
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
On Modeling Intentions for Prospective Memory Performance

Permalink
https://escholarship.org/uc/item/0tj4d9f0

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 28(28)

ISSN
1069-7977

Author
Elio, Renee

Publication Date
2006

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0tj4d9f0
https://escholarship.org
http://www.cdlib.org/

On Modeling Intentions for Prospective Memory Performance

Renée Elio (ree@cs.ualberta.ca)
Department of Computing Science, University of Alberta

Edmonton, Alberta T6G 2E8

Abstract

Four models of intention handling were implemented and
evaluated for their fit to a set of prospective memory reaction
time data. The models instantiated either a top-down intention
monitoring scheme or a bottom-up intention cueing scheme,
corresponding to two types of descriptive accounts for
prospective memory performance. Top-down models yielded
reaction time patterns that more closely matched observed
patterns. In these models, the cost of managing a delayed
intention during a primary task is a function of the increased
number of competing, possibly relevant intentions. Issues
surrounding task-independent processing and representational
commitments for what it means ‘to intend’ and to manage
multiple intentions are discussed.

Keywords: intentions, goals, cognitive architecture,
prospective memory, ACT-R, executive control

Introduction
This work is concerned with expanding the scope of
cognitive theories to better address elements of the ‘human
executive control function’ (Kieras et al., 2000; Schorr et
al., 2003; Anderson et al., 2004; Salvucci, 2005). For
example, the ACT-R modeling framework (Anderson &
Lebiere, 1998; Anderson et al., 2004) has recently evolved
to allow cognitive modelers to develop constructs like an
‘intention module.’ There are no theoretical commitments
yet about any constraints on such a module and its
interaction with other elements of the architecture.

Given its historical focus on single-task learning and
memory performance, it is not surprising that ACT-R is
silent about how the cognitive architecture might manage
and allocate resources to multiple, unrelated goals. Such
architectural commitments would need to come from
experimental data that push the theory and architecture in
some particular direction. For example, earlier versions of
the architecture employed a “goal stack” which
automatically created, maintained, and destroyed goal/sub-
goal relationships. This was arguably a programming
convenience in which there was little theoretical investment,
but it had the consequence of indirectly giving an agent
perfect memory for all her goals and subgoals. Experimental
work (Altmann & Trafton, 2002) showing imperfect
memory for subgoals forced the abandonment of the goal
stack data structure, and its associated processes, from the
modeling architecture. The current position is that goals are
just like any other memory chunk, insofar as they need to be
explicitly retrieved and are subject to forgetting.

To say that goals in the ACT-R 5.0 architecture are just
like any other memory chunk (e.g., a declarative fact like
2+2 = 4) is not quite true. For example, there is special

activation emanating from a goal type memory element,
once it is retrieved into a special goal buffer. This is
important for directed retrieval of task relevant information.
Beyond that, however, the theory and architecture do not
have further commitments about the representation of goal
memory elements or how resources are allocated to
competing goals.

There are, of course, several ACT-R models of dual-task
performance, in which a person switches between
alternative tasks in response to different stimuli (e.g., Sohn
& Anderson, 2001). A typical ACT-R dual-task production
model accomplishes this ‘at the program level’, i.e., through
a task-specific, goal switching production set.
Environmental cues for goal switching are referenced
directly in the production rules; the representation
assumptions about declarative knowledge for goal execution
are also referenced in task-specific production rules. These
are not disparaging observations. Indeed, in lieu of
architectural commitments about how to manage and
monitor competing, one must model multiple goal handling
at the program level, i.e., with production rules.

Henceforth, I will use the term ‘intention’ rather ‘goal’,
which has a particular meaning within frameworks like
ACT-R. The work reported here focuses on computational
accounts of what it means ‘to intend’ and what implications
that might have for defining representational and processing
constraints that distinguish ‘intentions’ and ‘intentional
action’ from any other cognitive construct (e.g., from
semantic or episodic memory traces) or process.

