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On Modeling Intentions for Prospective Memory Performance 
 

Renée Elio (ree@cs.ualberta.ca) 
Department of Computing Science, University of Alberta  

Edmonton, Alberta T6G 2E8 
 
 

Abstract 

Four models of intention handling were implemented and 
evaluated for their fit to a set of prospective memory reaction 
time data. The models instantiated either a top-down intention 
monitoring scheme or a bottom-up intention cueing scheme, 
corresponding to two types of descriptive accounts for 
prospective memory performance. Top-down models yielded 
reaction time patterns that more closely matched observed 
patterns. In these models, the cost of managing a delayed 
intention during a primary task is a function of the increased 
number of competing, possibly relevant intentions. Issues 
surrounding task-independent processing and representational 
commitments for what it means ‘to intend’ and to manage 
multiple intentions are discussed.   
 
Keywords: intentions, goals, cognitive architecture, 
prospective memory, ACT-R, executive control 

Introduction 
This work is concerned with expanding the scope of 
cognitive theories to better address elements of the ‘human 
executive control function’ (Kieras et al., 2000; Schorr et 
al., 2003; Anderson et al., 2004; Salvucci, 2005). For 
example, the ACT-R modeling framework  (Anderson & 
Lebiere, 1998; Anderson et al., 2004) has recently evolved 
to allow cognitive modelers to develop constructs like an 
‘intention module.’  There are no theoretical commitments 
yet about any constraints on such a module and its 
interaction with other elements of the architecture. 

Given its historical focus on single-task learning and 
memory performance, it is not surprising that ACT-R is 
silent about how the cognitive architecture might manage 
and allocate resources to multiple, unrelated goals. Such 
architectural commitments would need to come from 
experimental data that push the theory and architecture in 
some particular direction. For example, earlier versions of 
the architecture employed a “goal stack” which 
automatically created, maintained, and destroyed goal/sub-
goal relationships. This was arguably a programming 
convenience in which there was little theoretical investment, 
but it had the consequence of indirectly giving an agent 
perfect memory for all her goals and subgoals. Experimental 
work (Altmann & Trafton, 2002) showing imperfect 
memory for subgoals forced the abandonment of the goal 
stack data structure, and its associated processes, from the 
modeling architecture. The current position is that goals are 
just like any other memory chunk, insofar as they need to be 
explicitly retrieved and are subject to forgetting.  

To say that goals in the ACT-R 5.0 architecture are just 
like any other memory chunk (e.g., a declarative fact like 
2+2 = 4) is not quite true. For example, there is special 

activation emanating from a goal type memory element, 
once it is retrieved into a special goal buffer. This is 
important for directed retrieval of task relevant information. 
Beyond that, however, the theory and architecture do not 
have further commitments about the representation of goal 
memory elements or how resources are allocated to 
competing goals. 

There are, of course, several ACT-R models of dual-task 
performance, in which a person switches between 
alternative tasks in response to different stimuli (e.g., Sohn 
& Anderson, 2001). A typical ACT-R dual-task production 
model accomplishes this ‘at the program level’, i.e., through 
a task-specific, goal switching production set. 
Environmental cues for goal switching are referenced 
directly in the production rules; the representation 
assumptions about declarative knowledge for goal execution 
are also referenced in task-specific production rules. These 
are not disparaging observations. Indeed, in lieu of 
architectural commitments about how to manage and 
monitor competing, one must model multiple goal handling 
at the program level, i.e., with production rules. 

Henceforth, I will use the term ‘intention’ rather  ‘goal’, 
which has a particular meaning within frameworks like 
ACT-R. The work reported here focuses on computational 
accounts of what it means ‘to intend’ and what implications 
that might have for defining representational and processing 
constraints that distinguish ‘intentions’ and ‘intentional 
action’ from any other cognitive construct (e.g., from 
semantic or episodic memory traces) or process. 

