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Statistical Fluctuations in Heavy-ton Collisions 

L. G. MORETTO 

Nuclear Science Division, Lawrence Berkeley Laboratory 
University of California, Berkeley, CA 94720 

Abstract: The relevance of the statistical equilibrium limit to the description 
of substantially relaxed degrees of freedom is discussed. Fluctuations are con
sidered specifically in the following processes: the correlation between entrance-
channel angular momenta) and exit-channel kinetic energy; the sharing of the 
dissipated kinetic energy between the two fragments; the magnitude and the align
ment of the fragment angular momentum inclueing the effect of shell structure. It 
is found that statistical fluctuations play a major role and that the statistical 
equilibrium limit seems to have been reached for a number of degrees of freedom. 
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1. Introduction 

Fluctuations may originate either 1n quanta! or in statistical effects, and may 
be associated either with equilibrium or nonequilibrium processes. Their relevance 
becomes preeminent when the temperature T (or the phonon hw) becomes comparable 
with the potential energy variations AV along a given collective coordinate. When 
this occurs, the second and higher moments of the resulting distributions become 
important. Furthermore, spectral distributions are frequently controlled, more or 
less directly, by fluctuations (e.g., kinetic energy spectra). Finally, the 
dissipation-fluctuation theorem states that fluctuations are the inevitable con
sequence of dissipative processes {frictional terms), thus setting a physical limit 
to the validity of trajectory calculations. 

The question of quantal versus thermal fluctuations 1s an interesting one. The 
former has been pursued theoretically by the Copenhagen group ) ; the latter has 
such a solid historical tradition in the field of the compound nucleus decay that 
it is not in need of strong justification. The question of nonequilibrium vs. 
equilibrium fluctuations is worth debating in some greater detail. 

We shall limit our discussion to equilibrium statistical fluctuations, for the 
following reason. Let us assume that the approach to equilibrium is controlled by 
a diffusive process as described by the Master Equation or by the Langevin 
equation. Furthermore, let us assume that the system is harmonically bound along 
the coordinate under consideration, namely: 

V(x) - \cx2 

If we start from x = x at t = 0 with a delta function distribution, after a time 
t the distribution is a Gaussian with centroid and width given by: 

„2 . I (1 - e- 2 c 8 t) 
(1) 

where B is the "mobility" of the system. After one relaxation time T = 1/cB, we 
have: 

0.368 ;—- = 1 
equil 

This means that, while, after one relaxation time, the centroid is still 37% of the 
initial distance from equilibrium, the width is already 93% of the final equilib
rium value. In other words, the width grows rapidly towards its equilibrium value 
independently of the starting point and can approach its limiting value while the 
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mean may still be quite far away from equilibrium. Ever, after only one-half the 
relaxation time, the width is already 821 of its equilibrium value, while the mean 
is still 60* of the initial distance from equilibrium. Consequently, if the system 
has any inclination at all to relax towards equilibrium, we can estimate the 
fluctuations quite reliably by means of the equilibrium fluctuations without 
worrying too much about the time dependence of the process. Of course, the time 
dependence is a very important feature that deserves to be studied in detail. 
However, if we are concerned about the role of fluctuations and about their ability 
to scramble the experimental picture, a thorough investigation of the equiliorium 
limit is the most economical way to obtain information about this problem. 

In what follows, I would like to give some examples of the role of fluctuations 
in deep inelastic processes. In particular, I shall discuss: a) fluctuations in 
the exit channel kinetic energy and the correlation (or the lack of it) between it 
and the entrance channel angular momentum, b) fluctuations in the partition of the 
dissipated energy between the two fragments and their possible effects in the 
emission of fast particles, c) the effect of shell structure on the first and 
second moment of the fragment spins and d) fluctuations in the spin components of 
the fragments and the resulting spin misalignment as observed from sequential 
fission and v-ray decay of the fragments. 



A 

2. Fluctuations in exit-channel kinetic energy at fixed 
entrance-channel angular momentum 

It would be highly desirable and useful to find a way of inferring the 
entrance-channel angular momentum from some easily measurable exit-channel observ
able, like the kinetic energy. While some correlation between these quantities is 
obviously present, especially in the quasi-elastic region, fluctuations of a 
various nature tend to spoil it to a serious degree. We are going to discuss two 
sources of fluctuations relevant to this problem: a) the coupling of the orbital 
motion to a thermally excited wriggling mode; ) and b) the effect of random shape 
fluctuations at scission. 