Dual-task performance, including complex skills like
driving (see Salvucci, 2005), is relevant to addressing such
questions. So too is the prospective memory literature. The
term prospective memory is used to denote a type of
memory task in which an individual has to remember to
perform a particular action at some designated point in the
future, either after a specified time lapse or when a critical
event occurs. Interestingly, this literature describes this sort
of task as remembering to execute a ‘delayed intention.’
Everyday examples involve intending to remember to buy
milk on the way home or to relay a message to friends upon
seeing them. The typical laboratory paradigm for studying
prospective memory requires a person to perform an on-
going (primary) task, with a further requirement to execute
the prospective memory (secondary) task, when a particular
cue appears. A feature that distinguishes prospective
memory tasks from the typical dual-task paradigm is that the
secondary (prospective memory) task must be executed
relatively infrequently, unexpectedly, or sometimes not at
all, relative to the primary task(s).

1269

Descriptive accounts of prospective memory appeal to
notions such as delayed intention, intention monitoring,
intention cueing, or preparatory attention for executing
intentions. My primary interest is giving some
computational meat to these descriptive phrases, hopefully
in a way that identifies possible architectural-level
approaches to intention handling.

My approach is influenced by Bratman’s (1990) analysis
of the notion of intention, its semantics, and the role it plays
in directing resources (see also Cohen & Levesque, 1990).
Informally stated, a key notion is that to intend (x) is to have
a persistent commitment to actions to bring about x, just as
long as x is not satisfied, still deemed possible, and still
deemed ‘relevant’ (the last feature prevents fanatical pursuit
of intentions that, by some reasoning process, ought to be
dropped). A corresponding computational perspective would
view ‘having an intention’ as having an execution thread for
some process, which has associated conditions for its
suspension, resumption, or termination. There can be
multiple (but, as per Bratman’s account, not semantically
conflicting) intentions and some executive must manage
how they consume and direct processing resources, and
recognize intention conflicts.

In this regard, ‘having an intention’ does not map to
‘having a goal memory chunk.’ It instead entails all the
representational and processing constraints that surround the
formation and manipulation of such structures, including the
allocation of resources. Within a framework like ACT-R,
we can regard a typical cognitive model of some task
performance as a single execution thread. This execution
thread directs and consumes resources (e.g., visual attention,
memory retrieval) in ways that yield reaction time measures,
as dictated by the theory’s assumptions concerning the time
to execute primitive processing steps.

An important question, therefore, is how the cognitive
architecture handles multiple execution threads, in a task-
independent manner. This can first be investigated at the
program level, by developing general intention handling
productions that operate over general declarative structures
for representing information about intentional action. The
simulation of particular performance data can then be
considered within this generic framework. It would be most
informative if there were qualitatively different control
accounts for some particular task performance, because
intention handling is a matter of an executive control
scheme interacting with some representation of intention
information.

It so happens that two qualitatively different control
accounts have been proposed for prospective memory
performance. Under the automatic-retrieval account, an
intention i is represented in memory with its cue and
associated action. However, as long as the cue for executing
intention i is not present in the environment, there is no
impact, as it were, of ‘having’ intention i on the execution of
some other, ongoing task t. It is only when intention i’s cue
appears that there is capacity overhead for its automatic
retrieval and the retrieval of its action. An alternative view

is that the successful execution of a prospective memory
task always requires ongoing capacity that impacts the
execution of the primary, on-going task t (see Smith, 2003;
Marsh & Hicks, 2003). McDaniel and Einstein (2000) offer
a hybrid account and the reader is directed to these citations
for experimental results that support both theoretical
perspectives.

