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* Some Aspects of Plasma Tomography-

Rory Nilandt 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, CA 94720 

Abstract 

LBL-9373 

(A) m projections, equispaced in angle, of a two-dimensional 

object y~eld precisely m2 real numbers characterizing the object. 

These are generalized moments of the object and are free of 

aliasing contamination. A reconstruction with minimal norm and 

matching those moments can be produced. 

(B) If the object is discretized on an N x N grid then the 

minimal norm reconstruction which matches the m projections is 

most accurate for N approximately equal tom, i.e., is also 

characterized by about m2 parameters . 

* This work was supported by the Director, Office of Energy Research 
Office of Fusion Energy, Applied Plasma Physics Division, of the U.S. 
Department of Energy under Contract # DE-AC03-76SF00098. 

t Present address: Wills Plasma Physics Department, University of 
Sydney, Sydney, Australia 2006. 
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o. Introduction 

Some Aspects of Plasma Tomography* 

Rory Nilandt 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, CA 94720 

LBL-9373 

Tomography, or the reconstruction of an object from its projections, 

has in the last few years been applied to plasma physics diagnostics. 

The differences from medical applications seem to be twofold: Because 

of the transient nature of plasma phenomena, all of the tomographic 

observations should be made simultaneously, in a single plasma shot. 

This demands considerable hardware. For this reason, and because of 

limited physical access to most machines, the number of 'views• or 

different angles of projection tends to be sma 11, from 2 to perhaps 8 • 
. , 

Secondly,_ in distinction to other uses of tomography where the interest 

is in revealing a particular object or structure clearly, in plasma 

applications typically we want reliable numbers, e.g. in the experiment 

of Myers and Levine (1978), intensities of the spectral line at various 

points inside the plasma; and to avoid spurious interpretations, it is 

necessary to have some estimate of the reliability of these 

reconstructed intensities. There exists a large number of reconstruction 

algorithms (Brooks and DiChiro 1976) and for the case of many views of a 

static object some are obviously to be preferred. For plasma 

applications the choice is much less clear. 

* This work was supported by the Director, Office of Energy Research, 
Office of Fusion Energy, Applied Plasma Physics Division, of the U. S. 
Department of Energy under Contract No.OE-AC03-76SF00098. 

t Present address: Wills Plasma Physics Dept., University of Sydney, 
Sydney, Australia 2006 
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The report is organized as follows: Section 1 gives some of the back­

ground that motivated this work, and summarizes numerical experiments on 

the behavior of the algebraic iterative algorithms. Section 2 is a 

presentation of what seems to me a very natural description of the 

reconstruction process, yielding some insight into its ultimate 

resolution, and what imposes the limits. Section 3 is a new algorithm 

which guarantees a reconstruction free of aliasing artefacts yet retains 

as many degrees of freedom as any algorithm can. Section 4 is a study of 

least-squares reconstructions in general. 

I wish to acknowledge Booth Myers and Morton Levine for encouraging 

my initial interest in this work, and my colleagues at LBL for their 

support, in particular, Ben Feinberg and Ludmilla Soroka. 

1.0. Background 

This study was motivated by the experimental 'l«>rk of Myers and Levine 

(1978), who used 4-view tanography in an attanpt to obtain spatially 

resolved spectroscopic measurements in a Tarmac plasma. We summarize the 

relevant details here: The plasma whose expected shape is shown in 

Fig. 1 was contained in a glass vessel of rectangular cross section of 

dimensions 5 x 10 inches. Measurements were taken with a probe 

consisting of a collimating head attached to a long fiber optic leading 

to a 16 channel polychrcmator. In all, measurements were taken along 88 

lines of sight belonging to projections at 0,45,90 and 135 degrees. In 

order to estimate noise, three plasma shots were taken at each position. 

The Algebraic Reconstruction Algorithm (ART) of Gordon et al. (1970) was 

used to reconstruct a 10 x 20 cell plasma. 
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As a preliminary, the algorithm was tested with various artificial 

intensity distributions considered typical, and seemed to perform 

adequately. However, it turned out later that this initial testing was 

not severe enough (Gilbert 1972}; the reason is that the rays used as 

test data for ART were generated by summing intensity values at the 

centers of the cells, i.e. the object generating the data was already 

considered to be discretized. This so-called pseudo-projection data 

favors the ART algorithm (Colsher 1977}. When instead, more 

realistically, a continuous test object was chosen and the ray values 

generated by analytic integration or accurate numerical integration, 

ART's performance was decidedly impaired, because it is sensitive to 

even slight inconsistency in the projections. Another drawback to this 

type of testing is the difficulty of creating a sufficiently large class 

of test objects, quantifying the algorithm's performance without too 

much subjectivity, and reaching generalizations by inspection. Next 

were considered for comparison the other algebraic (i.e. non-Fourier} 

algorithms: ILST (Gotein 1972} and SIRT (Gilbert 1972}. The procedures 

are not described here since all of the algebraic algorithms are more or 

less implementations of a least squares solution to the discretized 

problem (for SIRT, see Lakshminarayanan (1976), and for ART, Herman, et. al · 

(1973}), and this is discussed in Section 4, where it is suggested 

that for a low number of views as is reasonable in plasma physics the 

best strategy may be to solve the LS problem directly, by the 

pseudoinverse matrix, not iteratively. Comparative tests of the three 

algorithms included: 
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1. Reconstruction of a sine wave of various frequencies and 

propagation directions, and doing a 20 Fourier analysis of the result, 

in an attanpt to describe the processes as spatial filters. 

