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Abstract: The relevance of the statistical equilibrium 1imit to the description
of substantially relaxed degrees of freedom is discussed. Fluctuations are con-
sidered specifically in the following processes: the correlation between entrance-
channel angular momentum and exit-channel kinetic energy; the sharing of the
dissipated kinetic 2nergy between the two fragments; the magnitude and the align-
ment of the fragment angular momentum including the effect of shell structure. It
is found that statistical fluctuations play a major role and that the statistical
equilibrium 1imit seems to have been reached for a number of degrees of freedom.
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1. Introduction

Fluctuations may originate either in quantal or in statistical effects, and may
be associated either with equilibrium or nonequilibrium processes. Their relevance
becomes preeminent when the temperature T (or the phonon hw) becomes comparable
with the potential energy variations aV along a given collective coordinate., khen
this occurs, the second and higher moments of the resulting distributions become
important. Furthermore, spectral distributions are frequently controlled, more or
less directly, by fluctuations (e.g., kinetic energy spectra). Finally, the
dissipation-fluctuation theorem states that fluctuations are the inevitable con-
sequence of dissipative processes (frictiomal terms), thus setting a physical limit
to the validity of trajectory calculations.

The question of quantal versus thermal fluctuations is an interesting one. The
former has been pursued theoretically by the Copenhagen group™); the latter has
such a s01id historical tradition in the field of the coripound nucleus decay that
it is not in need of strong justification. The question of nonequilibrium vs.
equilibrium fluctuations is worth debating in some greater detail.

We shall limit our discussion to equilibrium statistical fluctuations, for the
following reason. Let us assume that the approach to equilibrium is controlled by
a diffusive process as described by the Master Equation or by the Langevin
equation, Furthermore, let us assume that the system is harmonically bound along
the coordinate under consideration, namely:

V(x) = %-cxz

1f we start from x = X at t = 0 with a delta function distribution, after a time
t the distribution is a Gaussian with centroid and width given by:

X = xne'CBL
T . (1)
UZ -1 a- e-:CBt)

where B is the "“mobility” of the system. After one relaxation time + = 1/cB, we

have:

X ool if— -1-3e?-0.93
o %equil

This means that, while, after one relaxation time, the centroid is still 37% of the

initial distance from equilibrium, the width is already 93% of the final equilib-

rium valuye. In other words, the width grows rapidly towards its equilibrium value

independently of the starting point and can approach its limiting value while the




mean may $till be quite far away from equilibrium, Even after only one-half the
relaxation time, the width is already 82% of its equilibriuvm value, while the mean
is stil) 60% of the initial distance from equilibrium. Consequently, if the system
has any inclination at all to relax towards equilibrium, we can estimate the
fluctuations quite reliably by means of the equilibrium fluctuations without
worrying too much about the time dependence of the process. Of course, the time
dependence is a very important feature that deserves to be studied in detail.
However, if we are concerned about the role of fluctuations and about their ability
to scremble the experimental picture, a thorough investigation of the equilibrium
limit is the most economical way to obtain information about this problem.

In what follows, [ would like to give some examples of the rale of fiuztuations
in deep inelastic processes. In particular, I shall discuss: a) fluctuations in
the exit channel kinetic energy and the correlation (or the lack of it) betwren it
and the entrance channel angular momentum, b) fiuctuations in the partition of the
dissipated energy between the two fragments and their possible effects in the
emission of fast particles, c¢) the effect of shell structure on the first and
second moment of the fragment spins and d) fluctuations in the spin components of
the fragments and the resulting spin misalignment as observed from sequential
fission and y-ray decay of the fragments. '



2. Fluctuations in exit-channel kinetic energy at fixed
entrance-channel angular momentum

It would be highly desirable and useful to find a way of inferring the
entrance~channel angular momentum from some easily measurable exit-channel observ-
able, 1ike the kinetic energy. While some correlation between these quantities is
aobviously present, especially in the quasi-elastic region, fluctuations of a
various nature tend to spoil it to a serious degree. We are going to discuss two
sources of fluctuations relevant to this problem: a) the coupling of the orbital
motion to & thermally excited wriggling mode;a) and b) the effect of random shape
fluctuations at scission.