Prospective memory performance and these sorts of
accounts offer another vehicle for exploring intention
handling. Here, I focus on a single set of experimental
results as a first step in this matter. The aim is not to
develop an account of this single set of results—that would
be limited in value. Rather, the aim is to explore a space of
alternative intention-handling control models. The relative
success of the alternative models in simulating observed
prospective memory data is useful for understanding the
computational assumptions that characterize descriptive
accounts like the ones above. The best of these alternative
models can then be investigated for its extendibility to other
results. The overall exercise is useful for understanding
what elements of task-independent intention handling are
better viewed as features of the cognitive architecture, rather
than as features of task-specific programs. The next section
presents the experimental results that are the focus for this
effort.

Capacity Impacts for Delayed Intentions
Smith (2003, exp. 1) instructed subjects how to perform a
lexical decision task in the usual manner, by giving one
response to signal a non-word, and a different response to
signal a word. She also had subjects memorize 12 target
words, and instructed them to make a third response, if one
of these target words appeared. Remembering to make this
distinct response to target words constituted the prospective
memory task. Within every block of 38 trials, trials 1-18
presented a non-word string; trial 19 presented a non-target
word (a.k.a. a control word), trials 20-37 presented non-
words again, and trial 38 presented a target word. Each of
12 blocks had this overall structure. Note that the
prospective memory task (the distinct response to each of 12
target words) occurred relatively infrequently: once every
38 trials. One group of subjects (the embedded intention
group) understood their task as described: the appearance of
a target word during the lexical decision task should elicit
the ‘is a target’ response instead of the ‘is a word’ response.
A second group of subjects (the delayed intention group)
also memorized the same set of target words and the third,
distinctive action to make whenever these words appeared
on the screen. However, they were told that the task of
responding in a special way to target words would come
sometime after the lexical decision task. By design, Smith
never asked the delayed-intention subjects to do this task—
that was just the cover story for memorizing the target
words and the special response at the start of the
experiment. However, the target words appeared in stream
of lexical decision stimuli for the delayed-condition
subjects, just as they did for the embedded-condition
subjects.

1270

Smith’s rationale for this manipulation was as follows. If
the intention to respond “specially” to target words during
the lexical decision task requires capacity only when that
intention is formed (e.g., as a product of understanding the
experimental instructions), and then again only when a cue
for its execution appears (when the target word shows up
every 38th trial), then there should be no reaction time
differences on control trials between embedded intention
and delayed intention conditions. After all, any intention
about targets is not being cued on trials presenting non-
targets. And so the embedded condition subjects should not
have any overhead for ‘having’ this intention during the
lexical decision task, relative to the delayed intention
subjects who do not ‘have it’— in some sense—until after
the lexical decision task is over. However, Smith reports
that embedded intention subjects took approximately 300
msec longer than delayed intention subjects on control
trials; they also took 150 msec longer than delayed subjects
on non-word trials. She argues that some conscious strategic
capacity is allocated to ‘remembering to remember’ a
prospective memory task, even in the absence of cues for its
execution.

Simulation Models

Memory Structures
The class of models explored for this task was implemented
within the ACT-R modeling framework, which embodies
certain theoretical principles that yield reaction time
predictions. The theory assumes that each elemental, serial
cognitive step requires 50 msec. These are encoded as
productions. Each production can be viewed as a primitive
‘fetch’, ‘store’, ‘compare’ or ‘modify’ operation, to use an
assembly language analogy. ‘Fetch’ operations are pattern
based retrieval requests to a declarative memory, which
brings some pattern (chunk) into a buffer for subsequent
processing. The latencies associated with these operations,
and probability that any particular memory chunk is
returned, are determined by the theory’s spreading
activation equations.

The four models developed here were task-independent
control schemes for handling intentions. They all operated
on identical declarative memory representations, shown in
Table 1. In ACT-R’s declarative memory, each memory
chunk is an instance of some class (specified with the isa
relation), which defines its possible feature slots. The
intention chunk had these features (and possible values):
object_type (string), status (unsatisfied | satisfied),
lexicalstatus (word | notword), targetstatus (target
|nottarget) and world (now |later). With the exception of
the status feature, all the other feature-value pairs constitute
satisfaction conditions for the intention. The action
associated with an intention is represented in a separate
action memory chunk (e.g., the signalnonword memory
chunk in Table 1).

