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Cognitive Primitives and Bayesian Number Word Learning
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Abstract

We use the computational Bayesian learning model in
Piantadosi, Tenenbaum, and Goodman (2012) to explore how
different combinations of cognitive primitives and frequency
distributions affect the learning of natural numbers. We find
that the model converges on the natural numbers through at-
tested developmental stages only under very restricted sets
of primitives and frequency distributions. Assuming the size
principle familiar from Bayesian approaches to inductive gen-
eralization, it would be natural to conclude that there are sharp
constraints on the primitives out of which humans build natural
numbers, some of which we hope to elucidate below.
Keywords: natural numbers; primitives; learning; Bayesian
reasoning; natural language semantics

Introduction
This paper is concerned with characterizing the remarkable
human capacity to acquire the natural numbers. This knowl-
edge in the adult state can be quite complex. Within linguistic
syntax, numerals appear to belong to several categories, in-
cluding adjectives (e.g., the {happy/three} students arrived;
the students were {happy/three}), quantificational determin-
ers (e.g., {some/three} students arrived), and proper names
(e.g., the president of Company X is Sam/the number of stu-
dents is three). We also come to possess knowledge of var-
ious complex properties of the numbers, ranging from their
deep and exotic properties proved in pure mathematics to
their applications in physics and engineering. Most funda-
mentally, knowledge of numbers entails knowledge of a dis-
crete infinity of objects that are abstract and yet also allow
you to do things in the real world, such as count objects,
worry about how much debt you have accumulated, and so
on. What does the child come born with, and what do they
need to experience, in order to converge on the natural num-
bers as well as the symbols that denote them?

Children typically learn the count sequence 1,2,3 . . . be-
fore they actually know what numerals mean (e.g., Fuson &
Fuson, 1988). They eventually learn to assign numerals to
the associated number concepts (the semantics of the expres-
sions), typically passing through a set of knower levels (e.g.,
Wynn, 1992). They start as one-knowers: they know that nu-
meral one picks out singleton sets but are unable to system-
atically identify higher numerosities. They then become two-
knowers: they associate one with singleton sets and two with
two-membered sets (doubletons), but fail at higher numerosi-
ties. They then become three-knowers: they associate one

with singleton sets, two with doubtleton sets, and three with
tripleton sets, but fail at higher numbers. Then, all of a sud-
den, they transition from these so-called subset-knower stages
to become full-fledged cardinal-principle-knowers (hf. CP-
knowers): they know that each number has a unique succes-
sor, and properly associate numerals with their corresponding
number.1

Piantadosi et al. (2012) present a Bayesian learning algo-
rithm that provides a computational implementation of Carey
(2009)’s bootstrapping model of number learning. Under
Carey’s model, the child begins with the capacity to rep-
resent and count small sets (up to around three), and they
transition to CP-knowers by noticing that as they transition
through subset-knower stages the next numeral denotes a set
that has one more element than the set denoted by the previ-
ous numeral. As we discuss in more detail in the next section,
Piantadosi et al. (2012) formalize Carey’s insight by develop-
ing a learner that creates a hypothesis space of functions in
the lambda-calculus that map sets to a numeral expressing
their cardinality. For example, the function corresponding to
the concept ‘three’ would map a set like {a,b,c} to the word
three.2 The functions are built out of an assumed set of logical
primitives, operations on the count sequence, and a recursive
operator; of particular interest are primitives singleton, dou-
bleton, and tripleton that map sets to true if they have one,
two, or three members, respectively. Prior probabilities of hy-
potheses are determined by and inversely related to their com-
plexity (Goodman, Tenenbaum, Feldman, & Griffiths, 2008),
and they are updated by Bayes’ Rule. The data are the fre-
quencies of numerals in the CHILDES database (MacWhin-
ney, 2000; frequency decreases with the size of the number).
The system finds the most probable hypothesis in light of the
data.

As we will soon see, the system in Piantadosi et al. (2012)
manages to converge on the number system through attested
knower-level stages. This is a proof of concept of the

1See Barner and Bachrach (2010) for evidence that implicature
computation affects the characterization of knower-levels, as well as
Spector (2013) for a more general characterization of the semantics
and pragmatics of numerals in the adult steady state. We largely set
implicature computation aside here, but see note 7.