2.. Reconstruction of various made-up intensity distributions that 

mimicked the plasma shape, for example a hole in center and scalloped 

edge (Fig. 2) • 

3. Reconstructing an impulse function of intensity at various 

positions. 

4. Varying the number of iterations and studying the norm of the 

difference between the reconstructed function and the ·true one. 

5. Repeating a reconstruction 100 times with Gaussian noise on the 

input data and canputing the mean and standard deviation in each cell of 

the reconstruction, and the correlation between cells. 

6. Related to the last item,.the effect of spatially averaging over 

blocks of cells of different sizes. was studied. 

Because these algorithms wi 11 be superseded by others described 

later in the paper, the results are described only briefly. ILST and 

SIRT amplify noise on the ray SIJTIS (integrals of intensity along the 

line of sight} considerably less than ART, which is important since 

experimental measurements will always have noise present. In addition 

they are more tolerant of slight inconsistency in the data than ART, and 

produce less correlation between neighboring cell values than ART, which 

by its nature tends to smear nearby values together. Low spatial 

correlation permits sane noise reduction by grouping neighbors together. 

The most important conclusion, however, is that the exact 

reconstructed intensity distribution is dependent on the choice of 

algorithm, the number of iterations, ~nd the intensity distribution of 
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the object, in an unpredictable way. This is clearly unsatisfactory. 

All this work was done on the original 10 x 20 cell grid. 

Finally, the question was addressed: Given a reconstructed 

intensity distribution, for example done by SIRT with 10 iterations, 

which overall seems about the best choice, what numbers can be extracted 

from it to prescribed accuracy- say =10% or =20% regardless of the 

original object, perhaps within a reasonable class of objects. For 

certainly the 200 individual cell values are unreliable; and certainly 

the mean intensity over the whole reconstruction is exact. What 

intermediate partitioning of the plasma vessel will yield reliable 

numbers? 

The answer from numerical experiment is that if =20% accuracy is 

required, the spatial resolution is quite low, corresponding to between 

2 and 8 partitions of the vessel, or blocks of 5 x 5 to 10 x 10 of the 

original small cells. This result is in approximate agreement with the 

theoretical work of Klug and Crowther {1972) who use a Fourier 

formulation of tomographic reconstruction--described in the next 

section--and it can be made plausible by some simple descriptions of the 

process. 

2.0. A theory of Tomographic Reconstruction 

This section looks at a theoretical description of image 

reconstruction. It is essentially a recapitulation of the papers of 

Klug, Crowther, and DeRosier, and the central idea is that of expanding 

the object to be reconstructed into a set of basis functions, and noting 

that if a finite number m views are taken,only a finite number of the 

basis functions can be retrieved, the others being confused with each 

other by the mechanism of angular aliasing. 
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2.1. Projection Slice Theoren 

Let f(x,y) be a two dimensional intensity distribution (the 

"object 11
). Then the one dimensional Fourier transfonn of a projection 

of f(x,y) ·at any angle is the slice at the same angle through the two 

dimensional 'Fourier transform of f(x,y). 

Sketch of Proof: The 20 Fourier transfonn is defined as 

{f -2wi(xk + yk ) 
F2[f(x,y)] = Jjf(x,y)e x Y dxdy ( 2.1) 

The projection of f onto the x-axis is 

p (X) = If ( x, y) dy 

{{ -2wixk 
= 11 f( x,y)e xdxdy 

i.e. the slice of the spectrum along the k -axis. Since it is obvious 
X 

or easily proved that 

Where Re is a rotation operator, we see that any line through the 

origin can be rotated to the x-axis, thus proving the theorem. 
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2.2. Spatial Resolution 

We follow the Klug and Crowther (1972) paper. The object ljl(r,e) now 

expressed in polar coordinates, is contained within a circle of radius 

a so that 

1jJ = 0 for r > a 

We expand 1jJ in an infinite series of basis functions whose 20 

Fourier transforms may be calculated analytically. Then assuming m 

equispaced prQjections of 1jJ are given, we have m slices of the 20 

spectrum ~(p,0) from which we want to retrieve the amplitudes of as many 

of the basis functions as possible. An appropriate complete orthonormal 

set of basis functions on the disk are: (Courant and Hilbert 1953) 

,,, (. ) -1 e in& J ( 21rR r) ~ns r,& = ans n ns r < a 

(2.2) 

= 0 r > a 

Here Rns is the s'th root of Jn(2TIRnsa) = 0 s = 1,2,3, •••• 

and Jn is the n'th order Bessel function. The class of functions 

which can be thus expanded is given in Lebedev (1972) or Watson (1952). 