The declarative memory designed for both delayed and
embedded conditions used exactly three intention structures.
The nonword-intention was identical in both declarative
memories. However, the two other intention chunks for
responding to words and to targets were necessarily
different in these two memories. In the embedded model,
the word-intention had two conditions: that the string was a
word but not a target (lexstatus=word and targetstatus=not-
target). In the delayed condition model, the word-intention
required only that the string was a word; it did not include
any specification for targetstatus. For both the embedded
and delayed models, the target-intention chunk had
conditions that the string be both a word and a target. What
distinguished this intention under the two experimental
manipulations was a third condition, the world feature. This
represented the experimental manipulation that embedded
subjects knew to respond to targets during the lexical
decision task (world=now), while delayed intention subjects
knew to respond to targets after the lexical decision task was
over (world=later).

The representation of a single lexical decision trial was
held in the onetrial chunk (Table 1, bottom). Informally put,
each single trial represents a ‘world’ in which intentions
might be relevant and satisfied. The onetrial chunk became
elaborated with an encoding of the presented string and
other features, under the control of the intention-handling
productions (described in the next sections). The declarative
memories for both the delayed and embedded conditions
had identical memory chunks for words and targets.

A few remarks about this representational scheme are in
order. First, an intention’s conditions are specified within a
single memory element; that is a matter of programming
convenience that does not bear on the results presented here.
Distributing these conditions across distinct memory chunks
opens up avenues of empirically testable predictions, which
I mention later. Second, the control structures described
below implicitly use object_type=string as a contextual
relevance condition. The assumption is that all intentions are
‘about’ something, and the intentions for this task were
‘about strings in the experiment.’ In principle, declarative
memory could contain many other intention structures
related to unsatisfied intentions ‘about’ anything (buying
milk, informing friends); such structures would not make it
past the contextual relevance check the control schemes use.
Third, an intention’s associated action is held in a separate
memory chunk. This allows for intended actions to be
forgotten, even if the intention to act is remembered.

It is fair to use the same number of intentions in the
declarative memories for both the embedded and delayed
conditions: Smith’s delayed condition subjects could recite
both the action to take when a target word appeared, as well
as all the target words themselves, at the end of the lexical
decision task. However, the details of these three intention
structures across the two experimental manipulations must
be different, given the aim to evaluate general intention-
handling control schemes. Put another way,

1271

Table 1: Declarative Memory Structures under Embedded vs. Delayed Instructional Conditions
 (nonword-intention isa intention name respondnonword object_type string status unsatisfied lexstatus notword world now)

embedded: (word-intention isa intention name respondword object_type string status unsatisfied lexstatus word
targetstatus nottarget world now)

delayed: (word-intention isa intention name respondword object_type string status unsatisfied lexstatus word world
now)

embedded: (target-intention isa intention name respondtarget status unsatisfied object_type string lexstatus word
targetstatus target world now)

delayed: (target-intention isa intention name respondtarget status unsatisfied object_type string
 lexstatus word targetstatus target world later)

(signalnonword isa action keypress "k" for nonword-intention) (signalword isa action keypress "d" for word-intention)
(signaltarget isa action keypress "m" for target-intention)
(onetrial isa world object_type string object “dog” lexstatus unknown targetstatus unknown world now)

Table 2: Intention Handling Control Algorithms
 (a) top down intention monitoring

1. Detect and encode string s and put it in trial t’s representation
2. Repeat
 2.1 Retrieve an unsatisfied intention i about strings (object_type= string),
 spreading activation from trial t’s representation
 2.2 Repeat
 Select an condition of intention i that is unknown in trial t’s representation
 Elaborate t’s representation with a value for that condition
 Until t’s representation has a specification for all of i’s conditions
 2.3 If any condition of i is not matched by the t’s elaborated representation,
 mark the intention i unsatisfied; else mark it satisfied
 Until there is a satisfied intention about strings
3. Retrieve the action associated with the satisfied intention
4. If no action is retrieved, then respond randomly; else execute the retrieved action

