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SEQUENTIAL IMPULSE MODEL OF DIRECT REACTIONS .. - .. . .· 

Bruce H.:·Mahan~ W. E. W. Ruska, and John S. Winn 

Depantment of Chemistry, and Materials and Molecular 
Research bivision of the Lawrence Berkeley Laboratory, 

Urii vers i ty of California, Berkeley, California 94.72 0 

ABSTRACT 

A model in which the reaction A(BC, C) AB 

occurs as the -result of a sequence of two hard 

sphere ~lastic impulses between the A-B and B-C 

pairs is analyzed. It is shown that the limits of 

the product velocity vector distribution c.an be 

readily obtained from the. analytic geometry of the 

impulse sequenc~, and that an analyt~cal expression 

for the detailed product distribution for all mass 

combinations and energies can be deduced. The 

results show a propensity for processes in which 

the velocity of the C ~tom is changed very little 

and which therefore lead to products·near the 

spectator stripping velocity. The angular distri-

bution is dependent on, bu~ relatively insensitive 

to, the ratio of the mutual hard.sphere diameter of 

B and C to their bond distance. The predictions of 

the model _are generally·consistent with the features 

found in the experimental investigations bf high 

energy ion-molecule reactions. 

LBL-5197 



It has proved to be of value to describe the dynamic 

mechanism of an elementary bimolecular chemical reaction as 

involving either a short-lived direct interaction of collision 

partners, or. a long;..lived collision complex.- In the former 

case, the collision partners are close for a time comparable 

to a vibrational period, but less than a full rotational 

period. In the latter case, the partners are close and 

strotigly interacting for several rotational periods. The 

dividing line between the two classifications ~s in general 

somewhat diffuse. Moreover, even when a.reaction proceeds 

predominantly by the lo11;g lived complex mechanism, there will 

be a distribution of l_ifetimes, and a s~bstantial component 

of the reactive events may occur by what are effectively 

direct interactions. Examples of'ion-molecule reactions 

h . h f 11 . h 1 'f' . k l,Z w 1c a 1nto eac extreme c ass1 1cat1on are now nown, 

and reactions which display intermediate behavior have been 

. . d 3,4 1nvest1gate • 

Reactions which proceed by direct inte.raction have 

product velocity vector distributions which are usually 

asymmetric about the ±90° axis in the barycentric .system. 

The shape of such a distribution depends on the relative 

energy at which the reaction is run, the masses of the atoms 

in the system, and of course-on the identity of the reaction 

itself, since each chemical system has a potential energy 
.' 

surface which is in some or many respects unique. By .. 
choosing a trial potential energy surface, . then calculating 
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the results ~f many classic~! trajectories geri~rated fro~ a 

properly weighted set of i~i~ial.conditions, it is.~o~sibl~ 

to obtain a theoretical product veloc{ty'~ecior distribution 

which may b~ compared with-experimental results. The effects 

of various potenti~l energy surface feature~ on the produci 
5 distributions have been ex·plored in thi's· manner . 

Another way to analyze the· features of product velocity · 

distributions is to use simplified models.of th~ dynamic 

processes. It must be recognized that su~h models may have 

intrinsic limitations which prevent them from accounting for 

all. features of the produ'ct distribution. Nevertheless, they 

have the virtue of simpli~ity, ~nd may sometimes stand as 

rigorous limiting cases "which illuminate· experimental results 

even when they do not reproduce· 'them exactly. 

A number of simple ~odels for the atom transfer process 

have been proposed, and at lea~t partially tested against 
. .. . 6-13 

molecular beam scatter1ng data. The sequential impulse 

model proposed by Bates, Cook, ~nd Smith6 is conceptually 

simple' 'and has the capacity' for considerable refinement. 

In this model, the reaction A(BC, ,C) AB is viewed as an event 

in which A hits B impulsively and elastically, B then hits C 

in a like manner, and then A combines with B if their energy 

of relative motion. is le~s.ihan the d~ssociation energy of 

the product molecule. Suplinsk.as, 8 and George and Suplinskas9 

have elaborated the m~del, and have shown that it can repro-
+ duce the major features of the Ar - D2 reactive scattering. 
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Gillen, Mahan, and Winn14 found that a version of the model 

in which the atoms interact via hard sphere potentials is 

consistent with the distributions of the products of the 

reaction of 0+ with n2 and HD in the regime of high relative 

energies. 

The foregoing applications 8 ' 9 ' 14 involved calculation 

of the final p·roduct velocities from sampled initial condi­

tions by using large digital computers •. That is, despite 

the simpli~ity of the model, its predictions were obtained 

by executing trajectory calculations. It would be a valuable 

aid to the analysis of product' distributions if there were a 

method of finding the collection of trajectories which 

contribute to the product intensity at any given point in 

velocity space. It has been pointed out that the·sequential 

impulse model does in fact allow such an "inverted" analysis 

f h d d . "b t" 15 o t e pro uct 1str1 u 1on. Some of the conclusions which 

can be reached merely by vector analysis have been discussed. 