Dual-task performance, including complex skills like 
driving (see Salvucci, 2005), is relevant to addressing such 
questions. So too is the prospective memory literature. The 
term prospective memory is used to denote a type of 
memory task in which an individual has to remember to 
perform a particular action at some designated point in the 
future, either after a specified time lapse or when a critical 
event occurs.  Interestingly, this literature describes this sort 
of task as remembering to execute a  ‘delayed intention.’ 
Everyday examples involve intending to remember to buy 
milk on the way home or to relay a message to friends upon 
seeing them. The typical laboratory paradigm for studying 
prospective memory requires a person to perform an on-
going (primary) task, with a further requirement to execute 
the prospective memory (secondary) task, when a particular 
cue appears. A feature that distinguishes prospective 
memory tasks from the typical dual-task paradigm is that the 
secondary (prospective memory) task must be executed 
relatively infrequently, unexpectedly, or sometimes not at 
all, relative to the primary task(s).   
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Descriptive accounts of prospective memory appeal to 
notions such as delayed intention, intention monitoring, 
intention cueing, or preparatory attention for executing 
intentions. My primary interest is giving some 
computational meat to these descriptive phrases, hopefully 
in a way that identifies possible architectural-level 
approaches to intention handling. 

My approach is influenced by Bratman’s (1990) analysis 
of the notion of intention, its semantics, and the role it plays 
in directing resources (see also Cohen & Levesque, 1990). 
Informally stated, a key notion is that to intend (x) is to have 
a persistent commitment to actions to bring about x, just as 
long as x is not satisfied, still deemed possible, and still 
deemed ‘relevant’ (the last feature prevents fanatical pursuit 
of intentions that, by some reasoning process, ought to be 
dropped). A corresponding computational perspective would 
view ‘having an intention’ as having an execution thread for 
some process, which has associated conditions for its 
suspension, resumption, or termination. There can be 
multiple (but, as per Bratman’s account, not semantically 
conflicting) intentions and some executive must manage 
how they consume and direct processing resources, and 
recognize intention conflicts. 

In this regard, ‘having an intention’ does not map to 
‘having a goal memory chunk.’ It instead entails all the 
representational and processing constraints that surround the 
formation and manipulation of such structures, including the 
allocation of resources.  Within a framework like ACT-R, 
we can regard a typical cognitive model of some task 
performance as a single execution thread. This execution 
thread directs and consumes resources (e.g., visual attention, 
memory retrieval) in ways that yield reaction time measures, 
as dictated by the theory’s assumptions concerning the time 
to execute primitive processing steps.  

An important question, therefore, is how the cognitive 
architecture handles multiple execution threads, in a task-
independent manner. This can first be investigated at the 
program level, by developing general intention handling 
productions that operate over general declarative structures 
for representing information about intentional action.  The 
simulation of particular performance data can then be 
considered within this generic framework. It would be most 
informative if there were qualitatively different control 
accounts for some particular task performance, because 
intention handling is a matter of an executive control 
scheme interacting with some representation of intention 
information. 

It so happens that two qualitatively different control 
accounts have been proposed for prospective memory 
performance. Under the automatic-retrieval account, an 
intention i is represented in memory with its cue and 
associated action. However, as long as the cue for executing 
intention i is not present in the environment, there is no 
impact, as it were, of ‘having’ intention i on the execution of 
some other, ongoing task t. It is only when intention i’s cue 
appears that there is capacity overhead for its automatic 
retrieval and the retrieval of its action. An alternative view 

is that the successful execution of a prospective memory 
task always requires ongoing capacity that impacts the 
execution of the primary, on-going task t (see Smith, 2003; 
Marsh & Hicks, 2003). McDaniel and Einstein (2000) offer 
a hybrid account and the reader is directed to these citations 
for experimental results that support both theoretical 
perspectives. 

Prospective memory performance and these sorts of 
accounts offer another vehicle for exploring intention 
handling. Here, I focus on a single set of experimental 
results as a first step in this matter.  The aim is not to 
develop an account of this single set of results—that would 
be limited in value. Rather, the aim is to explore a space of 
alternative intention-handling control models. The relative 
success of the alternative models in simulating observed 
prospective memory data is useful for understanding the 
computational assumptions that characterize descriptive 
accounts like the ones above.  The best of these alternative 
models can then be investigated for its extendibility to other 
results.  The overall exercise is useful for understanding 
what elements of task-independent intention handling are 
better viewed as features of the cognitive architecture, rather 
than as features of task-specific programs. The next section 
presents the experimental results that are the focus for this 
effort. 