2a) COUPLING OF THE ORBITAL MOTION TU ONE WRIGGLING MODE

Let us consider the simple analytical case of two equal touching spheres with
one wriggling mndez) coupled to the vrbital motion.
The exit channel kinetic energy above the Coulomb barrier is:

]2
Ee—ey 2)
led
where s the exit-channel orbital angular momentum, is the reduced mass, ang d
is the dis“ance between canters, equal to the sum of the radii.
The total rotational energy is:

LI GO T )
R=IF DD t
where 1 is the entrance channel angular momentum, < is the moment of inertia of one
of the two spheres, andd* ! = (udz)’1 + (2))~1 ord* = 10/73. In the
limit of thermal equilibrium, the 1 distribution is:

2 2
PL1)dl = (2ndeT)L/2 _(‘ oo lc’*) .
n ( ) exp -{rmr - 75T o (4)

where T is the temperature. Introducing a 21dl weight and the dimensionless
variables ¢ = E/T, A = lI(JT)UZ, we obtain the distribution function

Plc,a)dedr = L exp -[%v: ~\/—§ PRV g—g xz] deda . (5)
Ve

The properties of this distribution function can be observed in the two-dimensional
plot in fig. 1 and can be summarized as follows.



Fig. 1. Two-dimensional plot of the distribution function given in eq. 5.

At constant ¢ {(a fixed cut in the exit channel kinetic energy}, the most
probable value of r 1is:

Al

7 4
X-vﬁ\ﬁ:—E"’ 1"‘7;] (6)

to be compared with

14 < .
A = =y from simple dynamics,
V1D

while the width is given by

ol x % , independent of ¢! (7)

Since JT is typically 100-200 nz, we have widtis in the entrance channel angular
moment um
17h < o < 24n
40h < Tpypw < 560
for an infinitely sharp cut in the exit channel kinetic energy.
At constant » {a fixed entrance-channel angular momentum}, tha average kinetic
energy over the barrier is:

i ) (®



while the width is:

uzng—g(%-*'%xz) {9)
and

o _ (U2 + 5110%)t/2 Targe 2 2‘/{71 (10)

€ 12+ 5/28 53 ‘

For an entrance channel angular momentum I = 240h , BT = l44hn 2,
T = 3 Mev, one obtains
a = 10 Mev
PFHHM = 23.5 MeV,
while, for I = 360h (lrms for Ho + Ho at 8.5 MeV/A) one obtains:
g =15 MeV
rFHHM = 36 Mev.
gxamples of distributions in ¢ at fixed a are shown in fig. 2. The conclusion s
that a sizeable mixing of entrance channel l-waves is predicted for a fixed exit-

channe) kinetic energy by invoking just one thernially-excited wriggling mode.
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Fig. 2. Kinatic energy distributions for various values of the entrance-channe}l
angular momentum.

We conclude this subject by calculating the kinetic energy distribution
integrated over angular momentum from 0 to Arx® The integration yfelds:

72 S‘Zv/ng.:
Pc)a 1) ?cl_e_nmx 7 *mx

€

(11)

‘f?—( Vi_erf(\[—g%xmx -\/%—- Ve +oerf /vg W){ .

Plots of this agistribution for different values of Apy 3re Shown in fig. 3. In
order to appreciate better this result, we can calculate the corresponding
distribution in the aosence of fluctuations (T = 0) in the limit of rigid rotation:
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Fig. 3. Angular-momentum-integrated kinetic energy distributions for different

values of the maximum angular momentum, The box-like distributions defined by the
vertical lines are obtained by eliminating fluctuations.

The kinetic energy over the barrier ic:

e B o
which implies
& o dI%.