2a) COUPLING OF THE ORBITAL NOTION TO ONE WRIGGLING MODE 

Let us consider the simple analytical case of two equal touching spheres with 
one wriggling mode ) coupled to the orbital motion. 

The exit channel kinetic energy above the Coulomb barrier is: 

E - -S- (2) 
where is the exit-channel o rb i t a l angular momentum, is the reduced mass, ana d 
is the dis'ance between centers, equal to the sum of the r a d i i . 

The to ta l ro ta t iona l energy i s : 

where I is the entrance channel angular momentum,^ is the moment of i ne r t ia of one 
of the two spheres, a n d j * " 1 « ( p d 2 ) " 1 + {Uf1 o r ^ * = 1077^ , In the 
l i m i t of thermal equ i l ib r ium, the 1 d i s t r i bu t i on i s : 

P(l)dl . <2„J*T)-1/2 exp -0^ - - ^ • ±g-\ (4) 

where T is the temperature. Introducing a 2IdI weight and the dimensionless 
variables t » E/T, \ - I/(JT) , we obtain the distribution function 

P(c,i)dedi = — exp -Kc -J\ \ vr * |g- t2 dedx . (5) 

The properties of this distribution function can be observed in the two-dimensional 
plot in fig. I and can be summarized as follows. 
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Fig. 1. Two-dimensional plot of the distribution function given in eq. 5. 

At constant c (a fixed cut in the exit channel kinetic energy), the most 
probable value of \ is: 

Vfi) 
to be compared with 

- ^ 4 1 + v ^ ¥ ] (6) 

i d 
A m y/£ from simple dynamics, 

VTo 

while the width is given by 

2 14 
a * —r > independent of cl 

(7) 

Since JJ is t y p i c a l l y 100-200 h 4", we have widths in the entrance channel angular 
momentum 

17n < o < Z4h 

fo r an i n f i n i t e l y sharp cut in the ex i t channel k ine t i c energy. 
At constant x {a f ixed entrance-channel angular momentum), the average k i n e t i c 

energy over the barr ier i s : 

2 (l • 5 A (8) 
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while the width i s : 

2 

and 

4 (l + 5 ,2 
) O) 

(1/2 • 5/14> 2) 1 / 2 UrJe ' 2 / G l 
1/2 + 5/28 \Z v/~5"» 

(10) 

For an entrance channel angular momentum I = 240h , ^ T = 144h , 
T = 3 HeV, one obtains 

a - 10 HeV 
IV,, U„ x 23.5 HeV, 

lrms fo r Ho + Ho at 8.5 HeV/A) one obtains: 
15 MeV 

FWHH 
whi le , fo r I - 360n 

Examples of d i s t r ibu t ions in c at f ixed I are shown in f i g . 2 . The conclusion s 
that a sizeable mixing of entrance channel l-waves is predicted for a f ixed e x i t -
channel k ine t i c energy by invoking j u s t one thermal ly-exci ted wr iggl ing mode. 

F ig . 2. Kinet ic energy d is t r ibu t ions fo r various values of the entrance-channel 
angular momentum. 

We conclude th is subject by ca lcu la t ing the k ine t i c energy d i s t r i bu t i on 
integrated over angular momentum from 0 to x . The in tegrat ion y i e l ds : 

P(c)o 1_ 
vT 

7 I 5 \2 
."25 mx ^.VT 

ft- ^ f ^ - x ' A VT • erf ^ v r ' 

(11) 

Plots of this distribution for different values of x are shown in fig. 3. In 
order to appreciate better this result, we can calculate the corresponding 
distribution in the aosence of fluctuations (T = 0) in the limit of rigid rotation: 
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Fig. 3. Angular-momentum-integrated kinetic energy distributions for different 
values of the maximum angular momentum. The box-like distributions defined by the 
vertical lines are obtained by eliminating fluctuations. 

The kinetic energy over the barrier is: 

. I 2 25 I 2 

which implies 

dt o dl 2. 