Capacity Impacts for Delayed Intentions 
Smith (2003, exp. 1) instructed subjects how to perform a 
lexical decision task in the usual manner, by giving one 
response to signal a non-word, and a different response to 
signal a word. She also had subjects memorize 12 target 
words, and instructed them to make a third response, if one 
of these target words appeared. Remembering to make this 
distinct response to target words constituted the prospective 
memory task. Within every block of 38 trials, trials 1-18 
presented a non-word string; trial 19 presented a non-target 
word  (a.k.a. a control word), trials 20-37 presented non-
words again, and trial 38 presented a target word.  Each of 
12 blocks had this overall structure. Note that the 
prospective memory task (the distinct response to each of 12 
target words) occurred relatively infrequently: once every 
38 trials. One group of subjects (the embedded intention 
group) understood their task as described: the appearance of 
a target word during the lexical decision task should elicit 
the ‘is a target’ response instead of the ‘is a word’ response. 
A second group of subjects (the delayed intention group) 
also memorized the same set of target words and the third, 
distinctive action to make whenever these words appeared 
on the screen. However, they were told that the task of 
responding in a special way to target words would come 
sometime after the lexical decision task. By design, Smith 
never asked the delayed-intention subjects to do this task—
that was just the cover story for memorizing the target 
words and the special response at the start of the 
experiment. However, the target words appeared in stream 
of lexical decision stimuli for the delayed-condition 
subjects, just as they did for the embedded-condition 
subjects. 
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Smith’s rationale for this manipulation was as follows. If 
the intention to respond “specially” to target words during 
the lexical decision task requires capacity only when that 
intention is formed (e.g., as a product of understanding the 
experimental instructions), and then again only when a cue 
for its execution appears (when the target word shows up 
every 38th trial), then there should be no reaction time 
differences on control trials between embedded intention 
and delayed intention conditions. After all, any intention 
about targets is not being cued on trials presenting non-
targets. And so the embedded condition subjects should not 
have any overhead for ‘having’ this intention during the 
lexical decision task, relative to the delayed intention 
subjects who do not ‘have it’— in some sense—until after 
the lexical decision task is over. However, Smith reports 
that embedded intention subjects took approximately 300 
msec longer than delayed intention subjects on control 
trials; they also took 150 msec longer than delayed subjects 
on non-word trials. She argues that some conscious strategic 
capacity is allocated to ‘remembering to remember’ a 
prospective memory task, even in the absence of cues for its 
execution. 

Simulation Models 

Memory Structures 
The class of models explored for this task was implemented 
within the ACT-R modeling framework, which embodies 
certain theoretical principles that yield reaction time 
predictions. The theory assumes that each elemental, serial 
cognitive step requires 50 msec. These are encoded as 
productions. Each production can be viewed as a primitive  
‘fetch’, ‘store’, ‘compare’ or ‘modify’ operation, to use an 
assembly language analogy. ‘Fetch’ operations are pattern 
based retrieval requests to a declarative memory, which 
brings some pattern (chunk) into a buffer for subsequent 
processing. The latencies associated with these operations, 
and probability that any particular memory chunk is 
returned, are determined by the theory’s spreading 
activation equations.  

The four models developed here were task-independent 
control schemes for handling intentions. They all operated 
on identical declarative memory representations, shown in 
Table 1.  In ACT-R’s declarative memory, each memory 
chunk is an instance of some class (specified with the isa 
relation), which defines its possible feature slots. The 
intention chunk had these features (and possible values): 
object_type (string), status (unsatisfied | satisfied), 
lexicalstatus (word | notword), targetstatus (target 
|nottarget) and world (now |later).  With the exception of 
the status feature, all the other feature-value pairs constitute 
satisfaction conditions for the intention.  The action 
associated with an intention is represented in a separate 
action memory chunk (e.g., the signalnonword memory 
chunk in Table 1). 

The declarative memory designed for both delayed and 
embedded conditions used exactly three intention structures. 
The nonword-intention was identical in both declarative 
memories.  However, the two other intention chunks for 
responding to words and to targets were necessarily 
different in these two memories. In the embedded model, 
the word-intention had two conditions: that the string was a 
word but not a target (lexstatus=word and targetstatus=not-
target). In the delayed condition model, the word-intention 
required only that the string was a word; it did not include 
any specification for targetstatus.  For both the embedded 
and delayed models, the target-intention chunk had 
conditions that the string be both a word and a target. What 
distinguished this intention under the two experimental 
manipulations was a third condition, the world feature.  This 
represented the experimental manipulation that embedded 
subjects knew to respond to targets during the lexical 
decision task (world=now), while delayed intention subjects 
knew to respond to targets after the lexical decision task was 
over (world=later). 