 (b) bottom up intention cuing
1. Detect and encode string s and put it in trial t’s representation
2. Elaborate t’s representation by determining either the lexical status or target status of string s
3. Repeat
 3. 1 Retrieve an unsatisfied intention i about strings (object_type =string),
 spreading activation from trial t’s representation
 3.2 While t’s representation is still missing a value for one of i’s conditions
 Select an condition of intention i that is unknown in trial t’s representation
 Elaborate the representation of trial t with a value for that condition
 3.3 If any condition of i is not matched by the trial’s elaborated representation,
 mark the intention i unsatisfied; else mark it satisfied

 Until there is a satisfied intention about strings
 4. Retrieve action associated with satisfied intention

 5. If no action is retrieved, then respond randomly, else execute the retrieved action

Smith’s instructional manipulations about intended actions
are reflected as differences in declarative knowledge about
intentional actions, processed by general control schemes.

Intention Handing Control Schemes
Table 2 presents pseudo-code for a top-down intention
handling control scheme and for a bottom-up intention
cueing control scheme. A key difference between top-down
monitoring and bottom-up cueing concerns what is in the
subject’s representation of the world (the current trial) when
the model makes a retrieval request for an unsatisfied

intention. In top-down intention monitoring (Table 2(a)),
the three relevant intentions are equally likely to be
retrieved on step 2.1, at least on the first retrieval request: all
intentions about strings are unsatisfied at the start of a new
trial. The retrieved intention’s feature slots cause the model
to determine those features’ values for the current trial.

Suppose the trial presents the string “table”, but the
model retrieves the nonword-intention structure on step 2.1.
This intention requires lexstatus=nonword, so the model
allocates processes to determine the lexical status of the
string. As a consequence of these processes, the

1272

representation of the current trial is changed to be
lexstatus=word. The model continues identifying features of
the world for all the conditions specified in the just-retrieved
intention structure. It then checks (step 2.3) to see if the
conditions of the just-retrieved intention structure match the
world state. If it does, the intention is satisfied and there can
be resources allocated to retrieving its action; otherwise, the
intention structure is marked as unsatisfied.

The latter case would cause another retrieval request to
fetch an unsatisfied intention about strings. However, using
our current example, the world representation has already
been elaborated with the feature lexstatus=word. This
increases the probability, via spreading activation, of
retrieving intentions that include word as a condition value.
So even in this top-down perspective, there is an influence
of bottom-up cueing on subsequent retrieval requests for
unsatisfied intentions. A pure top-down approach would
reset the trial representation after each unsatisfied intention,
and re-elaborate the world representation all over again.

In the bottom-up cueing algorithm, the world is
elaborated first (some feature is selected to be determined,
in step 2 of bottom-up cueing) and then unsatisfied
intentions are retrieved. Spreading activation will favor
intention information that includes the just-determined
feature as a required world condition. However, just as the
top-down version has a bit of bottom-up cueing, the bottom
up version has a top-down elaboration flavor on step 3.1.
The just-retrieved intention structure may require additional
world tests, and so the algorithm will commence elaborating
the world in a manner specified by the intention structure, to
determine if it is satisfied.

The bold-faced steps in both control schemes implement a
kind of full-elaboration policy: consider all the required
conditions in an intention structure and elaborate the world
accordingly, before deciding whether the intention is
mismatched or not. A so-called partial-mismatch version of
each model was also tested. This allowed an intention to be
marked as unsatisfied as soon as a single mismatch was
detected.

