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ABSTRACT OF THE DISSERTATION

Measurement of the Galaxy Angular Power Spectrum Using Simulated Data From the
Legacy Survey of Space and Time

by

Zilong Du

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, September 2023

Dr. John Ellison, Chairperson

The Legacy Survey of Space and Time (LSST) carried out by the Vera C. Rubin

Observatory is one of the most ambitious optical surveys planned in the near future. It will

generate ∼ 20 TB of data every night during its 10 year survey duration. Simulated data

sets (“Data Challenges”) have been generated by the LSST Dark Energy Science Collab-

oration (DESC) to allow development of efficient analysis algorithms, evaluation of their

performance and scaling capabilities, and to study the impact of systematic uncertainties.

In this work we focus on the analysis of Large Scale Structure using galaxies selected from

the DESC Data Challenge 2 (DC2) corresponding to a survey area of 300 square degrees

and five years of observing. We develop and perform an end-to-end analysis of the galaxy

Large Scale Structure with the DC2 data, validating the extraction of galaxy power spec-

tra and galaxy bias in the presence of complex systematics. We provide a range of strong

consistency checks of both the simulated data and the analysis techniques.

Based on matching selected galaxies with the DC2 truth catalog, we optimize

selection to obtain a clean sample of galaxies. After generating and applying survey masks,
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we produce galaxy density maps binned in redshift, with six bins from z = 0.2 − 1.4. We

generate the power spectra measurements from the processed data and fit the data using

theoretical predictions to estimate the galaxy bias as a function of redshift. Finally, we

study the effect of systematic uncertainties on estimation of the galaxy bias.

We find that the relative uncertainty σ`/C` in the measured angular power spectra

is smaller than 10% in most cases, and smaller than 4% at multipoles above 1500. Changes

in the angular power spectra due to systematic uncertainties are found to be on average of

order 0.5%, i.e. ∆C`/C` ≈ 0.5%, with a maximum deviation of 1.5%. Systematic effects

are small compared to the statistical uncertainty of the measured angular power spectra:

∆C` ∼ 0.1σ` on average with a maximum of 0.25σ`.

vii



Contents

List of Figures x

List of Tables xiii

1 The standard model of cosmology 1
1.1 The Cosmological Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The FRW Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Dynamics and Cosmological Parameters . . . . . . . . . . . . . . . . . . . . 4
1.4 Distance and Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Observational Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Cosmic microwave background . . . . . . . . . . . . . . . . . . . . . 11
1.5.2 Abundance of light elements . . . . . . . . . . . . . . . . . . . . . . 12
1.5.3 Accelerated expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.1 The flatness problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.2 The horizon problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.3 An accelerated phase as a solution . . . . . . . . . . . . . . . . . . . 18
1.6.4 The inflation field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7 Dark Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Cosmology and Large Scale Structure 25
2.1 Perturbation theory and Matter distribution . . . . . . . . . . . . . . . . . . 26

2.1.1 Power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.2 Newtonian linear perturbation theory . . . . . . . . . . . . . . . . . 28
2.1.3 Growth of structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.4 Galaxy bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.5 Velocity field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Redshift space distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Kaiser effect and Finger of God . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Kaiser approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Baryon Acoustic Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . 36

viii



3 The Vera Rubin Observatory 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 The telescope and camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Data requirement and system design . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Survey strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Data management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Simulating the LSST system . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6.1 Extragalactic object catalogs . . . . . . . . . . . . . . . . . . . . . . 49
3.6.2 Instance and truth catalogs . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.3 Image simulations and processing . . . . . . . . . . . . . . . . . . . . 53
3.6.4 Data Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 LSS analysis with LSST 56
4.1 Selection cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Basic quality cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Star/galaxy classification . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Survey masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.1 Depth mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Bright object mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Survey property maps and systematic uncertainties . . . . . . . . . . . . . . 69
4.4 Photometric redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Tomographic samples . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.2 Redshift distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.3 Photometric redshift performance . . . . . . . . . . . . . . . . . . . 74

4.5 Angular power spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.2 Theoretical prediction and fitting . . . . . . . . . . . . . . . . . . . . 83

4.6 True redshift vs. Stacking photo-z pdf . . . . . . . . . . . . . . . . . . . . . 84
4.7 Deprojection of contaminants . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7.2 Shot noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.9 Alternative methods for creating deprojection templates . . . . . . . . . . . 91

4.9.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . . 92
4.9.2 Contaminant selection based on linearity . . . . . . . . . . . . . . . 93

5 Summary and Conclusions 100

Bibliography 102

ix



List of Figures

1.1 CMB anisotropy map in Galactic coordinates, as measured by the WMAP
[1] 9 year probe (Top) and Planck with SMICA algorithm [2] (bottom). Both
maps are foreground-cleaned, WMAP by subtracting a linear least squares
fit to the Planck dust and low-frequency templates. The resolution of Planck
result is up to 0.16◦. Image Credit: NASA/LAMBDA Science Team. . . . . 13

1.2 Best fit of Planck 2018 temperature power spectrum [3]. . . . . . . . . . . . 14
1.3 Plot of Hubble Diagram from Type Ia supernovae. The graph should be a

perfect straight line if the Hubble law can be generalized to high redshifts.
However, in both panels, the data points with z > 0.5 deviate somewhat
from the straight line. Image credit: High-z supernova search team. . . . . . 16

1.4 Scheme of the evolution of the particle horizon with inflation included vs. ex-
cluded in the standard model. We can see the exponential expansion happens
in a short period during the very early universe. . . . . . . . . . . . . . . . . 20

1.5 The scalar field rolling down its potential. The shaded region represents the
slow-roll inflation. The field eventually ends up oscillating at the bottom
of the potential, where reheating and the production of ordinary particles
happen. Image credit: Daniel Baumann’s lecture notes. . . . . . . . . . . . 23

2.1 Matter power spectra at different redshifts, as calculated by CAMB (Code for
Anisotropies in the Microwave Background [4]). The cosmological parameters
from Planck 2018 are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Illustrative diagrams representing how spherical matter distributions (top
row) appear in redshift space (bottom row) [5]. In the diagram, up-down
represents the radial direction, and left-right represents the transverse direction. 35

2.3 The correlation function in redshift space, measured by the 2dFGRS survey,
plotted as a function of radial (π) and transverse (σ) directions [6]. The FOG
elongations are demonstrated by the dense regions at low σ and high π, while
the Kaiser effect is displayed by high σ and low π regions. . . . . . . . . . . 37

3.1 Structural design of the LSST telescope [7]. . . . . . . . . . . . . . . . . . . 42

x



3.2 The three-mirror design of the telescope’s optical system. The M1 and M3
mirrors are polished from a single layer of material and form a smooth surface
[7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Focal plane array of the LSST Camera. Each small square (outlined in blue)
represent a 4K×4K pixel CCD sensor. 9 sensors are assembled into a raft
(outlined in red). There are 21 rafts in total, resulting in 3.2 gigapixels from
the 189 CCD sensors. [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Cross-sectional view of the LSST camera [7] . . . . . . . . . . . . . . . . . . 46
3.5 Overview of the DC2 Pipeline. The red blocks are external inputs consist of

theoretical models, cosmological parameters and external data. The grey and
blue blocks represent the main work flow and intermediate products. Final
outputs are shown in yellow and green. [8] . . . . . . . . . . . . . . . . . . . 50

3.6 The footprint of DC2 simulations. Left: Run 1 footprint. Right: Run 2 and
Run 3 footprints. DDF and WFD regions are shown in blue and green [8]. . 54

4.1 Map of number of objects per pixel after quality cuts. The map is in
HEALPix format with Nside = 2048. . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Various metrics for testing the performance of extendedness plotted as a
function of i-band magnitude. The blue squares and orange triangles rep-
resent the completeness (TPR) and purity (PPV) of galaxies, respectively.
The green circles and red triangles represent the completeness (TPR) and
purity (PPV) of stars, respectively. . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Depth maps generated using 3 different methods. . . . . . . . . . . . . . . . 66
4.4 Histogram of the per-pixel differences of depth maps generated by methods

2 and 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Plots of Ndisk(θ)/Ndens as a function of the disc radius θ (dots) for each i-

band magnitude bin, with the radii chosen for the discs based on the condition
Ndisk(θ)i/Ndens = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Survey property maps for the i-band. The number of exposures map is the
sum over all survey visits, while the other maps show the weighted average
over all survey visits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Photometric redshift distributions of the LSS sample objects in each tomo-
graphic bin. The solid curves are estimations of p(z)’s made by stacking the
photo-z pdf’s. The dashed curves are the histograms of the redshifts of the
matched objects in the truth catalog. . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Scatter plot of ez vs. photometric redshift. . . . . . . . . . . . . . . . . . . . 77
4.9 The median value of ez (bias) vs. photometric redshift. . . . . . . . . . . . 78
4.10 The rms scatter (determined from the interquartile range) σF = σz/(1 + z)

of ez as a function of photometric redshift. . . . . . . . . . . . . . . . . . . . 79
4.11 The fraction of 3σ outliers as a function of redshift. . . . . . . . . . . . . . . 80
4.12 The Gaussian covariance error computed analytically by NaMaster divided

by the approximation σ` =
√

2/((2`+ 1)fsky)C` in the third redshift bin. . 82

xi



4.13 Measured galaxy auto- and cross-power spectra for all photometric redshift
bins (points with error bars). Also shown are the fits to the data using CCL
and the extracted values of the galaxy bias and χ2 per degree of freedom of fit
in each bin (solid line). The galaxy biases are obtained through minimizing
χ2s and the error bars are computed using the differences between the bias
values corresponding to χ2 = χ2

min + 1 and the best fits. The plot shows
results for individual fits in each bin. Similar results are obtained from a full
fit of all bins combined: b1 = 0.92± 0.03, b2 = 0.97± 0.02, b3 = 1.04± 0.01,
b4 = 1.15± 0.01, b5 = 1.32± 0.01, b6 = 1.58± 0.01. . . . . . . . . . . . . . . 89

4.14 Galaxy bias vs. center redshift of each bin from the full fit using true redshifts
distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.15 Fractional uncertainty in C` for the all six auto-correlation redshift bins. We
can see that, over the whole ` range, the signal-to-noise ratio is larger than
10. The signal-to-noise ratio is larger than 20 when ` > 700. . . . . . . . . . 95

4.16 Fractional change in the angular power spectrum C` due to deprojection
using all 30 systematics maps for the the auto-correlation redshift bins. . . 96

4.17 Differences between Cl’s measured with deprojection templates vs. with-
out deprojection in all auto-correlation redshift bins, normalized by the un-
certainty. Blue: using all 30 systematic maps; Orange: using top 5 maps
generated by PCA; Green: using top 15 maps generated by PCA. . . . . . 97

4.18 Comparison of deprojection methods. Difference between the auto-angular
power spectrum Cl measured using PCA deprojection (5 and 15 maps) and Cl
measured using deprojection using all 30 maps normalized by the uncertainty
are shown in orange and green. The normalized difference between the result
without deprojection and the result with deprojection using all 30 maps is
shown in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.19 Difference between auto-angular power spectrum Cl measured using depro-
jection of contaminant maps selected using linearity of contaminant with
galaxy density and Cl measured using deprojection with all 30 maps normal-
ized by the uncertainty. All 6 photo-z bins are shown. . . . . . . . . . . . . 99

xii



List of Tables

4.1 Basic quality cuts to select a clean sample. . . . . . . . . . . . . . . . . . . 60
4.2 Comparison of galaxy biases obtained through a full simultaneous fit and

from fitting individual redshift bins. Here stacking photo-z pdfs is used to
calculate the redshift distribution of objects. . . . . . . . . . . . . . . . . . . 85

4.3 Comparison of galaxy biases obtained through a full simultaneous fit and
from fitting individual redshift bins. Here true redshifts are used to generate
the redshift distribution of objects. . . . . . . . . . . . . . . . . . . . . . . . 91

xiii



Chapter 1

The standard model of cosmology

Based on the Big bang model [9], the Cosmological Principle and the General

Theory of Relativity [10], the ΛCDM model or the Standard Model of Cosmology is one

of the most widely accepted cosmological models. The model can be further extended and

complemented with more speculative theories like Cosmic Inflation [11, 12] and Quintessence

[13]. In this chapter, we briefly describe the ΛCDM model.

1.1 The Cosmological Principle

The standard model of modern cosmology is mainly founded based on the Cos-

mology Principle: on sufficiently large scales (typically 1Gly or greater), the universe is

homogeneous and isotropic. Homogeneity implies that all positions are equivalent, and

isotropic means that all directions are equivalent. This simple and elegant presumption

allows us to model the evolution of the universe using a few cosmological parameters, which

can be measured through observations.
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To understand the cosmological principle mathematically, we can discuss its im-

plication on the overdensity field:

δ(~x) ≡ ρ(~x)− 〈ρ〉
〈ρ〉

(1.1)

where ρ(~x) is a density field and 〈ρ〉 is its average. Some of the most common usages of the

density field are to describe CMB background temperature, matter density distribution or

galaxy number density.