We write 

ans normalizes ljlns so that 
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Thus 

It is straightforward to show that the inner product 

The object is expanded as · 

1jJ ( r, e) = ; f n ( r }e i ne 

n=o 

00 00 

= l l qnsljJns 
n=O S=l 

where the real part of the right-hand side is understood. The inversion 

of this relation may be performed by 

1 f
2'11' • 

f (r) = · (r e)e-1n9de 
n b 1jJ ' 

0 

and from the standard properties of Bessel functions (Mathews and Walker 

1970) 
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The 20 Fourier transform of the object 

may be expressed as an expansion in the functions 'i'ns where (Goodman 

1968} 

in(~-1) a 
= a-nsl e 2,.. f J (x r)Jn(2,..pr)rdr (2.3) 

0 
n ns 

at the point p = Rns the function is continuous and may be written 

in(D--f) 
e a,..J•(x a) n ns 

Because the 'i'ns are Fourier transforms of an orthogonal set of 

functions they have the property that '¥ns(Rns•,6) vanishes for all 

s• except s• = s, where it has amplitude ans· Hence 
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so that 

(.2.4) 

This is a prescription for extracting the coefficient of a basis 

function fran the 20 Fourier transform of the object. 

2.3 Angular Aliasing 

Assume now that them equispaced views .of the object are given, for 

concreteness at 

e = (k-l)w/m . k = 1 ,2, ••• ,m 

where we have taken by convention p > o. Thus there are 2m values of (J 

at which '¥(p,(J) is known. 

By Shannon's sampling theorem, or more clearly by graphical 

inspection, we may see that we can distinguish only the azimuthal 

variations 

cos 2& t= 0,1,2, ••• m 

si.n te t = 1, 2, ••• m-1 

All higher components are ali ased down into this range, so that 

i = 2m :1: p, 4m :1: p, 6m :1: p, ••• 
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all appear as R. = p and carmot be identified as high frequencies. Thus 

the finite angular sampling makes it impossible to retrieve any ~ns 

with n > m. 

Even for n < m, ~ns with high s, those basis functions with high 

radial frequency, cannot be retrieved because of another mechanism which 

is best illustrated by an example: Take m = 4 views. To find the 

amount of the basis function ~13 in the object measure the amplitude 

of ei tJ at P = R13 in the spectrum ~. By virtue of equation (2.4) 

none of ~1 s s = 1,2, ••• (s # 3), contribute at this value of p. 

However, aliased-down functions like~ 7 s s = 1,2, ••• all contribute as 

can be seen from equation (2.3). In particular~ 71 and ~13 are of 

comparable magnitude at p = R13, so are inextricably mixed as far as 

4-view tomography is concerned. The best strategy then seems to exclude 

~13 deliberately from the reconstruction. This 'contamination' of 

basis functions of low order n by aliased-down basis functions of high n 

is the process which converts a limit in angular sampling to a limit in 

spatial resolution. 

From equation (2.3) it can be shown that, for m = 4, the only 

uncontaminated and therefore fully retrievable basis functions are 

~ 01 ,02, 11 ,21 

$03 and w12 have 34% and 24% admixture of higher functions (assuming 

all basis functions are present and of equal amplitude) and are perhaps 

marginal. The rest must be excluded. Consequently the maximum spatial 

frequency Pmax = R21 (or R12) i.e. about 1/a and the resolution 

distance 
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1 -~ 2 - 2 
Pmax 

although resolution is an ill-defined quantity for tomography with few 

Not ice a 1 so, with m = 4, that four complex functions 'I' are 
ns 

reliably retrieved so that approximately 8 parameters referring to the 

object can be claimed. 

In section 3, by optimum choice of the basis functions, two 

. improvenents are made to this theory: The number of retrievable 

parameters form equidistant views is extended in all cases to m2; and 

a set of retrievable functions is found whiCh has no a:liasing 

contamination at all. 

2.4. Intuitive Derivations of the Resolving Power of Tomography 

This and the next section give simple~inded models of the limits of 

spatial resolution of m-view tomography. 

Suppose the object is a sinusoidal wave travelling in the~ 

direction so that 

where 

also let it vanish outside the disk of radius a; then its Fourier 

transform has the form 

- 12-
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where & is the distance from the point (p,~). For the object to be seen 

via its projections, one of the m slices must cut the transform. A 

marginal condition for that is 

0.61 . 1r 
-a-> p s1n 2m 

which means that the least visible wave, one whose k-vector bisects the 

angle between two views, is on the threshold of being detected. For 

m = 4, this cr4terion gives Pmax = 1.47/a. Klug and Crowther•s more 

realistic estimates correspond to the slices seeing about 1/3 of the 

height of the spectral peak. 