The representation of a single lexical decision trial was 
held in the onetrial chunk (Table 1, bottom). Informally put, 
each single trial represents a ‘world’ in which intentions 
might be relevant and satisfied. The onetrial chunk became 
elaborated with an encoding of the presented string and 
other features, under the control of the intention-handling 
productions (described in the next sections). The declarative 
memories for both the delayed and embedded conditions 
had identical memory chunks for words and targets. 

A few remarks about this representational scheme are in 
order. First, an intention’s conditions are specified within a 
single memory element; that is a matter of programming 
convenience that does not bear on the results presented here. 
Distributing these conditions across distinct memory chunks 
opens up avenues of empirically testable predictions, which 
I mention later. Second, the control structures described 
below implicitly use object_type=string as a contextual 
relevance condition. The assumption is that all intentions are 
‘about’ something, and the intentions for this task were 
‘about strings in the experiment.’ In principle, declarative 
memory could contain many other intention structures 
related to unsatisfied intentions ‘about’ anything (buying 
milk, informing friends); such structures would not make it 
past the contextual relevance check the control schemes use. 
Third, an intention’s associated action is held in a separate 
memory chunk. This allows for intended actions to be 
forgotten, even if the intention to act is remembered.  

It is fair to use the same number of intentions in the 
declarative memories for both the embedded and delayed 
conditions: Smith’s delayed condition subjects could recite 
both the action to take when a target word appeared, as well 
as all the target words themselves, at the end of the lexical 
decision task.  However, the details of these three intention 
structures across the two experimental manipulations must 
be different, given the aim to evaluate general intention-
handling control schemes. Put another way, 
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Table 1: Declarative Memory Structures under Embedded vs. Delayed Instructional Conditions 
 (nonword-intention isa intention name respondnonword object_type string status unsatisfied lexstatus notword world now) 

embedded: (word-intention isa intention name respondword object_type string status unsatisfied lexstatus word 
targetstatus nottarget world now) 

delayed: (word-intention isa intention name respondword object_type string status unsatisfied lexstatus word world 
now) 

embedded:  (target-intention isa intention name respondtarget status unsatisfied object_type string lexstatus word 
targetstatus target world now) 

delayed: (target-intention isa intention name respondtarget status unsatisfied object_type string  
 lexstatus word targetstatus target world later) 
 

(signalnonword isa action keypress "k" for nonword-intention) (signalword isa action keypress "d" for word-intention)       
(signaltarget isa action keypress "m" for target-intention) 
(onetrial isa world object_type string object “dog” lexstatus unknown targetstatus unknown world now)

Table 2: Intention Handling Control Algorithms 
 (a) top down intention monitoring 

1. Detect and encode string s and put it in trial t’s representation 
2. Repeat 
 2.1 Retrieve an unsatisfied intention i about strings (object_type= string),                 
  spreading activation from trial t’s representation 
 2.2 Repeat 
   Select an condition of intention i that is unknown in trial t’s representation  
    Elaborate t’s representation with a value for that condition 
  Until   t’s representation has a specification for all of i’s conditions 
 2.3 If any condition of i is not matched by the t’s elaborated representation, 
   mark the intention i unsatisfied; else mark it satisfied 
     Until there is a satisfied intention about strings 
3.  Retrieve the action associated with the satisfied intention 
4.  If no action is retrieved, then respond randomly; else execute the retrieved action 
 

 (b) bottom up intention cuing 
1. Detect and encode string s and put it in trial t’s representation  
2. Elaborate t’s representation by determining either the lexical status or target status of string s 
3. Repeat 
  3. 1 Retrieve an unsatisfied intention i about strings (object_type =string),    
   spreading activation from trial t’s representation 
  3.2 While t’s representation is still missing a value for one of i’s conditions 
     Select an condition of intention i that is unknown in trial t’s representation          
     Elaborate the representation of trial t with a value for that condition   
  3.3 If any condition of i is not matched by the trial’s elaborated representation,  
   mark the intention i unsatisfied; else mark it satisfied 

  Until there is a satisfied intention about strings 
 4.  Retrieve action associated with satisfied intention 

    5.  If no action is retrieved, then respond randomly, else execute the retrieved action 

Smith’s instructional manipulations about intended actions 
are reflected as differences in declarative knowledge about 
intentional actions, processed by general control schemes. 