We can also define the density 2-point correlation function:

ξ(~x1, ~x2) ≡ 〈δ(~x1)δ(~x2)〉 (1.2)

This function reflects how densities at different locations are correlated to each other on

average: if the function value is negative, then one point has overdensity (δ > 1) and the

other point has underdensity (δ < 1); if the function value is positive, then both points

have overdensities or underdensities.

Consider the 2-point correlation function in the context of the Cosmological princi-

ple: homogeneity implies that ξ(~x1, ~x2) can only depend on the separation vector ~r ≡ ~x2−~x1

(exact locations ~x1, ~x2 don’t matter). Hence, we can rewrite ξ(~x1, ~x2) as ξ(~r) = ξ(~x2−~x1) =

〈δ(~x)δ(~x + ~r)〉. Due to isotropy, ξ(~r) can only depend on the magnitude of the separation

vector (all directions are equivalent). We then have ξ(~r) = ξ(r). Usually, ξ(r) is a decreas-

ing function of r in cosmology, as the correlation is strong within typical dense regions and

becomes weaker at larger scales.
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1.2 The FRW Metric

In the 1920s and 1930s, the physicists Alexander Friedmann, Howard Robertson,

and Arthur Walker independently developed the so-called FRW metric [14]. Their work was

driven by the desire to construct a mathematical model based on General Relativity that

could account for the Cosmological Principle (isotropy and homogeneity) and the observed

expansion of the universe. The FRW metric can be written in the form [15]:

ds2 = −c2dt2 + a(t)2[dr2 + Sκ(r)2dΩ2] (1.3)

where

dΩ2 ≡ dθ2 + sin2 θdφ2 (1.4)

represents the differential angular separation. Due to the Cosmological Principle, the metric

is required to be spatially isotropic and homogeneous. The geometry can be specified by

two quantities, κ - the curvature constant and R - the radius of curvature (if κ 6= 0). For a

given radius of curvature R, we have

Sκ(r) =



R sin(r/R) (κ = 1)

r (κ = 0)

R sinh(r/R) (κ = −1)

where κ = 0,+1,−1 correspond to flat, positively curved and negatively curved spaces.

Based on this metric, the distance between any two points is directly proportional

to a(t) - the scale factor, which describes the expansion of the universe. A normalization

factor can be applied to a(t) since different units can be used to describe distances. We

3



adapt the commonly used normalization convention and set it’s value to 1 at the current

time, i.e. a(t0) = 1.

1.3 Dynamics and Cosmological Parameters

Once the scale factor a(t) and curvature constant κ are determined, the evolu-

tion of the universe is described by the FRW metric. According to general relativity, the

distribution of matter and energy in the universe determines the curvature of spacetime,

and the dynamics of this curvature govern the behavior of cosmic expansion. The equation

that describes the relation between κ, a(t), R and the energy density ρ(t) is the Friedmann

equation: (
ȧ

a

)2

=
8πG

3c2
ρ(t)− κc2

R0a(t)2
+

Λ

3
(1.5)

Here Λ is the cosmological constant, one possible form of dark energy. The Friedmann equa-

tion is a statement of energy conservation. Under the context of Newtonian approximation,

it states that the sum of kinetic energy of the expansion and the gravitational potential

energy is a constant. We can define the Hubble parameter H(t) ≡ ȧ/a and its present value

H0 = H(t0) = 100h km s−1Mpc−1 is known as the Hubble constant [16], where h ≈ 0.7 is

the dimensionless Hubble constant.

Consider the first law of thermodynamics under the context of general relativity;

we can also derive the fluid equation:

ρ̇ = −3
ȧ

a
(ρ+ p) (1.6)

4



Using Eq.(1.5) and Eq.(1.6), we can write:

ä

a
= −4πG

3c2
(ρ+ 3p) (1.7)

where we have included the dark energy density ρΛ ≡ Λc2

8πG in the total energy density

ρ. This is the so-called acceleration equation, which tells us how the expansion of the

universe speeds up or slows down over time based on the composition of energy contents.

Furthermore, we treat different energy contents as independent non-interacting components.

For most cosmological substances, we can model them as ideal fluids and define the equation

of state:

p ≡ wρ (1.8)

where w is a dimensionless number that depends on the physical properties of the substance.

Combined with the fluid equation we get:

ρi(t) ∝ a(t)−3(1+wi) (1.9)

Three types of components are usually considered:

1. Non-relativistic matter: from the ideal gas law, we have p = ρkT/(µc2) = v2
rms/(3c

2)ρ,

where µ is the mass of the gas particle and vrms is the root-mean-square speed of the

gas particles. Since the gas is non-relativistic, vrms � c and w ≈ 0. Therefore,

ρ ∝ a−3.

2. Radiation or a gas of photons: for ultra-relativistic bosons we have p = 1/3ρ or

w = 1/3 and ρ ∝ a−4.

3. Dark energy or the cosmological constant Λ: since the energy density is a constant,

we have ρ̇ = 0 and p = −ρ or w = −1. Therefore, ρ ∝ a0.

5



If we define the dark energy density ρΛ ≡ Λ/(8πG) along with matter density ρm and

radiation density ρr, Eq.(1.5) can be written as

H2 =
8πG

3c2

∑
i

ρi −
κc2

R2
(1.10)

It’s useful to also define the critical density ρc, whose value is found by setting the curvature

constant κ to zero:

ρc ≡
3c2

8πG
H2 (1.11)

Then we can define the density parameters for each component as the ratio of its density

to the critical density: Ωi ≡ ρi/ρc. Moreover, we define the total density parameter Ω ≡∑
i ρi/ρ. If Ω = 1, the universe is spatially flat (κ = 0). If Ω > 1, the universe is positively

curved (κ > 0). If Ω < 1, the universe is negatively curved (κ < 0).

Now we can rewrite the Friedmann equation as:

H2 = H2
0 (Ωm,0a

−3 + Ωr,0a
−4 + ΩΛ,0 + Ωκ,0a

−2) (1.12)

where we have defined ρκ ≡ 3c2

8πG
−kc
R2 and Ωκ = ρκ

ρc
accordingly. The subscripts 0 indicate

the present values of each cosmological parameter. If we connect the equations of state of

each component to Eq.(1.3) and use H = ȧ
a , we get:

q(t) ≡ − äa
ȧ2

=
1

2

∑
i

Ωi(t)(1 + 3wi) (1.13)

where Ωκ is excluded in the sum. This is the so-called deceleration parameter. If q < 0,

then ä > 0 and the universe will accelerate outward. Among matter, radiation and dark

enregy, only dark energy satisfies wi < −1/3 and contributes to a negative q value.
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1.4 Distance and Redshift

In cosmology, distance measurements are usually related to redshifts. Consider the

light waves emitted by a distant galaxy. During its journey to us its wavelength increases

due to the cosmic expansion and scales proportional to a(t):

λe
a(te)

=
λ0

a(t0)
(1.14)

Here subscripts e and 0 represent the value of the physical quantity when the light wave is

emitted and received, respectively. Due to the expansion of the universe, a(t0) > a(te) and

λ0 > λe, i.e. the wavelength becomes longer when received by an observer and the galaxy

appears “redder”. The redshift of the galaxy is defined as:

z ≡ λ0 − λe
λe

=
νe − ν0

ν0
(1.15)

combined with Eq.(1.14), we get

1 + z =
a(t0)

a(te)
=

1

a(te)
(1.16)

or

a(te) = a =
1

1 + z
(1.17)

The observed redshift only depends on the scale factor when the light was emitted.

Most distance measurements in cosmology are made through indirect inference

instead of direct measurements. In a curved expanding universe, the concept of distance

becomes complicated. One can get different distance definitions based on the physical pro-

cesses used to estimate them. Since distance measurements are fundamental to cosmological

observations and constraining the cosmological model, it’s important to distinguish different
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distance measurements and discuss their relation with the cosmological models. Some of

the commonly used definitions are [15, 17]:

1. Comoving distance. Consider a photon emitted from a distant galaxy. It travels

along the null geodesic: ds2 = 0. Since the photon travels in the radial direction,

dΩ = 0. Combine these conditions with the FRW metric, we get 0 = −c2dt2+a(t)2dr2.

Simplifying and integrating:

r =

∫ r

0
dr′ = c

∫ t0

te

dt

a(t)
(1.18)

Using dt = da/ȧ, H = ȧ/a and dz = −da/a2, we can rewrite it in terms of redshift:

χ(z) ≡ r = c

∫ z

0

dz′

H(z′)
(1.19)

This is the comoving distance to the galaxy. It is the distance measured using the

comoving coordinates (r) and doesn’t change over time with the scale factor and the

cosmic expansion.

2. Proper distance The proper distance between two points is the length of the spacial

geodesic when time t is fixed. We set dt to zero and ignore angular dependence in the

FRW metric, we get:

ds = a(t)dr (1.20)

Integrating both sides yields the proper distance:

dp(t) = a(t)r = a(t)χ (1.21)

By fixing time t, it’s implied that distance measurements should be made simulta-

neously along the geodesic. Therefore, it’s not practical to set up experiments to
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measure the distance based on this definition. Other distances are defined based on

different observational methods, and their relations to proper distance can be derived

mathematically.

3. Luminosity distance In static Euclidean space, light propagates according to the

inverse square law, so the flux f measured by an observer is

f =
L

4πd2
(1.22)

where L is the luminosity of the light source at distance d away from the observer.

The factor 1/4πd2 means that the energy from the source is distributed isotropically

to the spherical surface area centered at the source. Based on this relation, if the

luminosity of an object is known, we can compute its luminosity distance using the

measured flux f :

dL ≡

√
L

4πf
(1.23)

However, in a curved expanding universe, several generalizations need to be made

to the inverse square law: the proper surface area of a sphere is given by Ap(t0) =

4πSκ(r)2; the energy of each photon is decreased by a factor of 1 + z due to redshift;

the detection rate of photons is also decreased by a factor of 1 + z due to an increase

in their separation from cosmic expansion. The observed flux after considering all

effects is:

f =
L

4πSκ(r)2(1 + z)2
(1.24)

Comparing with Eq.(1.23), we have:

dL(z) = r(1 + z) = χ(z)(1 + z) (1.25)
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where we’ve approximated our universe to be spatially flat so Sκ(r) = r.

4. Angular diameter distance In Euclidean space, an object with physical transverse

size (proper distance) l at distance d away from an observer has an angular size of

δθ ≈ l/d when d � l. The angular diameter distance is defined according to this

relation:

dA ≡
l

δθ
(1.26)

In general, the physical transverse size can be approximated with l ≈ ds = a(te)Sκ(r)δθ

by setting dt and dr to zeros in the FRW metric. Therefore,

dA =
r

1 + z
=

χ(z)

1 + z
(1.27)

for a spatially flat universe (Sκ(r) = r).

To summarize, if the universe is spatially flat, we have

(1 + z)dA = χ(z) =
dL

1 + z
(1.28)

1.5 Observational Evidence

The name “ΛCDM model” is associated with the major energy compositions of the

universe: “Λ” represents the cosmological constant related to dark energy; “CDM” stands

for cold dark matter; ordinary matter and radiation are also included in the model. It’s

also known as the standard model of cosmology as it is the simplest model that provides

reasonably good explanations to observations such as: the existence and anisotropies of the

cosmic microwave background, the abundance of light elements, the accelerated expansion

of the universe, and the large-scale structure of the distribution of matter.
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1.5.1 Cosmic microwave background

One key aspect to the thermal history of the universe is the decoupling of some

species from the other components in the cosmic fluid. We can figure out when the de-

coupling happens by comparing the scattering rate of the species to the cosmic expansion

rate. One of the key moments is the time at which photon decoupling occurs: i.e. when

the interaction rate of photons with electrons becomes less than the Hubble parameter. It

happens soon after the epoch of recombination: when the temperature of the universe was

low enough (∼ 0.3 eV, at 380,000 years) to allow electrons to bind with nuclei to form the

first neutral atoms. Shortly after decoupling comes the epoch of last scattering, after which

photons can travel freely with little scattering, forming the Cosmic Microwave Background

(CMB) that we observe today.

CMB was first discovered in 1964 by Penzias and Wilson [18]. Since then, obser-

vations have shown that the CMB follows a black body spectrum of T ≈ 2.725 K, and has

an almost uniform distribution with fluctuations to the level of ∼ 10−4 [19]. The fact that

the CMB is almost isotropic is one piece of evidence of the Cosmological Principle.

There are two types of anisotropy of the CMB categorized based on the source:

primary anisotropy is caused by effects happen at or before the last scattering such as

the pressure conflict in the baryon-photon plasma, or Baryon Acoustic Oscillation (BAO);

secondary anisotropy is caused by effects such as interactions of the CMB photons with

distributions of high energy electrons (Sunyaev-Zel’dovich effect [20]) or gravitational po-

tentials (Integrated Sachs-Wolfe effect [21]), which occur between the last scattering surface
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and the observer. The structure of the CMB anisotropy has been measured in high resolu-

tions and accuracy. See Figure 1.1 and 1.2.