Implementation in the ACT-R framework
The Table 2 algorithms were implemented as production
systems, where each primitive action (an encoding, a
retrieval request, a comparison between memory chunks
held in buffers) maps to a single production. Paralleling the
Smith experimental design, all models included an encoding
of 24 words, half of which were also encoded as target
words. A model received 10 non-word trials, a control word
trial, 10 non-word trials, and then a target word trial, until
all the 24 words had appeared. The parameters and
activation levels for all declarative memory chunks were the
same across both conditions and all four models. Each
model was run 10 times and the response latencies were
averaged over these 10 runs. Accuracy in these models was
perfect; it is straightforward to adjust certain parameters to
model the high (but imperfect) observed accuracy.

Results and Discussion
Table 3 shows that the top-down/partial mismatch model
was the best at simulating the size of the observed reaction
time differences between the embedded and delayed
conditions on control trials (observed: 335 msec; simulated:
277) and on non-word trials (observed: 154 msec; simulated
143 msec). The top-down models also do a better job of
simulating the within-conditioin reaction time patterns,
namely (a) the longer reaction times on control trials than on
non-word trials in the embedded condition, and (b) the
slightly longer latencies for non-word trials than for control
trials in the delayed condition. The partial-mismatch/top
down model is the best of these four control schemes. This
is due to shorter reaction times on the nonword trials and
this makes perfect sense: the model can reject any intention
it retrieves about words, as soon as it determines that the
current trial is presenting a non-word.

Table 3: Simulated and Observed Reaction times (msec)

observed (Smith, 2003, exp. 1)
 embedded nonword 936 control 1061
 delayed nonword 782 control 726

top-down full elaboration
 embedded nonword 1205 control 1237
 delayed nonword 985 control 941
top-down partial mismatch
 embedded nonword 1124 control 1225
 delayed nonword 981 control 948
bottom-up full elaboration
 embedded nonword 1218 control 1074
 delayed nonword 1118 control 1101
bottom-up partial mismatch
 embedded nonword 1106 control 1113
 delayed nonword 1042 control 1021

One reason that top-down models perform better than

bottom-up models is related to the representation of the
onetrial chunk for the current trial, which includes the
feature world=now for each trial. For the delayed condition,
there is a lower probability that the representation of target-
intention, marked with world=later, will be retrieved:
spreading activation from world=now in the trial’s
elaboration favors retrieval of word-intention and nonword-
intention. For bottom-up models, step 2 elaborates the world
representation with either the lexical feature or the target
feature (the world=now feature is already known for the
trial). These elaborated features of the trial will favor just
those intentions that have one of these features, plus the
feature world=now. This is more likely to retrieve ‘just the
right’ intention for the embedded condition, since, by
definition, the world is cueing ‘just the right intention.’ This
serves to reduce the set size of competing intentions that is
retrieved as potentially relevant, removing the embedded vs.
delayed condition effect.

 The top-down models thus instantiate Smith’s
preparatory attention account as a kind of interference

1273

mechanism: there is only a small chance that the model
using the delayed intention representation will accidentally
(and incorrectly) ‘think of’ the intention about targets during
the lexical decision task; for the embedded case, this chance
is much higher.

 A final remark about the bottom-up algorithm is
important. This algorithm seems to ‘know’ that it should
elaborate the world with information about whether a string
is a word or a target (see bottom-up algorithm, step 2). But
of course, it cannot do that that unless it also ‘knows’ that
such features are crucial to current, unsatisfied intentions.
And this in turn seems to suggest that we cannot get
possibly get away from some element of top-down intention
monitoring at the executive level. This seems right, and
consistent, with Bratman’s analysis: the functional role that
intentions play for resource-bounded agents is to direct
which of many features in a changing world are important to
encode and monitor.