In•the following sections we review these velocity vector 

relationships and show how the product ·intensity distribution 

can be calculated. 

Velocity Vector Analysis 

We assume that the atoms A, B, and C interact pairwise 

only through square well potentials of the sa~e depth. Thus 

the potential energy surface for the triatomic system is a 

square trough with a flat bottom and one infinite wall which 

·• 

16 corresponds to the hard spheTe core interaction of the atoms. 
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The outer wall of the trough has a height equ~l to the 

dissociation energy of the reactant BC diatom, or the :product 

AB molecule. This attractive branch.of the potential serVes 

only to hold ihe BC molecule together ~efore reattion; ~nd 

the AB molecule together after reaction· ... A.ll sig.nificant . 

veiocity change~ occur as a result of the collisions of t~e: 

hard sphere cores of the molecules. 

To expose the essential f~~tu~es of the model, we shall 

' temporarily assume that the collisions occur such that the 

three atoms remain in a plane. T~is assumption will later 

be eliminated in order to complete the model. An example of 

a sequence of events which may lead to a reaction is shown 1n 
!"• 

Fig. 1. Initially, the diatom BC (particles 2 and 3, 

respectively) is stationary in the laboiatory, and A (particle 

1) moves toward it with a constant velocity y1 .. Particles 

1 and 2 undergo an impulsive elastic collision, and as a 

result, their relative velocitY vector undergoes a rotation 

about the center of mass of the A-B system. This means that 
. - --. . 

. .. I 

particle 1 acquires a new laboratory velocity y
1 

which lies 

somewhere on a circle of radius V1B/(A+B) whose origin is-at 

the A-B centroid. Here we are letting A, B, and C stand for 

the masses of the atoms, and using a prime to denote the 

fact that one impulsive event has 'occurred. The corresponding 

laboratori velocity of the B-atom, y2 ', lies somewhere on a 

circle of radius v
1

A/(A+B), which has it~ origin at the A-B 

centroid. The magnitude of V ' is -2 

· A x1 
= 2 A+B v1 sin(-r) (1) 



/ 

where x1 is the scatteri~g angle in the center of mass of the 

A-B system. If the full three dimensional case were being 

considered, both the circles referred to would be spheres. 

We now consider particle 2 moving with its constant 

. ' ~elocity .Yz toward particle 3. If the latte~ is properly 

positioned, an impulsive elastic collision occurs, particle 2. 

acquires a new velocity y2
11 

and particle 3 assumes the velocity 

y3
11

• In this second impulsive 

vector (initi~lly just y2 ') is 

about the 2-3 centroid. The 

event, the 2-3 relative velocity 

rotated through an angle x2 
· t d of V 11 

• • b magn1 u e _3 1s g1ven y 

II B ' 
Xz 

v3 = Z(B+C) Vz sin(-) . 2 . 

4 (A! B) (B~C) vl 
xl . x2 

(2) = sin(z-) s1n(2 ). 

To decide whether or not this sequence of impulses leads 

to the reaction A(BC, C) AB, we apply a simple. criterion: 
II 

the tip of the velocity vector y3 must lie in a stability 
14 h. h h 1. . d . d b h . h zone w 1c as 1m1ts eterm1ne y t e requ1rement t at 

the molecule AB must hav-e an internal (vibrational and rota­

tional) energy which i~ greater than or equal to zero, and 

less than its dissociation energy. By energy conservation, 

these limits can be expressed as values of the translational 

exoergicity Q, and these are. shown fo~ a special case in Fig. 1. 

It is clea~ that the direction as well as the magnitude of 

y3
11 is important to the determination of whether a reaction 

., 

has occurred. 
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Having found one sequence of ~mpulses which produce a 

particular y3", we must find all other impulse sequences which 

lead to the same final result. We note that all possible 

values of y2 ' lie on a circle of radius v
1

A/(A+B) whose. 

origin is ~t ihe i~2 barycenter. The locus. o~ ail possible 

2-3 centroid velocities can be fo~nd by multiplying all 

possible values of y 2 ' by B/(B+C), and is a circle of radius 

with its center on y
1 

at a distance R from the origin. We 

call this locus the centroid circle. 

" Because the 2-3 collision is elastic, y
3 

is the base 
.,. 

of an isosceles triangle whose other sides are of length 

v2 ' B/(B+C). " -The perpendicular bisector of y3 mu~t pass 

through the 2-3 centroid, and this centroid must lie on the 

centroid circle. Thus for the in-plane situation displayed 

in Fig. 1, there are just two centroids which satisfy both 

these conditions, and accordingly, there are at most only 

two in~plane sequences that can lead to a given value of y3 
" . 