1.5.2 Abundance of light elements

The abundance of light elements is another piece of evidence that strongly sup-

ports the standard model. The standard model predicts the abundance of light elements

produced during the early phases of the universe. The process is refered to as the Big Bang

nucleosynthesis (BBN) [22]. About 3 minutes after the Big Bang, the temperature of the

universe cooled down to about 109 K or an energy scale of 10 MeV. This temperature is

on par with the typical binding energy per nucleon and therefore is low enough to allow

protons and neutrons colliding to produce the first neucli: deuterium, helium and lithium.

However, the universe then cooled rapidly due to expansion, and the production of heavier

elements couldn’t take place. At around 100 keV, neucleosynthesis stopped. The BBN the-

ory predicts that the mass of the universe consisted of ∼ 25% helium and ∼ 75% hydrogen,

which is in line with observations. Elements heavier than helium are thought to have been

produced inside stars that formed long after.

1.5.3 Accelerated expansion

Since redshift is related to the lookback time, one of the most robust methods to

estimate the expansion rate of the universe is via the measurements of redshifts and dis-

tances of astronomical objects. Redshifts can be measured rather straightforwardly through

spectroscopy. One way of measuring distances is to use the special properties of objects
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Figure 1.1: CMB anisotropy map in Galactic coordinates, as measured by the WMAP

[1] 9 year probe (Top) and Planck with SMICA algorithm [2] (bottom). Both maps are

foreground-cleaned, WMAP by subtracting a linear least squares fit to the Planck dust and

low-frequency templates. The resolution of Planck result is up to 0.16◦. Image Credit:

NASA/LAMBDA Science Team.
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Figure 1.2: Best fit of Planck 2018 temperature power spectrum [3].
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with a fixed luminosity, the standard candle. Standard candles are useful since they allow

us to infer luminosity distances (dL =
√
L/(4πf)) by simply measuring their fluxes f .

For standard candles to be observed over cosmological distances, they also need

to be bright enough. The best and mostly used standard candles in cosmology are type Ia

supernovae. Supernovae are classified according to their spectra: Type II contain strong

hydrogen absorption lines; Type I contain no hydrogen absorption lines while Type Ia an

ionized silicon line and Type Ib contain a helium line. Type Ia supernovae are believed to

be white dwarf stars that accrete matter from a stellar companion, going over the Chan-

drasekhar limit, and triggering a runaway nuclear explosion. The luminosity of Type Ia

supernovae is well studied. It’s known that their peak luminosity is almost constant and

are strongly correlated with the shape of their light curves.

The Hubble law [16] states that in the local universe, the recession velocity of an

astronomical object due to cosmic expansion is proportional to its proper distance. The

observation does not generalize to high-redshifts necessarily. Through the observation of

high-redshift type Ia supernovae, it was discovered that the universe currently undergoes

an accelerated expansion, which led to the dark energy component being formulated in the

ΛCDM model (see Figure 1.3).

1.6 Inflation

We have seen that there is a considerable amount of evidence that supports the

standard cosmology model. However, it is not without flaws. There are 3 underlying

problems, namely, the flatness problem, the horizon problem and the monopole problem.
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Figure 1.3: Plot of Hubble Diagram from Type Ia supernovae. The graph should be a

perfect straight line if the Hubble law can be generalized to high redshifts. However, in

both panels, the data points with z > 0.5 deviate somewhat from the straight line. Image

credit: High-z supernova search team.
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1.6.1 The flatness problem

We can derive the relation between the spatial curvature κ and the density pa-

rameter Ω(t) by rearranging the Friedmann equation (Eq.(1.10)):

1− Ω(t) = −κ
(

c

H(t)a(t)R0

)2

(1.29)

where Ω(t) represents the density parameter including all energy contents other than cur-

vature. Present observations including CMB and Type Ia supernovae results show that Ω0

is very close to 1 [23], specifically |1−Ω0| ≤ 0.005. One may explain this phenomenon as a

coincidence. However, we can consider the same relation in the early universe:

1. Radiation dominated universe: a ∝ t1/2 ⇒ H(t) ∝ t−1 and |1− Ω(t)| ∝ t.

2. Matter dominated universe: a ∝ t2/3 ⇒ H(t) ∝ t−1 and |1− Ω(t)| ∝ t2/3.

Using these relations, we can extrapolate the value of Ω0 back to the matter-radiation

equality era, which yields |1−Ωmr| ≤ O(10−6). Similarly, we require |1−Ω(t)| ≤ O(10−15)

at the time of the Big Bang neucleosynthesis, and |1 − Ω(t)| ≤ O(10−62) at Planck time

tP ∼ 10−44 s. Attempts to explain these fine-tuned conditions with coincidence would

be especially far-fetched. This is the flatness problem, and new physical mechanisms are

needed to resolve it.

1.6.2 The horizon problem

Consider the comoving distance from us to the surface of last scattering:

dp(t0) = c

∫ t0

tls

dt

a(t)
= c

∫ zls

0

dz

H(z)
(1.30)
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The angular diameter distance to the last scattering surface is:

dA(t0) =
dp(t0)

1 + zls
(1.31)

Let’s define the particle horizon dhor(t):

dhor(t) = a(t)

∫ t

t∗

cdt′

a(t′)
(1.32)

which is the proper distance from which light could have traveled from the beginning of the

universe. It represents the maximum distance to another point that is causally connected

to the particle. For a photon at the last scattering surface, we have:

dhor(tls) = a(tls)

∫ tls

t∗

cdt

a(t)
=

1

1 + zls

∫ ∞
zls

cdz

H(z)
(1.33)

The epoch of last scattering happened in a matter-dominated era: H(z) ∝ (1 + z)
3
2 . Using

zls ≈ 1100, we can calculate the angular separation of points on the last scattering surface

that are separated by the particle horizon:

θhor =
dhor(tls)

dA(t0)
≈ 1√

zls
≈ 0.03 rad ≈ 2◦ (1.34)

This result implies that only photons within regions smaller than 2◦ are causally connected

and had enough time to reach thermal equilibrium. However, the CMB is observed to have

a uniform temperature across the sky, with relative fluctuations of only ∼ 10−5. This is the

horizon problem, and new physical mechanisms are needed to explain it.

1.6.3 An accelerated phase as a solution

One possible solution to both problems is to assume an accelerated expansion

phase during the early universe known as inflation, when a(t) ∼ eHinft. Here the Hubble
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constant Hinf is fixed during the inflation phase. Let ti and tf be the starting and ending

time of this phase. We also define the number of e-foldings as N ≡ Hinf(tf − ti).

How does inflation solve the flatness problem? In Eq.(1.29), substitute H(t) = Hinf

and a(t) = eHinft, and we have

|1− Ω(t)| ∝ e−2Hinft ⇒ |1− Ω(tf )| = e−2N |1− Ω(ti)| (1.35)

Therefore the difference between the density parameter Ω(t) and 1 decreased exponentially

during the inflation phase. Any value of N ≥ 70 corresponds to |1 − Ω(tf )| ∼ 10−60,

sufficient to resolve the flatness problem.

How does inflation solve the horizon problem? Recall that the horizon problem

arises from the ratio dhor(tls)/dA(t0) ≈ 0.03, resulting in the calculated causal regions of the

CMB being much smaller than observed. Inflation resolves this contradiction by increasing

dhor(tls) drastically while keeping dA(t0) the same. Recall that

dhor(tls) = a(tls)

∫ tls

t∗

cdt

a(t)
(1.36)

dA(t0) = a(tls)

∫ t0

tls

cdt

a(t)
(1.37)

Using the normalization convention a(t0) = 1, the second integral stays roughly the same

when the inflation phase is incorporated, since it happens long before the last scattering

and does not effect the evolution of a(t) afterwards. However, the first integral increases

drastically as the scale factor is now much smaller before inflation due to the exponential

growth of a(t) (as demonstrated in Figure 1.4). As a result, we now have dhor(tls)/dA(t0)�

1. This solves the horizon problem.
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Figure 1.4: Scheme of the evolution of the particle horizon with inflation included vs.

excluded in the standard model. We can see the exponential expansion happens in a short

period during the very early universe.
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1.6.4 The inflation field

The simplest way to implement inflation field is using a scalar field φ(~x, t). For

simplicity, consider the action of the field under flat space (κ = 0):

S =

∫
d3x dt a3(t)

[
1

2
φ̇2 − c2

2a2(t)
∇φ · ∇φ− V (φ)

]
(1.38)

Here V (φ) is the potential of the inflation. One common choice is V (φ) = 1
2m

2φ2. Assuming

spatial homogeneity, we have φ(~x, t) = φ(t) and ∇φ = 0. The action becomes:

S =

∫
d3x dt a3(t)

[
1

2
φ̇2 − V (φ)

]
(1.39)

Varying the action and integrating by parts, we have:

δS =

∫
d3x dt a3(t)

[
φ̇δφ̇− ∂V (φ)

∂φ
δφ

]
=

∫
d3x dt

[
− d

dt

(
a3(t)φ̇

)
− ∂V (φ)

∂φ

]
δφ (1.40)

Setting δS = 0 for all variations δφ, we obtain the equation of motion of the inflation field:

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 (1.41)

In order to describe the evolution of the scale factor during inflation, we need the energy

density of the inflation field:

ρ =
1

2
φ̇2 + V (φ) (1.42)

Using this definition in the fluid equation (1.6) and considering the equation of motion, we

get the pressure of the inflation field:

p =
1

2
φ̇2 − V (φ) (1.43)

The pressure and energy density of the inflation field do not follow the usual equation of

state: p = wρ. However, we can impose the condition V (φ) � φ̇2, known as slow roll
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approximation. Under this approximation, we have:

p

ρ
=

1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
≈ −1 (1.44)

which implies that the inflation field acts like dark energy (w ≈ −1) and leads to an

accelerated expansion phase. In order to achieve a substantial e-folding value, it is necessary

that the inflation field stays in a slow roll phase. This can be achieved through limiting the

rate of change of φ̇, namely φ̈ ≈ 0 or 3Hφ̇ ≈ −∂V/∂φ.

Eventually, by the end of inflation, the inflation field rolls towards the minima of

V (φ) and oscillates around it, ending the slow roll phase. If the inflation field is coupled to

radiation and matter, the oscillation will produce ordinary particles, transferring the energy

of the inflation field in the process. This process is known as reheating [24] (See Figure 1.5).

Afterwards, the standard model of cosmology can be used to describe the evolution of the

universe.

1.7 Dark Energy

The standard and simplest model of dark energy is the cosmological constant

Λ. Since Λ remains constant during the cosmic expansion, it is interpreted as the energy

of the vacuum. In quantum field theory, the vacuum energy can be estimated using the

Planck energy EP =
√
h̄c/G, Planck scale lp =

√
h̄G/c2 and ρvac = EP /l

3
P = c5h̄/G2 ∼

1096 kg m−3. However, the observed value of dark energy density is about ρΛ ≈ 0.7ρc ≈

10−26 kg m−3, which is a disagreement of ∼ 120 orders of magnitude with the theoretical

prediction. This is known as the cosmological constant problem.
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Figure 1.5: The scalar field rolling down its potential. The shaded region represents the

slow-roll inflation. The field eventually ends up oscillating at the bottom of the potential,

where reheating and the production of ordinary particles happen. Image credit: Daniel

Baumann’s lecture notes.
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Another issue with the cosmological constant model is the fact that the dark energy

density is very close to the matter energy density at the present time, a special epoch that

we happen to live in. This is known as the cosmic coincidence problem.

Due to these issues with the cosmological constant, there are other models proposed

for dark energy. One alternative is known as quintessence: a scalar field φ with potential

V (φ) which takes the same form as the inflation field and differs on time and energy scales.

Similar to the inflation field, the equation of state parameter is given by

w =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
.

In the limit that 1
2 φ̇

2 � |V (φ)|, w ≈ −1 and the scalar field acts like a cosmological

constant. More generally, the equation of state parameter w = pφ/ρφ evolves with time

depending on the details of the theory. The time dependence is usually parameterized as

w = w0 + wa(1 − a). Due to this time dependence, its energy density does not have to be

small compared to radiation and matter during the early universe, which partly solves the

cosmological constant problem.

Phantom energy is another hypothetical form of dark energy satisfying an equation

of state parameter w < −1. It indicates that the energy density of dark energy is increasing

over time instead of being a cosmological constant. Also under such a model, the universe

will end in a big rip, meaning that the scale factor will reach infinity in a finite amount of

time. Vacuum instabilities is a problem with this model.

24



Chapter 2

Cosmology and Large Scale

Structure

The cosmological principle states that the universe is homogeneous and isotropic

on sufficiently large scales (∼ 500 Mpc). At smaller scales, different structures can be ob-

served ranging from solar systems (AU) and galaxies (kpc) to clusters of galaxies (Mpc).