Summary
There are three contributions from this exercise. First, from
four models tested, one simulated the relative reaction time
patterns observed between and within Smith’s (2003, exp. 1)
experimental conditions. This model instantiates Smith’s
preparatory attention account as a kind of interference effect
among competing intentions. Hence, it would predict a
greater capacity overhead as a function of the size of the
competing intention set and the overlap of conditions
associated with those competing intentions. Second, this
best fitting model can be used as a starting point for
constraints on intention handling at the architecture level.
To implement the Table 2 algorithms with the necessary
activations from retrieved intention structures, an additional
buffer was used in ACT-R 5.0. However, there is latency
overhead resulting from production rules that shift these
intention structures among these buffers. It may be possible
to define some of these operations as coming ‘for free’ in
the architecture (possible in ACT-R 6.0). The absolute
simulated reaction times would thereby decrease and be
more in line with the observed reactions times. Third, the
declarative representation of intention information here
allows for the forgetting of unsatisfied intentions (they must
have a minimum activation level to be retrieved), for
remembering an intention but forgetting the associated
action, and for the role of cue salience and similarity in
retrieval effects (not in play for this particular modeling
effort, but admitted by the representational commitments).

These ACT-R models predict that the size of the non-
word block in the stimulus stream determines the size of the
reaction-time difference between delayed and embedded
conditions on non-word trials (this emerges from how
highly activated this intention becomes from repeated
access). A second testable prediction concerns the
psychological reality of a contextual relevance condition,
which functions to define the upper bound on the set of
competing, and hence interfering, intentions. Another
avenue for experimental investigation concerns predictions

emerging from a distributed representation of intention
conditions across separate memory chunks. This leads to
wondering whether declarative information about
intentional action is governed by retrieval and decay
functions that are different from those functions governing
semantic memory. These issues all speak to how to embody
intention-handling assumptions at the architectural level.
Current work concerns applying the general intention
handling schemes on a wider set of experimental results.

Acknowledgements
This work was supported by an NSERC discovery grant to
R. Elio.

References
Altmann, E.M., & Trafton, J.G. (2002). Memory for goals:

An activation-based model. Cognitive Science, 26,39–83.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review, 111, 1036-1060

Anderson, J. R. & Lebiere, C. (1998). The atomic
components of thought. Mahwah, NJ: Erlbaum.

Bratman, M.E. (1990). What is intention? In P.R Cohen, J.
Morgan,& M.A. Pollack (Eds.), Intentions in
Communication. Cambridge, MA: MIT Press.

Cohen, P. R. & Levesque, H. J. (1990). Intention is choice
with commitment. Artificial Intelligence, 42, 213-261.

Kieras, D. E., Meyer, D. E., Ballas, J.A., and Lauber, E. J.
(2000). Modern Computational Perspectives on Executive
Mental Processes and Cognitive Control: Where to from
here?. In S. Monsell & J. Driver (Eds.), Control of
Cognitive Processes: Attention and Performance XVIII.
Cambridge, MA: MIT Press.

McDaniel, M.A. & Einstein, G. O. (2000). Strategic and
Automatic Processes in Prospective Memory Retrieval: A
Multiprocess Framework. Applied Cognitive Psychology,
14, 127-144.

Marsh, R. L. & Hicks, J. L. (2003) Interference to Ongoing
Activities Covaries With the Characteristics of an Event-
Based Intention. JEP: Learning, Memory, and Cognition,
29, 861–870.

Salvucci, D. D. (2005). A multitasking general executive for
compound continuous tasks. Cognitive Science, 29, 457-
492.

Schorr, T., Gerjets, P. & Scheiter, K. (2003). Analyzing
Effects of Goal Competition and Task Difficulty in
Multiple-Task Performance: Volitional Action Control
within ACT-R (pp 1053-1058). Proceedings of the 25th
Annual Meeting of the Cognitive Science Society.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Smith, R. E. (2003). The Cost of Remembering to
Remember in Event-Based Prospective Memory:
Investigating the Capacity Demands of Delayed Intention
Performance. JEP: Learning, Memory, and Cognition, 29,
347–361.

Sohn, M-H., & Anderson, J. R. (2001). Task preparation and
task repetition: Two-component model of task switching.
Journal of Experimental Psychology: General, 130, 764–
778.

1274