But, from the entrance channel distribution, we have 

P(l)dl = K21dl - Kdl 2 * k'dl 2, 

then 

P(E)dE a dl 2 a dE 0 < I < l m 

or, more precisely, 

5 ,2 
Kde t £ 5g x m 

P(E)dt = 
0 i .2 

' > 98 mx 
In other words, we have a rectangular distribution. Examples of such distributions 
are also shown in fig. 3. 
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2b) EFFECT OF SHAPE FLUCTUATIONS ON THE EXIT CHANNEL KINETIC ENERGV 

It it well known that the observed sub-Coulomb emission of deep-inelastic 
fragments is due to their sizeable deformation at the scission po.int. The 
reasonably flat dependence of the total potential energy at scission as a function 
of deformation, together with the rather steep dependence of the two-fragment 
Coulomb interaction, leads to the possibility of fairly large shape fluctuations 
at scission with a resulting amplification of the fluctuations in the kinetic 
energy at infinity. ) 

For sake of simplicity, let us model the system at scission as composed of two 
equal and equally deformed spheroids in contact. The relevant total potential 
energy is 

VT - V S(«) * VcCc) + V R o t ( I , e ) (12) 
where V<., V-, V„ t are the surface, Coulomb, and rotational energy, 
respectively; c is the common deformation of the spheroids; and I is the angular 
momentum. In our model the potential energy has a minimum at a deformation e 
defined by 

•3T=U-
The potential energy can be expanded quadratically about the minimum as 

Vr = V 0 + k( E - C o ) 2 . (13) 

Similarly, the resulting kinetic energy at infinity is given by 

E--*°-d£ (14) 

where V is the two-fragment Coulomb in te rac t ion , 1(e) i s the o r b i t a l angular 
momentum at scission determined from the r i g i d ro ta t ion condi t ion, and d is the 
center- to-center distance. A l inear expansion in c about c leads to 

EKin = E°. i r iUo> + c(« - c 0 ) . 

From f i g . 4, one sees that a small (energy-wise) f l uc tua t i on at sc iss ion, of the 

order of 1/2T in the thermal l im i t» leads to an ampli f ied f luc tua t ion in the f i n a l 

k ine t i c energy, so that 

2 c2

r pT 
°Kin • ?k-T c r (15) 
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Fig. 4. Amplification of fluctuations at scission illustrated for a ̂ fyje 
emitted by the compound system 2I2p 0. 

where p is called the amplification parameter. ) The exit-channel kinetic 
energy distribution is, \*\ fact, approximately a Gaussian 

(E -E° ) 2 

lLKin fcKinJ 

PT (16) 

Certainly a great deal of the width in the final kinetic energy distribution arises 
from this effect. Even more interesting is the fact that the large spread in final 
kinetic energy is associated with a fixed total angular momentum. Of course, this 
feature has the effect of spreading any given 1-wave over a very broad range of 
kinetic energies, thus making the correlation between exit-channel kinetic energy 
and entrance-channel angular momentum very problematic. 

As an example* let us consider the system Fe + Fe. In fig. 5 the kinetic 
energy distributions are shown for a set of 1 values. While the centroid of the 
distribution moves towards higher values with increasing 1, the width also 
increases, leading to a dramatic overlap of distributions with widely different 
1-values. Most interesting are the entrance-channel angular momentum distributions 
for a variety of exit-channel kinetic energies shown in fig. 6. The distributions 
are so broad that at any kinetic energy the whole 1-wave spectrum is substantially 
sampled. The overall features of the distribution are shown by the two-aimensional 
plot in fig. 7. 

In conclusion, we have seen how the two processes described in a) and b) have 
the effect of spoiling the correlation between entrance-channel angular momentum 
and exit-channel kinetic energy. 
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Fig. 5. Kinetic energy spectra for various values of the entrance-channel angular 
momentum for the system Fe + Fe. 

1 I I 1 
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F, b. 6. Entrance-channel angular momentum distributions for various values of 
exit-channel kinetic energies. 
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F ig . 7. Two-dimensional p lo t of the emission p robab i l i t y as a funct ion of 
entrance-channel angular momentum and exit-channel k i ne t i c energy. 
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3. Energy partition between the two fragments 

The partition of excitation energy between the partners in a deep-inelastic 
collision (OIC) appears to reach equilibrium on a very short time scale. This is 
shown by the experimental observation that the mean number of evaporated particles 
from coincident reaction products is proportional to the fragment masses, ) as 
required by the thermal equilibrium condition. Moreover, this proportionality is 
found for the entire range of dissipated energy, up to the smallest energy 
losses ) (i.e., the shortest collision times). Thus the thermalization time 
must be shorter than the shortest interaction times. A further check of complete 
statistical equilibrium can be made by observing statistical fluctuations in the 
division of the excitation energy between the two fragments. ) Such fluctua
tions will have important consequences for the reaction products. The effects of 
a fluctuating excitation energy division on evaporation spectra and the disguising 

12 of pre-equilibrium components have been described recently by Schmitt et al. ). 
In this section we evaluate the magnitude of statistical fluctuations in the 

energy partition in DIC and explore two avenues through which the calculated 
fluctuations can manifest themselves, namely neutron energy spectra and evaporated 
neutron number. ) we find that these two observables are complementary in that 
statistical fluctuations have a large effect on the neutron energy spectra when the 
mass asymmetry is large but have a relatively small effect for equal fragments. 
Fluctuations also intoduce a covariance in the number of evaporated nucleons which 
is most prominent for equal fragments. 