It’s believed that these structures grew from inhomogeneities in the early universe by gravi-

tational collapse. Inflationary models provide a convincing explanation of the source of the

inhomogeneities as density perturbations which are generated by Gaussian quantum fluctu-

ations in the inflation field. The evolution of the inhomogeneities to large scale structures

(LSS) that we observe today can be modeled through perturbation theory, which models

the energy content of the universe as Newtonian fluids with slight inhomogeneities.
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2.1 Perturbation theory and Matter distribution

To model density perturbations, one can consider two extremes of approximation

in terms of the particle mean free path:

1. The mean free path of particles is very short and can be modeled as ideal fluids. This

approximation works well on large scales.

2. The mean free path of particles is very long. This approximation works well when we

study structures on much smaller scales, such as stars and galaxies.

We focus on the first case since we are more interested in large scales.

2.1.1 Power spectrum

Inhomogeneities in the matter distribution, or density perturbations, can be de-

scribed by the power spectrum P (~k):

〈δ(~k)δ(~k′)〉 ≡ (2π)3δD(~k − ~k′)P (~k) (2.1)

where δD is the 3d Dirac delta function, and δ(~k) is the overdensity field in the Fourier

space:

δ(~k) =

∫
d3x ei

~k·~xδ(~x) (2.2)

with δ(~x) the overdensity field in the real space. The power spectrum can also be expressed

as the Fourier transform of the correlation function ξ(~r):

P (~k) =

∫
d3r e−i

~k·~rξ(~r) (2.3)
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The correlation function is more directly connected to observations, while the power spec-

trum is more expressive for theoretical predictions. It can be difficult to determine ξ(~r)

accurately for large scales, where ξ(~r) has small values. Therefore, P (~k) is often used to

discuss inhomogeneities in large scales, or low k values, while small scale density perturba-

tions are more commonly discussed using ξ(~r).

If we assume statistical isotropy, P (~k) is independent of the direction of ~k, i.e.

P (~k) = P (k) (similarly, ξ(~r) = ξ(r)). P (k) has the dimension of volume, while ξ(r) is

dimensionless. One can define the dimensionless power spectrum:

P(k) ≡ k2

2π2
P (k) (2.4)

Inflation predicts a scale-invariant primordial power spectrum, i.e. PΦ(k) =

constant, where PΦ(k) is the dimensionless power spectrum of the gravitational potential.

In terms of overdensity power spectrum, this is equivalent to P (k) ∝ kPΦ(k) ∝ k. Devi-

ations from the scale-invariant power spectrum can be quantified using the scalar spectral

index :

P (k) ∝ kns (2.5)

where ns ∼ 1. An almost scale-invariant power spectrum corresponds to the slow roll

condition and slow varying Hubble constant. Since fluctuations in the inflation field set

the initial conditions for anisotropies in CMB and LSS, ns can be constrained by related

observations, which are in agreement with the prediction. For example, ns = 0.9626±0.0057

from Planck 2018 results [25].
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2.1.2 Newtonian linear perturbation theory

In Newtonian theory, the equations that describes an ideal fluid are:

∂ρ

∂t
|~r +∇~r · (ρ~u) = 0 (2.6)

ρ

(
∂

∂t
|~r + ~u · ∇~r

)
~u = −∇~rp− ρ∇~rΦ (2.7)

∇2
~rΦ = 4πGρ (2.8)

where ρ(~x, t) is the energy density, p(~x, t) is the pressure, ~u(~x, t) is the velocity field and

Φ(~x, t) is the gravitational field experienced by the fluid. The subscript ~r indicates that

the equations should be viewed in terms of physical (proper) coordinates. Eq. (2.6) is the

continuity equation, which captures conservation of energy. Eq. (2.7) is Euler’s equation,

which can be viewed as Newton’s 2nd law for fluids. Eq. (2.8) is Poisson’s equation for the

gravitational field.

It is generally easier to perform linear perturbation calculations in comoving coor-

dinates ~x(t), which is related to physical coordinates via ~r(t) = a(t)~x(t). Their derivatives

are related by:

∇~r =
1

a
∇~x (2.9)

∂

∂t
|~r =

∂

∂t
|~x +

∂~x

∂t
· ∇~x =

∂

∂t
|~x −H~x · ∇~x (2.10)

From now on, we perform our calculations in comoving coordinates and omit the subscripts

~x.

To introduce perturbations to the ideal fluid equations, we expand the proper

velocity in terms of the peculiar velocity ~v(~x, t) = a(t)~̇x(t): ~u(~x, t) = H~r + ~v(~x, t) and

decompose the density field in terms of the overdensity field ρ(~x, t) = ρ̄(r)(1 + δ(~x, t)),
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where ρ̄ represents the homogeneous background density. In comoving coordinates, the

continuity equation becomes:

∂ρ

∂t
+ 3Hρ+

1

a
∇ · (ρ~u) = 0 (2.11)

For non-relativistic matter, we have p� ρ, combining with the fluid equation (1.6), yields

that ˙̄ρ+ 3Hρ̄ = 0. To derive the continuity equation for perturbations, we apply the linear

approximation, keeping first order terms of ~v or δ and dropping 2nd or higher order terms.

We get:

δ̇ = −1

a
∇ · ~v (2.12)

Similarly, perturbing the pressure and gravitational field about the background (p = p̄+δp,

Φ = Φ̄ + δΦ), we get the linear version of Euler’s equation and Poisson’s equation in

comoving coordinates:

ρ̄a(~̇v +H~v) = −∇δp− ρ̄∇δΦ (2.13)

∇2δΦ = 4πGρ̄a2δ (2.14)

Combining the 3 linearized equations (2.12), (2.13) and (2.14), we get an equation that

describes the evolution of the density perturbation δ(~x, t):

δ̈ + 2Hδ̇ − c2
s

a2
(∇2 + k2

J)δ = 0 (2.15)

where cs is the speed of sound (∂p/∂ρ = c2
s/c

2) and kJ ≡ 4πGa2ρ̄/(c2c2
s) is the (co-moving)

Jeans wavenumber.
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2.1.3 Growth of structure

Using Eq. (2.2) to convert δ(~x, t) in Eq. (2.15) to Fourier space we obtain

δ̈(~k, t) + 2Hδ̇(~k, t) +
c2
s

a2
(k2 − k2

J)δ(~k, t) = 0 (2.16)

The solutions behave differently depending on the scale:

1. On small scales, k � kJ and k2 − k2
J > 0. The equation (2.16) represents a damped

harmonic oscillation with an amplitude that decreases exponentially over time. This

solution represents a decaying mode, where pressure force overcomes gravity.

2. On large scales, k � kJ and k2 − k2
J ≈ k2

J . The general solution is:

δ(~k, t) = c1(~k)H(t) + c2(~k)H(t)

∫ t

0

dt′

H2(t′)a2(t′)
(2.17)

Usually, the first half represents a decay mode. We are more interested in the second

half of the solution, which represents a growth mode, also known as the growth factor :

D(a) =
5

2
ΩMH

2
0H(a)

∫ a

0

da′

[a′H(a′)]3
(2.18)

where normalization D(a → 0) → a is used. For example, in a matter dominated

universe, we have a ∝ t2/3 and H = ȧ/a ∝ t−1. The first half yields δ ∝ t−1, and

the second half yields δ ∝ t2/3. If we remove expansion and set H = 0 in equation

(2.15), the solution yields δ ∝ exp(csKJ t/a), a faster growth mode compared to a

solution with a non-zero Hubble constant. This deceleration of structure growth due

to expansion is known as Hubble friction.

Another observation we can make about solution (2.17) is that the growth factor is

independent of the scale k, and each Fourier mode evolves following the same pattern.

Therefore, on large linear scales, the shape of the power spectrum stays constant.
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2.1.4 Galaxy bias

In practice, it’s much more difficult to obtain data of the matter overdensity δm

than the galaxy overdensity δg, since most surveys measure the galaxy distribution directly.

Therefore, a complete description of the relation of the two distributions is desirable. In

general, this relation is very complicated, as it encodes the physics of galaxy formation,

which is a complex process that happens over long periods of time, during which non-linear

interaction of structures take place.

Generally, the mapping from δg to δm is described by the bias function: δg =

F [δm,∇ijΦv], where ∇ijΦv are 2nd order derivatives of the velocity potential. It relates

δg to δm beyond the smoothing scale, and is generally a non-local, non-linear function.

Remarkably, for sufficiently large scales and Gaussian initial conditions such contribution

is negligible, allowing the bias function to be approximated by a Taylor expansion in terms

of the matter fluctuations:

δg(~k, t) = b(k, z)δm(~k, t) (2.19)

This is the linear bias approximation, whose validity relies on the fact that structure for-

mation is dominated by gravity on large scales [26]. By equation (2.1), we can express the

galaxy power spectrum using the matter power spectrum:

Pg(k, z) = b2(k, z)Pm(k, z) (2.20)

The galaxy bias is greater at higher redshifts, or earlier epochs of galaxy formation, since the

first galaxies formed will collapse in the most dense regions as the structures grow overtime

[27, 28]. Eventually, galaxies will become unbiased tracers of the mass distribution (b→ 1

as t→∞).
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Figure 2.1: Matter power spectra at different redshifts, as calculated by CAMB (Code for

Anisotropies in the Microwave Background [4]). The cosmological parameters from Planck

2018 are used.
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2.1.5 Velocity field

From Eq. (2.17) and (2.18), δ(a) ∝ D(a) under the growth mode. We can define

the growth rate:

f ≡ d lnD

d ln a
=
Ḋ

D

a

ȧ
=

δ̇

Hδ
(2.21)

The growth rate can be modelled as f(z) ≈ Ωγ
m(z), where γ (∼ 0.55) is the growth index

and stays mostly constant over a long range of time. Combine with Eq. (2.12) yields:

∇ · ~v = −aHfδ(~x) (2.22)

Going to Fourier space and using the galaxy bias approximation, we have:

− ikv~k = aHβδ
g~k

(2.23)

where β ≡ f/b. Since k and v~k are inversely proportional, the effect of density perturbation

on peculiar velocities is more significant on large scales (lower wave number k), making

probes based on peculiar velocities robust when studying matter distributions.

2.2 Redshift space distortion

Distance information is rarely measured directly in astronomy. One of the different

ways to estimate distances to objects is by using their redshifts. If the cosmology is known,

the comoving distances to objects can be calculated from redshifts using Eq. (1.19) or

estimated by the Hubble relation: z = H0r for z � 1. The redshift measurement can be

done using spectroscopy (measuring shifts in emission spectra) or photometry. However,

due to the presence of radial peculiar velocities, the measured redshifts also reflect Doppler
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effects on top of the cosmic expansion:

z = H0r +
vr
c

(2.24)

where vr is the radial peculiar velocities. This discrepancy between distance space and

redshift space is known as the redshift space distortion (RSD). Since the radial peculiar ve-

locities are affected by local gravity, RSD is correlated to the overdensity field and measured

matter distribution by redshifts.

2.2.1 Kaiser effect and Finger of God

Consider a spherical shell of galaxies a certain distance away from an observer

undergoing gravitational collapse due to overdensity at the center of the shell. The galaxies

farther away have negative peculiar velocities (moving towards the observer), while the

closer galaxies have positive peculiar velocities (moving away from the observer). On linear

scales (δ(~x) � 1), the contribution on measured redshifts from peculiar velocities does

not overcome the cosmic expansion (H0r � vr/c), and the shell is flattened in the radial

direction in redshift space. This mechanism is known as the Kaiser effect [29]. However,

on small scales, the peculiar velocities can compensate the Hubble Law (H0r � vr/c). The

sphere will appear elongated in redshift space, with the far end of the sphere (in real space)

appears closer to us (in redshift space) and vice versa. This is known as the “Finger of

God” [29]. These effects are demonstrated in Figure 2.2.
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Figure 2.2: Illustrative diagrams representing how spherical matter distributions (top row)

appear in redshift space (bottom row) [5]. In the diagram, up-down represents the radial

direction, and left-right represents the transverse direction.

2.2.2 Kaiser approximation

On linear scales, the Kaiser effect can be analysed quantitatively by considering

the relation between the matter power spectra in real and redshift space [29]:

P (z)(~k) = (1 + β cos2 θ~k)
2P (k) (2.25)

where θ~k is the angle between wave vector ~k and radial vector ~r of the observed region.

As expected, we can see that the redshift space power spectrum P (z)(~k) has an angular

dependence, even though the real space power spectrum P (k) is isotropic. The angular

dependence can be further explained using a spherical multipole expansion:

P (z)(~k) ≡ P (z)(k, cos θ~k) =
∑

P
(z)
l L`(cos θ~k) (2.26)
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where Ll(cos θ~k) are Legendre polynomials. The only non-zero multipoles P
(z)
l can be

calculated as:

P
(z)
0 (k) = (1 +

2

3
β +

1

5
β2)P (k) (2.27)

P
(z)
2 (k) = (

4

3
β +

4

7
β2)P (k) (2.28)

P
(z)
4 (k) =

8

35
β2P (k) (2.29)

These multiploes can be measured using redshift distributions from galaxy surveys.