Intention Handing Control Schemes 
Table 2 presents pseudo-code for a top-down intention 
handling control scheme and for a bottom-up intention 
cueing control scheme. A key difference between top-down 
monitoring and bottom-up cueing concerns what is in the 
subject’s representation of the world (the current trial) when 
the model makes a retrieval request for an unsatisfied 

intention. In top-down intention monitoring (Table 2(a)),  
the three relevant intentions are equally likely to be 
retrieved on step 2.1, at least on the first retrieval request: all 
intentions about strings are unsatisfied at the start of a new 
trial. The retrieved intention’s feature slots cause the model 
to determine those features’ values for the current trial. 

Suppose the trial presents the string “table”, but the 
model retrieves the nonword-intention structure on step 2.1. 
This intention requires lexstatus=nonword, so the model 
allocates processes to determine the lexical status of the 
string. As a consequence of these processes, the 
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representation of the current trial is changed to be 
lexstatus=word. The model continues identifying features of 
the world for all the conditions specified in the just-retrieved 
intention structure. It then checks (step 2.3) to see if the 
conditions of the just-retrieved intention structure match the 
world state. If it does, the intention is satisfied and there can 
be resources allocated to retrieving its action; otherwise, the 
intention structure is marked as unsatisfied.   

The latter case would cause another retrieval request to 
fetch an unsatisfied intention about strings. However, using 
our current example, the world representation has already 
been elaborated with the feature lexstatus=word. This 
increases the probability, via spreading activation, of 
retrieving intentions that include word as a condition value. 
So even in this top-down perspective, there is an influence 
of bottom-up cueing on subsequent retrieval requests for 
unsatisfied intentions.  A pure top-down approach would 
reset the trial representation after each unsatisfied intention, 
and re-elaborate the world representation all over again. 

In the bottom-up cueing algorithm, the world is 
elaborated first (some feature is selected to be determined, 
in step 2 of bottom-up cueing) and then unsatisfied 
intentions are retrieved. Spreading activation will favor 
intention information that includes the just-determined 
feature as a required world condition.  However, just as the 
top-down version has a bit of bottom-up cueing, the bottom 
up version has a top-down elaboration flavor on step 3.1. 
The just-retrieved intention structure may require additional 
world tests, and so the algorithm will commence elaborating 
the world in a manner specified by the intention structure, to 
determine if it is satisfied. 

The bold-faced steps in both control schemes implement a 
kind of full-elaboration policy: consider all the required 
conditions in an intention structure and elaborate the world 
accordingly, before deciding whether the intention is 
mismatched or not. A so-called partial-mismatch version of 
each model was also tested. This allowed an intention to be 
marked as unsatisfied as soon as a single mismatch was 
detected.  

Implementation in the ACT-R framework  
The Table 2 algorithms were implemented as production 
systems, where each primitive action (an encoding, a 
retrieval request, a comparison between memory chunks 
held in buffers) maps to a single production. Paralleling the 
Smith experimental design, all models included an encoding 
of 24 words, half of which were also encoded as target 
words. A model received 10 non-word trials, a control word 
trial, 10 non-word trials, and then a target word trial, until 
all the 24 words had appeared.  The parameters and 
activation levels for all declarative memory chunks were the 
same across both conditions and all four models.  Each 
model was run 10 times and the response latencies were 
averaged over these 10 runs. Accuracy in these models was 
perfect; it is straightforward to adjust certain parameters to 
model the high (but imperfect) observed accuracy.  

Results and Discussion 
Table 3 shows that the top-down/partial mismatch model 
was the best at simulating the size of the observed reaction 
time differences between the embedded and delayed 
conditions on control trials (observed: 335 msec; simulated: 
277) and on non-word trials (observed: 154 msec; simulated 
143 msec). The top-down models also do a better job of 
simulating the within-conditioin reaction time patterns, 
namely (a) the longer reaction times on control trials than on 
non-word trials in the embedded condition, and (b) the 
slightly longer latencies for non-word trials than for control 
trials in the delayed condition. The partial-mismatch/top 
down model is the best of these four control schemes. This 
is due to shorter reaction times on the nonword trials and 
this makes perfect sense: the model can reject any intention 
it retrieves about words, as soon as it determines that the 
current trial is presenting a non-word. 

