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Abstract 

Genome reconstruction and characterization of microbial eukaryotes in complex microbial 
communities through genome-resolved metagenomics 

By 

Patrick T. West 

Doctor of Philosophy in Microbiology 

University of California, Berkeley 

Professor Jillian Banfield, Chair 

 

Microbial eukaryotes are important pathogens, environmental quality indicators, integral 
components of natural microbial communities, and critical for understanding our own evolutionary 
history. Yet, microbial eukaryotes are an often neglected component of microbial ecology studies. 
Common metagenomic techniques, such as 16S rRNA gene sequencing, fully omit eukaryotes, 
and they are frequently ignored in shotgun-metagenomic sequencing projects. A methodology was 
developed for recovering eukaryotic genomes from metagenomes that relies upon a newly 
developed machine learning-based method, EukRep, to separate Eukaryotic scaffolds from 
prokaryotic scaffolds prior to binning. In this way, eukaryotic gene predictors can be applied to 
eukaryotic scaffolds, eliminating one of the largest challenges to properly binning eukaryotes in 
shotgun metagenomic samples. The effectiveness of EukRep was tested on both mock 
communities constructed from reference bacterial, archaeal, and eukaryotic genomes in silico as 
well as on natural microbial community samples and shown to enable the recovery of near-
complete eukaryotic genomes including high-quality fungal, protist, and rotifer genomes from 
complex environmental samples. Thus, this approach enables consistent genome reconstruction 
and prediction of metabolic and behavioral potential for eukaryotes as well as their associated 
communities in a culture independent, natural microbial community context. 

A EukRep-based approach was used to investigate the effect of addition of organic carbon to a 
geyser-associated microbial community. Crystal Geyser, a CO2-driven geyser in Utah (USA), 
provides large volumes of deeply sourced fluids, thus is well suited for studying microbial 
communities in high CO2 environments. Upon addition of organic carbon there was a substantial 
change of the community metabolism, with selection against almost all candidate phyla bacteria 
and archaea and for eukaryotes. Near complete genomes were reconstructed for three fungi placed 
within the Eurotiomycetes and an arthropod. While carbon fixation and sulfur oxidation were 
important functions in the geyser community prior to carbon addition, the organic carbon-impacted 
community showed enrichment for secreted proteases, secreted lipases, cellulose targeting 
CAZymes, and methanol oxidation. The results demonstrate the broader utility of EukRep for 
reconstruction and evaluation of relatively high-quality fungal, protist, and rotifer genomes from 
complex environmental samples. This approach opens the way for cultivation-independent 
analyses of whole microbial communities. 
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Fungi are common members of the human microbiome, but are often excluded from metagenomic 
studies due to the large size and complexity of Eukaryotic genomes. Here, targeted Eukaryotic 
genome recovery was performed on over a thousand metagenomes from premature infant fecal 
samples and twenty-eight metagenomes from the neonatal intensive care unit (NICU) housing the 
infants. Samples were screened for the presence of Eukaryotes using a machine learning classifier, 
and de novo genome assembly, curation, and annotation was performed on identified samples. 
Seventeen distinct Eukaryotic genomes were recovered (median completeness 91%; median size 
15.6 Mbp), including genomes from four strains of Candida albicans, seven genera of fungi, and 
two organisms (Diptera (fly) and Rhabditid (nematode)) with no previously sequenced genomes 
of the same family. Seven percent of infants were colonized by a Eukaryote during the first months 
of life, and prevalence was significantly associated with administration of maternal antibiotics and 
particular bacterial taxa. All NICU samples had detectable fungal communities (median relative 
abundance 2%, full range 0.3-24.1%), and different locations in the NICU had distinct Eukaryotic 
microbiomes. Near-identical genomes of Purpureocillium lilacinum were recovered from both 
infant and NICU samples (99.999% average nucleotide identity), highlighting the potential for 
environmental NICU fungi to colonize premature infants. Zygosity and potential aneuploidy were 
determined for all assembled genomes, and regions with loss of heterozygosity (indicative of 
recent genome evolution) were detected in some C. albicans genomes. This study resolved 
Eukaryote dynamics in the NICU and premature infant gut samples, and reveals potential 
reservoirs of unexpected eukaryotic diversity within the hospital environment. 

Candida parapsilosis is the third most common cause of  invasive candidiasis. C. parapsilosis 
infections have been continually increasing in prevalence over the past two decades, and at 
significantly higher prevalence in neonates than other at risk populations, marking its importance 
as an emerging pathogen. Despite this, C. parapsilosis is understudied. The recovered C. 
parapsilosis genomes contain small genomic regions with highly elevated levels of Single 
Nucleotide Variants (SNVs), which we refer to as SNV hotspots. SNV hotspots are shared between 
strains, with some unique to C. parapsilosis strains from a single hospital. Four of the C. 
parapsilosis genomes have a high copy number (4-16) RTA3 gene, a lipid translocase previously 
implicated in antifungal resistance, potentially indicative of adaptation to antifungal treatment. 
Additionally, time course metatranscriptomics and metaproteomics were performed on a 
premature infant with a documented C. parapsilosis blood infection, offering a rare look at the in 
vivo expression and protein landscape of a Candida species. C. parapsilosis in situ expression is 
highly distinct from culture settings, but also highly variable, demonstrating the importance of 
studying Candida in situ in addition to culture settings. 

Mono Lake, CA, is a high alkalinity, hypersaline lake with an unusually productive ecosystem 
largely supported by benthic and planktonic algae. A species of choanoflagellate from Mono 
Lake that forms a multicellular, hollow rosette filled with bacteria, but little was known about 
this choanoflagellate and its associated microbial community. This association is of interest 
given choanoflagellates are the closest living relatives to animals and the analogy between 
rosette-enclosed consortia and animal gut microbiomes. Metagenomic shotgun sequencing was 
performed in order to reconstruct genomes for the choanoflagellete and its associated 
community. EukRep was used for eukaryotic sequence identification and enabled genome 
recovery, genome completeness evaluation and prediction of metabolic potential of both the 
choanoflagellate nuclear and mitochondrial genomes. The nuclear draft genome measures 49 
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Mbp in length, contains 11052 predicted genes and appears to be near complete. Interestingly, its 
extracellular proteins have a higher isoelectric point compared to marine choanoflagellates, 
likely an adaptation to their saline, high pH environment. Characterization of bacterial 
communities leveraged samples taken from choanoflagellate rosette enriched and 
choanoflagellate rosette depleted samples in order to distinguish bacteria within and outside 
rosettes. Across all samples, 23 near-complete bacterial genomes were recovered, primarily 
belonging to Gammaproteobacteria, Bacteroidetes, and Spirochaeta. Of these, seven were found 
only in the choanoflagellete enriched samples, suggesting that these bacteria are partitioned into 
the rosette interior. Overall, the research provided insights into the composition and metabolic 
interactions between an ordered assemblage of single celled eukaryotes and its enclosed 
microbiome.   
 

In this work, genome-resolved and culture-independent methods are employed to study microbial 
eukaryotes in a variety of natural community contexts, ranging from animal microbiomes, the 
hospital room, and environmental communities. The development of EukRep and subsequent 
incorporation into metagenomic pipelines represents an important methodological advance for the 
comprehensive study of the structure and ecology of natural microbial communities and provides 
new insights into community functioning.  
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Introduction	

Microbial eukaryotes are the evolutionary connection between us, and all the macroscopic life 
around us, to the microscopic world of unicellular organisms and our ancient, ancient ancestors. 
Two very open, and very large questions are how the domain of Eukaryotes emerged from the 
relatively simple, unicellular Prokaryotes and the identity of the Last Eukaryotic Common 
Ancestor (LECA). The recently discovered superphylum of Asgard Archaea, are the closest 
known living prokaryotes to eukaryotes, and suggest an archaeal host cell and an 
alphaproteobacterial (mitochondrial) endosymbiont as the origin of eukaryotic cellular 
complexity (Zaremba-Niedzwiedzka et al. 2017). Both phylogenetic analyses and the protein 
content of the Asgard archaea support this hypothesis. Interestingly, however, no clear 
phylogenetic root within the Eukaryotic domain has been resolved (Burki 2014; Williams 2014), 
leaving the identity of LECA a mystery.  
 
Over the past two decades, culturing of microbial eukaryotes with no near phylogenetic relatives 
(e.g., the Picozoa; Seenivasan et al. 2013, and Ancyromonads; Janouškovec et al. 2017), as well 
as the recent discovery of the Hemimastigophora phylum (Lax et al. 2018), indicate that a large 
fraction of microbial eukaryotes remain to be described. In fact, not only is LECA currently 
undetermined, but entire eukaryotic phylums of diversity likely remain to be discovered (Keeling 
et al. 2019). Similar to bacteria and archaea, only a very small fraction of microbial eukaryotes 
can currently be isolated in culture (Caron et al. 2008; Pawlowski et al. 2012). Cultivation-
independent methods have the potential to provide an expanded view of eukaryotic diversity, as 
they have done across the Domain Bacteria and Archaea (Hug et al. 2016).  
  
Amplicon sequencing, such as 18S rRNA sequencing is a cultivation-independent method that 
has helped to reveal the breadth of eukaryotic diversity. However, this gene does not contain 
enough information to resolve deep phylogenies and does not provide information about 
metabolism or lifestyle of the identified organisms. Genome-resolved metagenomics is a 
promising, culture independent method of recovering whole genomes from environmental 
sequencing samples. In this method, DNA is extracted from whole communities and shotgun 
sequenced. Sequencing reads are then assembled de novo into scaffolds and subsequently binned 
into putative genomes. Recovering entire genomes is highly advantageous as it allows for 
detailed multi-protein phylogenies, as well as prediction of metabolic and lifestyle potential 
based on gene content. 
 
Yet, only a handful of eukaryotic genomes have been recovered with genome-resolved 
metagenomics (Sharon et al. 2013; Kantor et al. 2015, 2017; Quandt et al. 2015; Mosier et al. 
2016; Raveh-Sadka et al. 2016). This conspicuous absence of eukaryotic genomes can partially 
be attributed to the need for proper gene predictions for high quality binning, and the failure of 
standard metagenomic gene prediction algorithms to properly predict genes on eukaryotic 
scaffolds. In Chapter 1, I propose a modified genome-resolved metagenomic method 
incorporating EukRep, a machine learning-based algorithm for separating eukaryotic scaffolds 
from prokaryotic scaffolds, to aid in binning eukaryotes. I show it reliably enables proper gene 
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prediction on eukaryotic scaffolds and subsequently, the recovery of diverse eukaryotic genomes 
from a range of environments and in silico experiments.  
 
In addition to their critical role in understanding our own evolutionary history, microbial 
eukaryotes are important opportunistic pathogens and members of the human microbiome. 
Although human diseases caused by fungi is a highly active area of research, relatively little is 
known about asymptomatic colonization of the gut early in life. Studies with varying methods 
have reported 0%, 26%, 50%, and 63% of premature infants being colonized by fungi (Baley et 
al. 1986; Stewart et al. 2012; Stewart et al. 2013; LaTuga et al. 2011). However, due to 
methodological limitations, all of these studies were only able to analyze the fungal components 
of the communities and thus, unable to answer basic questions about fungal abundance relative 
to gut bacterial community members. In addition, the extent to which the hospital environment 
serves as a reservoir for microbial eukaryotes and a source of colonization of infants is currently 
unknown. In chapters 2 and 3, I utilize genome-resolved metagenomics to characterize the 
presence of microbial eukaryotes in the infant gut and neonatal intensive care unit (NICU). We 
show microbial eukaryotes are diverse and frequently present in the gut microbiomes of infants, 
and that there may be transfer between infants and hospital rooms or vice versa. 
 
Microbial eukaryotes exist in complex communities comprised of bacteria, archaea, and viruses; 
however, relatively little is known about their biology and behavior in a whole community 
context. Microbial community context is likely of high significance, given interactions between 
bacteria and eukaryotes influence the development, metabolism, and evolution of all types of 
eukaryotes, ranging from animals (Gilbert et al. 2018) to unicellular ciliated protozoa (Gong et 
al. 2016).  
 
Indeed, microbial eukaryotes have been shown to be dramatically influenced by bacteria. The 
Choanoflagellates, the closest known living relatives of animals, typically graze on bacteria by 
trapping them in their apical collar (Hibberd et al. 1975). The Choanoflagellate Salpingoeca 
rosetta is primarily a unicellular organism, but formation of multicellular rosettes can be both 
induced or inhibited by lipids produced by the bacterium Algoriphagus machipongonensis 
(Cantley et al. 2016). Similarly, the bacterium Vibrio fischeri produces a chondroitinase, EroS, 
capable of inducing mating in S. rosetta (Woznica et al. 2017). As another example, the yeast 
Candida albicans, a human commensal and opportunistic pathogen, exhibits complex 
interactions with Enterococcus faecalis, a bacterial human gut commensal. C. albicans and E. 
faecalis negatively impact one another’s virulence (Cruz et al. 2013), suggesting a mechanism 
that promotes commensal behavior in a gut microbial community context. The decrease in C. 
albicans virulence was attributed to inhibition of hyphal morphogenesis and by proteases 
secreted by E. faecalis (Cruz et al. 2013). However, these given examples of interactions were 
studied using constructed experiments rather than natural communities. In chapter 3, I utilize 
metatranscriptomics and metaproteomics combined with metagenomics of infant fecal samples 
to examine the metabolism and behavior of the yeast Candida parapsilosis in an infant gut 
context and show that it is significantly altered from what is typically observed in culture 
settings. In chapter 4, a complex co-culture derived from a Mono Lake water sample containing 
over 25 distinct species, including a microbial eukaryote belonging to the Choanoflagellates, is 
characterized.  
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1 Genome-reconstruction for eukaryotes from complex 
natural microbial communities 

West, Patrick T., Probst, Alexander J., Grigoriev, Igor V. Thomas, Brian C. and Banfield, Jillian 
F. 

 

Published in Genome Research, April 2018, doi: 10.1101/gr.228429.117 

 

1.1 Abstract 
Microbial eukaryotes are integral components of natural microbial communities, and their 
inclusion is critical for many ecosystem studies, yet the majority of published metagenome 
analyses ignore eukaryotes. In order to include eukaryotes in environmental studies, we propose 
a method to recover eukaryotic genomes from complex metagenomic samples. A key step for 
genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k-mer-
based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental 
samples to show that it enables genome recovery, genome completeness evaluation, and 
prediction of metabolic potential. We used this approach to test the effect of addition of organic 
carbon on a geyser-associated microbial community and detected a substantial change of the 
community metabolism, with selection against almost all candidate phyla bacteria and archaea 
and for eukaryotes. Near complete genomes were reconstructed for three fungi placed within the 
Eurotiomycetes and an arthropod. While carbon fixation and sulfur oxidation were important 
functions in the geyser community prior to carbon addition, the organic carbon-impacted 
community showed enrichment for secreted proteases, secreted lipases, cellulose targeting 
CAZymes, and methanol oxidation. We demonstrate the broader utility of EukRep by 
reconstructing and evaluating relatively high-quality fungal, protist, and rotifer genomes from 
complex environmental samples. This approach opens the way for cultivation-independent 
analyses of whole microbial communities. 
 

1.2 Introduction 
Microbial eukaryotes are important contributors to ecosystem function. Gene surveys or DNA 
“barcoding” are frequently used to identify eukaryotes in microbial communities and have 
demonstrated the breadth of eukaryotic diversity (Pawlowski et al. 2012). However, these 
approaches can only detect species and are unable to provide information about metabolism or 
lifestyle in the absence of sequenced genomes. The majority of fully sequenced eukaryotic 
genomes are from cultured organisms. Lack of access to cultures for a wide diversity of protists 
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and some fungi detected in gene surveys has resulted in major gaps in eukaryotic reference 
genome databases (Caron et al. 2008; Pawlowski et al. 2012). Single-cell genomics holds 
promise for sequencing uncultured eukaryotes and has generated partial genomes for some 
(Cuvelier et al. 2010; Yoon et al. 2011; Monier et al. 2012; Vaulot et al. 2012; Roy et al. 2014; 
Mangot et al. 2017). However, multiple displacement amplification limits the completeness of 
single-cell genomes (Woyke et al. 2010). Alternatively, metagenomic sequencing reads from 
environmental samples are mapped against reference genomes to detect organisms and constrain 
metabolisms, but this approach is restricted to study of organisms with sequenced relatives. 
Many current studies of natural ecosystems and animal or plant-associated microbiomes use an 
untargeted shotgun sequencing approach.  
 
When the DNA sequences are assembled, tens of thousands of genome fragments may be 
generated, some of which are derived from eukaryotes. Exceedingly few metagenomic studies 
have systematically identified such fragments as eukaryotic, although some genomes for 
microbial eukaryotes have been reconstructed (Sharon et al. 2013; Kantor et al. 2015, 2017; 
Quandt et al. 2015; Mosier et al. 2016; Raveh-Sadka et al. 2016). In almost all cases, these 
genomes were recovered from relatively low-diversity communities where binning of genomes is 
typically less challenging than in complex environments. Here, we applied a new k-mer-based 
approach for identification of assembled eukaryotic sequences in datasets from diverse 
environmental samples. Identification of eukaryotic genome fragments enabled their assignment 
to draft genomes and improvement of the quality of gene predictions. Predicted genes on 
assembled metagenomic contigs provide critical inputs for further binning decisions that 
incorporate phylogenetic profiles as well as classification of the reconstructed genomes and 
assessment of their completeness. Our analyses focused on biologically diverse environmental 
samples, many of which came from groundwater. In addition, we investigated previously 
published metagenomes from infant fecal samples and a bioreactor community used to break 
down thiocyanate. Because the approach works regardless of a predetermined phylogenetic 
affiliation, it is now possible to reconstruct genomes for higher eukaryotes as well as fungi and 
protists from complex environmental samples. 
 
 

1.3 Materials and methods 

1.3.1 Crystal Geyser sample collection and DNA extraction  
Details of filtration of groundwater for sample CG_bulk is given in Probst et al. (2016) (sample 
CG23_combo_of_CG06-09_8_20_14). Groundwater containing particulate wood was collected 
in a 50- mL Falcon tube. All samples were frozen on site on dry ice and stored at −80°C until 
further processing. The sample with the particulate wood was spun down, and DNA extraction 
was performed as described previously (Emerson et al. 2015). 
 
1.3.2 Crystal Geyser DNA sequencing and assembly 
Raw sequencing reads were processed with bbtools (http://jgi.doe. gov/data-and-tools/bbtools/) 
and quality-filtered with SICKLE Figure 6. Comparison of CG_WC and CG_bulk metabolic 
capacity. Log2 ratio of all annotated genes found within the CG_bulk sample against annotated 
genes found in the CG_WC sample. Annotated genes were grouped into categories based upon 
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scores with a custom set of metabolic pathway marker HMMs (Anantharaman et al. 2016), 
CAZyme HMMs (Cantarel et al. 2009), and protease and lipase HMMs from MEROPs and the 
Lipase Engineering Database, respectively. Putative proteases and lipases were also filtered to 
only those containing a secretion signal and less than three transmembrane domains (see 
Methods). Gene count (red) is the ratio of total number of genes in each category for each sample 
normalized by the total number of genes found in the sample. Relative abundance (blue) is the 
ratio of average read coverage depth of the contig containing a given annotated gene in each 
category normalized by the sample read count multiplied by read length. West et al. 576 Genome 
Research www.genome.org Downloaded from genome.cshlp.org on March 19, 2020 - Published 
by Cold Spring Harbor Laboratory Press with default parameters (version 1.21; 
https://github.com/ najoshi/sickle). IBDA_UD (Peng et al. 2012) was used to assemble and 
scaffold filtered reads. IDBA_UD was chosen as it is a widely used, publicly available program 
designed for metagenomic assemblies. Unlike almost all other such assemblers, it includes a 
scaffolding step. This is important because longer sequences can be more robustly binned. 
Scaffolding errors were corrected using MISS (I Sharon, BC Thomas, JF Banfield, unpubl.), a 
tool that searches and fixes gaps in the assembly based on mapped reads that exhibit 
inconsistencies between raw reads and assembly. The two Crystal Geyser samples used for 
binning and comparison in this study, CG_WC and CG_bulk, resulted in 874 and 529 Mbps of 
assembled scaffolds, respectively. 

 

1.3.3 Prokaryotic genome binning and annotations 
Protein-coding genes were predicted on entire metagenomic samples using MetaProdigal (Hyatt 
et al. 2012). Ribosomal RNA genes were predicted with Rfam (Nawrocki et al. 2015), and 16S 
rRNA genes were identified using SSU-ALIGN (Nawrocki 2009). Predicted proteins were 
functionally annotated by finding the best BLAST hit using USEARCH (UBLAST) (Edgar 
2010) against UniProt (The UniProt Consortium 2017), UniRef90 (Suzek et al. 2007), and 
KEGG (Kanehisa et al. 2016). Prokaryotic draft genomes were binned through the use of 
emergent self-organizing map (ESOM)-based analyses of tetranucleotide frequencies. Bins were 
then refined through the use of ggKbase (ggkbase.berkeley.edu) to manually check the GC, 
coverage, and phylogenetic profiles of each bin. 
 

1.3.4 EukRep training and testing 
EukRep, along with trained linear SVM classifiers, are available at 
https://github.com/patrickwest/EukRep. A diverse reference set of 194 bacterial genomes, 218 
archaeal genomes, 27 opisthokonta, and 43 protist genomes was obtained from NCBI and JGI 
(Supplemental Table S1). Hug et al. (2016), JGI Mycocosm database (jgi.doe.gov/fungi), and the 
NCBI taxonomy browser were used as references for selecting genomes from a broad taxonomic 
range. The contigs comprising these genomes were split into 5-kb chunks for which 5-mer 
frequencies were calculated (Anvar et al. 2014). Contigs shorter than 3 kb were excluded. The 5-
mer frequencies were used to train a linear-SVM (scikit-learn, v. 0.18, default parameters with C 
= 100) to classify sequences as either of opisthokonta, protist, bacterial, or archaeal origin. The 
hyperparameter C was optimized using a grid-search with cross-validation and accuracy on a 
subset of test genomes used for scoring. To classify an unknown or test sequence, the sequence 
was split into 5-kb chunks, and 5-mer frequencies were determined for each chunk. Contigs 
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shorter than 3 kb were excluded. The trained classifier was then used to predict whether the 
sequence is of opisthokonta, protist, bacterial, or archaeal origin. Once classified, the 5-kb 
chunks were stitched back together into their parent scaffold, and the parent scaffold’s taxonomy 
was determined based upon majority rule of its 5-kb chunks. Accuracy for a given genome was 
considered to be the percent of total base pairs correctly identified as either eukaryotic or 
prokaryotic. To compare the effect of k-mer length on prediction accuracy, k-mer frequencies 
ranging in length from 4 to 6 bp from the same training set were used to train separate linear-
SVM models. To determine the minimum sequence length cutoff, test genomes were fragmented 
into pieces of n length, and sequences shorter than n length were filtered out. To test EukRep, a 
separate set of 97 eukaryotic and 393 prokaryotic genomes was obtained from NCBI and JGI 
(Supplemental Table S2). Genomes assembled into less than 10 contigs were fragmented into 
100-kb pieces in order to better represent metagenomic data sets. EukRep was then run on each 
genome individually. Accuracy for a given genome was measured by dividing the total number 
of base pairs correctly classified by the total number of base pairs tested 
 
1.3.5 EukRep training and testing 
Scaffolds predicted to be eukaryotic scaffolds by EukRep were binned into putative genomes 
using CONCOCT (Alneberg et al. 2014). Eukaryotic genome bins smaller than 5 Mbp were not 
included in further analyses. Gene predictions were performed individually on each bin with the 
MAKER2 pipeline (v. 2.31.9) (Holt and Yandell 2011) with default parameters and using 
GeneMark-ES (v. 4.32) (Ter-Hovhannisyan et al. 2008), AUGUSTUS (v. 2.5.5) (Stanke et al. 
2006) trained with BUSCO (v. 2.0) (Simão et al. 2015), and the proteomes of Chylamydomonas 
reinhardtii (Merchant et al. 2007), Neurospora crassa (Galagan et al. 2003), and Reticulomyxa 
filosa (Glöckner et al. 2014) for homology evidence. These gene prediction strategies were 
employed due to their ability to be automatically trained for individual genomes. Completeness 
of the combined MAKER2 predicted gene set as well as the individual gene predictor gene sets 
were compared, and the most complete based upon BUSCO analysis was used in future analyses. 
Phylogenetic classification of the predicted genes along with presence or absence of single-copy 
orthologous genes was then used to refine each binned genome. CAZYmes were detected in both 
eukaryotic and prokaryotic bins through the use of HMMER3 (v. 3.1b2) (Eddy 1998) and a set of 
HMMs obtained from dbCAN (Yin et al. 2012). The presence or absence of various metabolic 
pathways was determined by using a custom set of metabolic pathway marker gene HMMs 
(Anantharaman et al. 2016) and HMMER3. Protease and lipases were predicted by using lipase 
HMMs from the Lipase Engineering Database (Fischer and Pleiss 2003) and BLASTing against 
a protease database obtained from MEROPS (Rawlings et al. 2016). Putative excreted proteases 
and lipases were identified by searching for predicted proteases and lipases with secretion signals 
identified with SignalP (Petersen et al. 2011) and no more than one transmembrane domain with 
TMHMM (Krogh et al. 2001). To find potentially contaminating prokaryotic scaffolds, predicted 
genes were BLASTed against UniProt. Scaffolds in which the majority of best hits belonged to 
prokaryotic genes were removed. Read data sets for previously published metagenomes are 
available under Sequence Read Archive (SRA) accession numbers SRA052203 and SRP056932 
at (SRA; http://www.ncbi.nlm.nih. gov/sra) and BioProjects PRJNA294605 and PRJNA279279. 
 