We can use the equations to solve for β and P (k). The multipoles are illustrated in figure

2.3 in terms of correlation functions.

2.3 Baryon Acoustic Oscillations

During the early universe, before photon decoupling and reionization, baryons were

tightly coupled with photons in a hot plasma. Quantum fluctuations during cosmic inflation

led to density fluctuations, which created imbalance with in the primordial plasma. The

competing forces of pressure gradient and gravitational collapse generated sound waves in

the baryon-photon plasma, also known as Baryon Acoustic Oscillations (BAO).

After photon decoupling, photons ceased to interact with baryons and streamed

freely, forming the Cosmic Microwave Background that we observe. The universe was cold

enough for baryons to combine into neutral atoms (recombination). However, the acoustic

oscillation presented earlier imprints on the matter distribution, creating overdensity at a

particular distance scale, i.e. the comoving sound horizon at photon decoupling:

rs(t) =

∫ t

0

cs(t)

a(t)
dt (2.30)
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Figure 2.3: The correlation function in redshift space, measured by the 2dFGRS survey,

plotted as a function of radial (π) and transverse (σ) directions [6]. The FOG elongations

are demonstrated by the dense regions at low σ and high π, while the Kaiser effect is

displayed by high σ and low π regions.
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The sound horizon represents the largest possible distance that a sound wave could have

travelled since the beginning of the universe: rd ≡ rs(td) ≈ 110 Mpc h−1. This length scale

is reflected as a“bump” in the correlation function at rd or “wiggles” in the power spectrum

(See Figure 2.1 at k ∼ 0.1h Mpc) for k up to 0.2 h Mpc−1. It also provides a standard ruler,

allowing the geometry of the universe to be measured. BAO measurements serve a crucial

role in constraining cosmological parameters and understanding the expansion history of

the universe.
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Chapter 3

The Vera Rubin Observatory

3.1 Introduction

The Legacy Survey of Space and Time (LSST) is a 10-year survey that will be

carried out by the Vera Rubin Observatory. Designed to obtain repeated images of the

entire southern sky (∼ 20, 000 deg2) in great detail, it is one of the most ambitious surveys

in the optical spectrum. The telescope is a ground-based system equipped with wide-deep-

fields. It has an 8.4 m primary mirror (6.5 m effective), a 9.6 deg2 field of view (FOV), a

3.2-gigapixel camera, and six photometric filters (ugrizy) covering the wavelength range of

320–1050 nm [7]. Over the course of the survey period, each part of the survey footprint

will be visited ∼ 150 times in each band [30].

The Observatory’s design centers on 4 main science goals: probing dark energy and

dark matter, taking an inventory of the solar system, exploring the transient optical sky,

and mapping the Milky Way. To distinguish different models of dark energy and constrain

cosmological parameters, the most robust method is to use a combination of probes. With
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about 90% of the survey time devoted to the deep-wide-fast mode, LSST will be able to

measure the redshift dependencies of the most powerful probes, including:

1. Weak gravitational lensing/cosmic shear (WL).

2. Galaxy power spectrum (large-scale structure, LSS) and baryon acoustic oscillations

(BAO).

3. The mass function and clustering of clusters of galaxies.

4. Time delays in strong lensed quasar and supernovae (SN).

5. Photometry of Type Ia supernovae.

In order to perform these measurements accurately, requirements are made on data prop-

erties, and the systems are designed accordingly to optimize various parameters.

3.2 The telescope and camera

The site that houses the telescope and its camera is constructed atop Cerro Pachón,

a mountain located close to the northern Chilean city of Vicuña, sharing the ridge with

Gemini South and the Southern Astrophysical Research (SOAR) Telescope. The system

first light is expected in July 2024 and full survey operations are aimed to begin in October

2024. The data collected is scheduled to become fully public after two years.
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3.2.1 Telescope

The effective etendue, a metric that measures both the width and depth that

a telescope can capture, will be around 320 m2deg2. It is achieved through a reflective

3-mirror design (See Figure 3.2):

1. The primary mirror (M1) is a ring shaped concave mirror. It has an outer diameter

of 8.4 m and an inner diameter of 5.0 m, corresponds to an effective 6.5 m aperture.

2. After the incident light is collected by M1, it is reflected and focused further by the

the secondary mirror (M2), a convex mirror with a diameter of 3.4 m, and the tertiary

mirror (M3, concave with a diameter of 5.0 m).

3. M1 an M3 are designed as a single surface, with the inner diameter of M1 coincide

with M3. This design allows M1 and M3 to be manufactured and polished from a

single substrate.

After reflected by all 3 mirrors, the incident light is focused onto the three refractive lenses

of the camera, and captured by the CCD sensors at the focal plane.

3.2.2 Camera

The LSST Camera is designed to provide a 9.6 deg2 field of view, with a 0.2 arc-

second pixel resolution for optimized pixel sensitivity. To achieve the design requirements,

the focal plane CCD array follows a hierarchical layout: 9 4K × 4K 10 µm CCD sensors

form a 3 × 3 raft (Figure 3.3 3.4), and the 21 rafts form the 3.2-gigapixel focal plane.

To minimize noise and dark current, the optimal operating temperatures of the

CCD sensors lie in the range of -100◦C to -80◦C. A vacuum cryogenic refrigeration system
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Figure 3.1: Structural design of the LSST telescope [7].

that operates at -130◦C is specially designed to maintain the electronics at optimal operating

temperatures 1. It is located behind the L3 lens and is composed of a cluster of 6 parallel

cooling circuits, each with a 85W cooling capacity.

To change the camera optical filters in short time spans (90 to 120s), a mechanical

shutter and a carousel assembly which holds five large optical filters are mounted at the

front of the camera body. Any of the five filters can be swapped with a sixth filter during

daylight hours.

To achieve a fast readout time (2s) of the images obtained by the entire focal plane,

3 front-end electronic boards are embedded in each raft for read-in parallelization.
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Figure 3.2: The three-mirror design of the telescope’s optical system. The M1 and M3

mirrors are polished from a single layer of material and form a smooth surface [7].
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3.3 Data requirement and system design

To meet the science goals described previously, various constraints on data prop-

erties and survey parameters are required. For example,

1. The single-visit depth needs to reach r ∼ 24.5, and the single-visit exposure time

needs to be less than a minute (30 s is chosen). The depth requirement is partly

driven by the co-added depth required by WL and LSS probes. The exposure time

requirement allows the removal of systematics in the galaxy shape measurements due

to the point-spread functions (PSFs).

2. The total number of visits of any area of the sky should be ∼ 1000, and the co-added

survey depth should reach r ∼ 27.5 with high signal-to-noise ratio in all bands.

3. The number of filters should be at least 6, ranging from 320 nm to 1050 nm, with no

large gaps in between filters. The number of visits per filter should be roughly evenly

distributed across all bands. This enables accurate and precise photometric redshifts,

separation of stellar populations. Cosmological parameter estimation from different

probes also requires uniform coverage of the sky.

4. Observing conditions (the median seeing from the atmosphere in r-band is ∼ 0.65′′ at

the site) should remain the main limitation for image quality. The hardware should

not depreciate the image quality significantly. This constraint is driven by WL, LSS,

and survey depth requirements of point like objects.

1https://www.lsst.org/about/camera
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Figure 3.3: Focal plane array of the LSST Camera. Each small square (outlined in blue)

represent a 4K×4K pixel CCD sensor. 9 sensors are assembled into a raft (outlined in red).

There are 21 rafts in total, resulting in 3.2 gigapixels from the 189 CCD sensors. [7]
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Figure 3.4: Cross-sectional view of the LSST camera [7]

A more detailed description of constraints can be found in the LSST Science Book [30]

and LSST System Science Requirements Document [31]. The system design parameters

are optimized based on these constraints. For example: the 6.5 m effective diameter of the

primary mirror is the minimum required to satisfy both the depth (single visit: r ∼ 24.5,

co-added: r ∼ 27.5) and cadence (3–4 days revisit time, with 30 s exposure time per visit)

requirements; the addition of y-band measurement that can detect wavelengths up to∼ 1000

nm is based on the increased redshift range achievable with deeper survey depth.

3.4 Survey strategy

The baseline survey strategy is designed to maximize the return on the four main

science goals, which corresponds to about 90% of the observing time. The current baseline

cadence assumes that images are acquired as pairs of back-to-back, 15-second exposures to
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enable removal of cosmic rays. The pair of images is a single observation of ∼ 10 deg2 of

sky through a single filter, also known as a “visit”. The detailed ordering of these visits in

time and allocation of them among the six filters are still under discussion within the LSST

community.

The Operation Simulator (OpSim) [32] is a software application developed to run

survey simulations. Specifically, it models the telescope control system, site conditions, and

observation schedules. A ranking algorithm is used to optimize observation schedules. After

each visit, the algorithm assigns scores to all possible next visits based on their locations,

times, observing conditions and filters according to the scientific requirements. For example,

to ensure uniform coverage, regions with fewer previous observations will score higher than

those that have been visited more; to benefit WL measurements, preference is given to r

and i-band observations in times of good seeing and and low airmass.

Using the baseline cadence, the anticipated total number of visits over a 10 year

survey period is about 2.45 million (about 4.9 million exposures over six filters).

Besides the main deep-wide-fast survey via the baseline cadence, about 10% of the

survey time will be dedicated to other strategies, such as allocating high number of visits

to a set of Deep Drilling Fields. The deep drilling field program will generate data sets that

are excellent for a variety of science topics, such as planetary and interstellar studies.

3.5 Data management

The LSST survey program will produce about 15 TB of raw images every night,

thanks to its high image resolution and survey cadance. Similar to most modern surveys,
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this represents a substantial data generation rate, and data reduction is necessary before

analysis can be made systematically. The LSST Data Management system (DM) [33] was

designed to reduce the data collected in real time to catalogs and images with scientific

significance.

To convert the raw survey data into formats that’s suitable for scientific analysis,

static and self-consistent Data Releases (DR) will be generated periodically through out

the duration of the survey. The DRs will include single-epoch images, deep co-adds of

the images, catalogs of sources (the detection, measured properties and characterizations

of objects on individual visits). The object detection is performed using the co-adds, and

the measured properties are determined through simultaneously fitting models to all single-

epoch observations. Suitable software, application programming interfaces (APIs), and

computing infrastructure will be provided at the LSST data access centers. By running

user generated code and post-process the DR catalogs, customized catalogs can be made to

suit different analysis needs.

The LSST Software Stack is developed to process and analyse the data generated

in an automated fashion. It’s capable of LSST data processing tasks such as co-addition,

calibration and single-frame processing [34]. While the software development is mainly

built upon the refined frameworks of prior cosmological surveys such as SDSS and DES, a

substantial portion of the code base has been newly written, due to the consideration of

performance, scalability and long term maintainability.
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3.6 Simulating the LSST system

Before the telescope starts operating, in order to demonstrate that the LSST

system is capable to achieve the designed performance described in the SRD, simulations

have been carried out by the LSST DESC Collaboration, where design decisions and system

requirements can be optimized. The simulations and data pipelines are developed as a series

of “data challenges” (DCs) with increasing scale and complexity. In this work, we mainly

use the data product released by the second Data Challenge (DC2) [8].

The simulation pipeline consists of 4 primary stages:

1. The simulation and optimization of the observation scheduler (OpSim).

2. N-body simulations that generate extragalactic object catalogs (cosmoDC2).

3. The simulated astronomical instance and truth catalogs (CatSim).

4. A system for generating observation and realistic LSST images of a given area of the

sky (PhoSim). DM catalogs are generated through image processing.

3.6.1 Extragalactic object catalogs

The first part of the workflow consists of simulations under a cosmological model

with parameters: ωcdm = Ωcdmh
2 = 0.1109, ωb = Ωbh

2 = 0.02258, ns = 0.963, h = 0.71,

σ8 = 0.8 and w = −1.0, where σ8 is the normalization factor of the power spectrum and

describes the standard deviation of the matter-density distribution in spheres of radius 8

Mpc/h. The product of this stage is an extensive extragalactic object catalog: cosmoDC2.

A more detailed description of its generation and final products can be find in [35].
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Figure 3.5: Overview of the DC2 Pipeline. The red blocks are external inputs consist of

theoretical models, cosmological parameters and external data. The grey and blue blocks

represent the main work flow and intermediate products. Final outputs are shown in yellow

and green. [8]
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Two N-body simulations involving only gravitational interactions were used to

create the catalogs in this stage:

1. The “Outer Rim” simulation [36] serves as the basis of the final synthetic galaxy

catalog. It covers (4.225 Gpc)3 with 10,2403 particles, leading to a particle mass of

mp = 2.6 · 109M�. Particle light cones were created so that weak lensing effects can

be estimated using a ray-tracing code. The halo catalogs are generated based on the

Friends-of-Friends (FOF) algorithm.