Derivation in Real Space 

Consider the same object and suppose it is enclosed now in the square 

0 < x, y < 2a. The projection onto the x-axis is 

2a 
P(x) = Jo f(x,y)dy 

The degree of modulation, or •visibility• of p(x) as x varies is 
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It is 100% for aky = 0 (i.e. e = 0 or A ~ "") and, falls to zero at 

aky = w. Hence a threshold condition for detectability of the object 

is 

1 2 . A = - > a s1ne 
p 

The least favorable value of e is ~m so that A > 2a sin ~m • 

Notice that the two criteria more or less agree. 

3.0. Alias Free Algorithm ., 
The Bessel functions in which the object was expanded in Section 2 

were chosen arbitrarily. Klug and Crowther (1972) say that similar 

results are found, if the prolate spheroidal functions are used instead. 

We are interested in this section in the property of tomographic 

reconstruction that is being manifested here, independent of the choice 

of basis functions. 

Let us expand the object (presumed zero outside of a circle of unit 

radius) as 

1 00 

1ji(r,e) =""' a
0

(r) + 1: (a (r)cosR.& + b (r)sin R. e) (3.1) 
c. 1 i i ' i= 

It is less confusing to write the formulas in terms of real 

quantities although sometimes complex expressions will be used for 
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conciseness. The projection in the direction b of a function f(r)eiie 

is (see Fig. 3) 

+ e 
ii t»+rcos y;) ( 11' -1 t} 

where the operator Ai is defined by 

1 f(r)Ti (t/r)rdr 

Ai[f(r)] = g(t) = 2} j 2 2 
t r - t 

(3.2} 

and Ti (x) is a Chebyshev polynomial of the first kind 

0 < X< 1 

1<X<co 

It is we 11 known (Connack 1964, Snecifon 1972, Deans 1977) that the 

integral equation(3.2) can be inverted, yielding f(r) for given g(t). 

Although the inversion formula is very ill-conditioned and unsuitable 

for numerical calculations, the method of inversion is useful: Notice 

that (3.2} has the form of Mellin convolution, i.e. if the variables 

were changed by 
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r = eP, t = eT 

it would becane an ordinary convolution. Following Sneddon, write (3.2) 

as 

where 

00 

g(t) = 1 f 1(r)K1 (t/r)dr/r 
0 

f
1
(r) = 2rf(r)H(1-r) 

T R.(u) 
K

1
(u) = H(1-u) 

M 
H( u) is the Heavi side function, = 0 u < o 

1 u > 0 

Then defining the Mellin transfonnation 

00 

M[g(t)] = [ g{t)t5
-

1dt 
0 

where s is canplex with a real part such as to make the integral 

converge , we have 

or 

J
1 s-1 J1 5 L TR.(r)r

5
-

1
dr 

gt dt = fr dr x 2 
0 0 0 p-

write now s = k+1 ( k = 0,1, 2, ••• ) and use Sneddon • s form for MK1 to 

obtain 
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1 1 

J g(t)tkdt = r kJ f(r)rkrdr 
0 £. 0 

(3.3) 

where 

( 3.4) 

An important consequence is that, if k + £. is even and k < £. then 

r k = 0. Hence, regardless of the function f(r), g(t) = A f has zero £. £. 
k'th moments fork satisfying the above conditions. This fact will be 

used to make a reconstruction algorithm free of aliasing. 

For general values of k and£., r tk may be evaluated using the 

relations 

3.1. Avoiding Aliasing 

r (z+1) = z r(z) 

r( 1/2) = liT. 

Aliasing enters because the object is vie\Ed from a finite number of 

different angles. Suppose for the moment we have an infinite number of 

different views of the object (3.1). The projection data then form a 

continuum of values 

G(t,Q>) 0 ~ t ~ 1, 0 ~ (J < 21r 

Fran the definition of A£. we see that 
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00 

G(t,i1) =-¥
0
a

0
(r) + I (Aiai(r)cos .9.(6 + ;) + AR.bi{r)sin .9.{6 + ~)) 

R. =1 

A reconstruction procedure would involve retrieval of gi{t) :Ai ft by 

Fourier analysis: 

(3.5) 

and then 

using sane method. 

In the case of finite views m, the Fourier integral {3.5) becomes 

the discrete Fourier transfo.rm (OFT) 

{3.6) 

where (assuming now equispaced views) 

k = 1,2, ••• 2m. 

It may be verified that instead of yielding g for a given value of 

R., this formula yields a linear combination of gi and gR., where t' 

ranges over the set of aliases of t: 

t' =2m~ .9., 4m ~ .9., ••• 
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" 

It is possible to excise all the contamination of gt from the higher 

aliasing terms gt'" What moments of gt' vanish? The k'th moment 

vanishes if k + t' is even and k < t'. Take t• = 2m-t for 

definiteness; then the vanishing moments are 

-

t even: k = 0,2,4, ••• 2m-t-2 

todd: k = 1,3,5, ••• 2m-t-2 

Notice also that these same moments are zero for gt• where 

t' = 2m+t, and also for all of the higher aliased values oft. 