2 It is not immediately obvious how this characterization con-
nects to the linguistic syntax and semantics of numerals in their oc-
currences as adjectives, names, or determiners. We put this aside for
now but briefly return to this in the discussion section.
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Bayesian approach to bootstrapping, and in particular it man-
ages to converge on the numbers without making use of the
notion of successor as a primitive concept. The approach also
extends to other interesting systems concerned with counting,
such as singular-plural distinctions (among others).

Our paper aims to explore which aspects of the model are
essential to characterizing numerical systems in human lan-
guage and thought. Piantadosi et al. (2012) assumed a set of
primitives along with an empirically motivated frequency dis-
tribution that served as input to a machine that reasons along
Bayesian principles. Holding the reasoning fixed, would the
model continue to converge if the primitives were different?
And would it converge if frequency distributions were mod-
ified? By choosing various combinations of primitives and
frequency distributions, we aim to discover which combina-
tions would converge on the natural numbers, and of those
that would, which would pass through attested stages in child
development. The model itself allows for a large array of pos-
sible numerical systems, only some of which turn out to be
empirically attested; motivated by considerations like the size
principle familiar from Bayesian learning (e.g., Tenenbaum,
1999), this in turn suggests the need to constrain the system
to rule out unattested stages and inventories. The approach
taken here thus shares with other works concerned with char-
acterizing logical and numerical lexical inventories the as-
sumption that an adequate characterization needs to account
not only for what is attested but also for what is unattested;
this inevitably leads to a theory that must provide explicit as-
sumptions about the primitive building blocks out of which
logical and numerical words and concepts are built (see, e.g.,
Feldman, 2000; Piantadosi, Tenenbaum, & Goodman, 2016;
Katzir & Singh, 2013; Buccola, Križ, & Chemla, 2022; En-
guehard & Spector, 2021; Uegaki, 2022). Since not all primi-
tives will do, we are also faced with the task of motivating the
privileged status that some primitives play in human language
and thought.

Modelling Number Learning
When it comes to modelling number learning, Piantadosi et
al. (2012) simplify the complex problem by focusing on how
learners often hear number words spoken in specific contexts
(e.g., “there are four ducks”), and then attempt to learn struc-
tured representations of what those number words mean. In
other words, learners attempt to systematically map sets of
objects to specific number words (see also note 2). To model
this process, Piantadosi et al. (2012) leverage lambda calcu-
lus as the means of structured representation, with complex
expressions being built from a set of primitives assumed to
be inherent to the learner.3 The task for the learner, then, is to
use their real-world exposure to both object sets and number
words to figure out how to combine said primitives such that
the learner can map sets of arbitrary size to their appropriate

3We assume familiarity with basic concepts from the lambda
calculus, but for textbook treatments with applications in mind see
(among others) Heim and Kratzer (1998) and Abelson and Sussman
(1996).

number word.
To facilitate this, Piantadosi et al. (2012) deploy a Bayesian

model that assigns probabilities to expressions given the
word, context, and object(s) heard by the learner. However,
the space of possible expressions is infinite, so to hone in on
a single expression that best fits the data, their model per-
forms a stochastic search over the hypothesis space whereby
for each hypothesized lexicon a lambda expression is sam-
pled and a single change is made to it. This change is then
either accepted or rejected with some probability, such that
expression complexity is penalized. This sampling processes
is completed for one million iterations, with up to 1,000 pairs
of object sets, number words, and contexts serving as the in-
put data, and the frequencies of each number word being de-
rived from real-world data (see MacWhinney, 2000).