1.3.6 Eukaryotic gene set comparisons 
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Nine gene sets were obtained from JGI’s mycocosm database (Grigoriev et al. 2011) and NCBI. 
For each genome, genes were predicted without transcriptomic evidence by running assembled 
sequences through the MAKER2 pipeline with AUGUSTUS trained with BUSCO and 
GeneMark-ES in self-training mode. Gene sets predicted with transcriptomic evidence were 
obtained from the JGI portal and NCBI. For comparison against eukaroytic MetaProdigal 
predicted gene sets, MetaProdigal was run with the ‘-meta’ flag. 
 
1.3.7 Eukaryote genome completeness estimates 
Genome completeness of predicted eukaryotic genomes was estimated based on the presence of 
conserved, low-copy-number genes. BUSCO (v. 2.0) (Simão et al. 2015) was run with default 
parameters using the “eukaryota_odb9” lineage set composed of 303 core eukaryotic genes. 
Completeness was considered to be Metagenomic reconstruction of eukaryotic genomes Genome 
Research 577 www.genome.org Downloaded from genome.cshlp.org on March 19, 2020 - 
Published by Cold Spring Harbor Laboratory Press the percent of the total 303 core genes that 
were present in either single or duplicated copies. Additionally, the number of genes identified as 
duplicated was used as a way to estimate how much of a given binned genome appeared to be 
from a single organism. 
 
1.3.8 Eukaryote genome completeness estimates 
Bulk soil was collected from the Eel River Critical Zone Observatory (CZO) in Northern 
California. DNA extraction was performed as described previously (Emerson et al. 2015). Raw 
sequencing reads were processed with bbtools (http://jgi.doe.gov/data-and-tools/ bbtools/) and 
quality-filtered with SICKLE with default parameters (version 1.21; 
https://github.com/najoshi/sickle). IBDA_UD (Peng et al. 2012) was used to assemble and 
scaffold filtered reads. The genome of Choanephora cucurbitarum was obtained from the NCBI 
genome database and spiked into the assembled soil metagenome. MetaProdigal was used to 
obtain gene predictions for the entire sample. EukRep was then used to classify scaffolds as 
eukaryotic. CONCOCT was used to bin predicted eukaryotic sequences, and gene predictions 
were reperformed on the Choanephora bin with the MAKER2 pipeline using GeneMark-ES and 
AUGUSTUS for gene prediction. 
 
1.3.9 taxator-tk comparison 
The microbial-full_20150430 database was obtained from the taxator-tk (Dröge et al. 2015) 
website and was used for mapping. Mapping of test genomes against the reference database was 
performed using BLASTN with default alignment parameters and output format described in the 
taxator-tk manual. In a second round of testing, scaffolds belonging to test genomes were 
removed from the test set to simulate genomes from novel organisms. Taxonomic assignment 
and binning were performed as described in the taxator-tk manual without filtering alignments. 
 
1.3.10 Phylogenetic analyses 
To determine ANI between genomes, dRep was used (Olm et al. 2017). To estimate taxonomic 
composition of Crystal Geyser samples, rpS3 proteins were searched against KEGG (Kanehisa et 
al. 2016) with USEARCH (UBLAST) (Edgar 2010), and the taxonomy of the top hit was used to 
assign identified rpS3s to taxonomic groups. Abundance of identified rpS3s was determined by 
calculating the average coverage depth of the scaffolds containing annotated ribosomal protein 
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S3 (rpS3) genes. Average coverage depth was calculated by dividing the number of reads 
mapped to the scaffold by the scaffold length. Abundances were normalized for comparison 
across samples by multiplying the average coverage depth by the sample read count times read 
length. Four hundred sixty-one protein sets were obtained from binned eukaryotic genomes, 
publicly available genomes from the Joint Genome Institute’s IMG-M database (img.jgi.doe.gov; 
Chen et al. 2016), NCBI, the Candida Genome Database (http ://www.candidagenome.org/), and 
a previously developed data set (Hug et al. 2016). For each protein set, 16 ribosomal proteins 
(L2, L3, L4, L5, L6, L14, L15, L16, L18, L22, L24, S3, S8, S10, S17, and S19) were identified 
by BLASTing a reference set of 16 ribosomal proteins obtained from a variety of protistan 
organisms against the protein sets. BLAST hits were filtered to a minimum e-value of 1.0 × 10−5 
and minimum target coverage of 25%. The 16 ribosomal protein data sets were aligned with 
MUSCLE (v. 3.8.31) (Edgar 2004) and trimmed by removing columns containing 90% or greater 
gaps. The alignments were then concatenated. A maximum likelihood tree was constructed using 
RAxML (v. 8.2.10) (Stamatakis 2014), on the CIPRES web server (Miller et al. 2010), with the 
LG plus gamma model of evolution (PROTGAMMALG) and with the number of bootstraps 
automatically determined with the MRE-based bootstopping criterion. 
 

1.4 Results 

1.4.1 Crystal Geyser community structure 
The deep subsurface microbial community at Crystal Geyser, Utah has been well characterized 
as being dominated by chemolithoautotrophic bacteria and archaea, including many organisms 
from candidate phyla (CP) (Probst et al. 2014, 2016; Emerson et al. 2015). It is our current 
understanding that a wide diversity of novel bacteria and archaea are brought to the surface by 
geyser eruptions (Probst et al. 2018). Such deep sedimentary environments are unlikely to have 
high organic carbon compound availability. Thus, we hypothesized that organic carbon addition 
to this system would profoundly shift the community composition by selecting against the novel 
geyser microorganisms and enriching for better known heterotrophs. To test this prediction, we 
analyzed a sample of wood that was added to the shallow geyser and had decayed in the 
groundwater conduit (hereafter referred to as CG_WC). This sample and a wood-free sample 
(CG_bulk) that was collected the day before CG_WC were subjected to metagenomic analysis. 
We identified 124 and 316 distinct strains in the CG_WC and CG_bulk samples, respectively. 
The CG_WC sample contained abundant eukaryotic sequences (Fig. 1.1A) that were not present 
in the surrounding geyser water (Fig. 1.1B). Twelve strains were present in both samples (Fig. 
1.1C), including the archaeon Candidatus “Altiarchaeum hamiconexum” (Probst et al. 2014), 
which dominated the CG_bulk sample. A phylum-level comparison of the microbial 
communities is presented in Figure 1.1D. The presence of decaying wood strongly enriched for 
Actinobacteria and Proteobacteria, as well as eukaryotes such as Ascomycota, Basidiomycota, 
and an organism classified as part of the Arthropoda. A low abundance alga from the class 
Bacillariophyta was detected in both samples. 
 
As predicted, the CG_WC sample contains very few CP bacteria and archaea, with the notable 
exception of three members of Saccharibacteria (TM7). Two Saccharibacteria genomes were 
>90% complete, and one 1.01 Mbp genome was circularized and curated to completion. To 
evaluate for the accuracy of the complete genome, we ruled out the presence of repeat sequences 
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that could have confounded the assembly and carefully checked the consistency of paired reads 
mapped across the entire genome (Supplemental Data 1.1). The cumulative GC skew was used to 
identify the origin and terminus of replication (Brown et al. 2016). Although the skew has 
generally the expected form (consistent with genome accuracy), the origin defined based on GC 
skew was offset from the dnaA gene by ∼46 kbp (Supplemental Fig. S1.1A). Short repeat 
sequences often associated with the origin were absent both from the predicted origin and the 
region encoding dnaA, although they were identified close to the origin for another candidate 
phyla radiation bacterium (Anantharaman et al. 2016). We identified the origin region for a 
previously reported complete Saccharibacteria RAAC3_TM7 genome using cumulative GC 
skew and showed that repeats were not present in this genome either and that the predicted origin 
is 7.6 kb from the dnaA gene (Kantor et al. 2013). 
 
1.4.2 EukRep tested on reference data sets 
Typically, only prokaryotic gene prediction is performed on metagenomic samples, as these are 
the only algorithms specifically designed for this application (e.g., MetaProdigal) (Hyatt et al. 
2012). For samples containing both prokaryotic and eukaryotic DNA, such as CG_WC, 
obtaining high-quality gene predictions for eukaryotes is complicated by the fact that distinct 
gene prediction tools are used for prokaryotic vs. eukaryotic sequences due to differences in gene 
structure. Specifically, eukaryote genomes have more complex promoter regions, regulatory 
signals, and genes spliced into introns and exons, variable between species. For this reason, it is 
not surprising that we found that prokaryotic gene predictors underperform when used on 
eukaryotic sequences. This can impact binning by affecting taxonomic profiling of scaffolds and 
bin quality metrics such as the presence or absence of single-copy genes (Supplemental Fig. 
S1.2). To address this issue and obtain high-quality eukaryotic gene predictions from 
metagenomes, we present EukRep, a classifier that utilizes k-mer composition of assembled 
sequences to identify eukaryotic genome fragments prior to gene prediction (Fig. 1.2A). When 
previously used to taxonomically classify metagenomic sequences, machine learning algorithms 
have shown promise, but their success was limited when samples contained many different 
species (Vervier et al. 2016). We hypothesized that a supervised classification method could be 
applied to accurately classify sequences at the domain level for gene prediction purposes, 
avoiding complications from having a large number of taxonomic categories. 
 
The EukRep model was trained using a diverse reference set of bacterial, archaeal, opisthokonta, 
and protist genomes (3.40 Gbps of sequence) (Supplemental Table S1.1). The k-mer frequencies 
were calculated for each 5-kb interval, resulting in 581,376 individual instances that were used to 
train a linear-SVM (scikit-learn) (Pedregosa et al. 2011). We found that 5-mer frequencies 
represented the best compromise between speed and accuracy for classifying eukaryotic 
scaffolds and that sequences can be classified with high accuracy at lengths of 3 kb or greater 
(Fig. 1.2B; Supplemental Fig. S1.3). A validation set of 486 independent genomes 
(Supplemental Table S1.2) was assembled to test the prediction power of EukRep. An important 
goal of EukRep is to be able to classify novel as well as known eukaryotic sequences and to 
avoid overfitting for existing eukaryotic sequences. Thus, the training and validation sets were 
chosen so as to taxonomically overlap at a maximum of genus level. Using the described 
validation set to test EukRep, we found that the classifier was able to accurately predict the 
domain of 97.5% of total tested eukaryotic sequence length and 98.0% of prokaryotic sequence 
length. 
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An important note is that EukRep is designed so as to miss as little eukaryotic sequence as 
possible. To ensure this, the program classifies every sequence in a sample, even sequences 
whose composition signals will be weak because the sequences are relatively short. Further, 
given the continuum between confident and less confident classification of eukaryote sequences, 
we chose settings that maximized classification outcomes (recall). The 2% of incorrect 
classifications of prokaryote as eukaryote sequences represent false positives that can be 
removed using standard binning methods (especially those that include phylogenetic signal). 
 
We examined classifier accuracy on a per-genome basis to test whether the classifier 
performance varied for organisms of widely different types (Fig. 1.2C). This metric differs from 
that reported above because it refers to the accuracy of classifying individual artificially 
fragmented genomes rather than overall accuracy on all scaffolds tested from every genome. 
Ninety-four percent of tested eukaryotic genomes were classified with >90% accuracy, whereas 
88% of tested prokaryotic genomes were classified with >90% accuracy. In a small number of 
prokaryotic genomes, more than half of the contigs were misclassified as eukaryotic. Notably, all 
of these were small genomes of organisms inferred to be parasites or symbionts. However, 
almost all of the sequences composing the eukaryotic genomes tested were correctly classified, 
indicating this method can successfully identify scaffolds whose analysis would benefit from a 
eukaryotic gene prediction algorithm. 
 
In a complex metagenomic sample, obtaining sequences from novel lineages is a relatively 
common occurrence, and EukRep’s ability to classify novel eukaryotic sequences is critical. We 
tested the ability of EukRep to do this by having it classify both eukaryotes (n = 18) and 
prokaryotes (n = 46) from phyla not represented in EukRep’s training set (Supplemental Fig. 
S1.3). Although the genomes were fragmented into 3-kb pieces, EukRep maintained an overall 
accuracy of 90%. When tested on sequences fragmented to 20 kb, accuracy improved to 98%. 
Thus, we conclude that EukRep can be relied upon to correctly classify the majority of genomes 
from potentially entirely new phyla, even when fragmented. 
 
Other taxonomic binning algorithms such as taxator-tk (Dröge et al. 2015) rely upon alignment 
to reference databases to make taxonomic classifications. Although these algorithms are typically 
designed for classifying reads at the lowest taxonomic level possible (e.g., species), they can 
potentially classify scaffolds at the domain level and perform the same function as EukRep. In 
order to test whether EukRep represents a significant improvement in this specific area, we 
compared EukRep to taxator-tk by classifying genomes from phyla unrepresented in EukRep’s 
training set at the domain level. taxator-tk was selected for comparison because it includes 
eukaryotes in its prebuilt reference data set. taxator-tk was run twice. In the first test, many of the 
fragments to be classified were present as genomes in the reference data set (11/18), and it 
classified 47% of the total eukaryotic sequence tested as eukaryotic at 3 kb and 76% at 20 kb 
(Supplemental Fig. S1.3). In the second test, where the test genomes were removed from the 
reference set at the genus level so that the fragments represented genomes from novel genus 
level organisms at a minimum, the tool classified 24% at 3 kb and 44% at 20 kb of total 
eukaryotic sequence as eukaryotic (Supplemental Fig. S1.3). Due to the fact that EukRep does 
not rely upon alignment-based methods, it also does not require a reference database and can 
process metagenomes quickly, at a rate of up to two Gbp an hour on a single core. Thus, we 
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conclude that EukRep represents an improvement over this approach for the purpose of 
identifying scaffolds for eukaryotic gene prediction. 
 

1.4.3 Testing eukaryotic gene predictions on reference genomes 
Eukaryotic gene prediction algorithms rely on a combination of transcriptomic evidence or 
protein similarity (AUGUSTUS [Stanke et al. 2006]; SNAP [Korf 2004]) and sequence 
signatures (GeneMark-ES [Ter-Hovhannisyan et al. 2008]) to make predictions. Given the 
frequent lack of sequenced close relatives to organisms identified in metagenomes and the lack 
of transcript data in many metagenomic studies, we tested how well eukaryotic gene predictors 
function in a diversity of eukaryotic genomes without transcriptomic evidence or homology 
evidence from close relatives. We applied the MAKER2 pipeline (Holt and Yandell 2011) with 
GeneMark-ES in self-training mode along with AUGUSTUS trained using BUSCO (Simão et al. 
2015) to nine diverse eukaryotic genomes obtained from JGI’s portal (Grigoriev et al. 2011) and 
NCBI’s genome database (Fig. 1.3A; NCBI Resource Coordinates 2017). The proteomes of 
Chlamydomonas reinhardtii (Merchant et al. 2007), Neurospora crassa (Galagan et al. 2003), 
and Reticulomyxa filosa (Glöckner et al. 2014) were also used as homology evidence. In each 
case, MAKER2-derived gene predictions were compared to reference gene predictions that 
incorporate transcriptomic evidence. The majority of the gene predictions identified without 
transcriptomic evidence were supported by reference gene predictions (78%–98%), and the 
majority of reference gene predictions overlapped a MAKER2-derived gene prediction (75%–
98%). Estimated completeness of the predicted gene sets was measured by using BUSCO (Simão 
et al. 2015) to search for 303 eukaryotic single-copy orthologous genes within the predicted gene 
sets. The number of single-copy, duplicated, fragmented, and missing genes showed minimal 
differences with and without transcriptomic evidence (Fig. 1.3A). These results show the 
pipeline we assembled for eukaryotic gene prediction, even without transcriptomic evidence, is 
capable of detecting near complete gene sets similar to those from reference genomes, with the 
exception of untranslated regions and alternative splicing patterns. 
 
To ensure that our proposed methodology can result in improved eukaryotic gene predictions in 
the context of a complex metagenomic sample, we spiked the genome of Choanephora 
cucurbitarum (Min et al. 2017) into a complex, 15-Gbp, soil shotgun metagenomic sample (Fig. 
1.3B). The genome of C. cucurbitarum was used because it is a fragmented draft (N50 = 24,238 
bp) with scaffold lengths similar to what is often encountered in a metagenome and because it 
has gene models with many introns that would particularly benefit from eukaryotic gene 
prediction. EukRep was run on this mock data set and recovered 40.6 Mbp of sequence classified 
as eukaryotic. Of this, 26.6 Mbp were the Choanephora genome (91.6% of the entire genome, 
99.6% of the genome longer than the 3-kb minimum sequence length cutoff). Next, 93.2% of the 
identified genome was placed into a single bin. Training and running eukaryotic gene predictors 
on this bin substantially improved gene predictions, increasing estimated completeness via 
single-copy genes from 36% to 97% (Fig. 1.3C). The gene models were substantially more 
similar to reference gene models in terms of total gene count and gene length than those 
predicted using MetaProdigal (Supplemental Fig. S1.4). 
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1.4.4 Analysis of newly reconstructed eukaryotic genomes 
After benchmarking EukRep on reference data sets, the algorithm was applied to the CG_WC 
sample, and 214.8 Mbps of scaffold sequence was classified as eukaryotic. Because eukaryotic 
gene predictors are designed to be trained and run on a single genome at a time, CONCOCT 
(Alneberg et al. 2014), an automated binning algorithm, was applied to the identified eukaryotic 
scaffolds to generate two preliminary eukaryote genomes. In this way, GeneMark-ES and 
AUGUSTUS gene prediction could be performed, as described above, on each bin individually 
as if running on a single genome. 
 
The availability of relatively confident gene predictions for eukaryotic contigs enabled re-
evaluation of genome completeness based on the presence or absence of 303 eukaryotic single-
copy genes as identified by BUSCO (Table 1.1; Fig. 1.4). An obvious finding was that one of the 
CONCOCT bins was a megabin. Using information about single-copy gene inventories, along 
with tetranucleotide frequencies, coverage, and GC content, we assigned the eukaryotic scaffolds 
into four genome bins. BLASTing gene predictions against UniProt identified three of the bins as 
likely fungi and a fourth as a likely metazoan. Gene prediction was redone on the new fungal 
bins with GeneMark-ES in self-training mode and AUGUSTUS trained with BUSCO. The bins 
ranged in size from 24.5 Mbps to 99.0 Mbps and encoded between 8947 and 18,440 genes. 
BUSCO single-copy orthologous gene analysis showed all four bins were relatively complete 
individual genomes based on gene content, with the lowest containing 243/303 (80%) and the 
highest containing 288/303 (95%) single-copy orthologous genes (Table 1.1; Fig. 1.4). Some 
genes expected to be in single copy were duplicated, as is often found with BUSCO analysis of 
complete genomes. The assembly quality of one bin, WC_Fungi_A, appeared to be quite high, 
with 50% of its sequences contained in scaffolds longer than 599 kb. We reduced potential 
contamination of eukaryotic bins with prokaryotic sequence by BLASTing predicted proteins 
against UniProt and removing scaffolds with the majority of best hits belonging to prokaryotic 
genes. 
 
A phylogenetic tree constructed from a set of 16 predicted, aligned, and concatenated ribosomal 
proteins (Hug et al. 2016) placed three of the bins within the fungal class Eurotiomycetes (Fig. 
1.5). Each of these three bins ranged in size from 24.6 to 39.2 Mbps and in gene count from 8963 
genes to 15,756 genes, within the range observed in previously sequenced Ascomycete fungi. 
The closest sequenced relative to all three bins was Phaeomoniella chlamydospora, a fungal 
plant pathogen known for causing Esca disease complex in grapevines (Morales-Cruz et al. 
2015). The fourth bin, 99.7 Mbps in length and estimated to be 92% complete, was placed within 
the Arthropoda (Fig. 1.5). Its closest, although distant, sequenced relative is Orchesella cincta 
(FaddeevaVakhrusheva et al. 2016). Orchesella cincta is a member of the hexapod subclass 
Collembola (springtails), a diverse group basal to insects known primarily to be detritivorous 
inhabitants of soil. Although ribosomal protein S3 (rpS3) sequences belonging to Dictyosteliida, 
Heterolobosea, and Basidiomycota were detected, there were no genomes reconstructed for these 
organisms, likely due to low abundance or genome fragmentation. 
 
1.4.5 Analysis of newly reconstructed eukaryotic genomes 
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To test whether the presence of organic carbon within the CG_WC sample would enrich for 
heterotrophic metabolic pathways (and against members of chemolithoautotrophic communities 
typically associated with the Crystal Geyser community), we searched the CG_WC and CG_bulk 
samples using HMMs for CAZymes grouped by substrate (Cantarel et al. 2009), lipase HMMs 
from the Lipase Engineering Database (Fischer and Pleiss 2003), and a protease BLAST 
database from MEROPS (Rawlings et al. 2016). Predicted proteases and lipases were filtered to 
specifically identify putative excreted proteases and lipases by searching for proteins with 
secretion signals identified with SignalP (Petersen et al. 2011) and one or less transmembrane 
domains with TMHMM (Krogh et al. 2001). 
 
Pathways previously described as dominant within the Crystal Geyser such as the Wood 
Ljungdahl carbon fixation pathway and Ni-Fe hydrogenases were depleted in CG_WC as 
compared to CG_bulk. Instead, genes encoding CAZymes targeting cellulose, hemicellulose, 
pectin, starch, and other polysaccharides were enriched in CG_WC, indicating an increased 
capacity for degradation of complex carbohydrates (Fig. 1.6). A strong enrichment for excreted 
lipases and proteases was also detected, further indicative of an increase in the amount of 
heterotrophic metabolisms (Fig. 1.6). CG_WC also had a strong enrichment for methanol 
oxidation. 
 
The four binned eukaryotic genomes contributed substantially to the putative heterotrophic 
categories (Supplemental Table S1.3). Fungi are known to exhibit different CAZyme profiles 
based upon their lifestyle (Ohm et al. 2012; Kim et al. 2016). An analysis of the CAZyme 
profiles of the three fungal bins focused on plant cell wall-targeting CAZymes supports the role 
of these fungi as possible plant pathogens or saprotrophs (Supplemental Table S4; Floudas et al. 
2012; Ohm et al. 2012; Kim et al. 2016). A profile of CAZymes found within the Arthropoda bin 
revealed a large number of chitin-targeting CAZymes (Supplemental Table S1.3). 
 
1.4.6 Testing EukRep in recovery of eukaryote genomes from other ecosystems 
 
To test the broader application of EukRep, we applied the method to infant fecal samples and 
thiocyanate reactor samples in which eukaryotes had previously been identified (Sharon et al. 
2013; Kantor et al. 2015, 2017; Raveh-Sadka et al. 2015, 2016). By using EukRep, we were able 
to quickly and systematically scan 226 samples for the presence of eukaryotic sequences. Six 
relatively complete fungal genomes were recovered from fecal samples from three infants (Fig. 
1.4). Three are Candida albicans and were reconstructed from two different infants. The two 
genomes from the same infant are indistinguishable and very closely related to that from the 
third infant. All three are closely related to but distinguishable from the C. albicans reference 
strain WO-1 (Fig. 1.4; Supplemental Fig. S1.5A). The other three fungal genomes are strains of 
Candida parapsilosis that all occurred in a single infant. These are essentially indistinguishable 
from each other and from the C. parapsilosis strain CDC317 reference genome, with which they 
share >99.7% average nucleotide identity (ANI) (Fig. 1.4; Supplemental Fig. S1.5A,B; Sharon et 
al. 2013; Raveh-Sadka et al. 2015, 2016). C. albicans and C. parapsilosis are both clinically 
relevant human pathogens (Trofa et al. 2008; Kim and Sudbery 2011). 
 
Within thiocyanate reactor samples, genomes of a rotifer, Rhizaria, and a relative of the slime 
mold Fonticula alba had previously been identified (Kantor et al. 2015, 2017). With EukRep, we 
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were able to rapidly identify these eukaryotic genomes and evaluate their completeness. Genome 
completeness analysis benefited from improved gene predictions for single-copy orthologous 
genes and showed that the identified genomes ranged in completeness Figure 1.4. Overview of 
binned eukaryotic genomes. Genomes that share greater than 99% average nucleotide identity 
(ANI) are indicated by black bars. ANI comparisons are shown in more detail in Supplemental 
Figure S1.3. Genic regions refer to sequence located within predicted gene models whereas 
intergenic refers to all other sequence. Genes containing a PFAM domain were identified with 
PfamScan (Mistry et al. 2007). Genome completeness is measured as the percent of 303 
eukaryotic single-copy orthologous genes found within a genome in a particular form with 
BUSCO. West et al. 574 Genome Research www.genome.org Downloaded from 
genome.cshlp.org on March 19, 2020 - Published by Cold Spring Harbor Laboratory Press from 
69%–91%. (Fig. 1.4). As previously reported (Kantor et al. 2017), the rotifer was present in 
seven different samples (Rotifer_A-G) (Fig. 1.4), consistent with its persistence in the 
thiocyanate reactor community. All seven bins shared greater than 99% ANI (Supplemental Fig. 
S1.5B) indicating they are likely the same species. 
 