But, from the entrance channel distribution, we have

2 2

P(1)d] = K21dl = KdT° = k'dI°,

then

P(EJOE o dIZ a dE 0clel

or, more precisely,

5 2
Kdc ¢ 2355 Anx
P(c)de = .
5
< > 9_8 lmx
in other words, we have a rectangular distribution. Examples of such distributions

are also shown in fig. 3.



2b)  EFFECT OF SHAPE FLUCTUATIONS ON THE EXIT CHANNEL KINETIC ENERGY

It it well known that the observed sub-Coulomb emission of deep-inelastic
fragments is due to their sizeable deformation at the scission point. The
reasonably flat dependence of the total potential energy at scission as a function
of deformation, together with the rather steep dependence of the two-fragment
Coulomb interaction, leads to the possibility of fairly large shape fluctuations
at scission with a resulting amplification of the fluctuations in the kinetic
energy at infinity.4) i

For sake of simplicity, let us model the system at scission as composed of two
equal and equally deformed spheroids in contact. The relevant total potential

energy is

V1 = Vs(e} + Vo(e) * Ypot(l.e) (12)
where Vs, VC, vRot are the surface, Coulomb, and rotational energy,
respectively; ¢ is the common deformation of the spheroids; and I is the angular
momentum. In our madel the potential energy has a minimum at a deformation %

defined by

= =0

The potential energy can be expanded quadratically about the minimum as

Vr = Vo * k{e - 50)2 . (13)

Similarly, the resulting kinetic energy at infinity is given by

2
L
Egin = Velo) * 13— (14)
T 2ud”(e)
a
where vc is the two-fragment Coulomb interaction, 1{c) is the orbital angular
momentum at scission determined from the rigid rotation condition, and d is the
center-to~center distance. A linear expansion in ¢ about L leads to
Ekin = ERinlco) * €le = co} -
From fig. 4, one sees that a small (energy-wise) fluctuation at scission, of the
order of 1/2T in the thermai 1imit, leads to an amplified fluctuation in the final

kinetic energy, so that

2
°§in = EET = gl (15
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Fig. 4. Amplification of fluctuations at scission illustrated for a 20ye
emitted by the compound system 212pq.

where p is called the amplification parameter.q) The exit-channel kinetic
energy distribution is, in fact, approximately a Gaussian

o 2
(Egin~Exin)

P(E;,) = exp - ———‘,T—K-‘"— . (16)

Certainly a great deal of the width in the final kinetic energy diztribution arises
from this effect. Even more interesting is the fact that the large spread in final
kinetic enmergy is associated with a fixed total angular momentum. Of course, this
feature has the effect of spreading any given l-wave over a very broad range of
kinetic energies, thus making the correlation between exit-channel kinetic energy
and entrance-channel angular momentum very problematic.

As an example, let us consider the system Fe + Fe. In fig. 5 the kinetic
energy distributions are shown for a set of 1 values. While the centroid of the
distribution moves towards higher values with increasing 1, the width also
increases, leading to a dramatic overlap of distributicns with widely different
l-values. Most interesting are the entrance-channel angular momentum gistributions
for a variety of exit-channel kinetic energies shown in fig. 6. The distributions
are so broad that at any kinetic energy the whole l-wave spectrum is substantially
sampled. The overall features of the distribution are shown by the two-dimensional
plot in fig. 7.

In conclusion, we have seen how the two processes described in a) ang b) have
the effect of spoiling the correlation between entrance-channel angular momentum
and exit-channel kinetic energy.
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Fig. 5. Kinevic energy spectra for various values of the entrance-channel angular
momentun for the system Fe + Fe.
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F.y. 6. Entrance-channel angular momentum distributions for various values of
exit-channel kinetic energies.
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Fig. 7. Two-dimensional plot of the emission probability as a function of
entrance-channel angular momentum and exit-channel kinetic eoergy.
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3. Energy partition between the two fragments