When it comes to primitives, as noted earlier Piantadosi
and colleagues propose three functions that map sets to truth
values: singleton, doubleton, and tripleton, which return
true if the set has one, two, or three members, respec-
tively. They also propose four functions that act on sets:
set-difference XY , which returns the set that results from re-
moving Y from X ; select X , which returns a set containing
a single element from X ; as well as union and intersection
functions. They also propose the logical functions and, or,
not, and if ; recursion, denoted C, which returns the result of
evaluating an entire lambda expression on a set; and func-
tions that drive the counting routine, specifically next, prev,
and equal-word, which move the learner forward/backwards
through the counting numbers, and checks for equivalence
between number words.4

Overall, Piantadosi et al. (2012)’s model is able to gener-
ate a CP-Knower that passes through observed developmental
stages, first becoming a One-Knower, then a Two-Knower,
then a Three-Knower, and finally a CP-Knower. Moreover,
their model is also able to learn other numerical systems, such
as Mod-5 and singular-plural.

Methods & Results
To explore the sensitivity of Piantadosi et al. (2012)’s model,
we performed a variety of experiments that altered the
model’s assumptions, either by changing word frequencies
or adding/removing model primitives. We assumed that the
set-manipulation primitives stipulated in the model like union
and intersection have prior motivation (see e.g., the references
in the penultimate sentence of the introduction). Hence we
focused our attention on numerical primitives that mapped
sets to truth-values depending on the cardinality of the set (cf.
Denić and Szymanik (2022)). We tried to find combinations
of primitives that are unattested in any natural number sys-
tem we know of, and (perhaps partly for that reason) struck
us as somewhat unnatural but that – as far as the model is

4Piantadosi et al. (2012) point out that their formulation does not
rely on having a successor function as primitive, but it does seem to
presuppose the notion of a predecessor function (it is a theorem of
Peano Arithmetic that each non-zero number has a unique predeces-
sor).
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concerned – would be as good as any other. For example,
we tested a model that has a singleton and tripleton but no
doubleton and we also tested a dual-only system that mapped
sets of 2 to two and all other sets to one. We know of no
language with these patterns of morphological number mark-
ing, nor are we aware of any natural cognitive system that
counts like this. But so far as the model goes these are just
as good as the attested system as a set of primitives. By ma-
nipulating assumed sets of primitives in this way, we hope
to sharpen the characterization of which primitives are essen-
tial to human cognition, which also raises the question of why
evolution chose the primitives we have instead of some others
that allow you to converge on the natural numbers. The goal
throughout was to examine what number patterns the system
converges on under our manipulations, as well as the stages it
passes through, and compare the result with what is actually
attested. How does the choice of primitives – what is a priori
– affect what a human may become?

For each experiment (50,000 iterations with 300 pairings),
we tracked the knower-sequence the model passed through
and the knower-formula the model generated. Word fre-
quencies and probabilities were derived from the CHILDES
database (Table 2; MacWhinney, 2000), as per Piantadosi
et al. (2012). Overall, seven experiments generated a CP-
Knower formula, with four experiments failing to do so. The
system also managed to converge on our made-up dual-only
system. The top-3 formulae for our baseline run of Piantadosi
et al. (2012)’s original model can be seen in Table 1, with
the model converging on a CP-Knower formula after approx-
imately 8,700 iterations.

Baseline Knower-Sequence Columns are set sizes. Rows
are stages. Cells contain number words ascribed to set sizes
(U = undefined/unknown).

1 2 3 4 5 6 7 8 9
1 one one one one one one one one one
2 one U U U U U U U U
3 one two two two two two two two two
4 one two U U U U U U U
5 one two three U U U U U U
6 one two three four five six seven eight nine

Table 1: Top-3 formulae for baseline results. Note: C denotes
recursion.

Rank Formula

1
λ S. (if (singleton? S) “one”

(next (C (set-difference S, (select S)))))

2
λ S. (prev (if (singleton? S) “two”)

(next (C (set-difference S, (select S)))))

3
λ S. (if (singleton? S) “one”

(next (C (set-difference S, select(select S)))))

Table 2: Word frequencies and probabilities of CHILDES
database.

Number Frequency Probability
1 7187 0.68
2 1484 0.14
3 593 0.06
4 334 0.03
5 297 0.03
6 165 0.02
7 151 0.01
8 86 0.01
9 105 0.01
10 112 0.01
Total 10,514 1.00

CP-Knower Generation

Overall, seven manipulations (see Table 3) were able to gen-
erate a CP-Knower formula. Of these seven, five were al-
terations to primitives (adding/removing primitives) and two
were alterations of frequencies (swapping frequencies in Ta-
ble 1).