One of these sequences corresponds to a large xl' and a small 

x2, with the two angles being related by Eq. ( 2) • The other 

sequence results when the values ~f x
1 

and x2 are interchanged. 

Once we recognize that y2 ' need not lie in the plane of 

ff· " y
1 

and y3 , the origin of other sequences which lead to y3 

becomes clear. When out-of-plane events are considered, the 

centroid circle becomes a centroid sphere, .and th~ perpendicular 

" bisector of V~ becomes a 11lane. The intersection of this 
-,) 
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bisecting plane with the centroid sphere is a "magic circle" 

.perpendicular to the y1 - y3" plane. As· one moves along the 

magic circle, all the x1 - x2 pairs that can lead to scattering 

at y3" are ·encountered. The extreme values of x1 and x2 
I.. v II occur when y1 , y2 , and _3 all lie in the same p·lane. 

The foregoing analysis applies to the process A(BC, C) AB, 

in which A eventually is bound to the atom it .strikes first. 

This "right atom'' event is not the only possibility, however. 

If particle 2 is scattered into the appropriate zone of 

stability, the molecule AC is formed. If the masses of B 

and C are equal, this "wrong atom" event is simply related 

the "right atom" event just discussed. Inspection of Fig. 

shows that for given v I the event which would place Yz a -2 

in the stability zone is one in which the scattering angle 

1 

" 

is the supplement of the angle x2 which would have placed Y3" 
at the same point in the "right atom" process. The consequence 

of this is that when the individual events are described by 

the hard sphere differential scattering cross section,. wrong 

atom reactive processes are just as probable as right atom 

processes. When the masses of B and C are unequal, this 

observation is no longer valid, since "right atom" and "wrong 

atom" process are not described by the same magic circle. 

We should also remark that this model does not take into 

account processes in which A hits B, then C, and then reacts 
.• 

with B. It is difficult to argue on a pr~ori grounds that 

such processes are ·unimportant, and their ~ccurrence in real 

systems may lead to failures of the model. On the other hand, 
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George and Suplinskas9 found these collision sequences to be 

relativelY unimportant in their trajectory analysis of· the 

kinematic reacti~n model for the Ar+(D 2 , D) ArD+ reaction. 

For this and similar mass co~biriations, this collisio~·sequence 

will place th~ proauct velocity very close to ~h~ locui 

predicted by .the elastic spectator model. In the high energy 

regime, where spectator or elastic spectator process do not 

lead to stable products, the A hits B, A hits C, A reacts with 

B sequence will certainly nut be importan~. 

A number of useful conclusions can be drawn directly 

from Fig. 1. First, there will be certain y3" vectors for 

which the perpendicular bisec.tor does not intersect the 

centroid sphere. Even though these values of y3" might be 

consistent with the total energy and momentum conservation 

laws, they can not be produced by a sequence of two ~l~~tic 

impulses. For example, events in which y3" is_dire~ted at 

180° in the laboratory coordinate system can not occur. Thus 

there is no exactly backward recoil of particle C, and no 

exactly forward recoil of the AB product. This obs·ervation 

is of interest in connection with-deviations from the ·ideal 

12 17 spectator stripping phenomenon. ' Forward recoil could 

occur if, prior to the A-B impulse, the ~ector y1 were in­

creased in magnitude with the center 9f mass velocity of the 

total system held constant. This could occur if there were 

an attractive potential betwe~n re~ctants, ·and this is in 

fact the mechanism.·for forward recoil proposed in the 

11 d .l . f. 1 . . d 1 12 so-ca c maul .Icc stripping mo c . 

9 



One can also see that forward recoil could occur if, 

during the B-C collision, the B-C relative velocity vector 

were increased in length, so that this collision would appear 

to be super-elastic. This could occur in a real system if 
~. . -

there were a repulsive energy release between B and C as the 

products separated. This is the basic idea involved in the 

so-called direct interaction with product repulsion (DIPR) 
10 13 model ' for reaction dynamics. The velocity vector analysis 

connected with the sequential impulse model clearly shows 

that more than one property of a potential energy surface can -· 
produce a given feature o£ the product velocity distribution. 

It is clear that y3
11 

vectors-directed at angles other 

than 180° are accessible only if the magnitude of y3" is 

small enough so that there is an intersettion of the bisecting 

plane and the centroid sphere. If we consider the in-plane 

scattering sequence we find from Fig. 1 that the angles ~+ 

and ~ between y1 and the two values of y2 ' which are defined 

by;the intersection of the centroid circle and the bisector 

of y3 ' are given by 

" V II v II 2 1/2 

10 

2 
cos ~+ 

1( . 2 v3 ) = z S1n E + ~ COS£ ± 1[( . 2 3 )2 4( 3 ) ] z S1n E ·+ ~ COS£ - 4R . (4) 

The corresponding values of _x 2 are given by 

2 x2 
cos C-zl 

± .• 

The situation in which the discriminant ofEq. (4) is zero 

( S) 

corresponds to the bisector being tangent to the centroid circle. 