The partition of excitation energy between the partners in a deep-inelastic
collision (DIC) appears to reach equilibrium on a very short time scale. This is
shown by the experimental observation that the mean number of evaporated particles
from coincident reaction products is proportional to the fragment masses,5'7) as
required by the thermal equilibrium condition. Moreover, this proporticnality is
found for the entire range of dissipated energy, up to the smallect energy
1ossesa'1°) {i.e., the shortest collision times)}. Thus the thermalization time
must be shorter than the shortest interaction times. A further check of complete
statistical equilibrium can be made by observing statistical fluctuations in the
division of the excitation energy between the two fragments.”") Such fluctua-
tions will have important consequences for the reaction products. The effects of
a fluctuvating excitation energy division on evaporation spectra and the disguising
of pre-equilibrium components have been described recently by Schmitt et al.lz).

In this section we evaluate the magritude of statistical fluctuations in the
energy partition in DIC and explore two avenues through which the calculated
fluctuations can manifest themselves, namely neutron energy spectra and evaporated
neutron numner.13) we find that these two observables are complementary in that
statistical fluctuations have a large effect on the neutron energy spectra when the
mass asymmetry is large but have a relatively small effect for equal fragments.
Fluctuations also intoduce a covariance in the number of evaporated nucleons which
is most prominent for equal fragments.

The statistical weight associated with a given partition of the totat
excitation energy. E, between two fragments in statistical eguilibrium is
proportional to the p~oduct of their level densities:

P(x) dx a °1(x) pZ(E - x} dx . (17)

The equilibrium condition is given by:

1
Smp()=0xgn py(x) * 32 10 o (E - x) .;T-Tl-g (18)

The terms on the right-hand side of eg. 18 are the reciprocals of the fragment's
temperatures and their eguality immediately requires the excitation emergy to
divide in proportion to the mass ratio:

*

E A

1 X 1
G . (19)
E, 2

The expansion of the logarithm of the probability distribution about the maximum

up to 2nd order gives a Gaussian:
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T L
P(x) dx e e (20)
thus
1__;12 1 p(x) = & f1 ‘_d__(l)
:2 ;E ax TI T o "I; :
{21)

where CVI and Cv2 are the heat capacities of the two fragments {for a Fermi
gas Cv = 2aT at a temparature T). On substitution we obtain for the width:

a,a
o 2m? 51—*%:_ (22)
where a) and a, are the level density parameters of the fragments.

A direct way in which any fluctuations in tne excitation energy of DIC
fragments can be observed is in the energy spectra of evaporated nucieons.

For a very asymmetric system, the magnitude of the fluctuations is comparable
to the total excitation energy of the light fragment &nd therefore produces an
important change in the spectrum.

As an applied example, fig. 8 shows the proton spectra in coincidence with deep
inelastic fragments for the reaction Ne + Cu at 252 Mev.lz) ¥hile the hard
spectrum could be attributed to prompt emission, it is in fact explained quite
simply by energy fluctuations (solid lines) while it is not consistent with fixed
energy splitting between fragments (dashed lines).

- 102,
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Fig. 8. Proton spectra in coincidence with deep inelastic processes for the
reaction 252 Mev ZUne * MaltCy, The dashed lines are evaporation calculations
without fluctuations in the energy partition. The solid lines incorparate the
fluctuations.
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A less direct, but more dramatic effect of excitation energy fluctuations car
be seen in thé number of nucleons evaporated from the pair of DIC fragments. An
anticorrelation in the excitation energies of reaction partners naturally arises
when the total excitation energy is held constant. The ceovariance of the number
of emitted neutrons from DIC partners was investigated with a simple Monte Carlo
code, The division of the excitation energy between symmetric fragments (A = 100)
was either fixed or picked at random in proportion to eq. 17. The two fragments
were then allowed to emit neutrons until the nuclei had cooled to less than BN +
2T', where BN is the liquid drop neutron binding energy and T' is the temperature
after emission of the previous neutron. The probability contours for emission of
1 neuircns from firagment i and vy neutrons from fragment 2 are shown in
fig. 9. When the fluctuations are turned on, a strong correlation between v
and vy is introduced.