2. AlphaQ is a down-scaled simulation (∼ 1600 times smaller) implemented with the

Hardware/Hybrid Accelerated Cosmology Code (HACC [37]). It serves as a prototype

that permits fast iterations of troubleshooting the codes essential to generate larger

catalogs. It’s also used to generate and assign complex galaxy properties to the final

catalog.

After obtaining halo merger tree data from the simulations, two different methods

are used to populate the synthetic galaxies:

1. The Empirical Model approach combines the merger-tree data with Monte Carlo re-

sampling of galaxies from the UniverseMachine [38]. The UniverseMachine uses em-

pirical model to predict the formation history of galaxies. Assuming galaxy formation

is correlated to the development of the underlying dark matter halo, the empirical

model uses a simple scaling relation between them, and fits the model parameters to

observational data. The intermediate product is the baseDC2 catalog, which includes

all simulated galaxies with limited properties, such as position, stellar mass, LSST

colors and magnitudes.
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2. The semi-analytic model (SAM) approach inputs merger-trees data from AlphaQ

simulation to Galacticus SAM [39]. Base on the assembly history of each halo, the

SAM approach adds baryon-specific processes to simulate galaxy formation, which is

absent from the N-body gravity only simulations.

Next, the weak lensing maps are generated via a ray-tracing algorithm that sim-

ulates the bending of photons as they traverse the density field. The maps are used to

assign weak lensing properties to each galaxy in baseDC2 catalog. Finally, the baseDC2

galaxies are matched to those in the Galacticus SAM library to complete the assignment of

a realistic and complex set of properties.

3.6.2 Instance and truth catalogs

The next stage creates instance catalogs that serve as the input to image simu-

lation. For each pointing of the telescope, the instance catalog returns the astrophysical

sources that lie within its footprint. This concept, inspired by the image simulation tool

PhoSim [40], permits the addition of time variability. The end product of this stage includes

both instance catalogs and truth catalogs, achieved by the LSST software CatSim [41, 42].

For each object in the catalogs, a range of LSST specific attributes can be accessed, includ-

ing position on the camera focal plane, apparent position on the celestial sphere, luminosity

distance, reddening and extinction from Milky Way dust, LSST magnitudes/fluxes, shape

parameters and uncertainty estimates. The instance catalogs consist of objects detected

and identified after co-addition. The truth catalogs contain truth tables that describe the

true time-averaged properties of objects.
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3.6.3 Image simulations and processing

The image simulation tools process the data contained in the instance catalogs,

and outputs pixel data expected to be obtained from the LSST camera. The image software

imSim 2 is used for both Run 2 and 3 of DC2. The input of isSim includes object attributes

from the instance catalogs, along with information about how the light is distorted before

being observed, including lensing and extinction information. The systematic effects from

the atmosphere on the observed PSF are also modeled. Run 2 covers the entire 300deg2

footprint, and mainly focuses on static objects (galaxies without AGN, non-varying stars) in

the wide-fast-deep (WFD) area that are the primary interests the static dark energy probes.

On the other hand, Run 3 is designed for time-domain probes and adds time-varying objects

(AGN, SNe) to the DDF. The WFD and DDF regions of each run is shown in Figure 3.6.

For image processing, the LSST Data Release Production (DRP) pipeline is con-

sisted of four steps: single-frame processing, joint calibration, image co-addition and co-add

processing. Readers can refer to [34] for a more detailed description of the workflow. For

DC2 Run 2, where most visits happen during WFD observations, image processing is limited

to the co-added images. DDF region and its vicinity are excluded due to the consideration

of the cost of computational resources and rewards. The final results consist of objects

catalogs required by the WL, LSS, and clustering probes, which added up to less than 2.5

TB.

2https://github.com/LSSTDESC/imSim
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Figure 3.6: The footprint of DC2 simulations. Left: Run 1 footprint. Right: Run 2 and

Run 3 footprints. DDF and WFD regions are shown in blue and green [8].

3.6.4 Data Releases

The final step in the workflow generates data product as defined in the LSST

System Engineering Data Products Definition Document (DPDD) 3. After image processing

and validation, the catalog files are collected, merged, and translated into database tables for

end users. These Object tables are stored in Apache Parquet format to support modern data

access, and can be accessed directly or via the Generic Catalog Reader (GCR) 4 interface.

As the main data access interface for end users, GCRCatalogs provides convenient methods

to customize columns, filter data, and iterate over filtered data without using traditional

databases. Each data table is registered in GCRCatalogs through YAML files containing the

file paths. This approach allows highly customized data access through interface function

3https://lse-163.lsst.io
4https://github.com/LSSTDESC/gcr-catalogs
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parameters without the need of custom data ingestion code or input file path that is often

required for accessing traditional databases.
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Chapter 4

LSS analysis with LSST

The Wide-Fast-Deep (WFD) region in the 2nd DESC data challenge (DC2) spans

300 deg2 and contains 5 years of survey data (data release 6 or DR6 in DESC) in 6 broadband

filters (ugrizy). In this chapter, we present the Large Scale Structure (LSS) analysis of this

data set. First, we describe the raw sample and the optimized selection criteria used to

filter out the less ideal objects. Next, we introduce survey masks to define the geometry

and handle associated systematic uncertainties. After that, we discuss the generation of

survey property maps and the binning of the sample objects using photometric redshift.

Finally, we present the calculation of the galaxy angular power spectra and discuss further

corrections due to deprojection of survey property contamination.

Due to the amount of data involved and the availability of interface to access the

data, the analysis is carried out on Cori, a KNL architecture-based supercomputer at the

National Energy Research Scientific Computing Center (NERSC).
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4.1 Selection cuts

In this work, we mainly use the dc2 object run2.2i dr6 catalog (hereafter re-

ferred to as the object catalog); this is a static object catalog for Run 2.2i DR6 which can be

accessed via GCRCatalog, the Python package that serves as a repository of various galaxy

catalogs and sky catalogs for the LSST DESC. The first step is making selection cuts to

produce the magnitude-limited sample which we describe in this section.

4.1.1 Basic quality cuts

In order to get a clean and well-behaved sample before starting the analysis, we

impose several basic quality cuts to remove objects with poorly measured attributes such

as fluxes, ellipticities, positions etc. Most of the quality cuts are given as flags (true or false

values) of object attributes. In this section we describe the methods, mainly based on DC1

LSS analysis [43], used to determine which flags should be included in our selection.

Taking advantage of the simulated nature of our data and the knowledge about

truth information, we first match the object catalog to the cosmoDC2/truth catalog, a

large synthetic galaxy catalog designed to support precision dark energy science. We use

the spatial and magnitude matching [43], hereafter denoted as SM matching, where for each

observed object in the object catalog we find all the objects in the truth catalog within 0.6′′

radius and select the one that has the closest i-band cModel magnitude (mag i cModel)

1, which is a linear combination of the best fit exponential and de Vaucouleurs profile. If

the i-band magnitude difference ∆i between the observed and truth objects is less than 1,

we consider a match has been found, otherwise the observed object is unmatched. This

1https://classic.sdss.org/dr6/algorithms/photometry.php
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approach can be implemented with a KDTree or a Friends-of-Friends (FOF) matching algo-

rithm with a linking strength of 0.6′′. Both algorithms are found to give similar matching

results, in terms of the number of groups and the number of objects per group.

After the matching process we calculate the fraction of observed objects that are

flagged in the unmatched population: fu = Nflag,u/Ntot,u (u stands for unmatched) and

compare to the corresponding fraction in the matched population: fm = Nflag,m/Ntot,m (m

stands for matched). If the ratio fu/fm > 20 while fm < 0.01, then we include the flag in

our quality cuts. Roughly speaking, these criteria mean that a much higher fraction of the

unmatched/badly-observed objects are eliminated compared with matched/well-observed

objects (20:1), and most of the matched/well-observed objects are retained (99%).

In addition to the selection flags, we also apply cuts on the Signal-to-Noise ratio

(SNR). We require the i-band SNR to be greater than 6 (snr i cModel> 6) since we are

also imposing magnitude cuts in i -band, and snr {b} cModel> 3 in at least 2 of the other

5 photometric bands were b ∈ {u, g, r, z, y}.

In conclusion, we select a clean sample of all observed objects using the cuts listed

in Table 4.1. After all standard quality cuts, about 93 million objects are selected from a

total of 147 million objects (a 63% selection rate) in the object catalog.

4.1.2 Star/galaxy classification

For the galaxy clustering analyses, we are only interested in the spatial distribu-

tion of galaxies in the sample. Therefore, it is important that we can efficiently separate

stars from galaxies while attaining maximum survey depth. In this analysis, the classifier
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Quality Cuts

Cuts Description

detect isPrimary

Quality cuts,

eliminating objects

with bad center,

deblending, PSF

shape, PSF flux,

extendedness etc.

modelfit CModel flag badCentroid=False

base SdssCentroid flag=False

base PixelFlags flag edge=False

base PixelFlags flag interpolatedCenter=False

base PixelFlags flag saturatedCenter=False

base PixelFlags flag bad=False

base PixelFlags flag suspectCenter=False

deblend skipped=False

base PsfFlux flag=False

base SdssShape flag psf=False

modelfit DoubleShapeletPsfApprox flag=False

base ClassificationExtendedness flag=False

[ugrizy] base PsfFlux flag=False

Quality cuts per

photometric band

[gri] base ClassificationExtendedness flag=False

[ugrizy] base PixelFlags flag edge=False

[ugrizy] base PixelFlags flag saturatedCenter=False

base Blendedness abs<=0.42169650342 Blendedness cut

snr i cModel > 6 SNR cut in i -band

snr [ugrzy] cModel > 3 SNR cuts (required

in at least 2 bands)

Table 4.1: Basic quality cuts to select a clean sample.

used for star/galaxy separation is called extendedness, which is defined based on the differ-

ence between the PSF magnitude and the CModel magnitude. The value of extendedness is

usually zero for stars and notably different from zero for galaxies, since the CModel mag-
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nitude is an adequate proxy as a universal magnitude for all types objects and the PSF

models point source or isolated stars very well. In the object catalog, this quantity is con-

verted to a flag base ClassificationExtendedness or extendedness via the condition:

mPSF − mCModel = 0.0164 [44]. The flag extendedness has a value of 1 if an object is

classified as a galaxy. Otherwise, if an object has extendedness = 0, then it is classified as

a star. Here we study the performance of this classifier as a function of i-band magnitude

and choose our magnitude selection cuts based on the results.

We utilize the truth information and first match the object catalog to the input

catalog using the SM matching method. Then we use the following metrics from [45] to

determine the quality of the classifier, namely completeness (TPR) and purity (PPV):

Completeness (TPR) =
TP

TP + FN
(4.1)

Purity (PPV ) =
TP

TP + FP
(4.2)

Here TP stands for “True Positive”, FP stands for “False Positive” and FN stands for

“False negative”. In our case, when considering galaxies, TP is the number of objects

classified and matched to galaxies, FP is the number of objects classified as galaxies but

matched to stars and FN is the number of objects classified as star but matched to galaxies.

The completeness is the fraction of true galaxies that are selected, while the purity is the

measure of the contamination of the sample by misclassified objects. Similar definitions can

be made for stars.

The results are shown in Figure 4.2. Using extendedness as the star/galaxy classi-

fier, we see that the completeness of galaxies starts to fall to around 80% at mag i cModel ∼

25. Above mag i cModel = 25, the efficiency for selecting galaxies drops off significantly,
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and we start to lose galaxies in the selected sample. The purity of the galaxies remains high

across the whole range of magnitude. Therefore, we choose

17 < mag i cModel < 25.3 (4.3)

as the magnitude selection cut. Combining with the galaxy selection flag extendedness ==

1, we obtain the selected galaxy sample of 51 million objects with only 1.1% impurity from

stars, which is sufficient for our purpose. A completeness of ∼ 80% around high i-band

magnitude and a overall completeness of 95% indicate that the selected sample is a good

representation of the true galaxy population. We don’t lose too much sample size from

the more strict magnitude cut. Hereafter we refer to the sample after the quality cuts and

magnitude selection cut as the LSS sample.

4.2 Survey masks

LSST, being a large scale photometric survey, will image the entire available south-

ern hemisphere sky, about 18, 000 square degrees, once every few nights in the course of its

10-year survey duration. This results in non-uniform survey conditions across the survey

area and a complicated survey geometry. For example, some area of the sky could be af-

fected by bright objects (stars, satellites etc) which might result in poor object detection in

the region surrounding such bright objects, and some patches of the sky might see less ex-

posure than others, which results in a shallower depth. We utilize survey masks to eliminate

the regions affected by these phenomena and describe the survey geometry quantitatively.

Essentially, these masks are sky maps that carry information as to whether or not to include
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certain areas in the analysis. Specifically, we make (i) depth masks which eliminate areas

that have lower depth than the minimum requirement and (ii) bright-object masks which

mask areas around bright objects like stars. In this section, we describe the generation of

these masks and their effects on the survey footprint.

The maps and masks generated in the analysis are mostly made in the HEALPix

2 format. HEALPix stands for Hierarchical Equal Area isoLatitude Pixelation of a sphere.