The statistical weight associated with a given partition of the total 
excitation energy. E, between two fragments in statistical equilibrium is 
proportional to the j.-oduct of their level densities: 

P(x) dx a P ](x) p 2(E - x) dx . (17) 

The equilibrium condition is given by: 

& l n P ( * ) . 0 . k l n p 1 ( x ) + f j l n . 2 ( E - x ) - ̂  --Jj ( « ) 

The cerms on the r ight-hand side of eq. 18 are the rec iprocals of the fragment's 
temperatures and the i r equal i ty immediately requires the exc i ta t ion energy to 
divide in proport ion to the mass r a t i o : 

(19) 

The expansion of the logarithm of the probability distribution about the maximum 
up to 2nd order gives a Gaussian: 
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P(x) dx a e -<*„ *)
2/2* 2 

(20) 

1 
T 

d 2 

u7 
(21) 

are the heat capacities of the two fragments (for a Fermi 
gas Cy • 2aT at a temperature T). On substitution we obtain for the width: 

2TJ °1°2 (22) 

where a, and a, are the level density parameters of the fragments. 
A direct way in which any fluctuations in the excitation energy of DIC 

fragments can be observed is in the energy spectra of evaporated nucieons. 
For a very asymmetric system, the magnitude of the fluctuations is comparable 

to the total excitation energy of the light fragment and therefore produces an 
important change in the spectrum. 

As an applied example, fig. 8 shows the proton spectra in coincidence with deep 
inelastic fragments for the reaction He + Cu at 252 HeV. ) While the hard 
spectrum could be attributed to prompt emission, it is in fact explained quite 
simply by energy fluctuations (solid lines) while it is not consistent with fixed 
energy splitting between fragments (dashed lines). 

E proton IMeVJiob 
illtOt-1312 

Fig. 8. Proton spectra in coincidence with deep inelastic processes for the 
reaction 252 MeV 2°He * nitCu. The dashed lines are evaporation calculations 
without fluctuations in the energy partition. The solid lines incorporate the 
fluctuations. 
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A less direct, but more dramatic effect of excitation energy fluctuations car 
be seen in the number of nucleons evaporated from the pair of DIC fragments. An 
anticorrelation in the excitation energies of reaction partners naturally arises 
when the total excitation energy is held constant. The corariance of the number 
of emitted neutrons from DIC partners was investigated with a simple Monte Carlo 
code. The division of the excitation energy between symmetric fragments (A « 100) 
was either fixed or picked at random in proportion to eq. 17. The two fragments 
were then allowed to emit neutrons until the nuclei had cooled to less than B., + 

N 
2T' t where B N is the liquid drop neutron binding energy and T' is the temperature 
after emission of the previous neutron. The probability contours for emission of 
v, neutrons from fragment 1 and v, neutrons from fragment 2 are shown in 
fig. 9. When the fluctuations are turned on, a strong correlation between v, 
and \u is introduced. 

6 

_, 4 

2 

0 
6 

4 

2 

0 
0 2 4 S 8 

XBL608-IS52 

Fig. 9. Probability distribution for the number of neutrons emitted Dy the two 
fragments for a Q-value of -100 MeV. The fluctuations in the energy partition are 
incorporated in B. 

' ETOTAL = <00 MeV (AL 
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4. Angular momentum fluctuations 

Let us consider a frame of reference where the r axis is parallel to the 
entrance-channel angular momentum, the x axis is parallel to the recoil direction 
of one of the fragments, and the y axis is perpendicular to the z,x plane. 

If the intermediate complex is assumed to have the shape of two equal touching 
spheres, the angular-momentum-bearing normal modes are easily identifiable. We 
shall call them "bending," B (doubly degenerate), "twisting" Tw (degenerate with 
bending), "wriggling" W (doubly degenerate) and "tilting" Ti. 