a=al=100T T (Ll
&I Edon " "02 Mev

- 4 1
~
2r 7 Contour: of
o P(y,2,)
o } T }
(B}

With ]
fluctuations

N
2— —
o] 1 | 1

(o] 2 4 S 8
%

XBLBO8-(552

Fig. 9. Probability distribution for the number of neutrons emitted by the two
fragments for a Q-value of -100 MeV. The fluctuations in the energy partition are
incorporated in B.
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4, Angular momentum fluctuations

Let us consider a frame of reference where the z axis is parallel to the
entrance-channel angular momentum, the x axis is parallel to the recoil direction
of one of the fragments, and the y axis is perpendicular tc the z,x plane.

If the intermediate complex is assumed to have the shape of two equal touching
spheres, the angular-momentum-bearing normal modes are easily identifiable. We
shall call them "bending," B (doubly degenerate), "twisting" Tw (degenerate with
bending), "wriggling" W (doubly degenerate) and “tilting" Ti.

In a recent work, the statistical mechanical aspects of the excitation of these
modes have been studied in detail.3)

The thermal excitation of these collective modes leads to Gaussian
distributions in the three angular momentum compunents Ix, ly’ Iz'
4a) GAMMA RAY MULTIPLICITIES AND ANGULAR DISTRIBUTIONS

The fragment angular momentum is removed mainly by stretched €2 decay. The
alignment of the angular momentum should be manifested in the gamma ray angular
distributions, whose sharpness should decrease with increasing misalignment.

If the distribution of thne argular momentum components Ix" Jy, ]z is
statistical. it is straightforward to derive analytical expressions for the angular
distributions.“)

If one assumes ui = 05 = uZ = o then an exact result can be
derived,

Manifestation of shell effects on the angular-momentum
transfer in deep~inelastic reactions

The presence of shell effects in deep-inelastic reactions has been the subject
of numerous experimental and theoretical studies in the last several years. In a
recent experiment along that line, the charge distribution as a function of Q-value
was measured in the reaction 2DBPI;n + ZOBPD at 7.6 Mevlamu.ls) The observa-
tion of relatively small widths of the distributions when compared to those of
similar heavy systems suggests the existence of a correlation between the net mass
transfer and the closed-shell structure of the reactants. More generally, it is
conceivanle that this influence of the internal structure be exerted on other
degrees of freedom of the reaction as well. In particular, we have explored the
extent to which this argument applies to the angular-momentym-bearing rotational
modes of the intermediate dinuclear complex using a very simple model.

In our calculation we describe the dinuclear compiex by means of two touching
spheres with spins Sl. 52, and orbital angular momentum L. The relaxation of
the rgtational modes of the system as a function of interaction time is expressed
by:
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S

o (1 - J”TR) I (23)

+5, = oL
1 2 31+_’2+uR2

where J| and J, are the moments of inertia of the nuclei, u s the reduced mass
o7 the system, R is the distance between centers, T is the relaxation time
constant, ond ] is the total angular momentum. For the dependence of the
interaction time on I, we assume the following analytical expression:

1
MAX
t = tIln -T
where IMAx is the maximum angular momentum corresponding to 3 grazing collision
and T is a constant time. From eq. (23) and (24) the spin transferred to the
fragments can be related to the total angular momentum:

(24)

I Sl sy, W
Tox ™ (1 TSIy T

This relation provides a means to calculate the sum of the spins as a function of

*-~ orbital energy E = (I - Sl - SZ)ZIZuRZ, whir: can be identified with

the excess exit-channel kinetic energy if the radica! energy is totally disipated.
The reduced nrbital energy ¢ = E’EMAx as a function of the reduced total spin

S =%— (S1+52) is shown in Fig. 10a for a mass-symmetric system and four different

values of Tﬁe ratio TR/T:. Figure 10b illustrates the prediction of the model

for the case in which one of the two fragments is magic and can carry only zero
angular momentum (this is of coursa an extreme approximation}. In addition to the
expected effects due to closed-shell structure, we note that the slope of the curve
in the-quasielastic region (¢ close to 1) is very sensitive to the parameter
'r!/'rR. A comprehensive study cf the dependence of gamma ray multiplicity Mv

upon Q-value should provide some general information on this parameier which is
closely related to the relaxation time of rotational degrees of freedom.