1.5 Discussion 
Using a newly acquired and two previously reported whole-community metagenomic data sets, 
we demonstrated that it is possible to rapidly recover high-quality eukaryotic genomes from 
metagenomes for phylogenetic and metabolic analyses. The key step implemented in this study 
was the presorting of eukaryotic genome fragments prior to gene prediction. By training and 
using eukaryotic gene predictors, we achieved much higher quality eukaryotic gene predictions 
than those obtained using a prokaryotic gene prediction algorithm on the entire data set (i.e., 
without separation based on phylogeny). This was critical for draft genome recovery and 
evaluation of genome completeness. 
 
Classification of assembled genome fragments at the domain level was surprisingly accurate, 
with 98.0% (Fig. 1.2C) of eukaryotic sequences being correctly identified as eukaryotic, despite 
no close relative in the training set in many cases (Supplemental Table S1.2). The high accuracy 
of separation suggests some underlying pattern of k-mer frequencies that is different in 
eukaryotes compared to prokaryotes. In part, the signature may arise from different codon use 
patterns associated with the different genetic codes for bacteria and eukaryotes. 
 
We anticipate that reexamination of environmental metagenomic data sets using the same 
approach as implemented here will yield high quality genomes for previously unknown 
eukaryotes. An important benefit from this and future sequencing efforts will be an expanded 
knowledge of the diversity, distribution, and functions of microbial eukaryotes, which are widely 
acknowledged as understudied (Pawlowski et al. 2012). Increasing the diversity of sequenced 
eukaryotic genomes would benefit evolutionary studies. Current eukaryotic multigene trees form 
a solid backbone of the eukaryotic tree of life (Parfrey et al. 2010) but suffer from sparse 
eukaryotic taxon sampling. Single-gene trees, which are possible to construct from gene surveys, 
lack the resolution of multigene trees (Rokas and Carroll 2005). Comprehensive sequencing of 
full genomes would help diminish the sparse taxon sampling problem in multigene trees and 
improve eukaryotic evolutionary reconstructions, with implications for understanding of 
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eukaryotic protein function. For example, Ovchinnikov et al. (2017) demonstrated that it is 
possible to accurately predict protein structure by utilizing residue-residue contacts inferred from 
evolutionary data, but such analyses require large numbers of aligned sequences. More diverse 
eukaryotic sequences could expand the utility of this method for eukaryotic protein family 
analyses. Furthermore, a broader diversity of eukaryotic genomes would provide new insights 
regarding gene transfer patterns and whole-genome evolution. 
 
EukRep, applied in the context of metagenomics, may prove useful for genome sequencing 
projects where isolation of the organism of interest may be difficult or not technically feasible. 
For example, it could be applied to study populations of bacteria Figure 1.5. Phylogenetic 
placement of binned eukaryotic genomes with maximum likelihood analysis of 16 concatenated 
ribosomal protein alignments. Genomes from Crystal Geyser, infant-derived fecal samples, and 
thiocyanate reactor samples are identified with blue, red, and purple circles, respectively. 
Branches with greater than 50% bootstrap support are labeled with their bootstrap support. 
Reference ribosomal proteins were obtained from Hug et al. (2016), JGI (Grigoriev et al. 2011), 
and NCBI (NCBI Resource Coordinators 2017). Metagenomic reconstruction of eukaryotic 
genomes Genome Research 575 www.genome.org Downloaded from genome.cshlp.org on 
March 19, 2020 - Published by Cold Spring Harbor Laboratory Press within the hyphae of 
arbuscular mycorrhizal fungi (Hoffman and Arnold 2010). 
 
Eukaryotic cells frequently contain multiple sets of chromosomes (diploid or polyploid). These 
are often very similar but not identical and can result in the genome assembly alternating 
between collapsing and splitting contigs representing homologous genomic regions (Margarido 
et al. 2015). If reads are only allowed to map to one location when determining genome 
coverage, this could lead to variation of coverage values across different portions of a genome. 
As differential coverage of contigs is a parameter commonly used to help bin genomes, ploidy 
can complicate genome recovery. Another potential problem could relate to contamination of 
eukaryotic genome bins with some bacterial fragments. This will occur to some extent, given that 
some bacterial and archaeal contigs were wrongly classified as eukaryotic. Phylogenetic 
profiling of the predicted genes can be used to screen out most prokaryotic sequences. 
 
During development, we noted that the frequency of correct identification of bacterial genomes 
was improved by increasing the number and diversity of eukaryote sequences used in classifier 
training. Further improvements are anticipated as the variety of reference sequences increases. 
However, there may be biological reasons underpinning incorrect profiles. The small number of 
cases where EukRep profiled bacteria as eukaryotes or vice versa may be interesting targets for 
further analysis. Notably, almost all are inferred or known symbionts or parasites, raising the 
question of whether their sequence composition has evolved to mirror that of their hosts. 
 
We demonstrated the value of EukRep-enabled analyses through study of an ecosystem that had 
been perturbed by addition of a carbon source. The results clearly show a large shift in the 
community composition and selection for fungi. Of the binned genomes, the fungi have by far 
the most cellulose-, hemicellulose-, and pectin-degrading enzymes, consistent with their 
enrichment in response to high organic carbon availability from degrading wood. We also 
genomically characterized what appears to be a macroscopic hexapod that is related to springtails 
(Collembola), organisms known to feed on fungi (Chen et al. 1996). Given that the hexapod 
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genome has a large number of chitin-degrading enzymes (Supplemental Table S1.3), we 
speculate that it may be part of the community supported by the fungi in the decaying wood. 
However, it is also possible that it was associated with the wood prior to its addition to the 
geyser conduit. Interestingly, the eukaryote-based community contains very few members of the 
candidate phyla radiation (CPR) and an archaeal radiation known as DPANN and other CP 
bacteria. These novel organisms are mostly predicted to be anaerobes and are highly abundant in 
groundwater samples that were likely sourced from deep aquifers under the Colorado Plateau 
(Probst et al. 2018). The results of the current study indicate that CPR and DPANN in the Crystal 
Geyser system are adapted to an environment relatively low in carbon availability, a finding that 
may guide future laboratory enrichment studies that target these organisms. 
 

1.6 Conclusions 
Overall, the results reported here demonstrate that comprehensive, cultivation-independent 
genomic studies of ecosystems containing a wide variety of organism types, including 
eukaryotes, are now possible. Examples of future applications include analysis of the distribution 
and metabolic capacities and potential pathogenicity of fungi in the human microbiome, tracking 
of eukaryotes (including multicellular eukaryotes) in reactors used in biotechnologies, profiling 
of the built environment, and natural ecosystem research. 
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1.7 Figures 

 
 
Figure 1.1 Comparison of CG_WC and CG_bulk community composition. The relative 
abundances of taxonomic groups in CG_WC (A) and CG_bulk (B) are depicted. Abundance was 
determined as the average coverage depth of the scaffolds containing annotated ribosomal 
protein S3 (rpS3) genes. Abundances were normalized for comparison across samples by 
multiplying the average coverage depth by the sample read count and read length. (C) 
Normalized coverage of rpS3 containing scaffolds of strains common to both samples. The 
number of additional strains detected in each sample is listed below the respective sample heat 
map. (D) Log2 ratio of normalized coverage of taxonomic groups from A and B. Taxonomic 
groups identified in only one sample are indicated by the darker yellow and blue bars. 
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Figure 1.2 Identification of scaffolds for eukaryotic gene prediction with EukRep. (A) 
Schematic of the analysis pipeline used to identify and bin both eukaryotic and prokaryotic 
genomes within this paper. (B) A subset of genomes from Supplemental Table S2 was used to 
compare prediction accuracy of linear-SVM models trained on k-mer frequencies of k-mers 
ranging in length from 4 to 6 bp. For each sequence size category, sequences longer than the 
specified length were fragmented to the specified length and sequences shorter were excluded. 
(C) Accuracy of EukRep domain prediction on a per-genome level for both eukaryotes and 
prokaryotes. Percent of the genome correctly classified is defined as the percent of base pairs 
within a given genome predicted to belong to the genome's known domain. Each bar represents 
the percent of a single genome that was classified correctly. Genomes used for training and 
testing of EukRep along with their prediction results are listed in Supplemental Tables S1 and 
S2. 
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Figure 1.3. Eukaryotic gene prediction on metagenomic scaffolds. (A) Gene predictions for nine 
diverse eukaryotic organisms including fungi, a Metazoa, a Stramenopile, an Archaeplastida, and 
a Rhizaria. Columns labeled “R” refer to reference gene sets, whereas M columns refer to gene 
sets predicted without transcript or close homology evidence. The top panel displays the 
proportion of total genes either overlapping (shared) or not overlapping (unshared) a gene model 
from the other respective gene set for a given genome. The bottom panel is an analysis of 
presence or absence of single-copy genes in each gene set as determined by BUSCO using the 
eukaryota_odb9 lineage set. (B) Proportion of a soil metagenome spiked with the genome of 
Choanephora cucurbitarum predicted to be either noneukaryotic, eukaryotic and belonging to 
the Choanephora, or predicted to be eukaryotic but has homology to prokaryotic sequences. (C) 
BUSCO analysis of the binned Choanephora cucurbitarum genome with protein sets from (left 
to right) the reference protein set, trained MAKER2 output, and whole metagenome 
MetaProdigal output. 
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Figure 1.4. Overview of binned eukaryotic genomes. Genomes that share greater than 99% 
average nucleotide identity (ANI) are indicated by black bars. ANI comparisons are shown in more 
detail in Supplemental Figure S3. Genic regions refer to sequence located within predicted gene 
models whereas intergenic refers to all other sequence. Genes containing a PFAM domain were 
identified with PfamScan (Mistry et al. 2007). Genome completeness is measured as the percent 
of 303 eukaryotic single-copy orthologous genes found within a genome in a particular form with 
BUSCO. 
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Figure 1.5. Phylogenetic placement of binned eukaryotic genomes with maximum likelihood 
analysis of 16 concatenated ribosomal protein alignments. Genomes from Crystal Geyser, infant-
derived fecal samples, and thiocyanate reactor samples are identified with blue, red, and purple 
circles, respectively. Branches with greater than 50% bootstrap support are labeled with their 
bootstrap support. Reference ribosomal proteins were obtained from Hug et al. (2016), JGI 
(Grigoriev et al. 2011), and NCBI (NCBI Resource Coordinators 2017). 
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Figure 1.6. Comparison of CG_WC and CG_bulk metabolic capacity. Log2 ratio of all annotated 
genes found within the CG_bulk sample against annotated genes found in the CG_WC sample. 
Annotated genes were grouped into categories based upon scores with a custom set of metabolic 
pathway marker HMMs (Anantharaman et al. 2016), CAZyme HMMs (Cantarel et al. 2009), and 
protease and lipase HMMs from MEROPs and the Lipase Engineering Database, respectively. 
Putative proteases and lipases were also filtered to only those containing a secretion signal and 
less than three transmembrane domains (see Methods). Gene count (red) is the ratio of total number 
of genes in each category for each sample normalized by the total number of genes found in the 
sample. Relative abundance (blue) is the ratio of average read coverage depth of the contig 
containing a given annotated gene in each category normalized by the sample read count multiplied 
by read length. 
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For supplemental figures, tables, and information for Chapter 1, see 
https://doi.org/10.1101/gr.228429.117 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 22	

2 Genome-resolved metagenomics of eukaryotic 
populations during early colonization of premature 

infants and in hospital rooms 

Olm, Matthew R.*,  West, Patrick T.*, Brooks, Brandon, Firek, Brian A., Baker, Robyn, 
Morowitz, Michael J., Banfield, Jillian F. 

 

Published in Microbiome February 2019, doi: https://doi.org/10.1186/s40168-019-0638-1 

 

2.1 Abstract 

2.1.1 Background 
Fungal infections are a significant cause of mortality and morbidity in hospitalized preterm 
infants, yet little is known about eukaryotic colonization of infants and of the neonatal intensive 
care unit as a possible source of colonizing strains. This is partly because microbiome studies 
often utilize bacterial 16S rRNA marker gene sequencing, a technique that is blind to eukaryotic 
organisms. Knowledge gaps exist regarding the phylogeny and microdiversity of eukaryotes that 
colonize hospitalized infants, as well as potential reservoirs of eukaryotes in the hospital room 
built environment. 
 
2.1.2 Results 
Genome-resolved analysis of 1174 time-series fecal metagenomes from 161 premature infants 
revealed fungal colonization of 10 infants. Relative abundance levels reached as high as 97% and 
were significantly higher in the first weeks of life (p = 0.004). When fungal colonization occurred, 
multiple species were present more often than expected by random chance (p = 0.008). Twenty-
four metagenomic samples were analyzed from hospital rooms of six different infants. Compared 
to floor and surface samples, hospital sinks hosted diverse and highly variable communities 
containing genomically novel species, including from Diptera (fly) and Rhabditida (worm) for 
which genomes were assembled. With the exception of Diptera and two other organisms, zygosity 
of the newly assembled diploid eukaryote genomes was low. Interestingly, Malassezia and 
Candida species were present in both room and infant gut samples. 

2.1.3 Conclusions 
Increased levels of fungal co-colonization may reflect synergistic interactions or differences in 
infant susceptibility to fungal colonization. Discovery of eukaryotic organisms that have not been 
sequenced previously highlights the benefit of genome-resolved analyses, and low zygosity of 
assembled genomes could reflect inbreeding or strong selection imposed by room conditions. 
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2.2 Introduction 
Eukaryotes are common members of the human microbiome (Schulz et al. 2009; Baley et al. 
1986; Tamburini et al. 2016). The colonization density and diversity of eukaryotes are lower than 
their bacterial counterparts (Schulz et al. 2009; Ott et al. 2008; Parfrey et al. 2011), but they can 
have substantial health consequences. The yeast Saccharomyces boulardii can significantly 
reduce rates of antibiotic-associated diarrhea (Surawicz et al. 1989), protozoa limit Salmonella 
populations through predation (Wildschutte et al. 2004), and high abundances of Candida and 
Rhodotorula are associated with asthma development in neonates (Fujimura et al. 2016). Fungal 
disease is most prevalent in immunocompromised patients, including premature infants (Fridkin 
et al. 1996; Manzoni et al. 2015), although their incidence has declined in recent decades (Aliaga 
et al. 2014). 
 
While infant fungal disease is an active area of study, little is known about asymptomatic 
colonization of premature infants by fungi or other eukaryotes. Studies have reported 0%, 26%, 
50%, and 63% of premature infants being colonized by fungi (Baley et al. 1986; Stewart et al. 
2012; Stewart et al. 2013; LaTuga et al. 2011), with variation in methodological sensitivity 
probably at the heart of these differences. Methods used to analyze the mycobiome, including 
culturing, DGGE, and ITS sequencing, identify the fungal fraction of the microbial community 
separate from the community at large. This has left basic knowledge gaps about the relative 
abundance of fungi in early life, an important point as fungi-infant interactions in early life are 
known to affect allergy development (Fujimura et al. 2016; Bush et al. 2001; Fujimura et al. 
2010). In fact, recent review articles have referred to eukaryotes as a “Missing Link in Gut 
Microbiome Studies” (Laforest-Lapointe et al. 2018), and stated that “Studies addressing how 
the infant mycobiome develops and shapes the host immune system will be required for a more 
comprehensive understanding of the early-life microbiome.” (Tamburini et al. 2016). Particular 
highlighted knowledge gaps relate to the ecological roles, growth dynamics, and source of 
eukaryotes in the human and hospital microbiomes (Laforest-Lapointe et al. 2018; Huffnagle et 
al. 2013). 
 
The hospital is a known source for bacterial infant colonists (Brooks et al. 2017). The built 
environment has been implicated in fungal outbreaks (Sanchez et al. 1993; Vazquez et al. 1993; 
Pfaller et al. 1996; Mesquita-Rocha et al. 2013), yet the eukaryotic built environment 
microbiome remains understudied. This is because the vast majority of high-throughput studies 
of the hospital microbiome and the human gut microbiome use bacteria-specific 16S rRNA 
marker gene sequencing, and thus are blind to eukaryotes. Of five recent studies of the hospital 
microbiome, only one included primers to target the internal transcribed spacer (ITS) sequences 
to detect eukaryotes (Oberauner et al. 2013; Lax et al. 2017; Shin et al. 2015; Hewitt et al. 2013; 
Bokulich et al. 2013). It remains to be seen if eukaryotes in the room have the genetic potential 
to colonize infants, and if so, where in the room these eukaryotes are located. 
 
An alternative approach to microbiome characterization involves shotgun metagenomics. In this 
method, all DNA from a sample is sequenced regardless of its organismal source or genetic 
context. In some studies, mapping of the sequencing reads to reference genomes has enabled 
identification of pathogens (Wilson et al. 2018). However, the reads can be assembled, and new 
methods aid in reconstructing eukaryotic genomes from these datasets (West et al. 2018), 
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enabling understanding of these organisms in the context of their entire communities, which also 
include bacteria, archaea, bacteriophage, viruses, and plasmids. Relative to amplicon sequencing, 
genome assembly has several distinct advantages for understanding communities that contain 
eukaryotes. First, genomes provide information about in situ ploidy (number of distinct 
chromosome sets per cell), heterozygosity (here used to refer to the fraction of alleles in a diploid 
genome that have two versus one abundant sequence types), and extent of population 
microdiversity (here used to refer to additional sequence types that constitute low-abundance 
alleles). Second, strain-tracking can be performed using high-resolution genomic comparisons. 
Last, newly assembled eukaryotic sequences expand the diversity of genomically defined 
eukaryotes in public databases, enabling comparative and evolutionary studies. 
 
Here, we used genome-resolved metagenomics to study eukaryote-containing microbiomes of 
premature infants and their NICU environment. We evaluated the incidence of eukaryotes in 
room and infant samples and investigated the time period during which infant microbiomes 
contained eukaryotes. Genomes were assembled for 14 eukaryotic populations, and their ploidy, 
zygosity, and population microdiversity defined. The same species of eukaryotes were found in 
infant microbiome and the NICU environment, and a subset of other microbial eukaryotes in 
NICU rooms was classified as types that can cause nosocomial infections. 
 

2.3 Results 

2.3.1 Recovery of novel eukaryotic genomes from metagenomes 
In this study, we analyzed 1174 fecal metagenomes and 24 metagenomes from the NICU 
environment, totaling 5.31 Tb of DNA sequence (Additional file 1: Table S2.1). Fecal samples 
were collected from 161 premature infants primarily during the first 30 days of life (DOL) (full 
range of DOL 5–121; median 18), with an average of 7 samples per infant. NICU samples were 
taken from six patient rooms within the hospital housing the infants (Magee-Womens Hospital of 
UPMC, Pittsburgh, PA, USA). Three NICU locations were sampled in each room: swabs from 
frequently touched surfaces, wipes from other surfaces, and swabs from sinks (Brooks et al. 2017). 
Eukaryotic genomes were assembled from all samples using a EukRep-based pipeline (West et al. 
2018; see the “Methods” section for details). The bacterial component of some of the datasets was 
analyzed previously (see the “Methods” section). 
Fourteen novel eukaryotic genomes were recovered in total, with a median estimated completeness 
of 91% (Table 2.1). Detailed genome assembly information is available in Additional file 2: Table 
S2. Genomes were assembled from organisms of a wide phylogenetic breadth, and four are the 
first genome sequences for their species (Fig. 2.1). Twelve of the genomes are classified as fungal 
and are described in more detail below. The two other genomes (both recovered from hospital sink 
samples) represent the first genomes of their phylogenetic families. Diptera S2_005_002R2 is 
within the phylogenetic clade of Diptera (true flies) and is equally related to Drosophila 
melanogaster (fruit fly) and Lucila cuprina (Australian sheep blowfly). Rhabditida 
S2_005_001R2 is within the family Rhabditida (nematode) and is related to both pathogenic and 
non-pathogenic roundworms. In both cases, BLAST searches of the rpS3 protein sequence against 
NCBI revealed no significant hits, and furthermore, comparing the mitochondrial cytochrome c 
oxidase subunit I gene and protein against the Barcode Of Life Database (BOLD) (Ratnasingham 
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et al. 2007) and NCBI revealed no hits with high identity. Thus, we are unable to tie our genomes 
to any morphologically described species. 

2.3.2 Fungal contaminants in extraction controls 
Four negative extraction controls were subjected to metagenomic sequencing to detect sequences 
resulting from reagent contamination. One of the four extraction controls harbored 
Purpureocillium lilacinum DNA, with > 50% of sample reads mapping to the genome and with a 
breadth of coverage (percentage of the genome covered by at least one read) of 87% (Additional 
file 3: Figure S2.1A). The average nucleotide identity (ANI) was calculated between P. lilacinum 
reads in the extraction control, P. lilacinum genomes assembled in the study, and all previously 
sequenced P. lilacinum genomes in NCBI (Additional file 3: Figure S2.1B). P. lilacinum reads 
from the extraction control were extremely similar to genomes assembled from the NICU and 
infant gut, and divergent from previously sequenced genomes (Additional file 3: Figure S2.1B). 
Thus, P. lilacinum genomes assembled from room and gut samples are probably due to reagent 
contamination and not actually present in the environment. 
 
Reads from three of the four extraction controls mapped to Malassezia restricta S2_018_000R1, 
all at low abundance (< 3% of reads with a genome breadth of coverage of 1.3–14.2% using 
reads from the four samples) (Additional file 3: Figure S2.1C). It was not possible to calculate 
the ANI between the genomes in samples and controls due to the low sequencing coverage of M. 
restricta S2_018_000R1 in the extraction controls. Malassezia is a near-ubiquitous skin-
associated fungus (Gaitanis et al. 2012). Based on the depth of coverage (2.37×), the genome had 
a very low breadth of coverage (88% expected vs. 13% actual) (Additional file 4: Figure S2.9), 
indicating that the genome sampled from the hospital surface is different to that of the 
Malassezia that contaminated the reagents. For this reason, the Malassezia in infant and room 
samples were not excluded from further analysis. 
 
2.3.3  Fungal microbiome of the premature infant gut 
Excluding P. lilacinum, fungi were detected in 10 of the 161 premature infants profiled in this 
study (6%) (Fig. 2.2a; Additional file 5: Table S2.3). The limit of detection for eukaryotic 
organisms was calculated as 0.05% of the total community (Additional file 6: Figure S2.2) (see 
the “Methods” section for details). Eukaryotes were detected significantly more often early in life, 
and significantly more often when antibiotics were recently administered (Fig. 2.2b). Antibiotics 
were given significantly more often early in life (p = 5.3E−8; Wilcoxon rank-sum test), making it 
difficult to determine which of these two variables is driving the association. 
Fungal colonization was not significantly associated with gestational age, twin status, birth weight, 
mode of delivery, or other clinical metadata. (Additional file 7: Tables S2.4, Additional file 8: 
Table S2.5). Further, fungal colonization was not associated with bacterial community 
composition. P. lilacinum, presumed to be a metagenomic contaminant (Additional file 3: Figure 
S2.1), decreases in abundance as infants age (Additional file 9: Figure S2.8), probably because 
increased bacterial biomass in later collected samples overwhelms the contaminant DNA, as 
shown previously (Salter et al. 2014). Given this, we infer that the decrease in relative abundance 
of fungi present in the microbiomes of later-collected samples is due to bacterial growth. 
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All seven species detected colonizing the premature infants have been previously implicated as 
agents of nosocomial infection (Table 2.2), yet no infants colonized by eukaryotes in this study 
received antifungals or showed any symptoms consistent with acute fungal infection. However, 
asymptomatic colonization has been shown to be a risk factor for future fungemia (Huang et al. 
1998). Seven different eukaryotic species were detected in at least one infant, with only Candida 
albicans and Candida parapsilosis colonizing more than one infant (Fig. 2.2a). Infant N2_070 was 
colonized by two fungi, and infant N5_275 was colonized by three. A permutation test was 
performed to determine if fungi were unevenly distributed among the infants of this study (i.e., if 
having one fungi predisposes colonization by another). The probability of observing 13 fungi 
colonize ≤ 10 unique individuals from a total population of 161 individuals was determined (Fig. 
2.2c), with a resulting p value of 0.008. Thus, in this study, multiple fungi colonized the same 
infant more often than expected random chance. 

2.3.4 Fungal microbiome of the neonatal intensive care unit 
Eukaryotic organisms were detected in 18 of the 24 metagenomes of the NICU room 
environment (Fig. 2.3). Eukaryotic DNA made up an average of 1.23%, 1.22%, and 0.03% of the 
communities in highly-touched surfaces, sinks, and counters and floors, respectively. In order to 
compare the influence of room occupants and sampling location on the room mycobiome, we 
performed a multidimensional scaling (MDS) analysis (Fig. 2.3a). Communities were 
differentiated based on sampling location rather than infant room. 
 
The mycobiome of the NICU surfaces is dominated by species of Malassezia (Fig. 2.3b). The 
eukaryotic organisms found in NICU sinks are distinct from, and more diverse than, those found 
on surfaces. Sink communities contained Necteria haematococca, Candida parapsilosis, 
Exophiala, and Verruconis, all of which were detected in multiple rooms and samples. 
Additionally, sinks in three separate NICU rooms contain DNA from Rhabditidia 
S2_005_000R1 (a novel nematode; see the previous section for details). Diptera S2_005_002R2 
(fly) also makes up about 2% of the entire community for a single time-point in the sink in infant 
S2_005’s room (Fig. 2.3b). No macroscopic organisms were noted during the sample collection 
process. It remains to be seen whether these organisms contribute to the dispersal of organisms 
throughout the NICU or affect the communities themselves. 
 