In a recent work, the statistical mechanical aspects of the excitation of these 
modes have been studied in detail. ) 

The thermal excitation of these collective modes leads to Gaussian 
distributions in the three angular momentum components I , I , I . 

x y z 
4a) GAMMA RAY MULTIPLICITIES AND ANGULAR DISTRIBUTIONS 

The fragment angular momentum is removed mainly by stretched E2 decay. The 
alignment of the angular momentum should be manifested in the gamma ray angular 
distributions, whose sharpness should decrease with increasing misalignment. 

If the distribution of the angular momentum components I , I , Z is 
statistical, it is straightforward to derive analytical expressions for the angular 
distributions. ) 2 2 ? If one assumes o = o = o_ « o then an exact result can be x y z 
derived. 

Manifestation of shel l e f fects on the angular-momentum 

transfer in deep-inelast ic reactions 

The presence of shel l e f fects in deep-inelast ic react ions has been the subject 
of numerous experimental and theoret ica l studies in the last several years. In a 
recent experiment along that l i n e , the charge d i s t r i b u t i o n as a funct ion of Q-value 
was measured in the reaction Pb • Po at 7.6 MeV/amu. ' The observa
t ion of r e l a t i v e l y small widths of the d is t r ibu t ions when compared to those of 
s imi lar heavy systems suggests the existence of a cor re la t ion between the net mass 
transfer and the closed-shell structure of the reactants. More general ly, i t is 
conceivable that th is influence of the internal s t ructure be exerted on other 
degrees of freedom of the react ion as w e l l . In pa r t i cu l a r , we have exploded the 
extent to which th i s argument applies to the angular-momentum-bearing ro ta t iona l 
modes of the intermediate dinuclear complex using a very simple model. 

In our ca lcu lat ion we describe the dinuclear complex by means of two touching 
spheres wi th spins 5-., S ? , and o rb i t a l angular momentum L. The re laxat ion of 
the ro ta t iona l modes of the system as a funct ion of in te rac t ion time is expressed 
b y : 1 * ) 
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1 2 h • R l ' (23) 

where J*, and JL a r e t n e moments of i ne r t i a of the n u c l e i , u i s the reduced mass 
of the system, R is the distance between centers, T is the re laxat ion time 
constant, ;nd I is the t o t a l angular momentum. For the dependence of the 
in teract ion time on I , we assume the fo l lowing ana ly t ica l expression: 

t - t j ln hi** ( z 4 , 

From eq. (23) and (24) the spin transferred to the 
fragments can be related to the total angular momentum: 

This relation provides a means to calculate the sum of the spins as a function of 
2 2 

* ^ o rb i ta l energy E = ( I - S, - S,) /2yR , v.-hir^ ..an be i den t i f i ed with 
tne excess exit-channel k ine t i c energy i f the rad ica l energy is t o t a l l y d is ipa ted. 

The reduced o rb i t a l energy c « E/E M f l v as a funct ion of the reduced to ta l spin 
7 (S +S ) 5 c 7 1 2 * s shown in F i g . 10a for a mass-symmetric system and four d i f f e ren t 

values of tfie r a t i o T

R / T » - Figure 10b i l l u s t r a t e s the predic t ion of the model 
fo r the case in which one of the two fragments is magic and can carry only zero 
angular momentum ( th i s is of course an extreme approximation). In addi t ion to the 
expected ef fec ts due to closed-shel l s t ruc ture , we note t^a t the slope of the curve 
in tne quasielast ic region (e close to 1) is </ery sens i t ive to the parameter 
T , / T D . A comprehensive study of the dependence of gamma ray m u l t i p l i c i t y H 

- K Y 

upon Q-value should provide some general information on this parameter which is 
closely related to the relaxation time of rotational degrees of freedom. 

Shell effects may be alternatively investigated by measuring the spin of the 
individual fragments. Our calculation indicates that for very asymmetric systems 
the spin of the light fragment should be very dependent on whether the heavy 
partner has a closed-shell structure or not. Under the same approximation made 
above and assuming that the rigid rotation limit is achieved we estimate -40 per
cent difference in the spin of the light fragment wnen comparing the Kr + Au ana 
the Kr + Pb reaction?. 