Shell effects may be alternatively investigated by measuring the spin of the
individual fragments. Our calculation indicates that for very asymmetric systems
the spin of the light fragment should be very dependent on whether the heavy
partner has a closed-shell structure or not. Under the same approximation made
above and assuming that the rigid rotation limit is achieved we estimate ~40 per-
cent difference in the spin of the light fragment when comparing the Kr + Au ana
the Kr + Pb reactions.

Finally we note that these estimated effects are related to the first moment
of the spin distribution. Remarkably the calculation does not predict any
not iceable effect on the variances as shown in Fig. 1l.
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Figure 10. Reduced sum of the spins vs reduced orbital kinetic emergy for a mass
symmetric system, a) for different values of the ratio TIITR and t) for two
values of yid).

Angular momentum misalignment in heavy ion reactions

An interesting measurement has been carried out for the reaction17) 1400 Mev
155Ho + 165[10. This system was chosen because large amounts of angular
momentum can be transferred into the intrinsic spin of these nuclei, which are
known to have good rotational properties. As a consequence, both of the
essentially identical DI-fragments emit similar contiruum y-ray spectra which are
strongly enriched in E2 transitions ( 80 percent).

Figure 12 (top) shows the dependence of the y-ray multiplicity MY upon
Q-value for three angles. Figure 10 {middle} shows the intrinsic spin of one of
the two reaction fragments after neutron emission {solid line). The primary
fragment spin obtained from M“r with correction for neutron emission (dashed line)

is also shown.

The ratio of in-plane to out-of-pliane y-ray yield {"anisotropy") for energies
between 0.6 and 1.2 MeV is also shown in fig. 12 {bottom). This anisotropy rises
with increasing spin transfer; it peaks at a value of 2.2, slightly before the
spin saturates, and then drops to near unity for large Q-values.
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The initial rise of the anisotropy with increasing Q-value indicates that
during the early stages of energy damping there is a rapid buildup of aligned
spin. The subsequent fall observed at larger Q-values suggests that the aligned
component of spin has saturated or is decreasing, whereas randomly oriented
components continue to increase, causing a significant decrease in the alignment
of the fragments® spin.

Figure 13 shows experimental values of the anisotropy for E_ greater than
0.6 MeV compared to several.stages of the model calculation. The spin I was
determined from the y-ray meltiplicity, and the anisotropy was then calculated
{solid Yine). This calculation reproduces both the shape and the magnitude of the
data, To give a feeling for the importance of various contributions, the same
calculation is shown including only E1 transitions (dashed curve} and including E1
transitions and neutron emission (dotted line). This comparisun ¢learly shows that
the most important effect is the thermally induced misalignment, indicating that
the decrease of alignment as deduced from the anisotropy is inherent to the deep-
inelastic process itself.

A provisiznal conclusion is that the equilibrium statistical limit is very
close to the regime controlling the spin misalignment in this reaction.

ol

1
~400  -300 -200 - 100
Q{MeV)

XBLSI4 - 2229

Fig. 13. Experimental and calculated (solid line} anisotropies vs (-vaiue. The
dashed line shows the effect of El gamma rays alone and the dotted line shows the

effect of neutron emission.
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4b) ANGULAR DISTRIBUTIONS OF SEQUENTIAL FISSION FRAGMENTS

The magnitude of the transferred angular momentum and of its misalignment can
be measured through the in- and out-of-plane anqular distribution of sequentially
emitted products. In the very asymmetric 20Ne + 197Au and 238U systems which
we have investigatedla) the statistical excitation of a number of angular-
momentum-bearing modes is strongly suppressed. In particular, the large difference
in the moments of inertia of the two reaction partners increases the amount of
energy necessary to excite any mode in which the small fragment is forced to
rotate (wriggling, bending and twisting3’14).