Swap 1 & 3 Knower-Sequence Converged after 26,000 it-
erations via non-attested development sequence.

1 2 3 4 5 6 7 8 9
1 three three three three three three three three three
2 U U three U U U U U U
3 U two three U U U U U U
4 U two three four five six seven eight nine
5 one two three four five six seven eight nine

Swap 2 & 3 Knower-Sequence Converged after 17,000 it-
erations via non-attested development sequence.

1 2 3 4 5 6 7 8 9
1 one one one one one one one one one
2 one U U U U U U U U
3 one three three three three three three three three
4 one one three one one one one one one
5 one U three U U U U U U
6 one two three four five six seven eight nine

Remove Doubleton Knower-Sequence Converged after
35,100 iterations via non-attested development stages.

1 2 3 4 5 6 7 8 9
1 one one one one one one one one one
2 one U U U U U U U U
3 one two three one one one one one one
4 one two three four five six seven eight nine

Remove Tripleton Knower-Sequence Converged after
6,200 iterations via non-attested development sequence.
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1 2 3 4 5 6 7 8 9
1 one U U U U U U U U
2 one two U U U U U U U
3 one two three four five six seven eight nine

Add Quadrupleton Knower-Sequence Converged after
33,100 iterations via attested development sequence, plus a
new unattested stage ‘four-knower’.

1 2 3 4 5 6 7 8 9
1 one one one one one one one one one
2 one two U U U U U U U
3 one two three U U U U U U
4 one two three four U U U U U
5 one two three four five six seven eight nine

Remove Doubleton & Tripleton Knower-Sequence Con-
verged after 24,300 iterations via non-attested development
sequence.

1 2 3 4 5 6 7 8 9
1 one one one one one one one one one
2 one U U U U U U U U
3 one two three four five six seven eight nine

Remove Tripleton & add Quadrupleton Knower-
Sequence Converged after 19,100 iterations via non-
attested development sequence.

1 2 3 4 5 6 7 8 9
1 one one one one one one one one one
2 one two one one one one one one one
3 one U U U U U U U U
4 one U U four U U U U U
5 one two two four two two two two two
6 one two U four U U U U U
7 one two three four five six seven eight nine

Failed CP-Knower Generation

Here, four manipulations (see Table 4) failed to generate a
CP-Knower formula. Of these four, two were alterations to
primitives and two were alterations of frequencies.

Swap 1 & 2 Knower-Sequence Failed to converge after
50,000 iterations.

1 2 3 4 5 6 7 8 9
1 two two two two two two two two two
2 one two two two two two two two two
3 one two U U U U U U U
4 one two three U U U U U U

Swap 2 & 8 Knower-Sequence Failed to converge after
50,000 iterations.

1 2 3 4 5 6 7 8 9
1 one one one one one one one one one
2 one U U U U U U U U
3 one U three U U U U U U

Remove Singleton Knower-Sequence Failed to converge
after 50,000 iterations.

1 2 3 4 5 6 7 8 9
1 one one one one one one one one one
2 one two three one one one one one one

Remove Singleton & Doubleton Knower-Sequence
Failed to converge after 50,000 iterations.

1 2 3 4 5 6 7 8 9
1 one one one one one one one one one
2 one one three one one one one one one
3 one one three four one one one one one

Singular-plural and dual-only
Piantadosi et al. (2012) trained their model to map singleton
sets to one and all other cardinalities to two, hence captur-
ing the English singular-plural system. We amended this by
mapping two-membered sets to two and all other cardinalities
(1, and 3-9) to one. Our system managed to converge on this
‘dual-only’ target system after 1,500 iterations.

Dual-Only System Knower-Sequence Converge after
1,500 iterations.