• 
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For a given lab6ratory scattering angle E for parti~le 3, 

this corresponds to the greatest magnitude of v3" which can 

be produced by an elastic impulse sequence. Setting the 

dis~riminant equal to zero, we find 

'·· 
(V ") 

3 max 
2R(coss+l). 

II 
Thu~ the limiting values of y

3 
describe a cardioid which . . 

has a cusp at the origin of laboratory coordinate system. 

(6) 

There is a corresponding cardioid which gives the maximum 

velocity of the AB product in the center of ma6s system, and 

this is illustrated in Fig. 2. It is. of interest to note 

that AB product at the. cusp of the cardioid is moving with 

the spectator stripping velocity. One very simple picture 

of product. velo~ity distributions ~s provided by the elastic 

spectator model, in which the product speed relative to the 

center of mass is expected to be at all angle~ equal to the 

spectator stripping velocity. Such. ·a distribution would 

occur if the AB product were formed by the spectator stripping 

process, and then rebounded elastically as a unit from the C 

atom. Observed deviations from this elastic spectator model 

are then to be attribute~ to inelasticity or superelasticity 

of the collision of AB with C. The reflection-spectator12 

and DIPR models 10 are variations of this elastic spectator 

model theme. The limiting cardioid derived for the sequential 

impulse model shows that apparently superelastic deviations 

from the clastic. spectator model can occur quiti naturally 

11 



without the intervention of special types of reactant attrac-

tion or product repulsion. 

The accessible part of the product stabili~y zone is 

bounded on the outside by the limiting cardioid, and on the 

inside by a circle whose radius is determi~ed'by"Q . , the . m1n 

smallest value of the translational exergicity which can lead 

to a stable AB product. The size of the limi~ing cardioid 

is ~roportional to R, and thus scales with the initial 

velocity v
1

• The size of the inner stability circle is 

determined by ~ubtracting a fixed quantity (the AB dissociation 

energy) from the initial relative energy, and taking the 

square root of the result. Thus the size of the Q . circle mln 

does not scale with v
1

. The size of the kine~atically 

accessible zone can be described at all energies by one 

cardioid, if the units of the diagram are changed as the 

energy changes. However, as the initial energy is increased, 

on such a diagram, the radius of the inner stability circle 

increases and the size of· the stability zone decre<;ses. .This 

is shown in Fig. 2 by several inner stability circles which 

correspond to different initial relative energies. 

As the initial relative energy increases, the inner 

stability circle expands and eventually intersects the 

limiting cardioid at the cusp. This.situation corresponds 

to the critical energy at which the spectator stripping peak 

which is prominent in many product distributions is expected 
., 

to be lost. In mo"st ion-molecule rea·ctions which have been . 
investigated, the product -scattered in the direction of the 

12 
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initial projectile is in fact retained, but moves to. sp.eeds 

.which are greater than the spectator stripping value, and 

which lie the stability zone. As indicated above, the cause 

of this forward recoil is to be found in features that are 

not includ~d in the strict hard sphere sequential impulse 

model. We note that all reactions which exhibit forward 
. . 17-19 

reco1l . at high energies are substantially exoergic, 

and those that do not show forward recoil 14 , 20 are thermo-

neutral or weakly exoergic. This suggests that exoergicity 

is the factor which promotes forward recoil. It,is in general 

an open question as to whether this forward recoil comes from 

reactant attraction or product repulsion. Experimentation 

with velocity vector diagrams of the type of Fig. 1 suggests 

that product repulsion is the most efficient way in which 

reaction exoergicity can be used to stabilize the reaction 

product. In the so-called modified stripping model,lZ,Zl it 

is proposed that the small difference of the polarization 

at'traction between the reactants and products accounts for 

the minuscule deviations of the product intensity peak from 

the spec~ator stripping velocity which are observed for ion-

molecule reactions at very low energy. In view of the other 

possible mechanisms of forward recoil, this proposal seems 

very speculative. 

In the strict sequential i~pulse model, the potential 

surface represents the possible interact~on of hard spheres, 

and there is no me-chanism for exactly fon-:.ard recoil of the 

AB product. Thus the product distribution assumes a crescent 

13 



shape when the initial energy is high enough to make spectator 

stripping impossible. As the energy is increased still further, 

the inner stability circle makes a second intersection with 

the limiting cardioid at 180°. Thus according to the sequential 

impulse model it i~ the rebound scattering ~hich ~s lost 

after the stripping contribution has disappeared. It should 

be noted that for many mass combinations, the predictions of 

the sequential impulse model will fail in the large angle 

region, because this region may be popula~ed by product which 

is formed by multiple or "chattering" collisions16 in which B 

rebounds between A and C several times. This accounts, ~t 

least partially, for the observations14 , 20 of product in the 

large angle region at very high energies. 