It’s a pixelation scheme that produces a partition of the spherical surface, where every

pixel covers the same surface area. The sphere is hierarchically divided into curvilinear

quadrilaterals. The lowest resolution mapping consists of 12 base pixels. This configuration

corresponds to Nside = 1, a parameter that describes the size of the pixels and can only

have values of powers of 2. Each time Nside doubles, every pixel is divided into four new

ones with equal area, increasing the resolution (Npix = 12Nside2).

4.2.1 Depth mask

Due to the different observing conditions between each exposure, the depth varies

across the survey field. To quantify these variations, we first generate depth maps in

HEALPix format with Nside = 1024, giving a total number of pixels of 12Nside2 ≈

12.6 megapixels. We compare three different methods to estimate the 5σ survey depth as a

function of angular position:

1. Using magnitude of stars [43]: after quality cuts, for each pixel we calculate the mean

i-band magnitude for objects classified as stars that fall in it and with signal-to-noise

ratios between 4 and 6. Compared to the following methods, this method leads to

2https://healpix.sourceforge.io
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higher correlations between generated depth maps and the galaxy number density

map.

2. Using flux error of stars [46]: we calculate the mean i-band cModel flux error of all

objects classified as stars in each pixel, then multiply the value by 5 and transform it

into a magnitude.

3. From observating conditions: we use i maglim psf wmean maps generated by supreme

3, which uses healsparse4 to make survey maps for LSST. Essentially, these maps are

created by multiplying noise (dominated by sky noise) and psf area values in each

pixel, taking the square root and convert 5 times of its values to magnitudes.

The maps are shown in Figure 4.3. We see that they are visually consistent to one another.

To demonstrate this quantitatively, for each pair of maps, we subtract one map from the

other pixel-wise, then make a histogram of the pixel differences. For example, we can

consider the histogram of the map differences generated by methods 2 and 3: about 86%

of the pixels have a difference in depth less than 0.25. The result is shown in Figure 4.4.

Since all 3 maps agree with others well, we pick the depth maps generated by method 3 in

our analysis.

To remove regions with shallower survey depth, the depth masks are generated by

eliminating all the pixels in the depth maps that have a limiting magnitude i ≥ 25.3. In

other words, we only use objects that reside in cells with i-band 5σ-depth less than 25.3.

This removes ∼ 3% of the area from the galaxy sample footprint.

3https://github.com/LSSTDESC/supreme
4https://github.com/LSSTDESC/healsparse
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4.2.2 Bright object mask

The measurement and detection of any object can be affected significantly if there

are bright objects in its surroundings. One of the effects from the presence of a bright

object is obscuring the neighboring sources which results in a reduction of observed objects

around it. To eliminate this effect, we can mask the area around bright objects even at

the cost of creating a more complex geometry. Again, we use survey masks to describe this

geometry. Only stars (i.e. not galaxies) are considered as bright objects to avoid possible

biases towards dimmer galaxies.

For each identified bright star (mag i cModel < 22 and extendedness = 0), we

exclude a circular region (“disk”) around it from our analysis. To determine what disk

radius should be used, we follow the method detailed in [47]:

1. We divide the bright stars according to their i-band cModel magnitudes into 5 bins:

i < 17, 17 < i < 18, 18 < i < 20, 20 < i < 22, 22 < i < 24.

2. For the bright stars in each bin, we count the number of objects in the LSS sample

that lie within a certain distance θ to any of the bright stars and calculate the object

density Ndisk(θ) in that region. We compute this value for a set of radii.

3. We calculate the object density Ndens in the LSS sample over the full survey footprint

and then compute the ratio Ndisk(θ)/Ndens for each bin. For each magnitude bin i,

we identify the radius θi where the ratio Ndisk(θ)i/Ndens = 0.9 and choose this as the

disk radius for the bright objects in bin i.
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Figure 4.5: Plots of Ndisk(θ)/Ndens as a function of the disc radius θ (dots) for each i-band

magnitude bin, with the radii chosen for the discs based on the condition Ndisk(θ)i/Ndens =

0.9.
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The plots of Ndisk(θ)/Ndens and the radii chosen for each magnitude bin are shown

in Figure 4.5. After choosing the radii for the disks, we can create the bright object mask.

First, we make a blank high resolution HEALPix map (Nside = 216 = 65, 536) and mask out

all pixels whose centers lie within the disks; we also remove all objects within these pixels

from our LSS sample. Then we downgrade this map to a lower resolution (Nside = 1024)

by an averaging procedure and eliminate all pixels that have more than 13% of their area

masked. This results in a loss of 10% of the total survey area.

4.3 Survey property maps and systematic uncertainties

Apart from the effects from bright objects and variations of survey depth across

the field, there are other observational systematic uncertainties that could bias the observed

object number density. In order to investigate and mitigate these systematic effects, we first

generate HEALPix maps of survey properties or observing conditions using supreme. The

procedure to generate the maps can be summarized as following: first we accumulate the

per-frame metadata for each exposure, then we calculate the weighted mean values of each

pixel using the given weights of the CCDs, finally we repeat these steps for each observing

condition.

For each photometric band, we map the following observing conditions that could

bias our galaxy number density:

1. PSF size (psf size) Due to the blurring effect of the atmosphere, a point source

can appear as a blob/disk in the image captured by telescopes. Astronomers refer to

this distortion as seeing. To quantify the seeing effect, we estimate the Full-Width-
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Half-Maximum (FWHM) of the point spread function (psf) of point sources, or “PSF

size”. A large seeing can affect the star-galaxy classification of objects by increasing

their extendedness.

2. Airmass (airmass) We consider the relative airmass, which is the optical distance

at the line of sight divided by the optical distance at zenith. The formula in [Hardie

(1962)] is used for the calculation of airmass:

airmass = sec(z)−0.0018167(sec(z)−1)−0.002875(sec(z)−1)2−0.0008083(sec(z)−1)3

(4.4)

where z is the zenith angle of the line of sight. A larger airmass corresponds to a

thicker layer air that the light ray needs to travel through before being detected by

the telescope, causing the extinction of stellar light. Therefore, airmass can affect the

observed magnitudes and detection of objects, which in turn biases the object number

density.

3. Sky background (bgmean) Sky background refers to the mean brightness of a patch

of sky after the removal of all direct light sources (stars, cosmic rays, etc). Similar to

large airmasses, a large sky background can affect the photometry and detection of

faint objects.

4. PSF magnitude limit (maglim psf) This is the 5-σ magnitude limit. We convert

the product of sky-noise and psf area into a flux, multiply this value by 5 then convert

it to a magnitude. Specifically, the following formula is used to calculate the 5-σ
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magnitude limit:

maglim = zp− 2.5 log10

(
5

√
Apsf

W

)
(4.5)

where zp is the zero point of the detector, Apsf is the psf area and W is the CCD

weight. A low magnitude limit indicates a high total noise in the psf area and can

affect the detection of faint objects.

5. Number of exposures (nexp): This gives the number of times each pixel in the

sky map is visited. For each pixel in the HEALPix map, we calculate the number of

exposures that overlap with it. A higher number of visits can increase the signal to

noise ratio of the detected objects.

Figure 4.6 shows plots of i−band survey property maps made by supreme.

4.4 Photometric redshift

As well as angular coordinates of the observed galaxies, the analysis requires the

distance/redshift information of each object. Since LSST is a photometric survey, it stores

the spectral information as fluxes in 6 broad optical bands (ugrizy), rather than using more

precise spectroscopic measurements. The estimation of an object’s redshift from these broad

band fluxes, known as the “photometric redshift” (photo-z), is extensively used in modern

observational cosmology. The redshift in characteristic features (e.g. Lyman and Balmer

breaks) of the galaxy spectral energy distributions (SED’s) can be reflected as color changes

in the broad bands and are often the primary sources of such estimations.

71



RA

De
c

-43.27°

-36.40°

-29.53°

+48.16°+55.03°+61.90°+68.77°+75.64°

i-band nexp

20

40

60

80

100

(a) Number of exposures

RA

De
c

-43.27°

-36.40°

-29.53°

+48.16°+55.03°+61.90°+68.77°+75.64°

i-band bgmean

1400

1450

1500

1550

1600

1650

(b) Background mean

RA

De
c

-43.27°

-36.40°

-29.53°

+48.16°+55.03°+61.90°+68.77°+75.64°

i-band maglim_psf

25.2

25.4

25.6

25.8

26.0

26.2

(c) PSF magnitude limit

RA

De
c

-43.27°

-36.40°

-29.53°

+48.16°+55.03°+61.90°+68.77°+75.64°

i-band psf_size

1.78

1.80

1.82

1.84

1.86

1.88

1.90

1.92

(d) PSF size

RA

De
c

-43.27°

-36.40°

-29.53°

+48.16°+55.03°+61.90°+68.77°+75.64°

i-band airmass

1.14

1.15

1.16

1.17

1.18

1.19

1.20

(e) Airmass

Figure 4.6: Survey property maps for the i-band. The number of exposures map is the sum over all survey

visits, while the other maps show the weighted average over all survey visits.
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In order to determine the photometric redshift of each galaxy, the LSST colabora-

tion has developed two codes based on photo-z algorithms: a Bayesian Photometric Redshift

(BPZ) code called BPZPipe, which is an SED template-based method that employs a prior;

and a machine learning code called FlexZPipe that performs a conditional density estimate;

both were trained with a representative data sample complete to i < 25.0. More detailed

descriptions of these methods can be found in [48, 49]. In this analysis we will use the

photometric redshifts generated by the BPZPipe code.

4.4.1 Tomographic samples

We divide the LSS sample into 6 tomographic samples of equal redshift intervals

using the photoz mode redshift estimator as markers. The photoz mode is the mode of the

posterior probability distributions for each galaxy computed by the BPZPipe photometric

redshift code. The bin ranges for the intervals are z = 0.2−0.4, 0.4−0.6, 0.6−0.8, 0.8−1.0,

1.0− 1.2 and 1.2− 1.4.

4.4.2 Redshift distributions

The redshift distributions pi(z) of the tomographic samples play a crucial role

in the theory used to compute the angular power spectra and constrain the cosmological

parameters, so it’s important that we make accurate estimation of them. Here we compare

two methods used for the estimation.

We can again benefit from the fact that the data is generated through simulation

and get the redshift truth. We match our sample against the truth catalog using the SM

matching method, then use the redshifts of the matched objects in the truth catalog as
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the true redshifts for each selected galaxy. The pi(z) of each tomographic bin can then be

estimated by making a histogram of these true redshifts.

We also test an alternative to estimate the redshift distributions by “stacking” the

posterior probability distributions, a method that is useful for real survey data where direct

access to the true redshifts isn’t available. In this approach, to produce the redshift distri-

bution estimate, we add the photoz pdf of all objects in each tomographic sample. Here

photoz pdf is the posterior probability distribution (pdf) for individual galaxies computed

on a redshift grid by the photo-z codes. Even though this approach to estimate the pi(z) is

not mathematically sound, we can compare the distributions with those made from using

true redshifts and investigate the uncertainties of pi(z)’s produced with this approach.

As shown in Figure 4.7, these two methods produce different redshift distributions

for each tomographic bin. While visually the center locations of the pi(z)s are consistent

between the two methods, the redshift distributions produced by “stacking” are narrower,

taller, and have less overlaps between adjacent bins, compared to those produced by the

true redshifts.

4.4.3 Photometric redshift performance

To evaluate the photometric performance of LSST, we use several figures of merit

based on previous simulation studies [30]. They are:

1. The bias (median) in ez = (zphoto− zspec)/(1 + zspec). Figure 4.8 shows ez vs. photo-z

and the bias in ez is plotted in figure 4.9. We find the bias in ez is below 0.05 for
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the range of photo-z used in this analysis. The requirement from the Science Book is

0.003, which is met for part of the range in photo-z.

2. The root-mean-square scatter of ez in photometric redshifts, σF = σz/(1 + z). This is

shown in figure 4.10 and shows values of less than approximately 0.1 in the photo-z

range of interest, somewhat higher than the requirement of 0.05.

3. The fraction of 3σ outliers. This quantity, shown in figure 4.11, is found to be below

10%, which is the requirement for this metric.

For the purpose of the analysis, we only check if these requirements are met for the

LSS sample in the range of 0 < z < 1.5, which contains the redshifts of all of the tomographic

samples. The photometric redshift performance based on these figures of merit is found to

close to the requirements quoted in the LSST Science Book.

4.5 Angular power spectra

4.5.1 Algorithm

In this section we outline the method used to calculate the angular power spectrum.

For simplicity, we introduce equations and definitions in the context of auto power spectra in

this subsection. In case of cross power spectra, they can be derived similarly by considering

a pair of fields.
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Figure 4.8: Scatter plot of ez vs. photometric redshift.
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Figure 4.9: The median value of ez (bias) vs. photometric redshift.