In the statistical model, the fixed aligned components of the fragments angular
momenta couple to angular momentum components :ssociated with the internal modes
of the complex causing the total fragment angular momentum to become misaligned.
When the reaction partners have equal masses, the thermal widths of the angular
momentum components are nearly equal in the usual cartesian coordinates (x axis
taken along the line-of-centers). However, when the reaction partners have
different masses, and hence different moments of inertia, the situation changes
dramatically. The statistical widths of the anguiar momentum components in the
heavy fragment generated by the normal modes are shown individually in fig. 14 as

a function of mass asymmetry. An in-plane anisotrcpy arises when ui # 02.
This is the case at large mass asymmetries due to the fact that only the tilting
mode remains active, while all the other modes are essentially frozen. Thus, very
asymmetric reaction systems should provide an excellent test of the excitation of
selected normal modes and of the statistical model in general.

In-plane sequential fission studies, which should be the most sensitive to
differences between o, and o, have given conflicting results. In refs. 21 and
22 an in-plane anisotropy was observed at low Q-valves which diminished at high
Q-values; however, no such anisotropies were found for a similar system in ref. 22.
The apparent conflict notwithstanding, the mass asymmetries of all of these sy.tems
are such that the statistical model predicts ui = az (cf. fig. 12}. The
zoNe + l97Au and 238U systems present a situvation wgere this model predicts
a strong in-plane anisotropy (2:1) which should peak perpendicular to the line-of-

centers at contact.
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Fig. 14. The statistical widths for the normal wodes of the dinuclear complex are
shown as a function of mass asymmetry of the complex. The mass asymmetries
associated with recent measurements of the angular distributions are also shown.

The measured angular distributions are presented in figs. 15,16
for the 20Ne + 238U system as a function of Q-value. The data have been
integrated over the fission fragment energy and the atomic number of projectile
residues (6 < Z < 14). The direction ¢ = 0 was arbitrarily chosen to coincide
with the laboratory recoil angle as is traditional. The sequential fission events
observed.at small Q-values have a small in-plane anisotropy. The anisotropy
disappears at intermediate Q-values; however, for the most inelastic collisions a
strong minimum is seen approximately perpendicular to the lab recoil direction.
Statistically significant angular distributions from reactions with 197Au were
obtained only at large Q values. The position of the minimym and the anisotropies
of these angular distributions are essentially tne same as those shown for the most
inelastic 238
values following ref. 21) are shown by the solid curves in figs. 15 and 16 and are
contaired in Table 1. In fig. 17 the z components of the heavy fragment angular
momentum are shown as a functicn of Q-value, The remarkably large values obtained
for the Au target are a reflection of the fact that in such a nucleus only the
highest spins lead to fission. In fig. (18] the elements of the polarization
tensor Pzz and ny are shown as a function of Q-value. The lines correspond
to calcslations performed with different deformations nf the fragments. In

U data. The results of chi-sgquared minimization fitting (K,
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general, the agreement is quite yood if a ratic of axes 2:1 is allowed. Also the
evolution of the anisotropy of the in-plane angular distributions with Q-value are
in agreement with our expectations that the statistical model is valid in the long

time limit. ":I T T - ;’LANE T T
3 9" -900 (m--|zsuev ]

