong atom processes.:

Summary

The analytical freatment of the sequential iﬁpulse.model
for the reactioﬁvA(BC, C)AAB has been carried out under the
assumption:that the atoms interact as hard spheres. The
results show a strong prqpenéity for processes in which the
Veiocity'of C‘is Changed very little, and Which‘therefbre
lead to products neér the spectatof-stripping vélocity. :The
angular distribution of products is reiatively insensitive
to the mutual hard sphere‘diameters of the atoms B and C,
particularly in the large angle scattering region. The
effects of isotopic variations can be predicted rather Siﬁply'
'by‘using one map of the C product_distribution. The predictions
of the model are generally consistent with several features
found in.the cxpcrimental‘investigatioﬁs of high energy ion-

molecule reactions.
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Figure Captions
Fig. 1. A velocity vecfor’diagfam for the sequential impulse

model. The two values of yz' represent the two possible in

plane scattering sequences which can lead to the final product

1A}

state YSH" The Q circles represent the zone in which v,

must lie in order for a stable AB product to be formed.

Fig. 2. The limiting cardioid for NH' from the N' (H, ,H)NH
reaction. The spectator stripping vélocity’lies at the cusp
of the cardioid.. The circles represent the low velocity
1imit for product stability at three the initial relative
eriergies E_ = 6.9 eV, 12.5 eV, and infinity.

Fig. 3. The geometry of a sequential impulse collision. The
BC bond axis makes an angle o with the velocity vector yz',
‘and the impact parameter for the second collision is b.
Fig.'4. The geometry of the (a) centroid sphere and (b) magic
circle. |

Fig. 5. A -contour map of the épecific intensity of the C

product atom according to the sequential impulse model for

two values of the parameter d23/ro’ Note that the contribution

of the spectator stripping events, which would appear at the

cusp, is not included.

Fig. 6. A contour map of the specific intensity of the C atom
product according to the trajectory methodf The 1owér half |
of fhe map shows the relative émpiitudes“of products and the
bin size, which is approximately four times the area of the |

grid size used to plot Fig. 5.
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