It is of interest to examine the type of impulse sequence 

which leads to AB product with no internal excitation. For 

the thermoneutral potential surfaces we are treating, this 

corresponds to a translational exoergicity Q equal to zero. 

Mo~e significantly, it corresponds to impulse sequences which 

produce equal velocities for A and B. A sphere in velocity 

space can be drawn with its origin at the center of mass 

velocity of the ABC system, and {ts radius equal to the AB 

speed which corresponds to Q = Q. A second sphere which is 

the locus of all possible velocities 9f A after the A-B 

collision can also be drawn with radius v1 B/(A+B), centered 

on y1 A/(A+B). Since the velocity~of A in all sequences is 

completely determined by the result of the first impulse, 

and :;incc in a Q = 0 event_ A and B and their mutual ccntcT 

14 

• 

• • 



• 

. -

of mass must have velotities on the Q = 0 sphere, the only 

double impulse sequences which can produce unexcited products 

lie on the intersection (if any) of the Q .=·o sphere and the 

y1 ' sphere. The intersection of the spheres produces a circle 

whose plane is perpendicular to y1 . After working out the 

analytic geometry, we find that according to the sequential 

impulse model, scattering to give unexcited AB product occurs 

only at a barycent~ic angle 8
0 

given by 

ABCM+2A2c2-B 2M2 . = 
2AC[AC(A+B)(B+C)]l/Z 

. (7) 

if it occurs at all. We note also that the C product will 

appear at the supplement to this angle which is also a point 

of tangency between the limiting cardioid and the Q = 0 

circle for the C product. This must be true, since the 

limiting cardioid is the highest velocity allowed by the 

sequential impulse model, and Q = 0 corresponds to the highest 

relptive velocity allowed by any model. 

Since the limiting cardioid-and the Q = 0 circle are 

tangent only at the barycentric given by Eq. (7), it is at 

this angle that the accessible part of the stability zone is 

widest. For the N+ - H2 system this ~ngle is 51°, and for 

·+ 0 - H2 it is 47°. It is also useful to realize that as the 

initial projectile velocity increase~ toward infinity, the 

Q = 0 circle and the limiting cardioid scale together and 

maintain their tangency. However, the inner stability circle 

intercepts greater and gTcatcr fractions of the limitint' 

15 



cardioid as the energy increases, as Fig. Z indicates. As 

the limit of infinite relative velocity, is approached, the 

accessible part of the Stability zone contracts to the point 

on the cardioid at e . It is this contraction that is 
0 

responsible for th~ product intensity lobes. obser.ved14 'ZO in 

the vicinity of e
0 

in the N+ - Hz and 0+ - Hz systems at high 

relative energies. 

We have discussed the events in which an A-B collision 

is followed by a B-C collision. In order for this sequence 

the angle a. between the intermediate velocity Yz I 
to occur, 

and the BC bond axis must be less than rr/Z. For a. > rr/Z, 

the mo'tion of B most often will tend to carry it away from c, 

and there wil1 be no B-C collision possible. If the AB 

product in such events is stable, it will appear at the 

spectator stripping velocity. Stripping is also possible for 

values of a somewhat smaller than rr/Z if the mutual hard sphere 

diameter of the B-C pair is less than the impact parameter 

for the second collision. Thus, for this hard sphere potential 

surface, over half of the total reactive events can appear at 

the spectator stripping velocity. 

These observations make it clear how spectator stripping 

can be so prominent in the product velocity vector distribu-

tions 'of ion-molecule reactions. We note that in real systems, 

the potential energy surfaces must have only a weak dependence 

on the ABC angle if they are to produce distributions which 

are comparable to those derived from the hard sphere model. 

16 
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Such behavior will be facilitated if there is a strong long 

range attraction between A and B in the product channel, as 

there is when A is an alkali atom and B is a halogen. However, 

if the potential surface is anglS independent, stripping is 

possible even whei'A and B collide essentiailr h~~d-on. Thus 

if spectator stripping is d~scribed as involving grazing 

collisions, it is the B-C interaction, and not necessarily 

the A-B interaction which must be of the grazing type. 

Product Intensity Distributions 

To formulat~ the product intensity distribution, we note 

first that the total rate at which A-B collisions occur is 

(8) . 

where· a12 is the total cross section for A-B collisions, and 

n1 and n 23 are the concentrations of projectile and target 

molecules respectively. These collisions produce various 

va+ues of y2 ' .which terminate on a sphere in velocity space. 