Finally we note that these estimated effects are related to the first moment 
of the spin distribution. Remarkably the calculation does not predict any 
noticeable effect on the variances as shown in Fig. 11. 
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mi't-i*i* 
Figure 10. Reduced sum of the spins vs reduced orDital kinetic energy for a 
symmetric system, a) for different values of the ratio TJ / T _ and b) for two 
values of J 2 i J v 

Angular momentum misalignment in heavy ion reactions 
An interesting measurement has been carried out for the reaction ) 1400 MeV 
Ho + Ho. This system was chosen because large amounts of angular 

momentum can be transferred into the intrinsic spin of these nuclei, «hich are 
known to have good rotational properties. As a consequence, both of the 
essentially identical Dl-fragments emit similar continuum t-ray spectra which are 
strongly enriched in E2 transitions ( 80 percent). 

Figure 12 (top) shows the dependence of the -r-ray multiplicity M upon 
Q-value for three angles. Figure 10 (middle) shows the intrinsic spin of one of 
the two reaction fragments after neutron emission (solid line). The primary 
fragment spin obtained from M with correction for neutron emission (dashed line) 
is also shown. 

The ratio of in-plane to out-of-plane y-ray yield {"anisotropy") for energies 
between 0.6 and 1.2 MeV is also shown in fig. 12 (bottom). This anisotropy rises 
with increasing spin transfer; it peaks at a value of 2.2, slightly before the 
spin saturates, and then drops to near unity for large Q-values. 
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V 'Tilting + twisting 

V Tilting? 

•* ^Bending + wriggd'ng 

Bending—-^ » 

\ 

Twisting -, 

/ 
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9 X/ ' 
0.5 

Figure 11. Fluctuations in the spin of one fragment as a function of the moment 
of inertia ratios of the two fragments at symmetry. The change in the ratio is to 
be interpreted as due to a varying degree of magicity of one of the 
fragments. Notice how the sum of the fluctuations is insensitive to the ratio. 

i ' . 

i l l 
Fig. 12. Top: in-plane, out-of-plane (data points) and integrated y-ray 
multiplicity as a function of Q-value for the reaction Ho + Ho at 8.5 MeV/A. 
Middle: spin per fragment oefore (dashed curve) and after (solid curve) neutron 
emission as a function of Q-value. Bottom: gamma-ray anisotropy as a function of 
Q-value. 
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The initial r"ise of the anisotropy with increasing Q-value indicates that 
during the early stages of energy damping there is a rapid buildup of aligned 
spin. The subsequent fall observed at larger Q-values suggests that the aMqned 
component of spin has saturated or is decreasing, whereas randomly oriented 
components continue to increase, causing a significant decrease in the alignment 
of tho fragments' spin. 

Figure 13 shows experimental values of the anisotropy for E greater than 
0.6 HeV compared to several.stages of the model calculation. The spin I was 
determined from the Y-i*ay multiplicity, and the anisotropy was then calculated 
(solid line). This calculation reproduces both the shape and the magnitude of the 
data. To give a feeling for the importance of various contributions, the same 
calculation is shown including only El transitions (dashed curve) and including El 
transitions and neutron emission (dotted line). This comparison clearly shows that 
the most important effect is the thermally induced misalignment, indicating that 
the decrease of alignment as deduced from the anisotropy is inherent to the deep-
inelastic process itself. 

A provisional conclusion is that the equilibrium statistical limit is very 
:lose to the regime controlling tie spin misalignment in Lhis reaction. 

5 

c 

-400 -300 -200 -100 O 
Q(MeV) 

XBL8I4-2229 

Fig. 13. Experimental and calculated (solid line) am'sotropies vs Q-vatue. The 

dashed line shows the effect of El gamma rays alone and the dotted line shows the 

effect of neutron emission. 

I T T r 
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4b) ANGULAR DISTRIBUTIONS OF SEQUENTIAL FISSION FRAGMENTS 

The magnitude of the t ransferred angular momentum and of i t s misalignment can 

be measured through the i n - and out-of-plane angular d i s t r i b u t i o n of sequent ia l ly 
20 197 238 

emitted products. In the very asymmetric Ne + Au and U systems which 
18 

we have investigated ) the statistical excitation of a number of angular-

momenturn-bearirtg modes is strongly suppressed. In particular, the large difference 

in the moments of inertia of the two reaction partners increases the amount of 

energy necessary to excitt any mode in which the small fragment is forced to 

rotate (wriggling, bending and twisting * ). 

In the statistical model, the fixed aligned components of the fragments angular 

momenta couple to angular momentum components associated with the internal modes 

of the complex causing the total fragment angular momentum to become misaligned. 