Candida parapsilosis was detected in both the NICU and in a premature infant, as were 
organisms of the genus Malassezia. To contextualize the similarity between C. parapsilosis 
strains in both communities, genomes assembled from both the infant and room environments 
were compared to all available reference genomes and each other using dRep (Olm et al. 2017). 
C. parapsilosis genomes from the NICU sink of infant S2_005 and gut of infant N3_182 were 
more similar to reference genomes than each other (Additional file 10: Figure S2.3), and thus do 
not represent direct strain transfer events. 
 
2.3.5 Sequence analysis of new genomes 
De novo assembly of eukaryotic genomes from metagenomes allows not only for the detailed 
genomic comparison and detection of novel organisms, but also for the determination of ploidy, 
aneuploidy (abnormal number of chromosomes in a cell), heterozygosity, and population 
microdiversity of organisms in vivo. Changes in ploidy and aneuploidy have been observed in 
many eukaryotes, especially yeasts (Butler et al. 2009; Kathovade et al. 2010), and are thought to 
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be a strategy for relatively quick adaptation to shifts in environmental conditions. To determine 
the ploidy of genomes reconstructed in this study (Table 2.1), we examined the read count for 
each allele at a given variant site. For a diploid genome, alleles are expected to have a read count 
of 50%; for a triploid genome, alleles are expected to have a read count of either 33% or 67%. At 
low coverage, determining allele frequency with read mapping has more stochasticity relative to 
high coverage. Simulated reads for haploid, diploid, and triploid genomes at 10× and 100× 
coverage suggest it is possible to determine ploidy in even our low coverage genomes 
(Additional file 11: Figure S2.4). Based upon this analysis, all but one of our reconstructed 
genomes are diploid (Additional file 12: Figure S2.5). C. lusitaniae is likely haploid. Similarly, 
aneuploidy can be detected by searching for regions where allele frequencies and/or read 
coverage differs from the rest of the genome. For diploid genomes reconstructed from 
metagenomes, the sequences for each chromosome are a composite of sequences from the two 
alleles. Population microdiversity can be detected based on read counts that exceed the expected 
ratio of 50%. Measuring population microdiversity in this way can be confounded by sequencing 
error and stochastic read coverage variation (Additional file 11: Figure S2.4). Genomic datasets 
for isolates are not expected to have population microdiversity but will display sequencing error 
and stochastic read coverage variation. Consequently, we could separate sequencing noise from 
true population microdiversity by comparing the patterns we observed in our population genomic 
data to microdiversity found in isolate genomic datasets (Dawson et al. 2007). For C. 
parapsilosis N3_182_000G1, the peak of allele frequencies is wider than that of the sequenced 
Candida parapsilosis isolate (Fig. 2.4a), suggesting considerable population microdiversity. The 
P. lilacinum contaminant also displayed substantial microdiversity (Additional file 15: Figure 
S2.10). To avoid the stochasticity introduced by low sequencing coverage (Additional file 11: 
Figure S2.4), only genomes with over 50× sequencing coverage were analyzed for population 
microdiversity in this way. 
 
Another method of measuring population microdiversity involves determining the number of 
multiallelic sites (sites with more than two sequence variants). Tests with simulated reads were 
performed to confirm that non-specific mapping of reads from unrelated species does not bias 
results (see the “Methods” section). All of our genomes have more multiallelic sites than isolate-
sequenced genomes (Fig. 2.4b), suggesting that all of our genomes have appreciable population 
microdiversity. Further, genomes from the room had higher microdiversity than those from the 
gut, although this comparison is not statistically significant (p = 0.09).  
 
Finally, overall heterozygosity for each genome was measured by calculating the number of 
heterozygous SNPs per kilo-base pair (Fig. 2.4c). A wide range of heterozygosity was observed 
within genomes. For most organisms, there was low heterozygosity, and for C. albicans and C. 
parapsilosis, comparable to that of reference isolates. Malassezia restricta S2_018_000R1 has 
both a particularly high rate of SNPs per kilo-base pair and high population microdiversity.   

2.4 Discussion 

2.4.1 Eukaryotic genome recovery from metagenomes augments information from isolate studies 
In contrast with prior studies that have investigated microbial eukaryote genomes via sequencing 
of isolates, we employed a whole-community sequencing approach and could detect population 
microdiversity in both NICU and infant-derived samples. Malassezia on NICU surfaces has 
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particularly high population microdiversity. Given that Malassezia are skin-associated fungi 
(Gaitanis et al. 2012), their high population microdiversity may be the consequence of the 
accumulation of numerous strains throughout the hospital via shedding of skin from different 
individuals. This could also reflect naturally large population variation present within the skin of 
a single individual, as has been reported for skin-associated bacteria (Oh et al. 2014; Tsai et al. 
2016). 
 
In the current analysis, most of the samples contained one dominant eukaryotic genotype, 
presumably one well adapted to the habitat, but other allele variants indicate the presence of 
lower-abundance genotypes (Fig. 2.4b). Given this dominance, it was possible to directly 
estimate genome heterozygosity. Prior studies have reported that C. albicans grows clonally in 
vivo (Hirakawa et al. 2015), yet Candida, when expressing a certain phenotype, undergoes 
mating (Bennett et al. 2003), most likely via a parasexual cycle (Bennett et al. 2003). For C. 
albicans, the measured heterozygosity was comparable to that of previously sequenced isolate 
genomes (Hirakawa et al. 2015; Jones et al. 2004). Despite high heterozygosity of C. albicans, 
we see low strain heterogeneity. It has been hypothesized that C. albicans mating may occur 
primarily on the skin (Lachke et al. 2003). We speculate there may be more strain heterogeneity 
on the skin or other areas of the human microbiome besides in the gut, as it is probable that 
heterozygosity in Candida populations in the human and room microbiomes arises due to mating 
with distinct coexisting strains. 
 
The heterozygosity measurements of all other fungi except Malassezia were low, possibly 
indicating diversity reduction due to inbreeding and/or strong selection for specific alleles. We 
speculate that this reflects a long history of colonization of a habitat type that strongly selects for 
a specific genotype, so genome structure reflects the relatively low probability of recombination 
with strains with divergent alleles (in other words, the presence of gut-adapted and sink-adapted 
strains). However, without the availability of similar genomes to compare to from other habitats, 
we cannot rule out genetic bottlenecks that took place prior to introduction to the hospital. 
 
An important aspect of the current study is the sequencing of reagent controls, which allowed us 
to identify P. lilacinum as a likely contaminant. It is interesting to note that peak allele frequency 
analysis indicated high population microdiversity for the contaminant. Genomic microdiversity 
of the reagent-associated population may indicate its long-term persistence in the reagents, 
analogous to that shown for Delftia metagenome contamination that was present in Pippin size 
selection cassettes for many years (Olm et al. 2017). Given the increasing use of metagenomic 
sequencing for pathogen detection and prior reports of P. lilacinum as both a contaminant and 
disease agent (Shivaprasad et al. 2013; Luangsa-ard et al. 2011), it will be important to rule out a 
reagent source of P. lilacinum in future diagnostic studies. 
 
2.4.2 Premature infants are colonized by eukaryotes early in life 
 
Six percent of infants in this study were colonized by fungi, lower than most previous studies of 
infants (Baley et al. 1986;  Stewart et al. 2012; Stewart et al. 2013; LaTuga et al. 2011). 
Compared to shotgun sequencing, DGGE and ITS methods should be more sensitive due to the 
use of PCR, and thus may be more suitable for broad ecological surveys. However, the ability to 
amplify very rare sequences from organisms present at exceedingly low abundance levels 
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complicates interpretation of the measured colonization frequencies. Our shotgun sequencing-
based methods provide a more balanced view of community composition than methods that rely 
on PCR, and detection of populations that comprise more than ~ 0.05% of the community DNA 
is possible with read-mapping (Additional file 1: Table S2.1; Additional file 6: Figure S2.2). 
Further, whole-community sequencing measures the relative abundance of eukaryotes in the 
context of the whole community, something that cannot be done using ITS, DGGE, or culturing-
based methods. Fungi are generally considered low-abundance members of the gut microbiome 
(Schulze et al. 2009), yet in this study, they reached levels as high as 55%, 78%, and 96% of the 
entire community (Fig. 2.2). Differences in fungal communities during early life are known to 
have effects on infant health later in life (Fujimura et al. 2016), and it remains to be seen if 
extreme abundance levels like this have long-lasting effects. 
 
All infants profiled in this study received 2–7 days of prophylactic antibiotics upon birth, 
meaning antibiotic use is highly correlated with earlier days of life (Additional file 7: Table 
S2.4). While both antibiotic administration and DOL were significantly correlated with 
eukaryote abundance, consistent with previous studies of fungal colonization of low birth weight 
infants (Baley et al. 1986; Huang et al. 2000), infants who received antibiotics later in life were 
not colonized by eukaryotes. This suggests that day of life is the more important factor. 
However, eukaryotes may have not been detected in later collected microbiome samples from 
those infants due to increased relative abundance of bacteria. In other words, the sensitivity of 
the shotgun sequencing method may be insufficient to detect fungi that persist at low abundance. 
 
Interestingly, permutation testing revealed that fungi colonized the same infants more often than 
expected by random chance. There may be several explanations for this phenomenon. For 
example, some infants may be more genetically predisposed to fungal colonization. 
Alternatively, fungi may interact synergistically, with the first colonizing species establishing a 
niche in the gut that makes it more suitable for other fungi. Should this effect prove to be 
important, it may help to explain how fungal colonization contributes to development of asthma 
or allergies (Fujiumura et al. 2016). 
 
2.4.3 Differences in colonization patterns of NICU sinks and surfaces 
 
Yeasts of the genus Malassezia, a common member of the skin microbiome (Parfrey et al. 2011; 
West et al. 2018), NICU surfaces (Parfrey et al. 2011; Gaitanis et al. 2012). This result is 
analogous to findings of previous studies, which showed that typically skin-associated bacteria 
dominate consortia associated with hospital surfaces and parts of other built environments 
(Brooks et al. 2017; Sanchez et al. 1992; Hewitt et al. 2013; Jones et al. 2004; Oh et al. 2014). 
 
The same eukaryotes were never detected in sinks and surfaces, and the sinks hosted a 
comparatively diverse and variable eukaryotic community (Fig. 3). Sinks are inherently 
heterogeneous environments with different moisture levels and chemical conditions. Punctuated 
cleaning events may also give rise to temporal variation. Diptera S2_005_002R2 (fly), which 
was present in only one sink sample, may be explained by sequencing of sink-associated eggs, as 
no macroscopic organisms were detected during the collection process. Recent studies have 
suggested that insects play significant roles in the dispersal of fungi, and this may occasionally 
occur in the NICU (Tsai et al. 2016). 
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The other metazoan detected, the worm Rhabditida S2_005_001R2, was found in sinks from 
multiple rooms and samples collected months apart. These organisms may also be a source of 
fungi, and like the fly, could impact the overall NICU microbiome. Intriguingly, the partial 
genome appears to derive from an organism that is equally related to a bovine lungworm and 
Caenorhabditis elegans and is potentially novel at the class level (Fig. 2.1). Although we cannot 
evaluate its medical importance, the organism may have been macroscopically described but lack 
of a reference genome prevents identification. 

2.5 Conclusions 
We applied genome-resolved metagenomics to study eukaryotes in the gut microbiomes of 
infants and their NICU rooms and detected eukaryotes associated with pathogenesis of 
immunocompromised humans, commensals of human skin, and fungi typical of environments 
such as soil and drain pipes. Genomic analysis of diploid organisms found low rates of 
heterozygosity that may be explained by persistence of hospital-associated lineages in 
environments that impose strong selective pressure. The application of this approach in other 
contexts should greatly expand what is known about eukaryotic genomic diversity and 
population variation. 

2.6 Methods 
2.6.1 Subject recruitment, sample collection, and metagenomic sequencing 
This study made use of many different previously analyzed infant datasets. These datasets have 
previously published descriptions of the study design, patient selection, and sample collection, 
and are referred to as NIH1 [51, 52], NIH2 [19], NIH3 [53], NIH4 [54], Sloan2 [19], and 
SP_CRL [55]. Infants were chosen for inclusion in this study irrespective of fungal disease state. 
Negative extraction controls were performed and sequenced during the sequencing of the Sloan2 
cohort. The last well of the extraction block (H12) was left empty, and this well was treated the 
same as all other samples throughout the extraction protocol. It is therefore a control for the kit 
reagents, the sterility of the kit tubes/plates, and the aseptic technique of the technician who 
performed the extraction. S2_CON_001E1, S2_CON_002E1, and S2_CON_003E1 were all on 
different extraction blocks, and S2_CON_002E2 was a second well on the same block as 
S2_CON_002E1. 
 
This study also involved the collection and processing of an additional 269 samples from 53 
infants. Newly collected infant fecal samples followed the same sample collection and DNA 
extraction protocol as described previously [53, 56]. Metagenomic sequencing of newly 
collected infant fecal samples was performed in collaboration with the Functional Genomics and 
Vincent J. Coates Genomics Sequencing Laboratories at the University of California, Berkeley. 
Library preparation on all samples was performed using the following basic protocol: (1) gDNA 
shearing to target a 500 bp average fragment size was performed with the Diagenode Bioruptor 
Pico, (2) end repair, A-tailing, and adapter ligation with an Illumina universal stub with Kapa 
Biosystems Hyper Plus Illumina library preparation reagents, and (3) a double AMpure XP bead 
cleanup, followed by indexing PCR with dual-matched 8 bp Illumina compatible primers. Final 
sequence ready libraries were visualized and quantified on the Advanced Analytical Fragment 
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Analyzer, pooled into 11 subpools based on mass, and checked for pooling accuracy by 
sequencing on Illumina MiSeq Nano sequencing runs. Libraries were then further purified using 
1.5% Pippin Prep gel size selection assays collecting library pools from 500 to 700 bp. Pippin 
pools were visualized on fragment analyzer and quanted with Kapa Illumina library quant qPCR 
reagents and loaded at 3 nM. The 11 pools were then sequenced on individual Illumina 
HiSeq4000 150 paired-end sequencing lanes with 2% PhiX v3 spike-in controls. Post-sequencing 
bcl files were converted to demultiplexed fastq files per the original sample count with 
Illumina’s bcl2fastq v2.19 software. New metagenomic data was processed in the same manner 
as in the prior studies, and as described previously [54]. 
 
Environmental metagenomes were described and published previously as part of the Sloan2 
cohort study [19]. All samples were collected over a roughly one-year period from the same 
NICU at the University of Pittsburgh Magee-Womens Hospital. In order to generate enough 
DNA for metagenomic sequencing, DNA was collected from multiple sites in the NICU and 
combined into three separate pools for sequencing. Highly-touched surfaces included samples 
originating from the isolette handrail, isolette knobs, nurses hands, in-room phone, chair armrest, 
computer mouse, computer monitor, and computer keyboard. Sink samples included samples 
from the bottom of the sink basin and drain. Counters and floors consisted of the room floor and 
surface of the isolette. See previous publications for details [19, 57]. 
 
2.6.2 Eukaryotic genome binning and gene prediction 
Reads from each sample were assembled independently using IDBA-UD [58] under default 
settings. A co-assembly was also performed for each infant, consisting of reads from all samples 
taken from that infant concatenated together. Binning assembled sequence scaffold into 
eukaryotic genomes was performed using a EukRep-based pipeline, described in detail in West 
et al. [30]. In cases where time-series data were available, samples were pre-binned using time-
series information and eukaryotic bins were then subsequently identified with EukRep. In cases 
where multiple genomes of the same organism were recovered from multiple samples from the 
same infant, the most complete genome was selected for further analysis. In addition to the gene 
prediction methodology outlined previously [30], a second homology-based gene prediction step 
was performed. Ribosomal S3 (rpS3) proteins were identified in genomes using a custom 
ribosomal protein S3 (rpS3) profile HMM, and identified sequences were searched against the 
NCBI database [59] and UniProt [60] using BLAST [61]. For each de novo-assembled genome, 
gene sets for the top 1–3 most similar organisms were used as homology evidence for a second-
pass gene prediction step with AUGUSTUS [62], as implemented in MAKER [63]. For 
Rhabditida S2_005_001R2, first-pass gene predictions were used, as homology evidence 
decreased overall estimated genome completeness. Genome completeness was estimated using 
BUSCO [64] and is based on the number of detected single-copy orthologs. N50 was calculated 
using the program checkM [65]. 
 
To verify bins, the taxonomy of each scaffold was determined by searching gene sequences 
against the UniProt database [53]. All bins were found to have a consistent phylogenetic signal, 
except the bin created from sample S2_009_000R2. Scaffolds had similar GC content and 
sequencing coverage, but were either dominated by genes with homology to the class 
Sordariomycetes or Eurotiomycetes. Scaffolds from the original “megabin” were split into two 
separate bins based on this phylogenetic signal, resulting in the genomes Nectria haematococca 
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S2_009_000R2 and Exophiala sp. S2_009_000R2. Gene prediction was run again for both of 
these genomes, as described above. 
 
2.6.3 Phylogenetic analyses  
In order to construct a phylogenetic tree, rpS3 proteins from each de novo genome were detected 
as described above and searched against the NCBI database using BLAST. Protein sets of the 3–
5 most similar organisms on NCBI were downloaded for inclusion. Other phylogenetically 
important genomes, such as A. thaliana, were included as well. For each protein set, 16 
ribosomal proteins (bacterial ribosomal protein names L2, L3, L4, L5, L6, L14, L15, L16, L18, 
L22, L24, S3, S8, S10, S17, and S19) were identified using custom-built hidden Markov models 
(HMMs) with HMMER [66], using the noise cutoff (NC). The 16 ribosomal protein datasets 
were then aligned with MUSCLE [67] and trimmed by removing columns containing 90% or 
greater gaps. The alignments were then concatenated. A maximum likelihood tree was 
constructed using RAxML v.8.2.10 [68] on the CIPRES web server [69] with the LG plus 
gamma model of evolution (PROTGAMMALG) and with the number of bootstraps 
automatically determined with the MRE-based bootstrapping criterion. The constructed tree was 
visualized with Interactive Tree of Life (ITOL) [70]. 
 
Average nucleotide identity (ANI) between binned genomes and reference genomes was 
determined with dRep [35]. Resulting whole genome ANI values were used in combination with 
a 16 ribosomal protein phylogenetic tree to determine the taxonomy of de novo genomes. For 
genomes without a species-level taxonomy, genomes were searched against the entire NCBI 
nucleotide database using BLAST. This resulted in a species-level call for Malassezia restricta 
S2_018_000R1. For genomes without a genus-level taxonomy (Rhabditida S2_005_001R2 and 
Diptera S2_005_002R2), an additional step was taken. Mitochondrial cytochrome c oxidase 
subunit I (COI) genes were identified by searching D. melanogaster and C. elegans COI genes 
against our PRODIGAL [71] predicted genes sets with UBLAST [72]. Significant hits from our 
protein sets were then searched against the Barcode Of Life Database (BOLD) [31] and NCBI in 
order to identify sequences with high identity to our novel genomes. No significant hits were 
identified. 
 
2.6.4 Mapping-based genome detection 
To detect eukaryotes in an assembly-free manner, reads were mapped to a curated genome 
collection. This genome collection consists of all fungal genomes in RefSeq (accessed 9/14/17) 
[73], as well as genomes assembled in this study with no close representatives in RefSeq 
(average nucleotide identity of 90% or higher according to Mash [74]). The six genomes with no 
close representatives in RefSeq were Malassezia restricta S2_018_000R1, Diptera 
S2_005_002R2, Exophiala sp. S2_009_000R2, Verruconis sp. S2_005_001R2, and Rhabditida 
S2_005_001R2. Candida parapsilosis CDC317 was also included, as there were no genomes of 
C. parapsilosis in RefSeq. 
 
Reads from all samples were mapped to this reference genome list using Bowtie 2 [75]. To 
determine which organisms were present in each sample, we primarily relied on breadth of 
coverage as reported by strainProfiler (https://github.com/MrOlm/strainProfiler). In NICU 
samples, all genomes with 50% breadth of coverage or above were considered present. For infant 
samples, reads resulting from concatenating all samples belonging to the same infant were first 
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used to determine which fungi are reliably detected. Genomes with 50% breadth of coverage or 
above were considered present with two exceptions, Malassezia pachydermatis and Malassezia 
sympodialis, at ~ 0.2 and 0.4 breadth, respectively. Considering the extensive and distributed 
breadth of coverage for these genomes (Additional file 3: Figure S1C), they were considered 
present in the infant despite having low breadth of coverage overall. Reads from each individual 
sample from each infant were then mapped to all fungi considered to be present in that infant to 
determine changes over time. Relative abundance of genomes was determined using the formula: 
(number of reads mapping to genome/total number of reads in sample). 
 
The lowest coverage genome with this breadth threshold was 1.1× coverage. To determine the 
limit of detection, we first determined the relative abundance needed to achieve 1.1× coverage 
using the median infant co-assembly depth (27.5 Gb) and the median eukaryotic genome length 
in our database of organisms that were detected at least once (13.7 Mbp). We then calculated the 
limit of detection using the formula ((min coverage × median length)/median co-assembly 
depth). This led to an estimated limit of detection of 0.05% relative abundance for infant fungi 
detection, through this number has significant variability depending on how deep each individual 
infant was sequenced. 
 
2.6.5 Negative extraction control analysis 
Sequences resulting from negative extraction controls were computationally processed in an 
identical manner to other samples. Reads from all control samples were mapped to the curated 
genome collection described above, and the relative abundance of all genomes with at least 10% 
breadth was plotted in Additional file 3: Figure S1. The program strainProfiler 
(https://github.com/MrOlm/strainProfiler) was used to compare reads in sample S2_CON_000E3 
to P. lilacium genomes assembled in this study and all publicly available P. lilacinum genomes. 
Version 0.2 of the program was run with default settings, resulting in an average nucleotide 
identity measure between sample S2_CON_000E3 and all P. lilacinum genomes. Next, dRep 
v1.4.3 [35] was used to compare the P. lilacinum genomes with each other using the command 
“dRep cluster --SkipMash”. The resulting distance matrix was merged with the values generated 
from strainProfiler to generate the dendrogram in Additional file 3: Figure S1B. Full code for 
implementation is available at https://github.com/MrOlm/InfantEukaryotes. 
 
All publically available Malassezia genomes were acquired by searching for the term 
“Malassezia” in the assembly section of NCBI and downloading them manually. Genomes were 
compared to each other, and representative genomes were chosen using dRep v1.4.3 and the 
commands “dRep compare --SkipMash” and “dRep choose --noQualityFiltering -sizeW 0.5”. A 
concatenation of all negative extraction control sequences was then mapped to the resulting 
genomes using Bowtie 2. Custom scripts were used to determine the breadth of coverage of each 
10,000 bp window of each fungal genome in each sample, and each window with at least 50% 
breadth was marked with a tick using Circos [76] to visualize. Open source code detailing this 
analysis is available at https://github.com/MrOlm/InfantEukaryotes. 
 
To determine the expected breadth of coverage (percentage of genome base pairs with at least 
one read) for a given depth of coverage (average number of reads at any given genome base 
pair), a simulation was performed. Metagenomic reads were first simulated for Escherichia coli 
and Candida albicans reference genomes using pIRS (https://github.com/galaxy001/pirs). 
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Simulated reads were mapped back to the original reference genome, and the resulting .bam file 
was subset 20 times to simulate various depths of coverage. The breadth and depth of coverage 
was plotted and an exponential line of best fit was calculated using SciPy [77]. The line had an 
R2 value over 0.99 and was defined using the equation: 
breadth = (− 1 ×e^(− 0.883 × coverage)) + 1. This equation was used to determine the expected 
breadth of coverage for a given depth of coverage. 
 
2.6.6 Statistical analyses and generation of MDS plot 
To compare the eukaryotic communities present in NICU room samples, multidimensional 
scaling (MDS) based on Bray-Curtis distance was performed. The Bray-Curtis distance was 
calculated based on the relative abundance of each eukaryote present in a sample using the 
python library SciPy (command scipy.spatial.distance.braycurtis) [77]. Eukaryotes with at least 
50% breadth of coverage were considered present in a sample. MDS was performed on the 
resulting all-vs-all distance matrix using the python library sklearn (command sklearn.manifold. 
MDS) [78]. MDS was plotted using a custom function in Matplotlib [79]. Stress was calculated 
using sklearn. Open source code detailing this analysis is available at 
https://github.com/MrOlm/InfantEukaryotes. 
 
We tested for significant associations between samples containing eukaryotes and various forms 
of metadata using the python SciPy package [77]. Included were six pieces of continuous 
metadata (DOL, infant birth weight, etc.), 23 pieces of categorical metadata (specific antibiotics 
given and specific NICU room locations), and the phyla-level abundance of all bacterial 
genomes (seven total phyla) (Additional file 7: Table S4). Bacterial phyla-level abundance was 
determined by summing the relative abundance of all bacterial genomes present in a sample. 
Bacterial genomes for previously sequenced samples are available in a previous publication [54], 
and bacterial genomes for newly sequenced genomes were binned using the same methods. 
Metadata was filtered such that between 20 and 80% of values were non-zero in both samples 
containing eukaryotes and samples not containing eukaryotes. This resulted in a total of 13 
pieces of metadata for statistical testing (Additional file 7: Table S4). 
 