The corresponding centroids of the 2-3 system all lie on the 

centroid sphere. In a polar coordinate system centered at R, 

the origin of the centroid sphere, 'the distribution of 2-3 

centroids is uniform. Therefore, the probability that the 

centroid velocity will lie in e, e+de, ¢, ¢+d¢ is 

(9) 

It is convenient tp take the polar axis of this system 

" parallel to V ... 
~..) 

17 



Now we find the probability that a 2~3 collision will 

occur in which the scattering angle is x2 . For a specified 
I y2 , the scattering angle x2 will depend on the orientation 

of the B-C bond axis with respect to y2 
I 

According to Fig. 3, 

the probability o{'a orientation expressed by the angles a 

and y is 

1 = 4rr sinadady. 

Since sina = b/r , where b is the impact parameter and r is 
0 0 

the equilibrium 2-3 bond distance, we can write 

1 

(1-

By making use of the relation 

bdbdy 

bdbdy 
b2 1/2 
-2) 
r . 

0 

(10) 

(11) 

wh~re 1 23 is the differential scattering cross section for 

the second impulse, and d 2w23 is the differential solid angle 

in the 2-3 barycentric 

= 

system, we can deduce the 

2 
· 123d w23 
2 2 · '2 l/ 2 · 

· 4rrr
0 

(1-b /r
0 

) 

expression 

Thus, the differential rate for collisions in which the 2~3 
2 centroid is in de, d~ and the 2-3 scattering is in d w23 is 
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It is now necessary to eliminate the differential solid 

angle element d2w23 in favor of,d2n3 , the solid angle element 

for particle 3 in the laboratory coordinate system. The 

necessary relation is 

where u 3 is the speed of particle 3 in the 2-3 barycentric 

system, and we have discontinued the prime notation. Since 

we have 

In addition, we wish to eliminate de in favor of dV3 . From 

Fig. 4 we see that 

V3/2R - COSE = cose. 

Therefore 
·' 

dV3/2R = -sinede. 

(13) 

(14) 

We take the absolute value.of this express1on and substitute it, 
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together with Eq. (13) in Eq. (12) and obtain 

x2 
sin(-z)d¢ 

To obtain the total rate of collisions which produce v 3 
in (V3) 2 

dV3 d2n3 it is only necessary to integrate Eq. (15) 

over the magic circle. If we introduce the relations 

2 2 2 X2 
b = d 23 cos C-z) 

which hold for hard sphere scattering, integrate over ¢ and 

rearrange, we find 

2 sin 
x2 

20 

(15) 

d 3 R c 1 0 12d23 -z d¢ 
(nl)(n23)Vl d 3v 

= 
32TI2ro2v32R 

(16) 
d 2 x 2 112 3 

(1- 4 cos -z) 
r 

0 

The quantity on the left is the rate of product formati~n per 

unit projectile flux, per target gas molecule, per unit 

velocity space volume. It is, therefore, equal to the specific 

intensity i which is reported in maps' of product velocity 

d . "b . 18 vector 1str1 ut1ons. 

We note that the total intensity of a process other than 

2 2 spectator stripping is proportional to the factor a 12 Cd 23 /r
0 

), 

which is the cross section for the first lmpulse times the 

chance that the second \,·jll OCCUT.: The factor of \'= 2 
.) 

• 

• • 
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tends to promote a high product intensity near the spectator 

stripping velocity, and this is modified by the value of the 

integr~l over the magic circle. 

In order to perform the integratio~ over the magic circle, 

the relation between ·.4> and the scattering a·ngl.e X: must be found. 

However, in the special case that d 23 = r
0

, this relation.is 

unnecessary, and Eq. (16) immediately reduces to 

i = 

2 where we have used a12 = nd12 . In this special casei all 1-2 

impulses lead to 2-3 impulses if a < n/2. The intensity 

-2 distribution is controlled only by the factor of v3 and the 

stability limits. -To recover the total cross section for all 

processes in which two impulses occur, ~e execute 

where the integration includes everything inside the limiting 

cardioid. Therefore 

2 

I: TI dl2 
R(l+COSE) sinEd£ a = 4 ----yr 

TI 2 = 2 dl2 

which is half of the cross section_ for 1-2 collisions. The 

~issing fraction of a 12 correspond~ to collisions in which 

the second impulse docs not occur, since a.:> TI/2. The 

(17) 

(18) 

(19) 
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contribution from such collisions appears exactly at the 

spectator stripping velocity. To obtain the total cross 

section for reaction only, one must integrate over the region 

between the inner product stability circl~ and the limiting 
'• 

cardioid. A particularly simple case occurs at the critical 

energy above which spectator stripping leads to product 

instability. At this energy, the stability circle for 

particle 3 has a radius of, and is centered at, y1 A/M, 

where M is the total mass. Therefore 

(V3) . = 2Vl(A/M) COS£ 
mln 

(20) 

with 0 ~ £ ~ n/2. If the masses are such that the only inter-

section of the cardioid and the circle is at v3 = 0, the 

total reaction cross section at this critical energy is 

d[z ([ r'z TI (V
3

) · sin£d£ - (V 3) ·. sinede] (J = 8 · max 
0 

mln 

TI 2 
[ 1 - (A+ B) (B+C) 1 = 2 dl2 4BM (21) 