1 2 3 4 5 6 7 8 9
1 one one one one one one one one one
2 one two one one one one one one one

Discussion
Our testing of Piantadosi et al. (2012)’s model revealed a
number of noteworthy results. Broadly construed, it seems
possible that given enough time, all frequency manipulations
would eventually converge on a CP-Knower formula. Al-
though the present research failed to achieve convergence
when the frequencies for 1 & 2, and 2 & 8, were swapped, that
the model was able to converge in the face of similar swaps
suggests the stochastic nature of their model is a plausible ex-
planation, and that given enough iterations the model would
converge. By contrast, our results suggest that removing the
singleton primitive will result in the model failing to converge
on a CP-Knower formula. Removal of other primitives like
doubleton and tripleton were not fatal for convergence, but
removal of singleton was. This makes intuitive sense as sin-
gleton is, arguably, the foundation of number learning; not
only does it provide a natural ‘base case’, but removing it
could in addition remove the ability to recognize that you can
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Table 3: Manipulations & formulae generating CP-Knower. Note: C denotes recursion.

Manipulation Top Formula

Swap 1 & 3
λ S. (if (True) (if (singleton? S) “one”

(next (C (set-difference S, (select S)))))
C (S))

Swap 2 & 3
λ S. (if (singleton? S) “one”

(next (C (set-difference S, (select S)))))

Remove doubleton
λ S. prev (if (singleton? S) “two”

(if (singleton? S) C (S)
(next (next (C (set-difference S, (select S))))))

Remove tripleton
λ S. (if (singleton? S) “one”

(if (singleton? S) C (S)
(next (C (set-difference S, (select S))))))

Add quadrupleton
λ S. (if (singleton? S) “one”

(next (C (set-difference S, (select S)))))

Remove doubleton & tripleton
λ S. (if (singleton? S) “one”

(next (C (set-difference S, (select S)))))

Remove tripleton, add quadrupleton
λ S. (if (singleton? S) “one”

(if (singleton? S) C (S)
(next (C (set-difference S, (select S))))))

Table 4: Manipulations & formulae failing to generate CP-Knower. Note: C denotes recursion.

Manipulation Top Formula

Swap 1 & 2

λ S. (if (singleton? S) “one”
prev( next( if (doubleton? S) “two”

next( if (doubleton? S) “two”
“U”))))

Swap 2 & 8
λ S. prev( if (tripleton? S) “four”

prev( prev( if (singleton? S) “four”
“U”)))

Remove singleton
λ S. (if (tripleton? S) “three”

(if (doubleton? S) “two”
“one”))

Remove singleton & doubleton
λ S. prev( next( if (tripleton? S) “three”

(if (tripleton? (set-difference S, (select S))) “four”
“one”)))

Dual-only system
λ S. (if (doubleton? S) next(“one”)

“one”)
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always add one to a count number to get the next count num-
ber. Moreover, our findings confirm that recursion – but cru-
cially not necessarily a built-in successor function – is also a
prerequisite for becoming a CP-Knower, as all of the success-
ful manipulations, and none of the unsuccessful ones, lever-
aged a formula containing it.

Perhaps more interesting are the Knower-Sequences pro-
duced by the model. Here, the way in which the learner
becomes a CP-Knower (if they do at all) depends in part
on word frequencies. In all our simulations, the first num-
ber word learned by the model was the word with the high-
est frequency, and the only models to successfully transi-
tion through observed developmental stages were the baseline
model and the ‘add quadrupleton’ model. Interestingly, after
passing through the usual knower-levels, this ‘add quadru-
pleton’ manipulation also produced a new unattested stage,
namely, a ‘four-knower’ stage that sits in between three-
knowers and CP-knowers.

This reveals another general property of the system: it ap-
pears to begin its lexicalization by selecting from its prim-
itives and then generalizes from there, as the bootstrapping
model would predict.5 If this is correct, this means that our
assumptions about primitives are an essential component of
the system. For example, note that the model allows for the
existence of ‘dual-only’ systems (see Table 4), namely, those
that would mark two-membered sets with two (or plural or
some other morphological marker) and everything else with
one (or singular or some other morphological marker). So
far as we know, no such morphological system is attested in
natural language, suggesting again that this kind of system is
unavailable to humans.