In order to eliminate statistical bias introduced through sampling the same infant multiple times, 
one sample from each infant was chosen for statistical tests. If the infant was not colonized by a 
eukaryote, the sample was chosen at random. If the infant was colonized by a eukaryote, the 
sample with the highest eukaryotic abundance was chosen. Samples were considered to have a 
eukaryote present if the sum of the relative abundance of eukaryotes with at least 50% breadth 
was at least 0.1% relative abundance. Fisher’s exact test was used for categorical metadata, and 
Wilcoxon rank-sum test was used for continuous data. Benjamini-Hochberg p value correction 
[80] was performed to account of multiple hypothesis testing. The results of all statistical tests 
are provided in Additional file 8: Table S5. Open source code detailing this statistical analysis is 
available at https://github.com/MrOlm/InfantEukaryotes. 
 
A permutation test was performed to determine if fungi were distributed randomly among the 
infants. First, 100,000 trials were run where each trial consisted of randomly selecting 13 
individuals with replacement from a total population of 161 individuals. The number of infants 
chosen was determined for each trial, and an empirical p value was determined based on how 
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many trials had 10 of less infants chosen. Open source code detailing this statistical analysis is 
available at https://github.com/MrOlm/InfantEukaryotes. 
 
2.6.7 Ploidy, heterozygosity, and population microdiversity 
In order to identify variants, reads from the sample in which a particular genome was binned from 
were mapped back to the de novo assembled genome using Bowtie 2 [75] with default parameters. 
The PicardTool (http://broadinstitute.github.io/picard/) functions “SortSam” and 
“MarkDuplicates” were used to sort the resulting sam file and remove duplicate reads. FreeBayes 
[81] was used to perform variant calling with the options “--pooled-continuous -F 0.01 -C 1.” 
Variants were filtered downstream to include only those with support of at least 10% of total 
mapped reads in order to avoid false positives. Furthermore, to avoid including variants as a result 
of mismapping reads, variants were filtered to include only those with coverage depth within a 
range of the average genome coverage plus or minus half of the genome mean coverage. SNP read 
counts were calculated using the “AO” and “RO” fields in the FreeBayes vcf output file. 
Multiallelic sites were defined as sites with two or more non-reference alleles. Variants were called 
using the same methodology for both simulated read datasets and isolate genomes. Variants were 
used to determine ploidy, heterozygosity, and population microdiversity as described in the 
“Results” section. Source code with full implementation details is available at 
https://github.com/MrOlm/InfantEukaryotes. 

To confirm that multiallelic sites are not the result of non-specifically mapped reads from the 
bacterial community, we fragmented with pIRS (https://github.com/galaxy001/pirs) a diploid C. 
parapsilosis genome into simulated reads and added these reads to an infant gut metagenome 
sample without C. parapsilosis. The resulting read dataset along with a separate dataset comprised 
of only the simulated reads were then mapped to the original C. parapsilosis genome. No 
additional variants were detected between the sample with metagenomic reads and the sample 
without, indicating non-specifically mapped reads from bacterial community members have a 
minimal effect. 

In order to determine the effect of stochastic read coverage on variant frequencies, simulated 
haploid, diploid, and triploid genomes were generated using the pIRS 
(https://github.com/galaxy001/pirs) diploid command with the C. albicans P57072 reference 
genome. The command was used once to generate a diploid genome and twice to generate a triploid 
genome. Simulated reads were then generated for each genome using the pIRS simulate command 
at 10×, 50×, and 100× coverage. Assemblies and raw reads were downloaded for both C. albicans 
A48 and C. parapsilosis CDC317 from NCBI to be used as example isolate genomes for 
comparison. Based on this analysis, only the two genomes with at least 50× coverage were 
included in peak allele frequency analysis. 

Genome aneuploidy was analyzed in two ways. First, reads from each sample were mapped back 
to genomes assembled from that sample. The coverage of each scaffold was determined in 10 kbp 
windows, and the coverage of all windows for each scaffold over 10 kbp was plotted. Plots were 
then analyzed for scaffolds with differing coverage, indicative of the presence of multiple copies 
of a subset of the chromosomes (Additional file 13: Figure S6). Second, reads from samples with 
genomes assembled from them were mapped to the closest available reference genome. The same 
procedure was then performed with these reference genomes in all cases where at least 80% of the 
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genome was covered by reads. This allowed the determination of aneuploidy on the whole-
chromosome level (Additional file 14: Figure S7). Both methods agreed that in all cases, no 
aneuploidy was detected. 
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2.7 Figures 

 
 
Figure 2.1. Phylogenetic tree of recovered eukaryote genomes. Genomes from infant-derived 
fecal samples (red) and NICU samples (blue) were classified using a phylogenetic tree based on 
the concatenation of the sequences of 16 ribosomal proteins (see the “Methods” section). 
Branches with greater than 50% bootstrap support are labeled with their bootstrap support range. 
Reference ribosomal protein sequences were obtained from NCBI [30] and the Candida Genome 
Database [30]. 
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Figure 2.2. Abundance of eukaryotes colonizing infants. a The scaled relative abundance of each 
eukaryote colonizing an infant. Numbers on the right indicate the maximum relative abundance 
of the organism in that infant, and gray dividing lines indicate 0% relative abundance. Dots on 
the line-plots indicate days of life on which fecal samples were collected and sequenced. Infants 
colonized by multiple eukaryotes are marked with a colored asterisk. Pink bars indicate periods 
of antibiotic administration. b Metadata significantly associated with eukaryote abundance. The 
distribution of values for all samples in which eukaryotes are not present (left; white box plot) 
compared to values of samples in which eukaryotes are present (right; gray box plot). The p 
values were calculated using the Wilcoxon rank-sum test with Benjamini-Hochberg multiple 
testing p value correction. P. lilacinum was excluded from statistical tests due to its likely 
contaminant status. c Fungi are distributed among fewer individuals than expected by random 
chance. A permutation test was performed to determine the probability of observing 10 or less 
unique individuals colonized by 13 fungi from a population of 161 individuals. The number of 
unique individuals colonized is shown on the x-axis, and the empirical p value based on 100,000 
trials is shown on the y-axis. An asterisk marks the true number of unique infants colonized in 
this study (10) and the associated p value. 
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Figure 2.3. Eukaryotic microbiome of the neonatal intensive care unit (NICU). a 
Multidimensional scaling (MDS) of the Bray-Curtis dissimilarity between all NICU samples. 
Samples cluster by environment type rather than the room or occupant. The stress of the MDS 
was calculated to be 0.23. b Compositional profile of eukaryotic organisms detected in the 
NICU. Each colored box represents the percentage of reads mapping to an organism’s genome, 
and the stacked boxes for each sample show the fraction of reads in that dataset accounted for by 
different eukaryotic genomes in each sample. 
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Figure 2.4. Ploidy, zygosity, and microdiversity of recovered eukaryotic genomes. a Histogram 
of the frequencies of the four most abundant variants at each variant site in an isolate genome of 
C. parapsilosis and in a genome of C. parapsilosis recovered in this study. Black, red, dark blue, 
and light blue bars indicate the abundances of the most abundant, second, third, and fourth most 
abundant variant, respectively. b For each genome, black bars indicate the percentage of variant 
sites that are multiallelic (contain more variants at a site than would be expected based upon 
ploidy alone). Haplotypes with more than two alleles are also considered to be multiallelic. A 
box plot compares the values from genomes originating from infant guts vs. the NICU room. c 
For each genome, black bars indicate the number of heterozygous variants per kb across the 
entire assembled genome. 
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Table 2.1. Description of de novo assembled eukaryotic genomes 

Source Genome Completeness Length (bp) N50 (bp) Coverage 
Infant gut Purpureocillium 

lilacinum 
S2_018_006G1 

98.4 35,688,710 422,361 20× 

Infant gut Clavispora 
lusitaniae 
N2_070_000G1 

95.8 11,907,650 89,311 18× 

Infant gut Candida 
parapsilosis 
N3_182_000G1 

96.7 12,563,647 65,710 182× 

Infant gut Trichosporon 
asahii 
N5_275_008G1 

90.1 23,419,590 32,912 13× 

Infant gut Candida 
albicans 
SP_CRL_000G1 

91.1 12,561,678 22,840 30× 

NICU room Purpureocillium 
lilacinum 
S2_003_000R1 

98.4 35,724,498 520,486 67× 

NICU room Malassezia 
restricta 
S2_018_000R1 

72.6 6,457,898 4912 18× 

NICU sink Nectria 
haematococca 
S2_018_000R2 

96.7 44,952,822 24,418 10× 

NICU sink Candida 
parapsilosis 
S2_005_002R2 

92.8 11,573,959 14,507 9× 

NICU sink Rhabditida 
S2_005_001R2 

74.9 50,505,025 8214 8× 

NICU sink Nectria 
haematococca 
S2_009_000R2 

73.6 31,143,909 8000 7× 

NICU sink Exophiala sp. 
S2_009_000R2 

75.9 24,670,482 7386 7× 

NICU sink Diptera 
S2_005_002R2 

52.5 43,769,201 6834 10× 

NICU sink Verruconis sp. 
S2_005_001R2 

52.8 15,639,153 5112 6× 
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Table 2.2. Description of detected fungal taxa 
 
Taxa Common 

habitats 
Pathogenicity Number of 

infants 
Locations 
In NICU 

Refs 

Candida 
albicans 

Warm 
blooded 
animals 

Common nosocomial 
pathogen 

6 Undetected [1] 

Candida 
parapsilosis 

Warm 
blooded 
animals 

Common nosocomial 
pathogen (especially 
neonates) 

2 Sink [82] 

Candida 
tropicalis 

Warm 
blooded 
animals 

Common nosocomial 
pathogen 

1 Undetected [83] 

Nectria 
haematococca 

Soil, 
rhizosphere 

Pathogen of 
immunocompromised 
patients 

0 Sink [84] 

Malassezia 
sympodialis 

Human skin Opportunistic 
pathogen 

1 Undetected [85] 

Malassezia 
globosa 

Human skin Common 
commensal; 
implicated in 
dandruff 

0 Surfaces [86] 

Malassezia 
pachydermatis 

Skin of 
mammals 

Opportunistic 
pathogen 

1 Undetected [87] 

Trichosporon 
asahii 

Soil, human 
skin and GI 
tract 

Rare opportunistic 
pathogen 

1 Undetected [88] 

Verruconis Soil, 
decaying 
vegetation 

Verruconis includes 
black yeasts; human 
pathogens 

0 Sink [89] 

 
 
For supplemental figures, tables, and information for Chapter 2, see  
https://www.biorxiv.org/content/10.1101/597468v1 
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3 Genetic and behavioral adaptation of Candida parapsilosis 
to the microbiome of hospitalized infants revealed by in 

situ genomics, transcriptomics and proteomics 

Patrick T. West, Samantha L. Peters, Matthew R. Olm, Feiqiao B. Yu, Yue C. Lou, Brian A. 
Firek, Robyn Baker, Alexander D. Johnson, Michael J. Morowitz, Robert L. Hettich, Jillian F. 

Banfield 
 

3.1 Abstract 
3.1.1 Background  
Candida parapsilosis is a common cause of invasive candidiasis, especially in newborn infants, 
and infections have been increasing over the past two decades. C. parapsilosis has been 
primarily studied in pure culture, leaving gaps in understanding of its function in microbiome 
context.  
 
3.1.2 Results 
Here, we reconstructed five unique C. parapsilosis genomes from premature infant fecal samples 
and analyzed their genome structure, population diversity and in situ activity relative to reference 
strains in pure culture. All five genomes contain hotspots of single nucleotide variants, some of 
which are shared by strains from multiple hospitals. A subset of environmental and hospital-
derived genomes share variants within these hotspots suggesting derivation of that region from a 
common ancestor. Four of the newly reconstructed C. parapsilosis genomes have four to sixteen 
copies of the gene RTA3, which encodes a lipid translocase and is implicated in antifungal 
resistance, potentially indicating adaptation to hospital antifungal use. Time course 
metatranscriptomics and metaproteomics on fecal samples from a premature infant with a C. 
parapsilosis blood infection revealed highly variable in situ expression patterns that are  distinct 
from those of similar strains in pure cultures. For example, biofilm formation genes were 
relatively less expressed in situ, whereas genes linked to oxygen utilization were more highly 
expressed, indicative  of  growth in a relatively aerobic environment. In gut microbiome samples, 
C. parapsilosis coexisted with Enterococcus faecalis that shifted in relative abundance over time, 
accompanied by changes in bacterial and fungal gene expression and proteome composition.  
 
3.1.3 Conclusions 
The results reveal potentially medically relevant differences in Candida function in gut vs. 
laboratory environments, and constrain evolutionary processes that could contribute to hospital 
strain persistence and transfer into premature infant microbiomes. 
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3.2 Introduction 

Candida species are the most common cause of invasive fungal disease (Naglik et al. 2008; Silva 
et al. 2012). A variety of Candida species cause candidiasis and are recognized as a serious 
public health challenge, especially among immunocompromised and hospitalized patients 
(Clerihew et al. 2007, Bliss, 2015). Historically, Candida albicans most commonly has been 
recognized as the cause of candidiasis, and as a result, is the focus of the majority of Candida 
research (Kuhn et al. 2004; Trofa et al. 2008; Bliss, 2015). However, Candida parapsilosis, 
despite being considered less virulent than C. albicans, is the Candida species with the largest 
increase in incidence since 1990 (Trofa et al. 2008). Given important differences in the biology 
of C. albicans compared to non-albicans species, more research on non-albicans Candida 
species, especially the subset that poses a serious health risk, is needed (Bliss, 2015). 
 
C. parapsilosis is often a commensal member of the gastrointestinal tract and skin (Trofa et al. 
2008; Gonia et al. 2017). Passage from hospital workers’ hands to immunocompromised patients 
is thought to be a common cause of opportunistic infection in hospital settings (Huang et al. 
1998). C. parapsilosis infections of premature infants are of particular concern. Indeed, C. 
parapsilosis is the most frequently isolated fungal organism in many neonatal intensive care 
units (NICUs) in the UK (Clerihew et al. 2007) and is responsible for up to one-third of neonatal 
Candida bloodstream infections in North America (Fridkin et al. 2006). Adding to the concern is 
the limited number of antifungal drugs and the increasing prevalence of antifungal drug 
resistance in Candida species. An estimated 3-5% of C. parapsilosis are resistant to fluconazole, 
the most commonly applied antifungal (Whaley et al. 2017). The recent emergence of multidrug-
resistant Candida auris with its resultant high mortality rate (Forsberg et al. 2019) serves as a 
warning regarding the potential for outbreaks of multidrug-resistant C. parapsilosis. Therefore,  
understanding behavior of C. parapsilosis, both as a commensal organism and opportunistic 
pathogen, is incredibly important. 
 
A challenge that complicates understanding of the medically relevant behavior of Candida in the 
human microbiome is that the hosts used in model infection systems (e.g., rat or murine mucosa) 
are not natural hosts to Candida species. Study of Candida in these models relies on some form 
of predisposition of the animal by occlusion, immunosuppression, surgical alteration, or 
elimination of competing microbial flora (Naglik et al. 2008). Pure culture experiments, an 
alternative to model system studies, are often the most accessible way to study Candida. 
However, the lack of a microbial community context is a large caveat, considering bacteria could 
influence the nutrition, metabolism, development, and evolution of eukaryotes. Indeed, other 
microbial eukaryotes have been shown to be dramatically influenced by their surrounding 
microbial communities. Choanoflagellates, the closest known living relative of animals, live in 
aquatic environments and feed on bacteria by trapping them in their apical collar (Hibberd et al. 
1975). The Choanoflagellate Salpingoeca rosetta is primarily a unicellular organism but 
formation of multicellular rosettes is induced by a sulphonolipd (RIF1) and inhibited by a 
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sulfonate-containing lipid, both produced by the bacterium Algoriphagus machipongonensis 
(Cantley et al. 2016). Furthermore, the bacterium Vibrio fischeri produces a chondroitinase, 
EroS, capable of inducing sexual reproduction in S. rosetta (Woznica et al. 2017). Together, 
these results demonstrate the influence that bacteria can exert on the morphology, development, 
and evolution of microbial eukaryotes. 
 
There is more direct evidence motivating study of C. parapsilosis functioning in situ. For 
instance, Caenorhabditis elegans model of polymicrobial infection experiments showed that C. 
albicans exhibits complex interactions with Enterococcus faecalis, a bacterial human gut 
commensal and opportunistic pathogen. In this context, C. albicans and E. faecalis negatively 
impact one another’s virulence (Cruz et al. 2013), suggesting a mechanism that promotes 
commensal behavior in a gut microbial community context. The decrease in C. albicans 
virulence was attributed to inhibition of hyphal morphogenesis and biofilm formation by 
proteases secreted by E. faecalis (Cruz et al. 2013) as well as E. faecalis capsular polysaccharide 
(Bachtiar et al. 2016).  No research has investigated C. parapsilosis in a microbial community 
context. 
 
An alternative to studying Candida species in animal models or laboratory cultures is to use an 
untargeted shotgun sequencing approach (genome-resolved metagenomics). DNA is extracted 
from fecal or other samples and sequenced. The subsequent DNA sequences are assembled, and 
metagenome-assembled genomes (MAGs) are reconstructed. Much work of this type has focused 
on the bacterial members of the human microbiome; however, recently developed methods such 
as EukRep (West et al. 2018) enable reconstruction of eukaryotic genomes from metagenomes 
with greater consistency, including genomes of Candida species (Olm et al. 2019). The 
availability of genomes enables evolutionary studies and the application of other ‘omics’ 
approaches, such as transcriptomics, proteomics, and metabolomics, making it possible to go 
beyond metabolic potential to study activity in situ. Although there are limitations related to 
establishing causality via experimentation, the approaches can provide insights into metabolism 
and changes in metabolism linked to shifts in community composition in human-relevant 
settings. 
 
Here, we applied shotgun metagenomics, metatranscriptomics, and metaproteomics to 
investigate the behavior and evolution of Candida in the premature infant gut and hospital  
environment. Novel de novo assembled C. parapsilosis and C. albicans genomes were 
reconstructed and the metagenomic data analyzed in terms of heterozygosity and population 
diversity. Due to the substantially less prior research on C. parapsilosis and the availability of C. 
parapsilosis-containing samples suitable for transcriptomics and proteomics, we focused our 
analyses on C. parapsilosis and identified genes and genomic regions under diversifying 
selection. Notably, we also identified instances of copy number gain of a gene involved in 
fluconazole resistance, pointing to a mechanism for hospital adaptation (Whaley et al. 2016). C. 
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parapsilosis in situ transcriptomic and proteomic profiles were clearly distinct from profiles 
reported previously from culture settings. Substantial shifts in C. parapsilosis expression 
occurred with changes in microbiome composition over a few day period, suggesting the strong 
influence of bacterial community composition on C. parapsilosis behavior. 

3.3 Results 

3.3.1 Recovery of novel Candida strain genomes 
Fecal samples were collected from 161 premature infants primarily during the first 30 days of 
life (DOL) (full range of DOL 5–121), with an average of 7 samples per infant. Samples of the 
Neonatal Intensive Care Unit (NICU) were taken from six patient rooms within the hospital 
housing the infants (Magee-Womens Hospital of UPMC, Pittsburgh, PA, USA). Candida 
genomes were assembled from samples containing >2 Mbp of predicted eukaryotic DNA using a 
EukRep-based pipeline (West et al. 2018; see the “Methods” section for details). Three of the 
Candida genomes (Olm et al. 2019) and the bacterial component (Olm et al. 2019) were analyzed 
previously (see the “Methods” section). Eleven unique Candida genomes were assembled in total 
(Table 3.1), six C. albicans genomes and five C. parapsilosis genomes. All genomes have an 
estimated completeness >85% except for C. parapsilosis L2_023 and NYC subway, which had 
low coverage (4x and 6x respectively) in their samples. Nine genomes were reconstructed from 
premature infant fecal samples; one genome was derived from a NICU room sample S2_005. For 
comparison, we analyzed a Candida genome that we reconstructed from a publicly available 
metagenome read dataset from the New York City subway (NYC_subway; Afshinnekoo et al. 
2015), as well as four previously published C. parapsilosis and fifty-one C. albicans isolate 
genomes. 
 
3.3.2 Candida genomic variability  
To characterize genomic variability in the strains of C. albicans and C. parapsilosis represented 
by metagenome-derived genomes, we identified single-nucleotide variants (SNVs) by mapping 
reads against completed reference genomes (strain SC5314 for C. albicans and CDC317 for C. 
parapsilosis). C. albicans genomes ranged from 3.2-9.9 heterozygous SNVs per kb 
(heterozygosity), whereas C. parapsilosis genomes ranged from 0.12-0.38 heterozygous SNVs 
per kb. Thus, we infer that, compared to C. albicans, C. parapsilosis displays very low 
variability in its diploid chromosome pair, which can be indicative of low genetic variability in 
the hospital environment and primarily asexual reproduction (Magwene et al. 2011).   
 
Low heterozygosity in C. parapsilosis genomes has been reported for previously sequenced 
genomes (Pryszcz et al. 2013). Interestingly, C. parapsilosis genomes derived from our fecal 
metagenomes showed even lower overall heterozygosity than pure culture reference genomes 
(Figure S3.1). In general, this would not be expected because within-sample population diversity 
due to sampling of a microbial community should inflate measures of genomic heterozygosity. 
Thus, the lower genomic heterozygosity may be reflective of infants being initially colonized by  
essentially a single Candida genotype. 
 
Because multiple new strains were sequenced from the same hospital, the phylogenetic 
relationships of new and previously sequenced strains from the same hospital were of interest 
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from the perspectives of the persistence of Candida populations in the hospital environment and 
transfer from room to human. To place the hospital and gut-associated sequences in context, we 
first compared those genomes to available reference genomes from NCBI using pair-wise 
average nucleotide identity (ANI) and by construction of single nucleotide variant (SNV) trees 
(Figure 1A, Figure S1-2). L2_023 was not included due to low sequencing coverage. C. albicans 
strains were spread throughout the tree of known C. albicans diversity (Figure S3.2) whereas C. 
parapsilosis strains from infant gut and NICU samples were clustered on a single branch (Figure 
3.1A) separate from other reference hospital and environmental strains. Further, the two infant 
gut strains, sampled years apart, were nearly identical (99.99% identity). We verified this with 
whole genome alignments of the hospital and gut sequences (Figure S3.1-S3.2). We thus infer 
that the hospital room and gut C. parapsilosis strains are very closely related. 
 
Based on analysis of population structure of seven C. parapsilosis genomes (Figure S3.3), we 
predicted six distinct C. parapsilosis ancestral populations.   The exception is the fecal strain 
N3_182, which appears to be a recombinant admixture of the ancestral populations NICU strain 
S2_005 and the fecal strain C1_006. Given that N3_182 was sequenced four years before 
C1_006, both parental strains must have both existed in the hospital environment prior to 
hybridization. The findings provide evidence for a clearly defined, distinct hospital associated C. 
parapsilosis strains, a hybrid of which colonized a premature infant.  
 
3.3.3 C. parapsilosis SNV hotspots as indicators of genes under selection 
To investigate whether genomes sampled from the hospital could provide evidence of 
evolutionary adaptation to this environment, we visualized the spatial distribution of C. 
parapsilosis genomic diversity in the newly reconstructed genomes by mapping reads from each 
genome to a reference sequence (CDC317, recovered from a clinical sample) and calling SNVs. 
We plotted the density of SNVs in 1.3 kbp sliding windows across the genome of each strain 
(Figure 3.1B). Both heterozygous and homozygous SNVs are largely evenly distributed 
throughout the genome, with the exception of a few small regions with highly elevated SNV 
counts (regions of elevated diversity) that we refer to as SNV hotspots (Figure 3.1B). 
 
Interestingly, SNV hotspots show a high level of conservation between all strains (Figure 3.1C). 
The one exception is reference strain GA1 cultured from human blood (Pryszcz et al. 2013), 
which shares only ~10% of its SNV hotspots with any other given strain. Notably, the NY 
subway strain is fairly similar to the clinical reference strain (few and minor hotspots) whereas 
our hospital sequences share SNV hotspots with both of the CBS strains (one from an olive and 
the other from skin), consistent with genomic similarity of the hospital and CBS strains in those 
regions. 
 
To provide a more complete view of variation hotspots, we also mapped the reads from each 
population to the three other reference genomes (environmental strains CBS1984 and CBS6318, 
and the GA1 blood isolate, Figure S3.4). The number of SNV hotspots ranged from 16-45, and 
the regions were 5 kb to 24.5 kb in length. Due to the large size of the SNV hotspots, each 
hotspot overlaps a number of individual genes with SNVs spread both within and between genes 
(Figure 3.1D). In total, 376 genes are present within a SNV hotspot in at least one strain. No 
particular KEGG family or PFAM domain was significantly enriched in SNV hotspots. This, 
combined with the fact that SNVs are spread both within and between genes may be indicative of 
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SNV hotspots being recombination hotspots, or locations where additional SNVs hitchhike along 
with SNVs under selection. 
 