As the initial energy increases still more, the size of the 

accessible stability zone continues to decrease. In the limit 

of infinite initial relative energy, the stability circle and 

the limiting cardioid are tangent at one point, and the 

reaction cross section 1s zero. lt must be stressed that 

Eq. (21) is valid only at one energy, and only for mass 

comhinatj ons for 11·hich tJH: stahi lity circl'c intersects the 
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cardioid only at the cusp. For higher energies, there will 

be two intersections, and for certain mass combinations 

(A > B < C) the stability cirtle may intersect the cardioid 

first at its extremum, and.not at its cusp. It is,of course, 

still possible to ~alculate total reaction cross ~ections 
' 

for these situations, but the geometry of the limiting 

cardioid and stability circle must be examined carefully ~n 

order to determine the proper domain of integration. 

In order to obtain the intensity distribution by inte-

gration of Eq. (16), a relation between x2 and the angle ¢ 

must be found. The basic expression, derived from the 
' geometry of the magic circle and the 2-3 elastic scattering 

triangle shown in Fig. 4 is 

2 2 2 = (1 +~ -21pcos¢)(2/V3) 

Here p is the r•dius of the magic circle, and t is the 

the integral in Eq. (16) can be written 

d¢ 
1/2 . . X . 

(1 +nctn2( -fJ) 

23 

(22) 

(23) 

(24) 



Substitution of Eq. (22) leads to 

J- = zr 
0 

d¢ 
l/2 (a-bcos¢) 

with 

and 

22 The integral is known, and can be written 

~ = 4 ('IT 2b 
(a+b)l/2 F Z' a+b) 

'IT where F(2 , m) is the complete elliptic integral of the first 

kind. The specific intensity of the C product in velocity 

space is therefore 

(25) 

(26) 

(27) 

(28) 

(29) 

Thus, once the sizes of the particle~ have been specified, the 

intensity distribution can be obtained readily with the aid 

of standard tables of the elliptic i~tegral. 

· The intensity distribution function for particle C was 

evaluated at points on a rictangular grid, and then lines of 

constant intensity were drmm usin:.; a visu.al interpolation 

procedure. The results for.two values of d /r are plotted . 23 0 

in Fig. 5. While some accuracy is lost by using a finite size 
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grid, this procedure to some degree mimics the loss of resolution 

imposed by any real experim'ental apparatus or by the bin size 

ln a trajectory calculation. The distribution of particle C 

is, of course, equivalent to that of the molecule AB, and is . 
a somewhat ~ore co~venient representation o~ the ~eaction 

dynamics, fo~ reasons which ~ill become evident in the 

subsequent discussion. 

For values of v3 which are well inside the limiting 

cardioid, the intensity contours in Fig. ~ ara very nearly 

circular, and have values which fall off almost exactly as 

-2 V3 . The reason for this is that the elliptic integral 1n 

Eq. (29) is a slowly varying function of v3 and E, except at 

very small values of v3 . Thus the intensity distribution 

is controlled principally by the limiting cardioid, the 

fa~tor of v; 2 , and any inner stability circle determined by 

the dissociation energy of the AB product. Figure 5 shows 

that the distribution is relatively insensitive to the value 

of;the mutual hard sphere diameter chosen for particles 2 and 

3. As d23 is made smaller, the total intensity associated 

with the double impulse sequence becomes smaller, and is more 

sharply peaked near v3 = 0. 

The masses of the atoms appear in Eq. (29) only through 

the factor R. Thus Fig. 5 can be made to represent the 

product distribution for any mass combination merely by placing 

the projectile velocity and centei of mass velocity properly 

with respect to the vector R. When C > B, the cardioid and 

centroid sphere tend to be. small compared with v
1

, pan:.iclc 
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C will tend to be concentrated near zero velocity in the 

laboratory, and AB will be forward scattered. When C < B, 

the centroid sphere and limiting cardioid are large, and AB 

tends to appear at larger center of mass scattering angles. 

When B = C << A, product velocity vector di-stributions will 

be very insensitive to isotopic mass variations. The 

reactions of N
2

+, o
2

+, C+, N+, ~nd 0+ with H
2

, n
2 

and HD 

have dis~layed isotope effects of these kinds in the high 

relatiVe enetgy, direct interaction regime. 

As a check of the validity of the analytical treatment 

of the sequential impulse model we evaluated the p-roduct 

velocity vector distribution by carrying out classical. 

trajectory calculations for the hard sphere model. The 
0 

radii of the spheres were taken to be 0.48 A for the 
0 

projectile A, and 0.25 A for B and C, which correspond to 

values intermediate between the extremes used in Fig. 5. 