When the reaction partners have equal masses, the thermal widths of the angular 

momentum components are nearly equal in the usual cartesian coordinates (x axis 

taken along the line-of-centers). However, when the reaction partners have 

different masses, and hence different moments of inertia, the situation changes 

dramatically. The statistical widths of the angular momentum components in the 

heavy fragment generated by the normal modes are shown individually in fig. 14 as 
2 2 a function of mass asymmetry. An in-plane anisotrcpy arises when a £ a . x y 

This is the case at large mass asymmetries due to the fact that only the tilting 
mode remains active, while all the other modes are essentially frozen. Thus, very 
asymmetric reaction systems should provide an excellent test of the excitation of 
selected normal modes and of the statistical model in general. 

In-plane sequential fission studies, which should be the most sensitive to 
differences between a and a , have given conflicting results. In refs. 21 and x y 
22 an in-plane anisotropy was observed at low Q-values which diminished at high 
Q-values; however, no such anisotropies were found for a similar system in ref. 22. 
The apparent conflict notwithstanding, the mass asymmetries of all of these systems 

2 2 are such that the statistical model predicts o = Q (cf. fig, 12). The 
?0 137 238 

Ne + Au and U systems present a situation where this mode) predicts 
a strong in-plane anisotropy (2:1) which should peak perpendicular to the line-of-
centers at contact. 
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( m H - m L ) / ( m H + n \ ) 

• i L i i i - M n 

Fig . 14. The s t a t i s t i c a l widths for the normal modes of the dinuclear complex are 
shown as a funct ion of mass asymmetry of the complex. The mass asymmetries 
associated with recent measurements of the angular d i s t r i bu t i ons are also shown. 

The measured angular d is t r ibu t ions are presented in f i g s . 15,16 
fo r the Ne + U system as a function of Q-value. The data have been 
integrated over the f i ss ion fragment energy and the atomic number of p r o j e c t i l e 

u 
residues (6 < I <_ 14). The direction t = 0 was arbitrarily chosen to coincide 
with the laboratory recoil angle as is traditional. The sequential fission events 
observed at small Q-values have a small in-plane anisotropy. The anisotropy 
disappears at intermediate Q-values; however, for the most inelastic collisions a 
strong minimum is seen approximately perpendicular to the lab recoil direction. 

197 Statistically significant angular distributions from reactions with Au were 
obtained only at large Q values. The position of the minimum and the anisotropics 
of these angular distributions are essentially tne same as those shown for the most 
inelastic U data. Th? results of chi-squared minimization fitting (K 
values following ref. 21) are shown by the solid curves in figs. 15 and 16 and are 
contained in Table 1. In fig. 17 the 2 components of the heavy fragment angular 
momentum are shown as a function of Q-value. The remarkably large values obtained 
for the Au target are a reflection of the fact that in such a nucleus only the 
highest spins lead to fission. In fig. (18) the elements of the polarization 
tensor P and P are shown as a function of Q-value. The lines correspond 
to calcjlations performed with different deformations of the fragments. In 
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general, the agreement is qui te ^ood i f a r a t i o of axes 2 :1 is a l loyed. Also the 
evolut ion of the' anisotropy of the in-plane angular d i s t r i bu t i ons with Q-value are 
in agreement with our expectations that the s t a t i s t i c a l model is va l i d in the long 
time l i m i t . 

^ 

' ' I • ' I ' ' 
IN-PLANE 

125 HeV -

(IMt 

V*1 

-%-H+}" 
fti* 

, , ! , . I , . I , J I * . , 

[J- -375-
(•a-

-125 

Fig. 15. The in-plane angular d is t r ibu t ions of sequential f i ss ion fragments in the 
rest fnme of the heavy fragment (H) are shown as a funct ion of reaction Q-value 
fo r the <^Ne + 238n system. The arrows indicate the in-plane angles at which 
out-of-plane measurements were made. The sol id curves ^re obtained by f i t t i n g the 
eq. 28 to the data in each q-value b in . 