3.3.4 Multicopy RTA3 gene 
Another explanation for SNV hotspots could be due to gene copy number variation, as recent 
duplications of a region acquire mutations yet reads from these duplications map back to a single 
location. Overall, when windowed genomic coverage is plotted alongside SNV density (Figure 
3.2A), this is clearly not the case. However, across the entire genome two regions of high 
coverage (Figure 3.2A), indicating high copy number variation, were identified and neither 
correspond to SNV hotspots. The first high copy number region contains an estimated 17-28 
copies of the 18S, 25S, 5S, and 5.5S rRNA genes (Table S3.1, Figure 3.2B). The variation in 
rRNA copy number may indicate a range of maximum growth rates (Roller et al. 2016). The 
second region, which corresponds to the lipid translocase RTA3 gene and flanking sequence, is 
present in 9-16 copies (Table S3.1) in strains C1_006, N3_182, L2_023, and NYC_subway but 
not the four reference genomes or hospital room genome (Figure 3.2B). The high copy number 
RTA3 genes also have no detectable SNVs and different boundaries in each strain, suggesting 
the duplications were very recent and independent events in each strain. 
 
3.3.5 In situ metatranscriptomics and metaproteomics 
Given most work with Candida species is performed in pure culture or in murine models, little is 
known about their behavior in the human gut. We hypothesized performing metatranscriptomics 
and metaproteomics on infant fecal samples with C. parapsilosis would reveal unique 
transcriptomic and proteomic profiles, indicative of differences in metabolism and behavior 
between culture and in situ settings. Two prospective infants were identified, infant 06 with a 
documented Candida blood infection (Figure 3.3) and infant 74 with a documented Candida lung 
infection. Both infants were treated with fluconazole shortly after detection of Candida infection 
(Figure 3.3, Table S3.2). Metagenomic, metatranscriptomic, and metaproteomic datasets were 
generated from fecal samples at five to six timepoints for each infant. In infant 74, no Candida 
species were detected in the generated datasets (Figure S3.4). However, in infant 06, 
metagenomic sequencing confirmed the presence of C. parapsilosis (strain C1_006) in the fecal 
samples. De novo gene prediction was performed on the metagenome-derived C. parapsilosis 
genome and the resulting gene models were used for mapping transcriptomic reads and 
proteomic peptides (Figure 3.3). 
 
In addition to C. parapsilosis, genomes were recovered for three bacterial species in infant 06: 
Enterococcus faecalis, Lactobacillus gasseri, and Staphylococcus epidermidis. Interestingly, in 
every infant where a Candida genome was assembled or detected through read mapping, E. 
faecalis was also present (N=7). C. parapsilosis is highly abundant in the first 20 days of life 
before quickly being replaced or outnumbered, largely by E. faecalis. Similar abundance patterns 
have been observed previously for microbial eukaryotes in neonatal fecal samples (Olm et al. 
2019). C. parapsilosis transcriptomic abundance shows a similar pattern to the DNA abundance 
but transcription remains detectable at later time points (Figure 3.3). In contrast, C. parapsilosis 
proteomic abundance remained relatively stable over all timepoints. 
 
3.3.6 C. parapsilosis expression in situ vs. culture settings 
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Given most work with C. parapsilosis has been performed on pure cultures, we wondered if 
there are differences in behavior and metabolism that would be detectable by comparing 
transcriptomic datasets. For comparison, we downloaded raw sequencing reads from publicly 
available C. parapsilosis RNAseq experiments (Guida et al. 2011; Pryszcz et al. 2013), including 
datasets from multiple strains (CDC317, CBS1954, and CBS6318) and varying culture 
conditions, including different media, growth temperatures, and oxygen concentrations. A 
hierarchical clustering of expression of CDC317 transcripts reveals a clearly distinct 
transcriptomic profile between in situ and all culture settings (Figure 3.4A). Notably, in situ 
samples are also extremely variable; clustering as far apart from one another as from the culture 
samples (Figure 3.4A). We quantitatively identified differentially expressed transcripts between 
culture and in situ settings and found that 53% of transcripts were significantly differentially 
expressed; 23% up in situ, 30% down (Figure 3.4B), further highlighting the stark differences 
between in situ and culture settings. 
 
In situ and culture transcriptome samples were differentiable in a principal component analysis 
(PCA), paralleling the hierarchical clustering of C. parapsilosis transcriptomes (Figure 3.5A). 
We performed a sparse Partial Least Squares Discriminant Analysis (sPLS-DA), treating each 
transcript as a variable, to try and identify important features able to discriminate between in situ 
and culture in a multivariate space (Figure 3.5B, Figure S3.5, Table S3.3). Important features 
were enriched for mitochondrial and aerobic respiration genes (9/50), uncharacterized genes 
(15/50), and a subset of ribosomal proteins (8/50; p=2.3x10-7). 
 
Biofilm formation is an important virulence factor for Candida species; often contributing to the 
development of systemic infections (Nobile et al. 2012; Nobile et al. 2015). We were interested 
in whether the expression of virulence factors was enriched in situ, given the samples were 
obtained from an infant with a documented Candida blood infection. We obtained a list of well 
characterized biofilm formation genes from C. albicans (Nobile et al. 2015), identified orthologs 
in C. parapsilosis and compared their expression in situ to culture settings. Biofilm formation 
showed lower expression overall in situ (Figure 3.4C). 
 
We were curious to see if the multicopy RTA3 gene in infant strain C1_006 (Figure 3.2B) 
showed increased expression as compared to the single copy RTA3 gene in reference strain 
CDC317. Indeed, the expression of the RTA3 in strain C1_006 is significantly higher (Figure 
3.2C), suggesting a role of this gene duplication as a way to increase overall expression of 
RTA3. Interestingly, we did not see an increase in expression following fluconazole treatment 
(Figure S3.6), indicating RTA3 expression may be consistently higher in C1_006. However, it is 
worth noting we were unable to obtain samples until seven days after fluconazole treatment and 
any treatment effect on expression may have already passed.    
 
3.3.7 C. parapsilosis impact on bacterial expression 
E. faecalis, S. epidermidis and L. gasseri bacteria in infant 06 had transcripts sequenced at high 
depths at multiple time points (Figure 3.3) so it was possible to investigate whether the presence 
or absence of C. parapsilosis had a distinguishable effect on their transcriptomic profiles. We 
compared bacterial transcription in these samples to transcription patterns of bacteria in the 
absence of Candida using previously reported datasets (21 samples for E. faecalis and 20 samples 



 

 50	

for S. epidermidis; Sher et al. 2020). The analysis was not possible for L. gasseri as this bacterium 
was not present in any of the metatranscriptomes used for comparison. The transcriptomes of both 
E. faecalis and S. epidermidis were distinguishable between the presence and absence of C. 
parapsilosis, and this effect appears to be independent of infant of origin and thus the bacterial 
strain variant type (Figure 3.5C-D). This result suggests C. parapsilosis has a large impact on the 
behavior and metabolism of other gut community members. In addition, the expression of E. 
faecalis genes previously shown to negatively impact C. albicans virulence (Cruz et al. 2013) 
showed no significant difference in expression between C. parapsilosis negative and positive 
samples. 

Important features identified from a sPLS-DA on Candida-positive vs. Candida-negative samples 
included a subset of E. faecalis ribosomal proteins (Table S3.3, Figure S3.5). Additionally, 
ribosomal proteins all showed higher expression in situ, suggesting increased E. faecalis growth 
rate in the presence of C. parapsilosis. Other important features included mannitol specific 
phosphotransferase system (PTS) transporters upregulated in Candida-positive samples and 
downregulated mannose specific PTS transporters (Table S3.3). Furthermore, Mannitol-1-
phosphate 5-dehydrogenase, an enzyme responsible for the conversion of D-mannitol to fructose, 
was upregulated in Candida-positive samples, indicating an increased capacity for degradation of 
mannitol in addition to import (Table S3.3). Important features in S. epidermidis were less clear, 
but again included a subset of ribosomal proteins as well as beta-lactamases, both with increased 
expression in situ (Table S3.3). 

3.3.8 Transcriptomics enriched gene functions 
Given the large differences in transcriptomes between culture and in situ, we looked for functions 
enriched in either setting (Figure 3.6, Table S3.4). DESeq2 identified groups of differentially 
expressed genes that were too large to be informative, so more restrictive cutoffs were used. Up in 
situ was defined as having >3 log2 expression in situ whereas down in situ was defined as <-3 log2 
expression in situ. Up in situ was enriched for KEGG families for LSM 2-8 and 1-7 complexes, a 
family of proteins involved in mRNA metabolism highly conserved in eukaryotes (Beggs et al. 
2005), as well as Cytochrome c oxidase and bc1 complex and proteins without an annotated KEGG 
family (Figure 3.6, Table S3.4). Down in situ is enriched for helicase and polysaccharide synthase 
PFAM domains. Additionally, proteins without an annotated KEGG family (unknown function) 
were enriched in both groups (Table S3.4). 

3.3.9 Proteomics 
As noted above, the metaproteomic abundances for infant 06 were relatively stable over time, with 
evidence of Candida core metabolic activities such as glycolysis, which indicate stability of this 
organism within the gut environment (Figure 3.3C). Comparison of the Candida in situ proteomics 
data with data from pure culture experiments was not possible as no pure culture proteomics 
datasets suitable for comparison have been published. Using the metagenome-derived C. 
parapsilosis genome as reference, we identified the most abundant proteins and found that this 
subset included ribosomal and F-Type ATPase proteins (Figure 3.6) and was significantly enriched 
for HSP70 and actin PFAM domains (Table S4). Also, among proteins found with the most peptide 
evidence were proteins related to protection of the organism from oxidative stress, such as 
superoxide dismutase. The high abundance protein set included some of the genes contained within 
SNV hotspots but there was no significant association.  We also examined the most abundant 
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proteins in the bacterial species. In E. faecalis and S. epidermidis, Lac genes were some of the 
most abundant suggesting lactose may be an important substrate for these community members. 
Finally, among human proteins detected, there was ample evidence of neutrophil degranulation, 
which indicates an active host immune response.  Neutrophils use oxidative mechanisms to 
promote fungal clearance (Desai et al., 2018), which suggests Candida is employing oxidative 
protection in response to this host defense mechanism. 

3.4 Discussion 
Fungal pathogens are known to have hospital reservoirs. For example, the water supply system 
of a paediatric institute was shown to be a reservoir for Fusarium solani (Mesquita-Rocha et al., 
2013). A NICU outbreak of Malassezia pachydermatis was linked to the dog of a healthcare 
worker (Chang et al., 1998), although persistence via long-term carriage by a healthcare worker 
vs. continual passage between infants and rooms (or a combination of these) could not be 
resolved. However, much remains to be learned about where reservoirs of hospital-associated 
fungi are and how long strains persist in them. In contrast to previous studies of C. parapsilosis 
utilizing pure culture and model systems, we applied genome-resolved metagenomics, 
metatranscriptomics, and metaproteomics to study C. parapsilosis in the context of the infant gut 
and hospital rooms of a neonatal intensive care unit. We detected novel, near identical C. 
parapsilosis genomes sequenced years apart in separate infants, suggesting transmission of 
members of a fungal population from reservoir to infant or infant to reservoir to infant. It is 
worth noting that although the strains are near-identical, the multicopy RTA3 locus in each strain 
had different boundaries and different copy numbers. This observation suggests that these two 
strains are very closely related members of a somewhat more diverse hospital adapted 
population. 
 
Population genomic analyses of reconstructed genomes revealed multiple, independent instances 
of copy number gain of the RTA3 gene. RTA3, a lipid translocase, has been implicated in 
resistance to azole class antifungal drugs such as fluconazole in C. albicans (Whaley et al. 2016). 
The RTA3 gene is frequently overexpressed in resistant isolates and increased expression of 
RTA3 increases resistance to fluconazole whereas deletion of the RTA3 gene results in increased 
azole susceptibility (Whaley et al. 2016). Copy gain of this gene in C. parapsilosis strains may 
represent a mechanism for rapid adaptation to fluconazole, the most widely used antifungal in 
most hospitals (Whaley et al. 2016), as a means by which to increase its expression and thus its 
resistance. Similar gene copy number gains have been reported for the human amylase gene, 
hypothesized to be in response to increases in starch consumption (Pajic et al. 2019). Indeed 
RTA3 expression in situ from strain C1_006, which has RTA3 in multicopy, was significantly 
increased as compared to single copy strain CDC317 in culture (Guida et al. 2011; Figure 2C). 
The high likelihood that the copy number gain occurred independently in multiple strains 
suggests selection for this particular genomic feature. Identifying mechanisms of antifungal 
resistance is of particular importance given 3-5% of C. parapsilosis strains are already resistant 
to fluconazole (Whaley et al. 2017) and our relative inability to deal with infections of drug-
resistant fungi. 
 
Examining the genomic distribution of SNVs within the genomes of each C. parapsilosis strain 
revealed the presence of SNV hotspots. Many of these SNV hotspots are shared between strains, 
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some of which are specific to the hospital and infant gut strains. Unlike C. albicans, C. 
parapsilosis is not an obligate commensal of mammals (Trofa et al. 2008). Consequently, some 
regions of the C. parapsilosis genome may be under selection for adaptation to the hospital, in 
addition to the gut environment. Further supporting the idea that some genomic innovation is 
associated with adaptation to the built environment, the NICU strain clustered the most closely to 
the NYC subway strain based on SNV hotspot overlap (Figure 3.1C). These two strains are 
geographically and phylogenetically distinct but the shared regions of diversification may be 
related to their common need to adapt to the built environment.  
 
Metatranscriptomics of infant fecal samples revealed C. parapsilosis transcriptomes that are both 
highly variable and distinct from those of culture samples. Interestingly, the degree  of  variance 
exhibited by transcriptomes of the same population in the same infant over a few day  period was 
greater than that observed between C. albicans white and opaque phenotypes (Figure S7; Tuch et 
al. 2010). The C. albicans white and opaque phenotypes differ in their appearance (Slutsky et al. 
1987), mating style (Miller et al. 2002), and environmental conditions they are best adapted to 
(Ramirez-Zavala et al. 2008, Huang et al. 2009), and represent two exceptionally distinct 
Candida phenotypes. The high variability in C. parapsilosis is likely the result of changing 
conditions presented in the gut, including microbial community composition as well as the 
developing physiology of the host. Varying stages of infection and/or response to antifungal 
treatment may also have had an effect, but more dense time-series and additional infants would 
be required to elucidate these effects. 
 
In contrast to the large changes in C. parapsilosis RNA and DNA relative abundances over time, 
C. parapsilosis peptide relative abundance remained stable over the study period. It is not 
uncommon to see different signals from transcripts and proteins (Haider et al. 2013), in part 
because proteins can persist for relatively long periods of time compared to transcripts. The most 
abundant proteins in the proteomics dataset have a HSP70 domain found in heat shock proteins 
(HSP). In C. albicans, HSP have been documented to help control virulence by interacting with 
regulatory systems, and to enable drug resistance (Gong et al. 2017). 
 
The presence of C. parapsilosis within infant gut samples may impact the transcriptomes of 
bacterial gut community members. Important features for separating Candida-positive and 
Candida-negative samples included a suite of upregulated mannitol transporters and 
downregulated mannose transporters in E. faecalis (Table S3). C. parapsilosis strain SK26.001 is 
documented as producing mannitol (Meng et al. 2017) and mannose, in the form of the 
polysaccharide mannan, which can be an important component of extracellular polysaccharides 
produced by Candida (Dominguez et al. 2019). Interestingly, a characteristic of E. faecalis is its 
ability to grow by fermenting mannitol (Quiloan et al. 2012). Given the potential for interaction 
between E. faecalis and C. parapsilosis, its possible the disappearance of C. parapsilosis induced 
a substrate switch in E. faecalis. 
 
Interestingly, statistical tests detected a subset of ribosomal proteins as important features for 
separating transcriptome patterns of C. parapsilosis in situ from those reported from culture 
studies, as well as for separating Candida-positive from Candida-negative samples for both E. 
faecalis and S. epidermidis (Table S3.3). In recent years, ribosomal heterogeneity, in which 
ribosomal protein subunits are swapped out or missing from individual ribosomes, has gained 
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traction as a way for organisms to regulate translation (Guimaraes et al. 2016, Shi et al., 2017, 
Genuth et al. 2018). Ribosomal heterogeneity may be being utilized as an additional regulatory 
measure to adapt to the rapidly changing gut microbial context. Alternatively, fluctuations in 
ribosomal subunit abundance could be to maintain ribosomal homeostasis (Cruz et al. 2017), or 
individual ribosomal subunits could be performing functions unrelated to protein synthesis (Zhou 
et al. 2015). 
 
Biofilm formation is an important virulence factor of Candida infections (Cavalheiro et al. 2018). 
Infant 06 had a documented Candida blood infection, and such infections are commonly 
systemic (Mavor et al. 2005). Interestingly, despite infection, Candida biofilm formation genes 
were relatively less expressed in situ in the gut of Infant 06 as compared to expression levels 
previously reported over a range of culture conditions. Similarly, genes with a PFAM domain for 
polysaccharide synthase, genes potentially important for the generation of Candida biofilm 
matrices (Dominguez et al. 2019), were less expressed in situ than in cultures. Thus, biofilm 
formation may not be an important component of every infection. 
 
Genes linked to oxygen utilization, such as cytochrome c oxidase subunits, were more highly 
expressed in situ than over the range of culture conditions, suggesting growth in a relatively 
aerobic environment. This may be reflective of the higher oxygen levels in the gut during early 
life (Chong et al. 2018). 
 
The prevalence of transcripts of uncharacterized genes in the in situ transcriptomes (Figure 3.5B; 
Table S3.3) is particularly interesting. C. parapsilosis and other Candida species are rarely 
studied in a microbial community context, leaving gaps in understanding of genes required for 
organism-organism interactions. We suspect that some of the highly expressed genes are 
important for Candida interactions with bacteria and other community members. Thus, they 
represent important targets for future co-culture-based investigations. 
 

3.5 Conclusions 
We applied genome-resolved metagenomics, metatranscriptomics, and metaproteomics to recover 
genomes for, and study the behavior of, C. parapsilosis in situ. We showed C. parapsilosis has a 
highly distinct transcriptomic profile in situ vs in culture. Further, the extreme variability in the in 
situ transcriptome data indicates the considerable effect the gut microbial community and human 
host may have on C. parapsilosis behavior and metabolism. Overall, these results demonstrate that 
in situ study of C. parapsilosis and other Candida species is not only possible but necessary for a 
more holistic understanding of their biology. 

3.6 Methods 
3.6.1 Metagenomic sampling and sequencing 
This study made use of previously published infant datasets: NIH1 (Brown et al. 2018), NIH2 
(Brooks et al. 2017), NIH3 (Raveh-Sadka et al. 2015), NIH4 (Rahman et al. 2018), Sloan2 
(Brooks et al. 2017), and SP_CRL (Sharon et al. 2013), as well as several new datasets including 
multiple timepoints from infant 06 and infant 74, and samples L2_023, S3_003, and S3_016.  
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For newly generated metagenomic sequencing from infant 06 and infant 74, total genomic DNA 
and total RNA were extracted from fecal samples using Qiagen's AllPrep PowerFecal 
DNA/RNA kit (Qiagen) and subsequently split into DNA and RNA portions. The aliquot used 
for metagenomic sample preparation was treated with RNase A. DNA quality and concentration 
were verified with Qubit (Thermofisher) and Fragment Analyzer (Agilent). Illumina libraries 
with an average insert size of 300 bps were constructed from purified genomic DNA using the 
Nextera XT kit (Illumina) and sequenced on Illumina's NovaSeq platform in a paired end 140 bp 
read configuration, resulting in at least 130 million paired end reads from each library. 
 
NICU metagenomic sampling was described and published previously (Brooks et al. 2017). All 
samples were collected from the same NICU at UPMC  Magee-Womens Hospital (Pittsburgh, 
PA). In order to generate enough DNA for metagenomic sequencing, DNA was collected from 
multiple sites in the NICU and combined into three separate pools for sequencing. Highly-
touched surfaces included samples originating from the isolette handrail, isolette knobs, nurses 
hands, in-room phone, chair armrest, computer mouse, computer monitor, and computer 
keyboard. Sink samples included samples from the bottom of the sink basin and drain. Counters 
and floors consisted of the room floor and surface of the isolette. See previous publication for 
details (Brooks et al. 2017; Brooks et al. 2018).  
 
3.6.2 Eukaryotic genome binning and gene prediction 
For each sample, sequencing reads were assembled independently with IDBA-UD (Peng et al. 
2012). Additionally, for each infant, reads from every time point were concatenated together. A 
co-assembly was then performed on the pooled reads for each infant with IDBA-UD in order to 
assemble sequences from low abundance organisms. The Eukaryotic porton of each sample 
assembly was predicted with EukRep (West et al. 2018) and putative eukaryotic bins were 
generated by running CONCOCT (Alneberg et al. 2014) with default settings on the output of  
EukRep. To reduce computational load, resulting eukaryotic bins shorter than 2.5 mbp in length 
were not included in further analyses. GeneMark-ES (Ter-Hovhannisyan et al. 2008) and 
AUGUSTUS (Stanke et al. 2006) trained with BUSCO (Simão et al. 2015) were used to perform 
gene prediction on each bin using the MAKER (Cantarel et al. 2008) pipeline. In addition, a 
second homology-based gene prediction step was performed. Each bin was identified as either C. 
parapsilosis or C. albicans and reference gene sets from C. parapsilosis CDC317 and C. albicans 
SC5314 were used for homology evidence respectively in a second-pass gene prediction step 
with AUGUSTUS (Stanke et al. 2006), as implemented in MAKER (Cantarel et al. 2008). 
 
3.6.3 SNV calling and detection of SNV hotspots  
In order to call variants in each Candida genome, reads from the sample in which a particular 
genome was binned from, or the publicly available reads from SRA, were mapped back to the de 
novo assembled genome using Bowtie 2 (Langmead et al. 2012) with default parameters. The 
PicardTool (http://broadinstitute.github.io/picard/) functions “SortSam” and “MarkDuplicates” 
were used to sort the resulting sam file and remove duplicate reads. FreeBayes (Garrison et al. 
2012) was used to perform variant calling with the options “--pooled-continuous -F 0.01 -C 1.” 
Variants were filtered downstream to include only those with support of at least 10% of total 
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mapped reads in order to avoid false positives. SNV read counts were calculated using the “AO” 
and “RO” fields in the FreeBayes vcf output file. 
 
SNV density was visualized across the CDC317 reference genome using a custom python script. 
SNV hotspots were quantitatively defined with 5 kbp windows with a slide of 500 bp across the 
genome, flagging windows with a SNV density at least three standard deviations above the 
genomic average SNV density, and merging overlapping flagged windows. Genes located within 
SNV hotspots as well as overlapping SNV hotspots between strains were identified with 
intersectBed (Quinlan et al. 2010). 
 
3.6.4 Candida phylogenetics and population structure 
For generation of a SNP tree for both C. parapsilosis and C. albicans, all publicly available 
genomic sequencing reads for both species were downloaded from NCBI’s short read archive 
(SRA), including isolate C. parapsilosis read sets and C. albicans sets. SNVs were called for 
each isolate read set using the same pipeline used for metagenome-derived genomes, as 
described above. A SNP tree was generated for C. parapsilosis and C. albicans using SNPhylo 
(Lee et al. 2014) with settings ‘-r -M 0.5 -l 2’ and ‘-r -M 0.5 -l 0.8’ respectively and visualized 
using FigTree (https://github.com/rambaut/figtree/). For genomic average nucleotide identity 
(ANI) comparisons, C. parapsilosis and C. albicans reference genomes were downloaded from 
NCBI. Subsequently, dRep (Olm et al. 2017) in the ‘compare_wf’ setting was used to generate 
ANI comparisons for each genome. For inferring C. parapsilosis population structure, FreeBayes 
vcf files were converted to PLINK bed format with PLINK (Pucell et al. 2007) and used as input 
for ADMIXTURE (Alexander et al. 2011). The predicted number of ancestral populations, K, 
was selected using ADMIXTURE’s cross-validation procedure for values 1-8. 
 
3.6.5 Detection of copy number variation 
Genomic copy number variation within the C. parapsilosis strains was searched for by mapping 
reads from the sample the genome was derived from to the C. parapsilosis CDC317 reference 
genome. Windowed coverage was then calculated across the genome in 100bp sliding windows 
using pipeCoverage (https://github.com/MrOlm/pipeCoverage) and visualized with Integrated 
Genomics Viewer (IGV) (Robinson et al. 2017). Copy numbers for multicopy regions were 
estimated by dividing the average coverage of the windows located within the multicopy region 
by the average genomic coverage. 
 
3.6.6 Transcriptomic sequencing and analysis 
Total RNA was extracted from fecal samples using the AllPrep PowerFecal DNA/RNA kit 
(Qiagen) and subsequently treated with DNase. Purified RNA quality and concentration were 
measured using the Fragment Analyzer (Agilent). Illumina sequencing libraries were constructed 
with the ScriptSeq Complete Gold Kit (Illumina) without performing the rRNA removal step, 
resulting in library molecules with an average insert size of 150 bp. Sequencing was performed 
on Illumina's NextSeq platform in a paired end 75 bp configuration, resulting in an average of 54 
million paired end reads per sample. 

Transcriptomic reads from studies (Guida et al. 2011, Pryszcz et al. 2013) were downloaded 
from the SRA. Transcriptomic reads from each dataset were then mapped to C. parapsilosis 
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reference strain CDC317 gene models with Kallisto (Bray et al. 2016) and transcript per million 
(TPM) values were used to compare expression levels across samples. Differentially expressed 
transcripts were identified using raw read counts with the R package DESeq2 (Love et al. 2014). 
Rlog transformation was applied to transcript read counts from each sample prior to generation 
of transcriptome PCAs. PCA plots were generated with DESeq2. Important features for 
separating C. parapsilosis in situ and culture as well as E. faecalis and S. epidermidis Candida-
positive and Candida-negative samples were identified through the use of a sparse Partial Least 
Squares Discriminant Analysis (sPLS-DA) as implemented in the MixOmics package (Rohart et 
al. 2017) on rlog transformed transcript read counts. MixOmics cross-validation (tune.splsda) 
was used with settings fold = 3 and nrepeat = 50 to estimate the optimal number of components 
(features) for separating each pair of sample types. 