The diatom was initial stationary with a bond distance of 
0 

0.15 A. From a properly weighted set of initial orientations 

and impact parameters, trajectories were calculated, and the 

number terminating in various bins in·velocity space were 

counted. In order to make maximum use of the trajectories, 

an azimuthal integration was performed by collecting all 

events in which v
3 

and the angle £ had fixed values iri one 

-1 
bin which was then weighted with a factor of (V

3 
sin£) . 

The resulting distribution was plotted as the contour 

map shown in Fig. 6. The lower half of th~ map shows the 

bin size artc.l the Hcighted amplitudes collcctec.l in each bin. 
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Approximately six thousand trajectories were used to construct 

the map. When allowance is made for statistical fluctuations 

and the bin size, the resemblance of Fig. 6 to Fig. 5 is very 

close. Other sets of trajectory calculations were run, and 

found to be consislent with the major resul~s of ~he analytical 

sequential impulse model: the laboratory distribution of 

particle C was insensitive to variation of the masses and 

mutual radii of the particles. It is obviou~, but still 

worth stressing, that the analytical treatment revealed these 

properties much more clearly than could any finite set of 

trajectory calculations. 

A few remarks are in order concerning "wrong atom" or 

knock-out processes in which A hits B, but reacts with C. 

As we have noted, when the masses of B and C are equal, the 

velocity vector distribution for AC formed by the wrong atom 

process is identical to that of AB formed by the right atom 

process. This is not true if B and C.have unequal masses. 

The magic circle for wrong atom processes proves to be given 

by the intersection of the centroid sphere with a ~econd 

sphere of radius !yv2" (l-y
2

) I, which is centered at 

II 2 y2 /(1-y ), where y is the mass ratio C/B. When y is unity, 

this second sphere attains an infinite radius, and becomes 

the bisecting plane discussed above .. The limiting cardioid 

for the wrong atom process is given by 
.' 

(V ") = 2R(cos£+y)' 2 max 
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which reduces to an expression equivalent to Eq. (6) when the 

masses of B and c·are equal. From the limiting cardioid 

alone it is possible to deduce certain general characteristics 

of the product distribution for wrong atom reactions. These 

prove to be qualit~tively consistent with the re~ults of 

trajectory calculations in which the wrong atom processes 

are identified. However, these' characteristics are 1ncon-

sistent with experimentally determined product distributions 

·+ + 
for the.O -HD and N -HD systems. Apparen~ly, wrong atom 

processes are not important in real systems. Consequently, 

we have not pursued the significantly more complicated problem 

of an analytical treatment of wrong atom processes. 

Summary 

The analytical treatment of the sequential impulse model 

for.the reaction A(BC, C) AB has been carri~d out under the 

assumption that the atoms interact as hard sph~res. The 

results show a strong pr~pensity for processes in which the 

velocity of C is thanged very little, and which therefore 

lead to pro~ucts near the spectator stripping velocity. The 

angular distribution of products is relatively insensitive 

to the mutual hard sphere diameters of the atoms B and C, 

particu~arly in the large angle scattering region. The 

effects of isotopic variations can be predicted rather simply 

by· using one map of the C product ~istribution. The predictions 

of the model are generally consistent with several features 

found in the experimental investigations o£ high energy io11-

molecule reactions. 
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Figure Captions 

Fig. 1. A velocity vector diagram fo~ the sequential impulse 

model. The two values of y2' represent the two possible in 

plane scattering sequences which can lead to the final product 

V 
II 

state _
3

_ 
.. II 

The Q circles represent the zone in which y
3 

must lie in order for a stable AB pr·oduct to be formed. 

Fig. 2. 
. + + + 

The limiting cardioid for NH from the N (H 2 ,H)NH 

reaction. The spectator stripping velocity lies at the cusp 

of the cardioid. The circles represent the.low velocity 

limit for product stability at three the initial relative 

energies E = 6.9 eV, 12.5 eV, and infinity. r 

Fig. 3. The geometry of a sequential impulse collision. The 

BC bond axis makes an angle a with the velocity vector y2 ', 

and the impact parameter for the second collision is b. 

Fig. 4. The geometry of the (a) centroid sphere and (b) magic 

circle. 

Fig. s. A·contour map of the specific intensity of the c 

product atom according to the sequential impulse model for 

two values of the parameter d 23 /r
0

• .Note that the contribution 

of the spectator stripping events, which would appear at the 

cusp, is not included. 

Fig. 6. A contour map of the specific intensity of the C atom 

product according to the trajectory method. The lower half 

of the map shows the relative amplitudes,of products and the 

bjn size, which is approximately four tim~s the area of the 

grid size used to plot Fig. 5. 
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