More generally, in order to properly capture universals –
such as Greenbergian universals about number morphology –
we need to assume that not all combinations of primitives are
available to the child. In this framework, we might need state-
ments such as that if the system accesses tripleton it cannot
do so without also accessing doubleton, or that if it accesses
doubtleton it cannot do so without also accessing singleton.
These kinds of constraints do not seem to follow as theorems
of the model. If that is correct, then some separate statements
need to be incorporated to adequately constrain the system to
rule out these unattested inventories. Furthermore, with as-
sumptions about primitives being evidently essential to char-
acterizing possible numerical systems in human language and
thought, we hope that we can eventually come to understand
why the primitives are what they are. For example, single-

5As would be expected, the elimination of primitives typically
results in a more complex CP-knower formula. For example, note
that the CP-knower formulae for ‘remove doubleton’ and ‘remove
tripleton’ are more complex than the one for the baseline. Inter-
estingly, removing both doubleton and tripleton results in the same
simple CP-knower formula as the baseline. The only differences be-
tween these systems has to do with the stages they go through: the
baseline goes through the usual knower-levels but the ‘remove dou-
bleton and tripleton’ system does not, and the baseline converges in
around a third of the iterations required by the ‘remove doubleton
and tripleton’ system.

ton seems required for CP-knower convergence and double-
ton and (then) tripleton seem required for capturing knower-
levels. Is there some principled reason for this, and if so,
does this shed insight into why morphological number mark-
ing systems also broadly obey this pattern? Similar questions
arise for the other primitives assumed in the model. We hope
to return to these questions in future work.

We would also like to briefly remark here on the connection
between the analysis of numbers in Piantadosi et al. (2012)
and some of the linguistic analyses of numerals discussed ear-
lier, such as their use as quantificational determiners in sen-
tences like three students arrived. In this kind of sentence,
it would be natural to assume that three belongs to the cate-
gory D (for ‘determiner’) and semantically denotes a function
like this: [[three]] = λP.λQ.|(P∩Q)| = 3. This is a function
that takes two predicates, P and Q, and returns true if the
cardinality of their intersection is exactly three.6 It is not im-
mediately obvious how this determiner analysis relates to the
analysis in Piantadosi et al. (2012), where it is unclear what
category a numeral belongs to, nor is it clear what a numeral
means. In the Piantadosi et al. (2012) model, a numeral like
three is the output of a counting function that maps sets to a
word, but it remains somewhat unclear what that word itself
means, nor how it relates to other uses of the word such as its
use as a determiner.

One tentative thought could be that three in its counting
sense, threeC, denotes the collection of sets that the count-
ing procedure, C, maps to three: [[threeC]] = λP.C(P) =three.
Here, C could be any of the CP-knower functions in Tables
2 and 3, for example. There is an uncomfortable circularity
here, in that the denotation itself references the symbol whose
meaning we are analyzing. However, we don’t think the cir-
cularity is vicious. We are not assuming anything about the
meaning of the symbol; the symbol is just the output of a
counting procedure.

This tentative proposal might suggest a natural way to re-
late the Piantadosi et al. (2012) model with other uses of nu-
merals. Suppose we take the counting analysis as basic. Then
the determiner analysis of three, call this use threeD, could
be rewritten as follows: [[threeD]] = λP.λQ.[[threeC]](P∩Q).
The meaning of threeD here continues to be a function of type
< et,< et, t >> and it maps the exact same sets P and Q to
true as the classical determiner analysis above. We have
just replaced the truth-condition |P∩Q| = 3 with the truth-
condition C(P∩Q) =three.7

6Strictly speaking, P and Q are functions of type < e, t >, but
given well-known relations between such functions and their char-
acteristic sets it is harmless to switch between function talk and set
talk. See Heim and Kratzer (1998).

7 It is commonly assumed that the basic meaning of a sentence
like three students arrived is not that exactly three students arrived,
but rather that at least three students arrived. One way to imple-
ment this together with the assumption that the word three means
‘exactly three’ is to assume the existence of a covert existential op-
erator elsewhere in the structure. The exactly-three interpretation
would then result from the computation of a scalar implicature (see
e.g., Spector, 2013, for discussion). A challenge for this view is
that, unlike some other implicatures like the ‘not all’ interpretation
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