Thus although we have by the OFT obtained a function g(t) which is 

not the desire:t gt(t), because of aliasing, yet we do know some of its 

moments unambigously. 

By virtue again of (3.4), some of the lower moments of gt itself are 

zero; so that there is a range 

k = t, t + 2,t + 4, ••• 2m-t-2 ' '(3 .8) 

fort even or odd, of non-zero alias-free moments of gt, m-t altogether, 

obtainable from g(t) the result of the OFT {3.6). 

3.2. Construction of the Algorithm 

We wish to exclude the aliased information from g(t) and also to 

avoid the i 11-condit ioned processAt-1• These goals can be achieved 

together. 

Suppose for some fixed t we have performe:t a OFT on the data 

G{t,ok) and have g(t)- a mixture of gt and its aliases. We can 
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extract·the rn-;.t reliable moments of gR.. Now find the function f't(r) 

such that f t( r) has the correct m-t moments and 

is minimal. 

This is motivated by a principle of parsimony. Other measures might 

also be used; for excmple maximizing entropy (Frieden 1975) and this is 

considered in Section 3.4. 

The problem has a simple geometric formulation: Define an inner 

product on [0,1] as 

1 
( f, g) = l fg rdr 

0 

Then we are given the moments of ft 

(3.9) 

(3.10) 

The other constraint becomes (ft,ft) is minimal. It is easy to see 

that the solution is: ft lies in the subspace spanned by 

l rk } k = t, R. + 2, R. + 4, ••• 2m-;. L2 (3.11) 

- 20 -
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.. 

and its projections on to those spanning functions are given by equation 

(3.10). This may also be phrased as f1 has the form 

(3.12) 

and the coefficients are determined from equation (3.10) • 

Because of the formulation in terms of moments, ill-conditioned 

Hilbert matrices will naturally appear in the solution of the above. 

However, for few views the problem is not intrinsically 

ill-conditioned. A suitable procedure to avoid the Hilbert matrices is 

to span the subspace (3.11) by a set of functions {0 (r)} (a different 
Jl 

set for each m and t) orthonormal with respect to the metric (3.9). 

They may be generated, for example, by the Gram-Sch~idt process. Then 

compute the number.s (r
1

,6JJ), JJ = 1,2,3, ••• whence 

(3.13) 

It is convenient to take 

and generate the corresponding~1(r). Then it is easy to extend to the 

case of an arbitrary sampled g(t). 
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3.3. Surrmary of the alias-free algorithm 

Given: real projection data G(t,{>k). Compute •contaminated' 

g
2
(t) by the OFT equation (3.6). Calculate the m-R. correct moments of 

gi. Compute the minimal functions f 2 of the form (3.12). Then the 

reconstructed alias free object is 

( 3.14) 

3.4. Maximum Entropy Formulation 

Rather than seek the function r
2
(r) whose projection A

2
f

2 
has the 

correct moments, we may search for a function f(r) (= a
2
(r),b

2
(r) 

separately} which maximimizes the entropy 

H = -j{f(r)R.n f(r)dr 

and generates the correct moments (Jaynes 1968}. The solution is 

where k = ,t, t+2, ••• 2m-t-2 and the rea 1 constants ~k are determined by 

the moment constraint (3.10). This may involve a search rather than 

solution in closed form. Notice that f is now constrained to be 

positive, which may lead to difficulties in the presence of noise. This 

algorithm has not been investigated by me. 

There exists another reconstruction based on maximizing entropy 

(Minerbo 1979), in which, however, the constraint is the given set of 

projections, not the selected alias-free moments. 
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3.5. A More General View 

Sections 3.0 and 3.1 establish this result: tomography with m 

equispaced views yelds mf reliable numbers referring to the object 

1jJ {r,~) and these numbers may be identified as generalized moments of liJ: 

{3.15) 

where t= 0, 1, ••• , and k is given {3.8). For example form= 4 the m2 

real weighting functions are 

t = 0: 1 r2 r4 r6 

t = 1: r r3 r5 x sine, cose 

t = 2: r2 r4 x sin2e, cos2e 

t = 3: r3 x sin3e, cos3e 

A number of lines of investigation will now be sketched out. We 

particularly want to impose the physical constraint liJ~ 0 which is not 

done in sections 3.2 - 3.4. 

{a). Since 1jJ ~ 0 {3.15)is a two dimensional extension of the 

classical moment problem {Shohat and Tamarkin 1943) and it may be 

possible to extract information about the solution space of tjJ. This 

approach does not attempt to construct an 'image• of tjJ, but rather to 

use the information gained by tomography to, for example, resolve 

conflicting hypotheses. 
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(b). To obtain an image (3.15) might be discretized in r and 9 and 

treated as a quadratic programming problem. 

minimize ffi)J 2 rdr de 

subject to · ljJ ~ 0 

and the m2 constraints of (3.15). 