Genes were annotated with KEGG KOs and PFAM domains using HMMER with KOfam 
(Aramaki et al. (2019) and Pfam-A (El-Gebali et al. 2019) HMM databases. Subsets of genes of 
interest (described in results) were then searched for significantly enriched KEGG families or 
PFAM domains with a hypergeometric distribution test as part of the R ‘stats’ package (R Core 
Team, 2013). 

3.6.7 Generation of Proteomic Datasets 
Lysates were prepared from ~50mg of fecal material by bead beating in SDS buffer (4% SDS, 
100 mM Tris-HCl, pH 8.0) using 0.15-mm diameter zirconium oxide beads. Cell debris was 
cleared by centrifugation (21,000 x g for 10 min). Pre-cleared protein lysates were adjusted to 
25mM dithiothreitol and incubated at 85°C for 10 min to further denature proteins and to reduce 
disulfide bonds. Cysteine residues were alkylated with 75 mM iodoacetamide, followed by a 20-
minute incubation at room temperature in the dark. After incubation, proteins were isolated by 
chloroform-methanol extraction. Protein pellets were washed with methanol, air-dried, and 
resolubilized in 4% sodium deoxycholate (SDC) in 100 mM ammonium bicarbonate (ABC) 
buffer, pH 8.0. Protein samples were quantified by BCA assay (Pierce) and transferred to a 10 
kDa MWCO spin filter (Vivaspin 500; Sartorius) before centrifugation at 12,000 x g to collect 
denatured and reduced proteins atop the filter membrane. The concentrated proteins were washed 
with 100 mM ABC (2x the initial sample volume) followed by centrifugation. Proteins were 
resuspended in a 1x volume of ABC before proteolytic digestion. Protein samples were digested 
in situ using sequencing-grade trypsin (G-Biosciences) at a 1:75 (wt/wt) ratio and incubated at 
37°C overnight. Samples were diluted with a 1x volume of 100 mM ABC, supplied with another 
1:75 (wt/wt) aliquot of trypsin, and incubated at 37°C for an additional 3 hours. Tryptic peptides 
were then spin-filtered through the MWCO membrane and acidified to 1% formic acid to 
precipitate the residual SDC. The SDC precipitate was removed from the peptide solution with 
water-saturated ethyl acetate extraction. Samples were concentrated via SpeedVac (Thermo 
Fisher), and peptides were quantified by BCA assay (Pierce) before LC-MS/MS analysis. 

12ug of each peptide sample was analyzed by automated 2D LC-MS/MS using a Vanquish 
UHPLC with autosampler plumbed directly in-line with a Q Exactive Plus mass spectrometer 
(Thermo Scientific). A 100 µm inner diameter (ID) triphasic back column [RP-SCX-RP; 
reversed-phase (5 µm Kinetex C18) and strong-cation exchange (5 µm Luna SCX) 
chromatographic resins; Phenomenex] was coupled to an in-house pulled, 75 µm ID nanospray 
emitter packed with 30 cm Kinetex C18 resin. Peptides were autoloaded, desalted, separated, and 
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analyzed across four successive salt cuts of ammonium acetate (35, 50, 100, and 500 mM), each 
followed by a 105-minute organic gradient. Mass spectra were acquired in a data-dependent 
mode with the following parameters: a mass range of 400 to 1,500 m/z; MS and MS/MS 
resolution of 35K and 17.5K, respectively; isolation window = 2.2 m/z with a 0.5m/z isolation 
offset; unassigned charges and charge states of +1, + 5, +6, +7 and +8 were excluded; dynamic 
exclusion was enabled with a mass exclusion window of 10 ppm and an exclusion duration of 
45seconds. 

MS/MS spectra were searched against custom-built databases composed of the concatenated 
sequenced metagenome derived predicted proteomes from all time-points, the human reference 
proteome from UniProt, common protein contaminants, and reversed-decoy sequences using 
Proteome Discover 2.2 (Thermo Scientific), employing the CharmeRT workflow (Dorfer et al., 
2018). Peptide spectrum matches (PSMs) were required to be fully tryptic with two 
miscleavages, a static modification of 57.0214 Da on cysteine (carbamidomethylated) residues, 
and a dynamic modification of 15.9949 Da on methionine (oxidized) residues. False-discovery 
rates (FDRs), as assessed by matches to decoy sequences, were initially controlled at 1% at the 
peptide level. To alleviate the ambiguity associated with shared peptides, proteins were clustered 
into protein groups by 100% identity for microbial proteins and 90% amino acid sequence 
identity for human proteins using USEARCH (Edgar et al., 2010). FDR-controlled peptides were 
then quantified according to the chromatographic area under the curve (AUC) and mapped to 
their respective proteins. Peptide intensities were summed to estimate protein-level abundance 
based on peptides that uniquely mapped to one protein group. Protein abundance distributions 
were then normalized across samples using InfernoRDN (Polpitiya et al, 2008), and missing 
values were imputed to simulate the mass spectrometer’s limit of detection using Perseus 
(Tyanova et al., 2016). 
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3.7 Figures 

 
 

Figure 3.1. Analysis of C. parapsilosis genomic variability reveals a potential hospital 
associated population and the presence of SNV hotspots. (A) A phylogenetic tree of C. 
parapsilosis strains constructed from concatenated SNVs. Metagenome derived hospital strains 
from this study demarcated as the purple clade. ANI comparisons and a C. albicans SNV tree are 
also available in Figures S1-S2. (B) Whole genome SNV density plots for each C. parapsilosis 
strain. Strain names in red are strains assembled from samples from infants or the NICU from 
Magee-Women’s Hospital. SNV density plotted in 1.3kb sliding windows. Window size was 
selected based on ease of visualization. Chromosomes are separated with dashed lines. Total bar 
height represents total SNV density and homozygous SNV proportion is labeled in red whereas 
heterozygous is black. (C) Depiction of SNV hotspot overlap between each strain. Pairwise 
overlap was calculated between each strain and plotted.  Strain names in red are strains 
assembled from samples from infants or the NICU from Magee-Women’s Hospital. (D) Two 
example SNV hotspots. Individual SNVs are represented with red bars. 
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Figure 3.2. C. parapsilosis strains have high copy number rRNA and RTA3 loci. (A) Whole 
genome windowed coverage of SNP density for C. parapsilosis strain C1_006. High copy 
number regions of interest are highlighted with red boxes. (B) An expanded view of highlighted 
high copy number regions from (A). Windowed coverage is plotted as 100bp sliding windows. 
Metagenome-derived hospital strains from this study labeled in red. (C) Boxplot of expression of 
the RTA3 gene from multicopy strain C1_006 in situ (red) and strain CDC317 in culture (blue). 
Expression represented as Transcripts Per Million (TPM). 
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Figure 3.3. In situ metagenomics metatranscriptomics, and metaproteomics of infant 06. Plotted 
are the relative DNA, RNA, and peptide abundances for each detected organism after human 
removal. Plotted on the x axis are the Days Of Life (DOL) samples were taken. 
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Figure 3.4. C. parapsilosis displays distinct and highly variable in situ transcriptomic profiles. 
(A) Hierarchical  clustering of C. parapsilosis TPM values for C1_006 in in situ samples and 
pure culture samples under a variety of conditions. (B) Average log2 fold change in situ vs 
culture plotted against the mean of normalized counts for each transcript. Transcripts in red were 
identified as being significantly differentially expressed by DESeq2. (C) Boxplots of expression 
of categories of genes involved in biofilm formation.  Regulatory defective mutants refers to 
regulatory genes that inhibited biofilm formation when mutated. 
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Figure 3.5. Presence of C. parapsilosis affects bacterial community member’s expression. (A) 
PCA of C. parapsilosis in situ and pure culture transcriptomes. (B) Depiction of features 
identified by sPLS-DA for separating C. parapsilosis in situ and pure culture transcriptomes. 
Plotted are the feature weights. Black bars are genes that exhibited higher expression on average 
in situ whereas grey had higher average expression in culture. Genes labeled in red correspond to 
proteins of unknown function. (C-D) PCAs of E. faecalis (C) and S. epidermidis (D) 
transcriptomes from infant microbiomes both with and without detected C. parapsilosis. 
Candida-negative transcriptomes were from four different infants (published previously; Sher et 
al. 2020) denoted as 64, 66, 69, and 71.  
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Figure 3.6. in situ enriched gene categories. Diagram depicting C. parapsilosis in the context of 
the infant gut, highlighting gene categories or families that were significantly enriched in 
differentially expressed genes between in situ and culture. Blue letters represent functions with 
higher expression in situ, while red represent functions with lower expression in situ. See Table 
S5 for details.  (A) ribosomal proteins (B) cytochrome c oxidase subunits (C) LSM complexes 
(D) proton antiporters (F) E. faecalis mannose transporters (G) E. faecalis mannitol transporters 
(H) E. faecalis subset of ribosomal proteins (I) S. epidermidis subset of ribosomal proteins (J) C. 
parapsilosis polysaccharide synthases (downregulated in situ) (K) C. parapsilosis helicases 
(downregulated in situ). 
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Table 3.1. Overview of Candida strain genomes used in this study 
 

Genome Genus Species Length # Scaffolds N50 Completeness Sample Type Reference 
C1_006 Candida parapsilosis 11852211 191 108686 92 Infant fecal 

metagenome 
This study 

N3_182 Candida parapsilosis 12563647 342 65710 97 Infant fecal 
metagenome 

Olm et al. 
2019 

S2_005 Candida parapsilosis 11573959 1051 14507 93 NICU 
metagenome 

Olm et al. 
2019 

NYC 
Subway 

Candida parapsilosis 7420453 1285 6417 62 NYC subway 
metagenome 

This study 

L2_023 Candida parapsilosis 4870205 2906 1700 35 Infant fecal 
metagenome 

This study 

CDC317 Candida parapsilosis 13030174 9 2091826 97 Clinical skin 
isolate 

Butler et al. 
2009 

GA1 Candida parapsilosis 13025060 39 1114083 97 Clinical human 
blood isolate 

Pyrszcz et al. 
2013 

CBS1984 Candida parapsilosis 13044404 25 962200 96 Olive fruit 
isolate 

Pyrszcz et al. 
2013 

CBS6318 Candida parapsilosis 13050515 28 1691491 97 Healthy skin 
isolate 

Pyrszcz et al. 
2013 

N1_023 Candida albicans 13456346 1675 15180 94 Infant fecal 
metagenome 

This study 

N2_070 Candida albicans 13540857 1614 14761 93 Infant fecal 
metagenome 

This study 

N5_264 Candida albicans 11647081 746 27434 85 Infant fecal 
metagenome 

This study 

S3_003 Candida albicans 11972257 1049 14710 87 Infant mouth 
metagenome  

This study 

S3_016 Candida albicans 10068784 802 19749 86 Infant mouth, 
skin, and gut 
metagenome 
coassembly 

This study 

SP_CRL Candida albicans 12561678 897 22840 91 Infant fecal 
metagenome 

Olm et al. 
2019 

 
 
For supplementary tables, figures, and information see: 
https://www.biorxiv.org/content/10.1101/2020.03.23.004093v1.full.pdf+html 
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4 Evidence for interdependence and pathways of 
interaction between the alkaline-adapted 

Choanoflagellate Salpingoeca monosierra and its enclosed 
bacterial community 

Patrick T. West, Kayley H. Hake, Alexander Crits-Christoph, Nicole King, Jillian F. Banfield* 

	

4.1 Abstract 
Bacteria can substantially impact the development and metabolism of microbial eukaryotes.  A 
new species of choanoflagellate, Salpingoeca monosierra, forms multicellular rosettes that enclose 
a complex bacterial community within the hollow center. Here, we used shotgun metagenomic 
sequencing to reconstruct a 42 Mbp draft genome of this microbial eukaryote, along with genomes 
of 24 coexisting bacteria from a complex co-culture derived from Mono Lake, California. In 
contrast to the two previously sequenced choanoflagellates from marine environments, this 
organism inhabits a highly alkaline ecosystem. Potentially as an adaptation to high pH, the S. 
monosierra predicted cell surface and secreted proteins have significantly higher isoelectric points 
compared to those of the previously studied Choanoflagellates. The bacterial community 
associated with S. monosierra is dominated by species of Oceanospirillales, 
Ectothiorhodospiraceae, Flavobacteria, and Sphingobacteria. From genomic functional 
predictions, the bacterial community is largely composed of heterotrophs. Notably, however, three 
members have the capacity for CO2 fixation via the Calvin-Benson pathway and one highly 
abundant bacterium is capable of N2 fixation. This suggests that the Choanoflagellates benefit 
from carbon and nitrogen currencies produced by the bacteria, in return for existence in a protected 
environment.   Both S. monosierra and an Ectothiorhodospiraceae species genomes encode 
prominent biosynthetic gene clusters predicted to produce hybrid polyketide-nonribosomal 
peptides that may play roles in eukaryotic-bacterial interactions. Our results expand understanding 
of the genomic and functional diversity of choanoflagellates and uncover potential mechanisms 
for their interaction with closely associated microbial communities. 
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4.2 Introduction 
Microbial eukaryotes are important pathogens, microbial predators, photosynthesizers, 
environmental quality indicators, markers of past environmental change, and critical for 
understanding our own evolutionary history. However, as demonstrated by barcode sequencing, 
the vast majority of microbial eukaryotic diversity is currently uncultivable or not present in 
culture collections (Pawlowski et al. 2012), making research on these organisms exceedingly 
difficult. Studying microbial eukaryotes in their environmental or microbial community context is 
an even greater challenge due to the complexity of natural consortia. Microbial community context 
is likely of high significance, given that interactions between bacteria and eukaryotes influence 
development, metabolism, and evolution of all types of eukaryotes, ranging from animals such as 
sponges (Pita et al. 2018) and humans (Gilbert et al. 2018) to unicellular ciliated protozoa (Gong 
et al. 2016). In sponges, associated bacterial and archaeal species exhibit complex interactions with 
the host; sometimes serving as food sources, functioning as pathogens, or living as symbionts (Pita 
et al. 2018). Metabolic interactions in particular have been well documented in this system. 
Sponges are often host to photosynthetic cyanobacteria, and maintain cyanobacterial cell counts 
proportional to their own, suggesting control of their growth through stealing of photosynthates or 
consumption of excess photosymbionts (Taylor et al. 2007; Thacker et al. 2012). Similarly, 
nitrogenase activity (and therefore nitrogen fixation) has been detected in multiple cyanobacteria-
containing sponges, and several heterotrophic nitrogen fixing bacteria have been isolated from 
sponges (Taylor et al. 2007). These observations suggest that symbiotic microbial nitrogen fixation 
may be an important source of nitrogen for macroscopic sponges. 

Choanoflagellates, the closest known living organisms to animals, are unicellular heterotrophs that 
subsist largely on bacteria. However, interactions between choanoflagellates and bacteria extend 
beyond this metabolic relationship.  In the choanoflagellate Salpingoeca rosetta, bacteria influence 
multicellular rosette formation (Alegado et al., 2012; Woznica et al., 2016) and sexual 
reproduction (Woznica et al., 2017) through the release of diffusible small molecules including 
lipids and a chondroitinase (Cantley et al. 2016; Woznica et al., 2017). Interestingly, these 
documented interactions are all with bacteria used for feeding choanoflagellates, not bacteria they 
would commonly encounter in their natural habitat. Little is known about the bacteria closely 
associated with Choanoflagellates in the environment, and their potential interactions. 

Recently, the choanoflagellate S. monosierra, although unable to be isolated, was brought into co-
culture with bacteria as part of a complex community derived from Mono Lake, California, 
offering an opportunity to study a choanoflagellate in a more natural community context.  Like the 
marine choanoflagellate species, Salpingoeca rosetta, S. monosierra forms multicellular rosettes 
(Hake et al. 2019), but unlike S. rosetta, S. monosierra rosettes are hollow and enclose a microbial 
community, suggesting inter-domain interactions. However, it is unclear whether these 
associations are mutualistic and if so, how the various partners benefit. The inability to achieve a 
pure culture of S. monosierra and the limitations of barcode sequencing to study multi-Domain 
consortia necessitates new whole community-centric approaches to investigate bacterial 
composition, metabolic traits/capacities as well as potential modes of inter-Domain action. 
Untargeted shotgun sequencing of complex communities and environmental samples, in which all 
DNA from a sample is sequenced regardless of its organismal source or genetic context, can 
address these challenges. Most importantly, recently developed methods have made it relatively 
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straightforward to reconstruct the choanoflagellate genome from shotgun metagenomic samples 
without isolation (West et al. 2018). 

Here, using shotgun metagenomic sequencing, we genomically describe the new species of 
choanoflagellate, S. monosierra, as well as its associated microbial community of diverse bacterial 
species that form a stable microbiome within the hollow S. monosierra rosette (Hake et al., 2019). 
Fluorescent in situ hybridization (FISH) studies that leveraged the 16S rRNA gene sequences from 
this dataset revealed that a subset of the bacterial community associated with S. monosierra (Hake 
et al., 2019) grows inside the rosettes. Here, we analyzed the full metagenomic dataset to describe 
the bacterial community at the species/strain level and report a variety of bacterial metabolisms 
present, including carbon fixation, nitrogen fixation, broad heterotrophy, and an abundance of 
sulfur and arsenic detoxifying enzymes. The genome of S. monosierra shows adaptation to the 
alkaline environment of Mono Lake. In addition, biosynthetic gene clusters (BGCs) were 
identified in both a bacterial species and S. monosierra, pointing to a potential method of 
interaction between these community members. 

 

4.3 Results 

4.3.1 Community structure 
In order to elucidate the bacterial diversity, identify potential functions, and interactions within 
this microbiome, shotgun metagenomic sequencing was performed on complex co-cultures. S. 
monosierra co-cultures were grown in two different media; artificial Mono Lake water (see 
methods) with Media E as a carbon source, and artificial Mono Lake water treated with the 
antibiotic gentamicin, with cereal grass as a carbon source. Antibiotic treatment was applied to 
select against bacterial cells that were not enclosed within rosettes. Both co-cultures were 
centrifuged to concentrate S. monosierra rosettes. Pellets and supernatant were then sequenced 
separately, resulting in four metagenomic datasets (Figure 4.1) comprising 113.1 Gbp of 
sequencing data.  16S rRNA sequences recovered from the assembled metagenomic data suggest 
the presence of 10 bacterial species growing within the rosettes and 24 in total associated with S. 
monosierra. Across all four samples, 24 non-redundant bacterial genomes with >90% 
completeness were recovered.  Additionally, using EukRep (West et al. 2018; see methods), the 
47.2 Mbp genome choanoflagellate S. monosierra (Table 4.1) was recovered. 98.1% of reads 
mapped back to the non-redundant combined Choanoflagellate and bacterial genome set, 
indicating the binned genomes represent essentially all of the diversity present in the co-cultures. 

Across all four samples and both media settings, the bacterial community is remarkably similar; 
being dominated by Oceanospirillales, Ectothiorhodospiraceae (purple sulfur bacteria), and 
Bacteroidetes (Figure 4.1A,B, Supplemental Figure S1). Interestingly, Oceanospirillale_55_89, 
the species present in nearly every rosette based on fluorescent in situ hybridization (Hake et al. 
2019) was not present in rosette-depleted samples, suggesting it may only be present in rosettes, 
whereas Oceanospirillale_52_91 and other common rosette residents such as 
Ectothiorhodospiraceae_64_283 (Hake et al. 2019) are highly abundant both in rosette enriched 
samples and rosette depleted samples, indicating rosette residents may be a mix of obligate and 
non-obligate members.  
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Of the 24 bacterial species identified growing within the co-cultures, 10 species were previously 
demonstrated to be growing within rosettes via fluorescent in situ hybridization (FISH) of species 
specific 16s sequences (Hake et al. 2019). However, connecting a metagenomically binned 
genome to a 16S rRNA gene sequence is a challenge because this gene often does not assemble 
and because it is usually present in multiple copies within a genome and  may not bin with the 
genome due to higher coverage. The 16S rRNA gene sequences for 
Ectothiorhodospiracea_64_283 and Oceanospirillales_55_89, both bacteria demonstrated to be 
present within rosettes, were successfully reassembled into genomes with metaSPAdes (see 
methods). A few other genomes show strong abundance correlations with rRNA genes but could 
not be directly linked via assembly.    

Bacterial replication rates were estimated with iRep (Brown et al. 2016) for each community 
member and compared across conditions (Figure 4.1B). Replication rates were relatively 
consistent across all samples, with the exception of the rosette depleted gentamicin treated sample, 
in which replication rates were significantly higher. Increased replication rates are often observed 
in antibiotic treated samples (Brown et al. 2016) and the lack of increased replication rate in in the 
rosette enriched gentamicin treated sample suggests that the antibiotic may not be reaching inside 
the rosettes or is entering at a diminished rate. Whether there is regulation of small molecules into 
S. monosierra rosettes is an open question. However,  rosettes are impermeable to beads the size 
of bacterial cells and bacterial community members were never completely removed from 
colonies, even after greater than 6 weeks of treatment with multiple antibiotics (Hake et al. 2019). 

4.3.2 Bacterial community metabolism 
The nature of the relationship between S. monosierra and the bacteria located within its rosette is 
currently unknown. Whether the intra-rosette bacteria are performing a distinct role or function 
advantageous to S. monosierra is of interest. One possibility is that the bacteria provide resources 
such as fixed nitrogen that are useful for S. monosierra. Indeed, one bacterium, Oceanospirillales 
52_91, is capable of nitrogen fixation and is the most abundant bacterium in three of the four 
metagenomic samples. The majority of bacteria from rosette enriched samples, however, appear 
to be primarily heterotrophic, with a large suite of CAZymes, a complete or near complete TCA 
cycle, and at least one form of a cytochrome c oxidase (Figure 4.2, Table S4.1), suggesting a broad 
capacity for heterotrophy and aerobic respiration. A number of organisms also have the capacity 
for nitrate reduction (2/24), nitrite reduction (4/24), or both (6/24) indicating nitrate may be an 
important electron acceptor for this community in addition to oxygen, and that these members of 
the community may be facultative anaerobes. Three bacteria are predicted to have portions of the 
denitrification pathway up to reduction of nitrite to nitric oxide (Table S4.1). This may be 
interesting, as nitric oxide is a known signaling molecule in mammals. 23 community members 
contain sulfur dioxygenases (Figure 4.2), which have been broadly found in heterotrophic bacteria 
in the past (Liu et al. 2014) and are most commonly used for the detoxification of sulfide. 20 
bacterial organisms have capacity for arsenate reduction through arsC, also possibly for 
detoxification via arsenate reduction and export (Martin et al. 2001). Four organisms are predicted 
to be capable of CO oxidation (Table S4.2) and three of these (Rhodobacterales_64_110, 
Oceanospirillales_55_89, and Ectothiorhodospiraceae_64_108) have capacity for nitrate reduction 
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and cytochrome c oxidases. Interestingly at least one bacterium isolated from Mono Lake can 
oxidize CO with oxygen in aerobic conditions and nitrate in anaerobic conditions (King 2015).  

Despite the presence of numerous ectothiorhodospiraceae, a clade typically known for its 
anaerobic, photosynthetic members, we found no complete pathways for photosynthesis. 
However, two Ectothiorhodospiracea and an Oceanosprillales have the full Calvin cycle, including 
RuBisCO. The three RuBisCO proteins were identified with HMMs and their forms determined 
by placement in a phylogenetic tree (Figure S4.2). The form I RuBisCOs (with small and large 
subunits) belong to Ectothiorhodospiraceae_67_18 and Ectothiorhodospiraceae_64_283 and the 
Form II RuBisCO belongs to Oceanospirillales_52_91. Based on the Calvin cycle genes and 
RuBisCO forms, we conclude that these bacteria can fix CO2.  The two Ectothiorhodospiraceae 
appear to have similar metabolic capacity, as both contain a full pathway for the sequential 
oxidation of methanol to CO2 through formaldehyde and formate (Supplemental table S4.1). 
Methylotrophic autotrophy has been observed before in proteobacteria (Dedysh et al. 2005).  The 
third potential autotroph, Oceanospirillales_52_91 is the most abundant organism in three of the 
four samples and has the capacity for nitrogen fixation (Figure 4.2, Table S4.1).  

4.3.3 S. monosierra Genome 
An S. monosierra genome, of comparable completeness to the two genomes of previously 
sequenced choanoflagellates, was reconstructed from both rosette enriched samples (Table 4.1). 
Assembling merged reads from both samples did not result in a higher quality assembly (Table 
S2), therefore the genome from the rosette enriched Media E sample was selected as the 
representative genome. Although the estimated completeness is very similar to those of the 
previously sequenced S. rosetta and M brevicollis genomes, the overall assembly is more 
fragmented with an N50 of 0.029 Mbp and L50 of 503. This should not be an inherent issue of 
metagenomic assemblies for microbial eukaryotes, as less fragmented fungal genomes have been 
previously assembled from metagenomic datasets (West et al. 2018).  Given low genomic 
heterozygosity (i.e., low incidence of divergent alleles that can fragment assemblies; Figure S4.3), 
we attribute genome fragmentation to repeats.  For example, the genome has a large fraction of 
non-coding regions, which frequently contain repetitive elements capable of fragmenting 
eukaryote genome assemblies (Tørresen et al. 2019).  In particular, the genome has ~11,000 
occurrences of long strings of solely T nucleotides (20 bp or greater in length) that we will refer 
to as polyT tracts (Figure 4.3E). The distribution of S. monosierra polyT tract lengths shows a 
sharp peak at a length of 100 bp (Figure 4.3D) and a maximum length of 100 bp, suggesting 150 
bp reads were unable to span the full length of the tracts. Supporting the expectation that they  
should contribute to fragmentation of the S. monosierra genome, we note that 15% of scaffold 
breaks end in a polyT tract.  