!._ L}#L 7 ,/(-e) ]
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Fig. 15. The in-plane angular distributions of sequential fission fragments in the
rest frape of the heavy fragment (H) are shown as a function of reaction Q-value
for the 20Ne + 238y system. The arrows indicate the in-plane angles at which
out-of-plane measurements were made. The solid curves ire obtained by fitting the
eq. 28 to the data in each Q-value bin.
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Fig. 16. The out-of-plane angular distributions tha* correspond to the Q-bins of
Fig. 15 are shown (solid points) along with the fitied functions (selid curves).
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Fig. 17. The measured aligned spin 512) of the target-like fragment as &
function of Q-value for the 252-MeV ZONe + 197p¢ and 238y reactions. Spins

were extracted for a broad Z-bin (6-14) for both systems and an additional narrow
one (Z = 9-10) for the Z0Ne + 238U system. The statistical errors are of the

same size or smaller than the symbols.
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Fig. 18. The measured alignment parameters for the spin distributions obtained for
the 20ne + 238y system are shown for Z = 6 to 14 (circles) and = = 9 and 10
(squares). The solid and dashed curves represent the statistic equilibrium model
caiculations {cee text).



Table 1.

xH, errors are given in parenthesis.
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Results of angular distribution fitting including a free rotaticn angle
The errors listed in this table represent
only the statistical error.

H

Iz oy ay %, X
Q-value Kf) { units)emece—ae. (degrees)
(A) uranium results witk 6 < Z3 < 14
- 12.5 7.3 17.7(0.5) 3.0(0.6) 6.5(0.4}) 2.8(0.4) 8.(7.)
- 37.5 10.4 27.2(0.2) 7.7(0.2) 8.9(0.2) 1.9(0.5) 16.(9.)
-~ 62.5 12.0 31.1(0.3) 9.5(0.5) 5.8(0.7) 3.1(0.7) 90.(9.)
~ 87,5 12.1 37.9(0.3) 13.0(0.7) 8.6(0.9) 5.3(0.5) 94.(9.)
-125. 14.3  42.4(0.6) 20.1{(0.7) 0.7(4.)( 9.2(1.1} 80.(3.)
18) uranium results with 9 < 73 < 10
-12.5 7.3 16.7{0.5) 2. {(0.8) 7.1{(0.4 0.5¢1.) - 9.(6.)
- 37.5 10,4 25.0{(0.3) 3.5(0.6) 10. (0.6 7.2(0.8) -10.(4.)
- 62.5 12.0 32.2(0.5) 17. (1.) 6. (1.) 5. (1.0) 90.(5.)
-87.5 13.1 45 (1.) 12. (2.) 8. (2.) 15. (1.) 81.(6.)
-125. 4.3 . (0.9) 22. (2.) 7. (2.) 0. (4.) 87.(7.)
(C) Statistical Model*
- 12.5 16.6 5.0 5.0 45
- 37.5 21.8 6.5 5.0 €0
- 62.5 24,7 7.4 7.4 70
- 87.5 26.8 8.1 8.1 75
-125. 28.8 8.8 8.8 80
(D) gold results with 6 < Z3 < 14
- 75 9.8 61.(1.) 25.2(0.8) 7.(2.) 24.(1.) 64.(3.)
-125 11.7  65.(1.) 30.0(0.8) 0.{(5.) 15.(1.) 79.(1.)
(E) Statistical Medel*
- 75 20.6 7.4 7.4 72
-125 23.4 8.4 8.4 80

* Two touching spheres



§. Conclusion

The relevance of statistical fluctuations to the understanding of a variety of
aspects associated with deep inelastic processes has been discussed. We have
argued that, wherever there is evidence for extensive relaxation, one can use the
equilibrium thermal widths as good estimates of the actual widths. The equilibrium
statistical limits appear to be extremely useful and should be employed to verify
that the predictions of specific nonequilibrium models and their agreement with
experiment are not solely .associated with their correct long time limit. It may
be possiole to conclude tentatively that, while the whole of tae deep inelastic
process is clearly a nonequilibrium event, many of the involved degrees of freedom
have undergone a substantial relaxation compatible with a description in terms of
statistical equilibrium,

This work was supported by the Director, Office of Energy Research, Division
of Nuclear Physics of the Office of High Energy and Nuclear Physics and by Nuclear
Sciences of the Basic Energy Sciences Pragram of the U.S. Department af Energy

under Contract DF- ACO3-76SF00098.
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