(c). Very appealing, given its robust properties, is a maximum 

entropy solution f(r,e) which is naturally positively constrained and 

satisfies the generalized moment conditions ( 3.15). Standard methods 

(Minerbo 1979) show that the f which maximizes 

ffr drde f tn f (3.16) 

has the form 

m2 
~ ). • W. (r,9) 

. 1 1 1 
1 = 

f = exp ( 3.17) 

where the Wi are the above weight functions and the Lagrange 

multipliers ).i are adjusted to satisfy (3.15). Although in principle 

the nonlinear system may be solved by a Newton-Raphson method, in 

practice difficulties arise even for m = 4, and it is somewhat easier to 

convert to an optimization problem and adjust ~ to minimize the 

squared error in satisfying (3.15). The BFGS algorithm (Stoer and 

Bulirsch 1980) was used for these tests with some success for m < 4. 
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(d). A variant of (c) is to forgo the special form (3.17) and after 

discretizing the problem in r and 6 attempt to maximize entropy subject 

to the conditions (3.15). The problem becomes: 

minimize If. m f. 
1 1 

subject to fi ~ 0 

and A f - Q ---

Where A is an m x n matrix (m ~ n) and ~ is the vector of observed 

moments. Minerbo (1979) refers to an ART-like algorithm for this 

problem. 

4.0. Least Squares Reconstruction: Introduction 

In this section we study least squares reconstruction which is what 

many of the unconstrained algebraic reconstruction algorithms aspire 

to. Suppose the object f(x,y) is .contained now within a square 

0 < x,y ~ 1 and we are given its projections in two, four, or more 

directions. The problem is to find the function f(x,y) such that 

f(x,y) has the correct projections in the given directions and 

ss: dxdy(f-f)
2 is minimum 

This is equivalent also to minimizing 

( 4.1) 
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i~e. finding the smoothest object which h~s the observed projections 

(Shepp and Kruskal 1978). Notice that even iff~ 0,7 is not con­

strained·to be posjtive. 

In order·to use the language of linear algebra, discretize the 

square into N x N equal small squares or cells. Theh the object is 

represented by a vector l of dimension N2• 

This section contains a geometrical description of LS reconstruc­

tion, e~licit formulas for the case of 2 and 4 equispaceo views, and 

most importantly, a demonstration that if N is increased beyond about 

the number of views no further information is gained, and in fact the 

reconstruction departs further and furthe.r from the true object. This 

essentially means that LS reconstruction, like the alias free algorithm, 

yields a reconstructed object characterized by about m2 real parameters. 

4. 1. Geometric Description of Least Squares Reconstruction 

From the discre~ i zed object£ generate the set of 1 ray sums 1 
, i.e. 

line integrals through the object by 

b =A~ - - { 4. 2) 

where Aij = 1 if cell j contributes to ray i, and is zero otherwise. 

For m = 2 views for example, A is a 2N x N2 matrix so that the system 

is certainly underdetermined for N > 2. However, such a system always 

has a unique minimal solution x such that x is the vector of least norm 

• 

.. 

satisfying Ax = b. As in the last section this choice is motivated by ~ 

the desire to assume as little as possible about the underdetermined 

solution. This minimal solution may be conveniently written in terms of 

the Moore-Penrose Pseudoinverse of the matrix A (Noble and Daniel 1977)as 
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+ ,!=Ab 

A+ is characterized algebraically by the relations 

(A+A) T = A+A 

(AA+)T = AA+ 

AA+A =A ( 4. 3) 

A+AA+ = A+ 

It may also be defined by the limits (Nashed 1976) 

( T )-1 = lim A AA + ei 

Showing that it reduces to the ordinary inverse for a non-singular 

matrix. More useful for calculation is the expression of A+ in terms 

of the singular value decomposition (SVD) of A. An arbitrary matrix A 

(M x N) may be decomposed as 

A = usvT 

where U is an orthogonal matrix (M x N), V is orthogonal (N x N) and S 

is diagonal 

- 27 -



where r is the rank of A. Then 

(4.4) 

where 
+ . . ( -1 -1 -1 ) S = d1ag a 1 ,a2 , ••• ar ,0,0, ••• 0 

Consider now the matrix A +A· which 1 images 1 the true object 1 into " 

its LS reconstruction x. It is a projection operator since 

+ 2 + + + 
(A A) = A (AA A) = A A 

by the Moore-Penrose relations. More explicitly, using the SVD, 

so 

and 

+ 
S S ·= diag (1, 1, ••• 1,0,0 ••• 0) = M (say) 

' , ..... 
r 

+ . T 
~ = A A£ = VMV L 

Thus relative to the new basis which consists of the row vectors of V 

~~ = M li 

i.e. the operator makes zero the last N-r elements of ,i1 • 

+ . A A proJects 1 onto the space spanned by the rows of A. This 

rowspace may also be written R(AT)- the range of AT- since it 

consists of all vectors of the form AT~ (arbitrary~- It is also 

the subspace which consists of all possible back projections (in the 

- 28 -



real world~) as may be seen from the following: 

This may be readily proved from the SVD of A (Lawson and Hanson 1974) 

Thus 

.c= (4.5) 

where 

so that b the LS reconstructed image, is the back projection of a 

vector £ derived from the vector of observed ray sums ~· For the 

simplest case of two views at right angles~ is just the back projection 

of~ together with a constant offset (see next section). Form> 2, 

however, there does not seem to be any intuitively satisfying 

relationship between b and c. This is also remarked upon by Logan and - -
Shepp (1975) who show analogously to the above that the minimal function 

generating the correct projections can be expressed as a sum of 'ridge 

functions.' 