Interestingly, we noticed in S. monosierra, the polyT tracts were relatively concentrated in intronic 
spaces of the genome (Figure 4.3F-G). They are polyT rather than polyA tracts as they occur in 
the direction of the gene sequence 90% of the time (Figure 4.3G). To determine whether such long 
polyT tracts are unusual,  we scanned over 600 eukaryotic genomes for polyT tracts ≥ 20 bp in 
length and found three other genomes with similar phenomena (Figure 4.3D-G): D. discoideum, 
Orpinomyces sp., and R. microsporus. Despite all four organisms belonging to the Opisthokonta, 
there does not appear to be a clear phylogenetic relationship between them. D. discoideum and 
Orpinomyces sp. had a high number of mostly very short polyT tracts, randomly distributed 
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throughout their genome. R. microsporus had very long polyT tracts ranging in length upwards of 
600 bp that also appeared to be randomly distributed throughout its genome. 

4.3.4 S. monosierra genetic diversity 
To get an idea of the genetic diversity present in S. monosierra populations, Single Nucleotide 
Variants (SNVs) were called across the S. monosierra genome. However, for accurate 
interpretation and calling of SNV patterns, it is important to estimate genome ploidy. Plots of the 
density of allele frequencies across the entire genome suggest the S. monosierra genome is triploid 
(Figure 4.3C) with allele frequency peaks at roughly one third and two thirds in both rosette 
enriched samples (Figure S4.3). Thus, at each allele position, it is inferred there are three alleles, 
two of which are the same and one that differs. However, the linkage of allele variants within the 
three chromosomes cannot be determined.  With that noted, the heterozygosity of the genome is 
remarkably low, indicating very low genetic diversity, with 0.26 heterozygous SNVs per kbp. The 
relatively infrequent SNVs are also evenly distributed throughout the assembly, indicating a 
relatively clonal S. monosierra population present in the co-culture (Figure S4.3).  

4.3.5 Alkaline adaptation in S. monosierra 
Mono lake, an alkaline, hypersaline lake, applies strong selective pressures on microbial 
organisms. In highly acidic environments, it has been observed that bacteria and archaea have 
shifted average proteomic isoelectric points to adapt to the low extracellular pH (Bardavid et al. 
2012). However, adaptation to such environments has rarely been examined in microbial 
eukaryotes. For signs of adaptation, we compared the amino acid composition and isoelectric 
points of proteins in S. monosierra relative to S. rosetta and M. brevicollis (Figure 4.3A). S. 
monosierra exhibits a significantly higher average isoelectric point in secreted proteins compared 
to both S. rosetta (p=6.5x10-6) and M. brevicollis (p=1.4x10-6). The same trend was not present 
in non-secreted proteins, emphasizing the change in isolelectric points is likely an adaptation to 
the alkaline environment as the pH of the intracellular environment is generally tightly regulated 
(Boron 2004). Each amino acid has varying individual isoelectric points and it is conceivable that 
overall protein isoelectric point could be modified by substituting amino acids with similar amino 
acids with higher individual isoelectric points. However, by examining differences in amino acid 
frequencies between S. monosierra and other choanoflagellates (Figure 4.3B), it is not obvious 
what amino acid compositional differences may be driving the total difference in total isoelectric 
point.  

4.3.6 Biosynthetic Gene Clusters  
One of the most highly abundant bacterial bins,  Ectothiorhodospiraceae_64_283, contains a 90 
kb novel biosynthetic gene cluster (BGC) with three large ORFs that encode a trans-AT polyketide 
synthase (PKS) and a nonribosomal peptide synthetase (NRPS) hybrid (Figure 4.4A). The gene 
cluster ends with two thioesterase domains and the single nonribosomal peptide subunit with a 
condensation domain and adenylation domain predicted by antiSMASH (Blin et al. 2019) and 
PRISM (Skinnider et a. 2017) to be specific for arginine. Given previous documented interactions 
between bacteria and choanoflagellates involving small molecules (Woznica et al 2017), it is 
possible this cluster may represent a mode of interaction. Surprisingly, the S. monosierra genome 
contains biosynthetic genes of its own in the form of two polyketide synthetase genes (PKS) spread 
across two separate contigs (Figure 4.4B). One of the ORFs contains a Malonyl-CoA 
decarboxylase while the other contains an NRPS condensation domain with no corresponding 
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adenylation domain, and neither contains an acyltransferase domain. Due to the absence of both 
acyltransferase and adenylation domains, it is likely that these genes are a portion of a larger gene 
cluster. Despite the biosynthetic genes being spread across multiple contigs, the genes were 
assembled similarly in the two replicate genomes and are the first polyketide biosynthesis genes 
reported in the Choanozoa. 

 

4.4 Discussion 
Choanoflagellates are the closest known living relatives of animals, and given their unique 
phylogenetic position, the nature of interactions between bacterial community members and S. 
monosierra is of intense interest. Analysis of metabolic potential identified bacteria with pathways 
for non-photosynthetic carbon fixation through the Calvin-Benson pathway, including 
Oceanospirillales_55_89, a species consistently identified within the S. monosierra rosettes (Hake 
et al. 2019), as well as nitrogen fixation. However, the majority of bacterial species appear to be 
heterotrophic, based on their metabolic potential, including some of the species most commonly 
identified inside rosettes (Hake et al. 2019). Thus, it is possible the bacteria use these pathways 
and provide carbon and nitrogen compounds to the choanoflagellate host, similar to relationships 
observed between photosynthetic bacteria and algae in lichens (Armaleo et al. 2019), sponges 
(Taylor et al. 2007; Thacker et al. 2012), and corals (Muller-Parker et al. 2015).  It is also possible 
the bacteria provide functioning similar to a proto-gut, degrading complex carbon compounds and 
giving a portion of the products to the Choanoflagellate host. A wide diversity of bacteria contain 
sulfur dioxygenases, commonly used for sulfide detoxification in many heterotrophic bacteria as 
well as almost all animals (Liu et al. 2014). Thus, bacterial community members could assist S. 
monosierra to detoxify sulfide, augmenting the functioning of the S. monosierra sulfur 
dioxygenase (Table S4.1). Alternatively, it is possible the relationship is entirely predatory and the 
choanoflagellate hosts consume intra-rosette bacterial cells at leisure. However, S. monosierra 
maintains a bacterial population within its rosettes for an extended period of time, suggesting it 
has at least some control over the growth of intra-rosette bacterial populations.  

In exchange for resources provided to the Choanoflagellate, bacteria may benefit from localization 
within rosettes because their metabolism is enhanced by a potentially anaerobic environment 
provided by the S. monosierra rosettes (Boyd et al. 2013). Alternatively, the rosettes may simply 
provide an environment protected from predation or with otherwise modified biogeochemical 
characteristics (e.g., pH, inorganic ion concentrations, nutrients - e.g., nitrogen compounds) for 
the bacteria to grow in.  Thus, overall, the bacterial community members and S. monosierra help 
one another adapt to the harsh environment of Mono Lake.  

It is interesting, however, that some bacterial functions may be deleterious to the host.  For 
example, Mono Lake is a site with high arsenic concentrations and well-studied from the 
perspective of bacterial arsenic metabolism. Bacterial community members display wide capacity 
for arsenate detoxification via arsenate reduction. However, detoxification via arsC converts As5+ 
to the more toxic As3+.  
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Secondary metabolites have previously been demonstrated to cause distinct changes in 
choanoflagellate morphology and behavior (Cantley et al. 2016). Curiously, the presence of 
Ectothiorhodospiraceae_64_283, the bacteria with a hybrid polyketide-nonribosomal peptide 
BGC, was strongly correlated with a unique S. monosierra rosette phenotype in which the rosette 
‘bursts’ as bacterial growth appears to outgrow the confines of the rosette interior (Hake et al. 
2019). It is possible that inter-domain chemical communication plays a role in causing this unique 
phenotype. In this particular case, early evidence suggests this interaction is not beneficial to S. 
monosierra and may be pathogenic. 

Despite the overall low heterozygosity of the S. monosierra genome, aggregate allele frequencies 
suggest the genome is triploid. This conclusion is supported by allele frequencies from two 
independent sequencing samples and by the fact that the SNVs are spread throughout the entire 
assembly. However, it has previously been determined S. rosetta undergoes a ploidy shift between 
haploid and diploid as part of its sexual cycle (Levin et al. 2013). Measuring allele frequencies at 
a single time point with the low number of SNVs present in the S. monosierra genome may not 
have the resolution to detect multiple ploidy levels within a single population. S. monosierra 
displayed remarkably low heterozygosity, with a mere 0.26 SNVs per kbp, that could indicate that 
it is an asexual or selfing species in contrast to S. rosetta which undergoes mating (Levin et al. 
2013). It could also suggest a recent population bottleneck, possibly linked to laboratory 
cultivation. Interestingly, other choanoflagellates also have overall low heterozygosity (King et al. 
2008) and are highly resistant to genetic perturbation. Low heterozygosity may be emblematic of 
their apparent lack of genomic plasticity.   

The availability of a complex co-culture presents a rare opportunity to study a choanoflagellate 
with closely associated bacteria cultured from the same environment. Due to the unique 
phylogenetic position of choanoflagellates, the genomic and community compositional results 
reported here provide a foundation for further study to better understand  the types of bacterial-
eukaryotic interactions that influenced early animal development and evolution. 

 

4.5 Methods 

4.5.1 Sequencing and assembly 
Raw sequencing reads were processed with bbtools (http://jgi.doe.gov/data-and-tools/bbtools/) 
and quality-filtered with SICKLE with default parameters (version 1.21; 
https://github.com/najoshi/sickle). IBDA_UD (Peng et al. 2012) was used to assemble and scaffold 
filtered reads. IDBA_UD was chosen as it is a widely used, publicly available program designed 
for metagenomic assemblies. Unlike almost all other such assemblers, it includes a scaffolding 
step. This is important because longer sequences can be more robustly binned. Scaffolding errors 
were corrected using MISS (I Sharon, BC Thomas, JF Banfield, unpubl.), a tool that searches and 
fixes gaps in the assembly based on mapped reads that exhibit inconsistencies between raw reads 
and assembly.  

4.5.2 Targeted reassembly with SPAdes 
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Assembled 16S  sequences and the split contigs of a repeat-rich secondary metabolite cluster were 
used as trusted contigs (--trusted-contigs option) in a run of the SPAdes assembler (Nurk et al. 
2013). In doing so, a subset of 16S sequences were incorporated into larger scaffolds that could 
then be associated with a bin. The secondary metabolite cluster was also successfully assembled 
into a single scaffold, enabling structural prediction of the metabolite and confidence in having the 
entire cluster assembled. 

4.5.3 Prokaryotic binning and annotations 
Prodigal with the -meta option (Hyatt et al. 2012) was used to predict protein-coding genes on 
each assembled metagenomic sample. Ribosomal RNAs were predicted with Rfam (Nowrocki et 
al, 2015). Predicted proteins were given functional annotations by aligning to UniProt (UniProt, 
2010), UniRef90 (Suzek et al. 2007) and KEGG (Kanehisa et al. 2016). Prokaryotic draft genomes 
were binned with CONCOCT (ref). Bins were then refined through the use of ggKbase 
(ggkbase.berkeley.edu) by manually checking GC, coverage, and the phylogenetic profile of a 
given bins constitutive contigs. A non-redundant set of bins across all four samples was then 
generated using dRep (Olm et al. 2017). 

4.5.4 S. monosierra binning and annotation 
The S. monosierra genome was binned as described in detail in West et al. 2018. Briefly, EukRep 
(West et al. 2018) was run on each individual sample to separate eukaryotic and prokaryotic 
contigs. Predicted eukaryotic contigs were then binned into putative bins using CONCOCT 
(Alneberg et al. 2014). For each bin, protein-coding genes were predicted using the MAKER2 
pipeline (Holt and Yandell, 2011) with default parameters, self-trained GeneMark-ES (Ter-
Hovhannisyan et al. 2008), AUGUSTUS (Stanke et al. 2006) trained with BUSCO (Simao et al. 
2015), and the reference proteomes of S. rosetta and M. brevicollis as homology evidence. Genome 
assembly stats were generated with a custom ruby script. 

4.5.5 Phylogenetic analysis 
Bacterial protein sets obtained from NCBI and JGI’s genome portal (ref) For each protein set, 16 
ribosomal proteins (L2, L3, L4, L5, L6, L14, L15, L16, L18, L22, L24, S3, S8, S10, S17, and S19) 
were identified by BLASTing a reference set of 16 ribosomal proteins obtained from a variety of 
protistan organisms against the protein sets. BLAST hits were filtered to a minimum e-value of 
1.0 × 10−5 and minimum target coverage of 25%. The 16 ribosomal protein data sets were aligned 
with MUSCLE (v. 3.8.31) (Edgar 2004) and trimmed by removing columns containing 90% or 
greater gaps. The alignments were then concatenated. A maximum likelihood tree was constructed 
using RAxML (v. 8.2.10) (Stamatakis 2014), on the CIPRES web server (Miller et al. 2010), with 
the LG plus gamma model of evolution (PROTGAMMALG) and with the number of bootstraps 
automatically determined with the MRE-based bootstopping criterion. 

4.5.6 SNV analysis 
In order to identify variants in the S. monosierra genome, reads from samples A and C (rosette 
enriched samples) were mapped back to the de novo assembled S. monosierra genome with Bowtie 
2 (Langmead 2012). The PicardTool (http://broadinstitute.github.io/picard/) functions “SortSam” 
and “MarkDuplicates” were used to sort the resulting sam file and remove duplicate reads. 
FreeBayes (Garrison and Marth, 2012) was used to perform variant calling with the options “--
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pooled-continuous -F 0.01 -C 1.” Variants were filtered downstream to include only those with 
support of at least 10% of total mapped reads in order to avoid false positives. Multiallelic sites 
were defined as sites with two or more non-reference alleles. To determine the ploidy of the 
genome, the allele frequency for each allele at each variant site was plotted as a histogram. The 
distribution of SNPs across the genome was visualized with a custom matplotlib function. 

4.5.7 Isoelectric point analysis 
Reference protein sets for S. rosetta and M. brevicollis were obtained from NCBI. Predicted 
protein sets for all three choanoflagellates were run through SignalP (Pretersen et al. 2011) to 
identify putative transmembrane and secreted proteins. Secreted and non-secreted proteins were 
then grouped separately and isoelectric points were calculated for each protein using the IPC 
software (Kozlowski 2016). Significant differences between secreted and non-secreted protein sets 
and between genomes were calculated using the rank-sums test (Pedregosa et al. 2011). The amino 
acid frequencies from S. monosierra predicted proteins were then compared to the average amino 
acid frequencies of S. rosetta and M. brevicollis.  

4.5.8 polyT tracts 
PolyT tracts were identified by searching for strings of either A’s or T’s throughout the genome in 
question. Only strings longer than 19 nucleotides in length were considered to be polyT tracts. The 
S. monosierra genome, S. rosetta and M. brevicollis genomes were searched along with over 600 
eukaryotic genomes obtained from NCBI and JGI’s Mycocosm (Grigoriev et al. 2011). PolyT 
tracts overlapping genes, introns, and other genomic features were identified using the pyBedTools 
suite (Quinlan et al. 2010) “intersect” function. Relative distance plots were generated using a 
custom matplotlib function. 
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4.6 Figures 

 

Figure 4.1. Community composition of complex co-culture samples derived from Mono Lake. (A) 
Rank abundance curves for samples A, B, C, and D respectively. Points are colored by organism 
family. (B) Phylogenetic composition of each of the four metagenomic samples. Samples ordered 
as A, C, B, and D. (C) Estimated replication rates (iRep values) for bacterial genomes, separated 
by sample.  
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Figure 4.2. Summary of metabolisms present in reconstructed genomes.  Bacterial genomes are 
represented as a non-redundant set. Metabolism presence is determined by presence or absence of 
marker genes unique to a particular metabolic pathway. Darker colors represent multiple copies of 
the marker gene being present in a given genome. 
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Figure 4.3. Characteristics of the S. monosierra genome. (A) Violin plots of protein isoelectric 
points for proteins from S. monosierra, S. rosetta, and M. brevicollis. Asterisks denote significant 
differences between distributions. (B) The enrichment of individual amino acids in S. monosierra 
secreted proteins as compared to S. rosetta and M. brevicollis proteins plotted against the 
isoelectric point of the individual amino acids. (C) Allele frequency density plot for SNVs called 
within the S. monosierra assembly. Black denotes the frequency of the highest frequency allele, 
red the second highest, and blue the third highest if the site has more than two alleles. (D) 
Distriubution of polyT tract lengths. (E) Total number of polyT tracts. (F) The percent of polyT 
tracts located within genes in each respective genome. (G) Relative distance plots of the presence 
of polyT tracts averaged across all S. monosierra genes and introns.  
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Figure 4.4. Visual representation of the biosynthetic gene clusters in Ectothiorhodospiraceae and 
S. monosierra.  
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Name S. monosierra M. brevicollis S. rosetta 

Size (mbp) 47.2 41.6 55.5 

# genes 10895 9203 11731 

# scaffolds 2107 218 125 

Longest Scaffold (Mbp) 0.163944 3.607471 4.624088 

N50 (Mbp) 0.029177 1.073601 1.890124 

L50 503 13 10 

 

Table 4.1. S. monosierra genome assembly quality. 
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Figure S4.1. Concatenated 16S ribosomal tree of bacterial organisms from complex co-culture 
samples. Binned organisms are represented by red dots on the tree. Most binned organism 
belonged to the Bacteroidetes (Sphingobacteria) and Gammaproteobacteria (Oceanospirillales and 
Ectothiorhodospiraceae).  
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Figure S4.2. RuBisCO large subunit tree. Reference RuBisCO proteins were collected and a 
phylogenetic tree was constructed including RuBisCO proteins identified from complex co-culture 
samples (highlighted in red). Novel RuBisCO’s were determined to be of Form I and Form II.  
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Figure S4.3. SNV distribution across the S. monosierra genome. The nine longest S. monosierra 
genome assembly scaffolds are included, where each row represents a single scaffold. Black bars 
represent the total number of SNVs present within 100 bp sliding windows across the S. 
monosierra assembly.  
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Table S4.1. Summary of metabolism marker genes, detected with HMMs, present within 
reconstructed microbial genomes.  

 

 

 

 



 

 84	

Conclusions	

Microbial eukaryotes are important community members that have often been neglected in the 
field of microbial ecology. In order to ascertain a holistic understanding of our ecosystems and of 
our own evolutionary history, they cannot continue to be ignored. Foremost among the reasons 
for neglect, is the difficulty in studying microbial eukaryotes. In my work, I have focused on 
employing and improving culture-independent methods to study microbial eukaryotes in their 
natural community context, and hope to show that studying them in this way is critical for our 
understanding of their biology and the biology of their surrounding communities.  
 
A primary conclusion of this work is that it is now possible to use genome-resolved 
metagenomic methods to assemble and bin eukaryotic genomes from complex communities. In 
Chapter 1, I present EukRep, a machine-learning based tool for classification of assembled 
scaffolds as either eukaryotic or prokaryotic. This is beneficial because it allows the use of 
eukaryotic gene predictors on eukaryotic scaffolds prior to binning, a limitation that previously 
severely impacted the ability to bin eukaryotic genomes. We then present a broader pipeline that 
incorporates EukRep and other publicly available tools to generate high quality eukaryotic gene 
predictions, and subsequently, eukaryotic genome bins.  
 
Importantly, we’ve shown with this pipeline, it is possible to reconstruct a diversity of eukaryotic 
genomes from a broad range of environments, including from samples that had previously been 
analyzed and eukaryotic genomes missed. From Crystal Geyser groundwater samples, we 
assembled high quality, complete, fungal and arthropod genomes. From a thiocyanate reactor, we 
assembled a genomes for a Rhizarium and a Nucleariida, phylogenetically novel protists from 
phylums with poor genome representation and no close sequenced relatives. Among others, we 
also reconstructed genomes for yeasts, fungi, arthropods, nematodes, and protists from the infant 
gut, hospital room environment, and a complex co-culture of organisms from Mono Lake, 
demonstrating the broad versatility of our approach. Our pipeline represents a first attempt to 
systematically bin eukaryotes, in part to show its possible but also to inspire future 
improvements. In the time since its publication, additional tools have been published that 
incorporate EukRep and iterate on the idea of a Eukaryote binning pipeline, such as MetaEuk 
(Karin et al. 2020).  
 
Our work characterized the broad presence of microbial eukaryotes in the infant gut and hospital 
environment. Fungal pathogens are known to have hospital reservoirs, however, much remains to 
be learned about where reservoirs of hospital-associated fungi are and how long strains persist in 
them. We detected novel, near identical C. parapsilosis genomes sequenced years apart in 
separate infants, suggesting transmission of members of a fungal population from reservoir to 
infant or infant to reservoir to infant. This result suggests the presence of a potentially diverse, 
hospital associated population of C. parapsilosis given the high incidence of C. parapsilosis 
infection in immune-compromised individuals. Hospital sinks were found to host a surprisingly 
diverse and variable eukaryotic community, and recovered genomes included an arthropod from 
the Diptera (true flies) and a nematode who’s most closely related sequenced relatives included a 
bovine lungworm and Caenorhabditis elegans. 
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What prior work has been done with microbial eukaryotes has generally necessitated lab culture 
work, and thus, has not considered the impact of a surrounding microbial community on 
behavior and metabolism. Metagenomic techniques, combined with methods such as 
metatranscriptomics, and metaproteomics, afforded us the opportunity to study the behavior and 
metabolism of microbial eukaryotes in their natural community context. Metatranscriptomics of 
infant fecal samples containing C. parapsilosis, when compared to transcriptomic datasets from 
culture settings, supported our hypothesis that the microbiome context has a significant impact 
on the metabolism and behavior of C. parapsilosis. In particular, C. parapsilosis expression 
patterns were both highly divergent and highly variable over time compared to culture settings.  
 
It is important to consider microbial eukaryotes in a community context not only for insight into 
their own behavior, but also for a more holistic understanding of microbial community behavior. 
In Chapter 3, we show expression patterns of E. faecalis and S. epidermidis were clearly 
distinguishable between infant fecal samples with and without C. parapsilosis present across 
multiple infants, indicating C. parapsilosis may have a particularly strong effect on the behavior 
of these bacteria in the human microbiome. In Chapter 4, the unique physiology of the 
choanoflagellate S. monosierra, ie. enveloping bacterial cells within its multicellular rosettes, 
may drive unique community dynamics. Whether the interactions between S. monosierra and 
bacterial community members are mutualistic is currently unknown, however bacterial genomes 
binned from metagenomic samples contained metabolisms such as carbon fixation, nitrogen 
fixation, nitrate reduction, arsenate reduction, and sulfide oxidation; all metabolisms potentially 
useful to S. monosierra. In addition, both a bacterial community member and S. monosierra itself 
contained biosynthetic gene clusters, potentially involved in inter-domain communication. 
 
The work I present here represents first steps in incorporating Eukaryotes into broader, whole 
community microbial ecology studies and studying microbial eukaryote biology and behavior in 
a community context using genome-resolved methods; however, there are clear directions in 
which to continue. On the technical side, existing ab initio Eukaryotic gene prediction 
algorithms, such as GeneMark-ES and AUGUSTUS, have been designed for isolate sequencing 
experiments. This comes with evident caveats for use in a metagenomics context. For one, they 
require training on an individual genome, in part due to the difficulty of predicting eukaryotic 
genes without transcript evidence. Ideally, a gene prediction algorithm could be developed that 
functions similarly to meta-prodigal, and can predict genes on both eukaryotic and prokaryotic 
scaffolds without a need for genome-specific training. 
 
An unexpected outcome of this work is that Eukaryotes appear to be relatively rare in shotgun 
metagenomes, more rare than barcode sequencing would suggest. I believe this sparsity is owed 
largely to technical limitations, as Eukaryotic genomes may be particularly difficult to assemble 
from metagenomes. Eukaryotic genomes can be extremely large, though the size varies greatly, 
relative to those of bacteria and archaea, thus requiring a much greater sequencing depth for 
reasonable genome coverage. In addition, eukaryotic cells are much larger than bacterial cells, 
and so eukaryotic genome copy number will be fewer for the same amount of biomass in a given 
sample, exacerbating the sequencing depth issue. Finally, eukaryotic genomes are often repeat 
rich, resulting in highly fragmented assemblies when reliant solely on short read sequencing. 
However, these challenges are reasons I remain excited about the current and future potential for 
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studying eukaryotes with genome-resolved metagenomic methods. Continued advances in 
sequencing throughput, long read sequencing, and DNA extraction methods will naturally 
address these limitations. I look forward to seeing the future results of applying eukaryotic 
genome resolved metagenomics and similar techniques to study lichens, sponges, and numerous 
other unexplored systems. 
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