F ig . 16. The out-of-plane angular d is t r ibu t ions tha* correspond to the Q-bins of 
F ig . 15 are shown (so l id points) along with the f i t t e d iunct ions (so l id curves). 
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Tqt Zj1 

«238 U 6 . | 4 
• 3 3 a U 9-10 
• l 9 7 A u 6 - l 4 

J_ 

-Q(MeV) 
• • • . • I1-MT2 

Fig . 17. The measured aligned spin tlz) of the t a r g e t - l i k e fragment as a 
funct ion of q-value for the 252-MeV ^ N e + 19'Au and 238u reacnons. S p " * 
were extracted for a broad Z-bin (6-14 fo r both systems and an addi t ional narrow 
one (Z = 9-10) for the 2°Ne * 2 3 8 U system. The s t a t i s t i c a l errors are of the 
same si2e or smaller than the symbols. 
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-O(MeV) 
MLttt-aatr 

Fig . IS . The measured alignment parameters for the spin d is t r ibu t ions obtained for 
the 2 0 Ne + 238[j system are shown fo r Z = 6 to 14 ( c i r c l es ) and t = 9 and 10 
(squares). The so l id and dashed curves represent the s t a t i s t i c equi l ibr ium model 
calculat ions (?ee t e x t ) . 
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Table 1. Results of angular distribution fitting including a free rotation angle 
X H, errors are given in parenthesis. The errors listed in this table represent 

only the statistical error. 

Q-Value K 0 _ A , units) 
°Z X H 

(degrees) 

(A) uranium results with 6 S. z3 £ 1 4 

- 12.5 7.3 17.7(0.5) 
- 37.5 10.4 27.2(0.2) 
- 62.5 12.0 31.1(0.3) 
- 87.5 13.1 37.9(0.3) 
-125. 14.3 42.4(0.6) 

3.0(0.6) 
7.7(0.2) 
9.5(0.5) 

13.0(0.7) 
20.1(0.7) 

6.5(0.4) 
8.8(0.2) 
5.8(0.7) 
8.6(0.9) 
0 .7 (4 . ) ( 

2.8(0.4) 
1.9(0.5) 
3.1(0.7) 
5.3(0.5) 
9.2(1.1) 

8 . ( 7 . ) 
16 . (9 . ) 
90 . (9 . ) 
94 . (9 . ) 
80 . (3 . ) 

'.3) uranium results with 9 < 23 i 10 

- 12.5 7.3 16.7(0.5) 
- 37.5 10.4 25.0(0.3) 
- 62.5 12.0 32.2(0.5) 
- 87.5 13.1 45. (1 . ) 
-125. 14.3 37. (0.9) 

2. (0.8) 
3.5(0.6) 

17. (1 . ) 
12. (2 . ) 
22. (2 . ) 

7.1(0.4) 
10. (0.6) 

6. (1 . ) 
8. (2 . ) 
7- (2 . ) 

o.5;i.) 
7.2(0.8) 

5. (1.0) 
15. (1 . ) 
0. (4 . ) 

- 9 . ( 6 . ) 
- 10 . ( 4 . ) 

90 . (5 . ) 
81 . (6 . ) 
87 . (7 . ) 

(C) Statistical Model* 

- 12.5 
- 37.5 
- 62.5 
- 87.5 
-125. 

16.6 
21.8 
24.7 
26.8 
28.8 

5.0 
6.5 
7.4 
8.1 
8.8 

5.0 
5.0 
7.4 
8.1 
8.8 

45 
60 
70 
75 
80 

(D) gold results with 6 £ 23 £ 1 4 

- 75 9.8 61 . (1 . ) 
-125 11.7 65. (1 . ) 

25.2(0.8) 
30.0(0.8) 

7 . (2 . ) 
0 . (5 . ) 

24. (1 . ) 
15. (1. ) 

64 . (3 . ) 
79. (1 . ) 

(E) Stat ist ical Model* 

- 75 
-125 

20.6 
23.4 

7.4 
8.4 

7.4 
8.4 

72 
80 

* Two touching spheres 
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5. Conclusion 

The relevance of statistical fluctuations to the understanding of a variety of 
aspects associated with deep inelastic processes has been discussed. We have 
argued that, wherever there is evidence for extensive relaxation, one can use the 
equilibrium thermal widths as good estimates of the actual widths. The equilibrium 
statistical limits appear to be extremely useful and should be employed to verify 
that the predictions of specific nonequilibrium models and their agreement with 
experiment are not solely associated with their correct long time limit. It may 
be possiole to conclude tentatively that, while the whole of tne deep inelastic 
process is clearly a nonequilibrium event, many of the involved degrees of freedom 
have undergone a substantial relaxation compatible with a description in terms of 
statistical equilibrium. 

This work was supported by the Director, Office of Energy Research, Division 
of Nuclear Physics of the Office of High Energy and Nuclear Physics and by Nuclear 
Sciences of the Basic Energy Sciences Program of the U.S. Department of Energy 
under Contract DF- AC03-76SF0009e. 
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