4.2. Two View Tomography 

Suppose we view the discretized square in the x and y projections 

only, so that there are 2N observations and N2 unknowns. In this 

simple case A+ and A+A may be written down explicitly. For example 

NI - U 1-. • • • -
1NI - U ----l---1----

1 I 
~ I 

' ' ' f I 

NI - U i 

+ 

NUl I I -i--T----.--
1 NU I I 

-~-·-- -1 ..... :-----~----
i i " .... I -, ------- J,--- -
I : I NU 
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where Uij = 1 (i, j = 1,2, ••• ,N) and I is the unit N x N matrix. 

Letting N ~~reveals the continuous form of the operator. It is given 

by 

f(x,y) = jfdx + jfdy - lffdxdy 

fran which it is clear (perhaps contrary to first thought) that the only 

functions perfectly retrievable from t\t«l views are of the form 

It is of interest that the numerical canputation of the SVD of A for two 

views - which used the algorithm given by Forsythe, Malcolm and Moler 

( 1977) - showed that the rank of A was 2N-1. This might be expected 

since the sum of observations in each view must be equal, so reducing 

the number of independent measurements by one. In practice the 

redundant measurement might serve as a check of the consistency of the 

data. 

4.3. Four View Tomography 

The matrix A, now of dimensions 6N-2 x N2, is set up by the 

formulas in Fig. 4. The SVD algorithm gives rank (A) = 6N-9, indicating 

7 hidden relationships between the rays. The system (4.2) is thus 

determinate only for N < 3. For N = 4 there are 15 independent 

equations in 16 unknowns. An attempt was made to discern the form of ~~., 

+ + A and A A as N ~~, but it was not successful. A complicating 

factor is that the SVD algorithm encounters numerical problems for N 

greater than 5 or 6. However, there exist other interative methods, in 

particular the method of Kaczmarz (which is also the basis of ART). It 
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is lucidly discussed by Tanabe (1971). The algorithm is (supposing A is 

NR x NC and ~T is the i 'th row of A) 

For j = 1 to NR 

X = 0 

for iteration = 1 to 10 (or test) 

for i = 1 to NR 

for k = 1 to NC 

next k 

next i 

next iteration 

for i = 1 to NC 

next i 

next j 

s = (aTx- &··)laTa. -1- 1J -1-1 

+ to generate A A change NR in the first line to NC, and the 

Kronecker delta to Aij• 
+ It seems a good idea to use a stored A to perform LS 

reconstruction if there are only a few views. This avoids the usual 

vagaries of deciding when to terminate the iterative algorithm. The 

noise properties can also be thoroughly understood. 
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4.4. Error in least Squares Reconstruction 

Referring to Fig. 5 we_ see that an object f( x,y) may be projected 

into the two orthogonal subspaces N(A) and R(AT) (assuming N ~ao) as 

N(A) is the space of 'invisible objects' .so that Af
0 

= 0, and 

R(AT) is the space of back projections as before, so that f1 = 

ATu, for some function u. The LS reconstruction off is f1 and the 

error is f
0

• We want to study 

JJf~ dxdy 

or more exactly, the discretized approximation to it 

N2 

SN = N2 
l 

j=1 
(f f dxdy) 2 
· ce 11 j 0 

N = 1,2,3, ••• ( 4.6) 

If N is small enough to determine the problem, SN = 0. It would 

be nice to prove that SN increases monotonically with N above this 

critical value. Although this is not rigorously true it is a strong 

trend: for an arbitrary function g(x,y) - not necessarily in the space 

of invisible functions - we have 

k = 1,2,3, ••• ; all N 
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The proof is illustrated fork= 2. Suppose a given cell of size 

1/N x 1/N has integrals over its quarters of a,b,c,d, (Fig. 6) then 

2 
(a+b+c+d) 5N = 4 

Now we have s2N 2 SN by Schwartz• inequality. 

However, it is not true for an arbitrary function that SN is 

roonotonically increasing as counterexanples may be readily found. 