 
Table 3: Simulated and Observed Reaction times (msec) 
 
observed (Smith, 2003, exp. 1) 
 embedded  nonword  936  control 1061 
 delayed  nonword   782 control  726 
 
top-down full elaboration    
 embedded  nonword  1205  control 1237   
 delayed  nonword   985   control   941 
top-down partial mismatch 
 embedded nonword  1124  control  1225 
 delayed nonword    981 control  948 
bottom-up full elaboration                  
 embedded  nonword  1218   control 1074   
 delayed  nonword  1118   control 1101 
bottom-up partial mismatch 
 embedded nonword  1106 control  1113 
 delayed nonword  1042 control  1021 

  
One reason that top-down models perform better than 

bottom-up models is related to the representation of the 
onetrial chunk for the current trial, which includes the 
feature world=now for each trial. For the delayed condition, 
there is a lower probability that the representation of target-
intention, marked with world=later, will be retrieved: 
spreading activation from world=now in the trial’s 
elaboration favors retrieval of word-intention and nonword-
intention. For bottom-up models, step 2 elaborates the world 
representation with either the lexical feature or the target 
feature (the world=now feature is already known for the 
trial). These elaborated features of the trial will favor just 
those intentions that have one of these features, plus the 
feature world=now. This is more likely to retrieve ‘just the 
right’ intention for the embedded condition, since, by 
definition, the world is cueing ‘just the right intention.’  This 
serves to reduce the set size of competing intentions that is 
retrieved as potentially relevant, removing the embedded vs. 
delayed condition effect. 

 The top-down models thus instantiate Smith’s 
preparatory attention account as a kind of interference 
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mechanism: there is only a small chance that the model 
using the delayed intention representation will accidentally 
(and incorrectly) ‘think of’ the intention about targets during 
the lexical decision task; for the embedded case, this chance 
is much higher.  

 A final remark about the bottom-up algorithm is 
important. This algorithm seems to ‘know’ that it should 
elaborate the world with information about whether a string 
is a word or a target (see bottom-up algorithm, step 2). But 
of course, it cannot do that that unless it also ‘knows’ that 
such features are crucial to current, unsatisfied intentions.  
And this in turn seems to suggest that we cannot get 
possibly get away from some element of top-down intention 
monitoring at the executive level. This seems right, and 
consistent, with Bratman’s analysis: the functional role that 
intentions play for resource-bounded agents is to direct 
which of many features in a changing world are important to 
encode and monitor. 

Summary 
There are three contributions from this exercise. First, from 
four models tested, one simulated the relative reaction time 
patterns observed between and within Smith’s (2003, exp. 1) 
experimental conditions. This model instantiates Smith’s 
preparatory attention account as a kind of interference effect 
among competing intentions.  Hence, it would predict a 
greater capacity overhead as a function of the size of the 
competing intention set and the overlap of conditions 
associated with those competing intentions.  Second, this 
best fitting model can be used as a starting point for 
constraints on intention handling at the architecture level. 
To implement the Table 2 algorithms with the necessary 
activations from retrieved intention structures, an additional 
buffer was used in ACT-R 5.0. However, there is latency 
overhead resulting from production rules that shift these 
intention structures among these buffers. It may be possible 
to define some of these operations as coming ‘for free’ in 
the architecture (possible in ACT-R 6.0). The absolute 
simulated reaction times would thereby decrease and be 
more in line with the observed reactions times. Third, the 
declarative representation of intention information here 
allows for the forgetting of unsatisfied intentions (they must 
have a minimum activation level to be retrieved), for 
remembering an intention but forgetting the associated 
action, and for the role of cue salience and similarity in 
retrieval effects (not in play for this particular modeling 
effort, but admitted by the representational commitments). 

These ACT-R models predict that the size of the non-
word block in the stimulus stream determines the size of the 
reaction-time difference between delayed and embedded 
conditions on non-word trials (this emerges from how 
highly activated this intention becomes from repeated 
access). A second testable prediction concerns the 
psychological reality of a contextual relevance condition, 
which functions to define the upper bound on the set of 
competing, and hence interfering, intentions.  Another 
avenue for experimental investigation concerns predictions 

emerging from a distributed representation of intention 
conditions across separate memory chunks. This leads to 
wondering whether declarative information about 
intentional action is governed by retrieval and decay 
functions that are different from those functions governing 
semantic memory. These issues all speak to how to embody 
intention-handling assumptions at the architectural level. 
Current work concerns applying the general intention 
handling schemes on a wider set of experimental results. 
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