Extensive numerical experimentation was done: the unit square was 

divided into 60 x 60 cells and the value of SN computed for N = 

1,2,3,4,5,6,10,15,30,60 for a great variety of trial functions g. For 

g a polynomial in x,y of degree 5 or less, in 250 trials with 

coefficients randomly chosen from a uniform distribution on [-1,1], the 

monotonicity of the sequence {SN} was never violated. At the other 

extreme a very 'rough' function was constructed by assigning a random 

number from the same distribution to each of the 3600 cells of the 

square. Now about one trial in five showed a non-monotonic sequence, 

ho'ftever, in all cases monotonicity \ttOUld have been restored by 

increasing just one SN, usually s3 or s4• It is interesting that 

this 'rough' case can perhaps be properly analyzed by statistical 

methods - forming the distribution function of SN for each N. 

These results, which have not included the fact that the error 

function is 'invisible' illustrate the strong trend of SN to increase 

roonotonically with N. 
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The conclusion is that if N is taken small enough to make the 

problem determined, the error of LS reconstruction is zero {apart from 

error in assuming that the object is di screti zed). If N is increased 

above this, to obtain 'higher resolution,' the error of the 

reconstruction most likely increases, although for some special objects 

it may not and these permit somewhat higher resolution. " 

4.5. Practical Details 

If there are m views about m2 detectors will be used. It is 

desirable that the field of view of a detector is compatible with the 

size of the discretized cells: nothing is gained by needle beams. It 

is not necessary that the detectors be evenly spaced; they can be 

fanned, or thei.r beams over lap. The only requirement is that the 1 in ear 

system of equations relating the detector signals to the cell values is 

determinate {or nearly so). Any too great license with the geometry 

will manifest in a large condition number for the matrix A, indicating 

that the detector signals are not sufficiently independent. Hence, 

given the geometry, the first step is to set up the 1 in ear system of 

equations. This can be readily computerized by dividing the cells again 

very finely and automatically counting the number of small cells in the 

overlap of each large cell and ray. The next step is to compute the SVD 

of the matrix, and inspect the spectrum of singular values, to ensure 

the effective rank of A is adequate. Finally, the pseudoinverse of A is 

formed and stored. 
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5.0. Conclusions 

Two algorithms for tomographic in construction have been described: 

the first, motivated by the work of Klug and Crowther (1972), 

reconstructs the smoothest object whose projections agree with the 

observed projections only in those moments known to be immune to 

aliasing. This object is characterized by precisely m2 parameters, 

where m is the number of (equispaced) views. The form of the object is 

given in equation (3.14), where each of the functions a g_(r) and bg_ (r) is 

a linear combination of 

{rk} k = g_, g_ + 2, g_ + 4, ••• 2m-i-2. 

It should be pointed out that the reconstruction will not in general 

have the same projections as the original object. 

The second algorithm is a least squares method to find the smoothest 

object that generates the observed projections. For small m it is 

conveniently written in terms of a pseudoinverse matrix formed once and 

for all for a given geometry, rather than by applying iterative methods 

to the data. It was shown that the region in which the object lies 

should be discretized sufficiently coarsely to ensure a determined 

problem. Generally this means, for an N x N grid, that N is about m or 

a little less, depending on the rank of the projection matrix A in the 

actual experimental setup • 

Two comments may be made about the LS method: first, the object is 

considered to be a set of cells with uniform intensity in each cell. 

The goodness of this approximation cannot be judged without knowing the 

geometrical setup of the detectors. For example, if m = 2 and the 
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detectorscollect only light from complete cells, as in the_idealized 

two view case treated, there will be no error and the cell values in the 

reconstruction will be the true integrals of the object over the cell 

area. On the other hand with 4 views and detector 'rays' of finite 

width some of the cells will be in two different rays and the relation 

between the reconstructed value and the true integral depends on the 

exact geometry. Secondly, there is no problem of aliasing since that is 

essentially deferred to the end, to the experimenter's judgement. For 

example, if the object is sin 79 which is indistinguishable with 4 views 

from sin 9, the cells will contain after reconstruction the correct 20 

integrals of sin 79 (neglecting the discretization error for now), and 

the reconstruction will look like a sin e object. The experimenter must 

bear in mind that it could be one of the higher aliases. In contrast 

the alias-free algorithm willreturn a zero object in this case since it 

only accepts the azimuthal variations of equation {3.14) and none of 

these are present. 

Notice also that the LS algorithm produces a (perhaps crudely) 

discretized object and the alias-free algorithm a smooth one. On the 

other side, although both reconstructions are parametrized by m2 

numbers, the LS reconstruction requires only m2 lines of sight, and 

the other prefers, in order to estimate the moments with precision, a 

continuum or finely sampled projection at each angle. This is not 

usually a problem. 
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Figure 1. Tomography on the Tarmac IV plasma source (Myers & Levine 
1978). 
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Figure 2. A test object simulating the 
expected intensity distribution 
of the Tarmac plasma. 

Figure 3. Geometry for the definition of 
the operator A . 
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Figure 4. Four view tomography 
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Figure 5. Any object can be decomposed into a . 
back projection plus an 11 invisible ob­
ject ... 
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c d 
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Figure 6. (Used in Section 4.4). 
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