Given the information of the full sky overdensity, we can expand the overdensity

in spherical harmonics:

δ(~θ) = δ(θ, φ) =
∑
`m

a`mY`m(θ, φ) (4.6)

with harmonic coefficients:

a`m =

∫
dΩY ∗`m(θ, φ)δ(~θ) (4.7)

The angular power spectrum is defined using:

〈a∗`ma∗`′m′〉 ≡ δ``′δmm′C` (4.8)

An unbiased estimatior of the angular power spectrum can be given by:

C` =
1

2`+ 1

l∑
m=−`

|a`m|2 (4.9)
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Figure 4.10: The rms scatter (determined from the interquartile range) σF = σz/(1 + z) of

ez as a function of photometric redshift.
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Figure 4.11: The fraction of 3σ outliers as a function of redshift.

In practice, overdensity maps cannot be measured over the full-sky due to the restriction

from ground based surveys or galactic contamination for instance. The partial coverage of

the sky makes different ` modes coupled, and the estimator becomes biased. Furthermore, a

position dependent weight w(θ) (mask) is often applied to the data to correct observational

uncertainties, edge effects or simply to remove unobserved pixels. In this work, the power

spectra are calculated using NaMaster [50], a software package based on the pseduo-C` algo-

rithm [51, 52], which computes the bias of the estimator and makes corrections accordingly.

The algorithm can be outlined as following:

1. The measured data is converted to a overdensity map in HEALPix: using δi =

Ni/(N̄wi) − 1, where Ni and wi are the number of objects and weight of the i-th
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pixel, respectively; N̄ = 〈Ni/wi〉 is the weighted average of the number of objects per

pixel.

2. The pseduo-C` of the partial sky map is then computed using Equation (4.9) with

harmonic coefficients:

ã`m =

∫
dΩY ∗`m(θ, φ)w(~θ)δ(~θ) ≈ Ωp

∑
p

Y ∗`m(p)w(p)δ(p) (4.10)

where the integral is approximated with a discrete Fourier transform - a sum over all

pixels p with an identical solid angle Ωp.

3. We can express the ensemble averaged pseudo angular power spectrum measured

within the partial sky as a linear combination of the ensemble averaged angular power

spectrum over the full sky through the mode-coupling matrix:

〈
C̃`

〉
=
∑
`′

M``′ 〈C`′〉 (4.11)

where M``′ is the matrix that reflects the mode-mode coupling of the partial sky

and only depends on the geometry of the partial sky map, and is used to obtain a

unbiased estimate of 〈C`′〉 - the measured power spectrum. However, in most cases, it

is not possible to invert the mode-coupling matrix directly and uncover the unbiased

C`’s. To reduce the dimensions of the coupling-matrix and make it invertible, a set

of binning in ` modes (bandpowers) is introduced, and the computed power spectrum

becomes a step function that is a constant in each binning interval. The binning also

reduces the correlation and error in the measured C`’s.
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Figure 4.12: The Gaussian covariance error computed analytically by NaMaster divided by

the approximation σ` =
√

2/((2`+ 1)fsky)C` in the third redshift bin.

4. The Gaussian covariance matrices of the measured C`’s are approximated analytically

(see [46, 53, 54]), using the covariance of a Gaussian random field with the same power

spectrum as the measured data.

A comparison between the angular power spectrum Gaussian covariance error obtained from

NaMaster and the theoretical approximation σ` =
√

2/((2`+ 1)fsky)C` [55, 56] is depicted

in Figure 4.12.
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4.5.2 Theoretical prediction and fitting

To compute the theoretical angular power spectra, we use the Core Cosmology

Library (CCL) [57] developed by DESC.

First, we create a cosmology with the CosmoDC2 parameter set, given by ωcdm =

0.1109, ωb = 0.02258, ns = 0.963, h = 0.71, σ8 = 0.8, and w = −1.0, with galaxy bias set to

a constant that’s independent of redshift. The 3D power spectrum is then computed using

the non-linear HALOFIT code. Next, the number count tracers of each bin are generated

using the distribution of true redshifts of the sample, with redshift space distortion added.

Finally, the theoretical angular C`’s are computed with Limber’s approximation [58], which

can be expressed as the following equation:

Cth` =
2

2`+ 1

∫
dz

(
dn

dz

)2

b2(z)H2(z)P (k =
`+ 1

r
, z) (4.12)

where dn/dz is the distribution of true redshifts, b(z) is the galaxy bias and P (k, z) is the

theoretical 3D angular power spectrum.

We then fit the measured C`’s against the theoretical power spectra by minimizing

the χ2 function and varying only the galaxy bias parameters in the theoretical power spectra:

χ2 =
∑
`,`′

(Cmeas` − Cth` )Cov−1(C`, C`′)(C
meas
`′ − Cth`′ ) (4.13)

where Cmeas` and Cth` are the measured pseudo-C` and theoretical angular power spectrum,

respectively. Cov(C`, C
′
`) is the Gaussian covariance of the pseudo-C`. To account for the

inaccuracy of the theoretical power spectra at small scales, we restrict the fitting range

mostly to the linear regime, with ` values below `max defined by the condition kmax =

`maxχ(z) < 0.3 Mpc−1, where χ(z) is the comoving angular distance at the median redshift
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of each photometric redshift bin. On the other hand, the limited survey area increases the

uncertainty of measured power spectra at large scales and we limit the lower bound of our

fit to `min = 1/fsky ≈ 138.

The fit can be either done on individual redshift bins (auto or cross correlation)

using Equation (4.13) directly, or as a full fit on all redshift bins combined. Here we use an

example consists of 2 photometric redshift bins (0 and 1) to demonstrate the procedure of

full fit:

1. We concatenate all measured C`’s to one vector C`,all = (C00
` , C

01
` , C

11
` ).

2. The full covariance matrix can be written as

Covall =


Cov00,00 Cov00,01 Cov00,11

Cov01,00 Cov01,01 Cov01,11

Cov11,00 Cov11,01 Cov11,11


3. We plug C`,all and Covall in Equation (4.13) then perform χ2 fitting. The biases of

cross correlations are inferred from the biases of auto correlation using b2ij = biibjj .

Therefore, we only consider auto correlation biases as the fitting parameters in the

full fit.

The fit with n redshift bins can be generalized accordingly. The results of full fits will be

discussed in more detail in the following subsections.

4.6 True redshift vs. Stacking photo-z pdf

One of the most significant systematic uncertainty effects arises from the photo-

metric redshift estimation. We’ve shown that the photometric redshift model performs well
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in terms of serveral figure of merits, such as the root-mean-square scatter σz/(1 + z) and

bias in ez = (zphoto − zspec)/(1 + zspec). To further investigate this uncertainty, we perform

the whole analysis twice: once using true redshift, and again using the measured photo-

metric redshift, while keeping all other parameters fixed. Here we compare the galaxy bias

estimation resulting from both methods.

Method b1 b2 b3 b4 b5 b6

Full 0.71± 0.02 0.81± 0.02 0.84± 0.01 0.94± 0.01 1.12± 0.01 1.29± 0.01

Individual 0.81± 0.03 0.88± 0.02 0.89± 0.01 0.99± 0.01 1.18± 0.01 1.34± 0.01

Table 4.2: Comparison of galaxy biases obtained through a full simultaneous fit and from

fitting individual redshift bins. Here stacking photo-z pdfs is used to calculate the redshift

distribution of objects.

We perform both individual fit and full fit of galaxy biases using redshift distribu-

tions obtained from stacking photo-z pdfs and true redshifts. The results are shown in Table

4.2 and Table 4.3. Compared to stacking photo-z pdfs, we find much better consistency

between the fitted values of galaxy bias when fitting to the auto-power spectra and the

cross-power spectra when using the true photo-z distribution. Although stacking photo-z

pdfs is a procedure commonly done in analysis when it comes to determining the redshift

distributions, it is not mathematically sound [59]. In our case, given the availability of truth

data, we opt to use the true redshift in the final fiducial measurements described in this

work. Since we are concerned with the statistical uncertainty in the extraction of the power

85



spectrum and galaxy bias and in systematics from observing conditions, this does not affect

the overall conclusions of this thesis.

4.7 Deprojection of contaminants

We have previously covered the methods used to reduce the effects of bright ob-

jects and variations in survey depth on the galaxy angular power spectrum in Section 4.2.

Variations in survey properties such as seeing, airmass, sky background etc. across the

survey area may also lead to biases (or “contamination”) of the measured galaxy angular

power spectrum. In this section we describe the methods used to correct for these and the

uncertainty associated with such systematic shifts.

We use a technique called “template deprojection” that accounts for the effects

of sky contaminants to the estimated power spectrum. Deprojection is performed with all

survey property maps described in Section 4.3, in order to correct for the contamination of

the measured number density of objects (and hence the angular power spectrum) caused

by these survey properties. We use NaMaster for template deprojection calculations.

4.7.1 Algorithm

If the effect of contaminants on the measured signal is local in space, the contam-

ination can be approximated as linear on large scales [50]:

δobs(~θ) = δtrue(~θ) +
∑
i

αifi(~θ) (4.14)

where δobs(~θ) and δtrue(~θ) are the observed and true number density maps. fi(~θ) are tem-

plates of known contaminants, and αi are unknown coefficients. Roughly speaking, con-
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taminant deprojection projects the observed map onto a subspace that’s orthogonal to all

the templates. One can compute the best-fits of the unknown coefficients using:

α̂i =
∑
j

Fij

∫
d~θf∗j (~θ)δobs(~θ) (4.15)

where

(F−1)ij =

∫
d~θf∗i (~θ)fj(~θ) (4.16)

is the covariance matrix of templates fi(~θ). Consider a special case where all templates are

pair-wise orthogonal (with their variance normalized to 1), the solution is reduced to

α̂i =

∫
d~θf∗i (~θ)δobs(~θ) (4.17)

i.e, the best-fits only keep the component of the observed map that is orthogonal to all

templates. Based on Equation (4.14), we can produce the clean version of the number

density map. It is defined as

δclean(~θ) ≡ δobs(~θ)−
∑
i

α̂ifi(~θ) (4.18)

However, this definition of the clean map makes it a biased estimator of the true map

δclean(~θ) = δtrue(~θ)−
∑
ij

fi(~θ)Fij

∫
d~θf∗j (~θ)δtrue(~θ) (4.19)

This discrepancy of number density maps leads to a loss of modes in the estimated power

spectra, the “deprojection bias”, which is corrected recursively and analytically in NaMaster.

4.7.2 Shot noise

For auto-power spectra, a noise bias term should be subtracted due to shot noise.

We compute the theoretical shot noise power spectrum with

Nl = Ωp
w̄

N̄
, (4.20)
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a constant value over all multiples l, where Ωp is the pixel area, w̄ is the mean weight and

N̄ is the weighted mean of the number of objects per pixel. Then we convolve it with the

coupling matrix and bin the multiples to bandpowers. We also estimate the deprojection

bias and correct for both contributions.

4.8 Results

Here we present the measured galaxy angular power spectrum Cl and the galaxy

bias from our analysis of the LSS sample. Figure 4.13 shows the galaxy power spectra in all

redshift bins including the deprojection of all 30 survey property maps. Also shown are the

results of fitting theoretical predictions from CCL. We perform a full combined fit using all

measured auto- and cross-power spectra in all redshift bins. As a cross check, we also fit

each individual redshift bin separately. We find good fits in all bins in both cases.

The results of the fitted value of galaxy bias from both methods can be found in

Table 4.3. We can see that the two fitting methods are consistent with one another.

The results shown in Figure 4.13 are the final results and are referred to as the

fiducial measurement. We also include a plot of the galaxy bias as a function of redshift in

Figure 4.14.

The fractional uncertainty σ`/C` in the measured angular power spectra is shown in

Figure 4.15. It is smaller than 10% in most cases, and smaller than 4% at higher multipoles.

The full LSST survey will cover a much larger survey area (fsky ≈ 1/2.3) compared to the
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Figure 4.13: Measured galaxy auto- and cross-power spectra for all photometric redshift bins

(points with error bars). Also shown are the fits to the data using CCL and the extracted

values of the galaxy bias and χ2 per degree of freedom of fit in each bin (solid line). The

galaxy biases are obtained through minimizing χ2s and the error bars are computed using

the differences between the bias values corresponding to χ2 = χ2
min + 1 and the best fits.

The plot shows results for individual fits in each bin. Similar results are obtained from a full

fit of all bins combined: b1 = 0.92±0.03, b2 = 0.97±0.02, b3 = 1.04±0.01, b4 = 1.15±0.01,

b5 = 1.32± 0.01, b6 = 1.58± 0.01.
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Figure 4.14: Galaxy bias vs. center redshift of each bin from the full fit using true redshifts

distributions.
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Method b1 b2 b3 b4 b5 b6

Full 0.92± 0.03 0.97± 0.02 1.04± 0.01 1.15± 0.01 1.32± 0.01 1.58± 0.01

Individual 0.91± 0.03 0.97± 0.02 1.03± 0.01 1.14± 0.01 1.30± 0.01 1.56± 0.01

Table 4.3: Comparison of galaxy biases obtained through a full simultaneous fit and from

fitting individual redshift bins. Here true redshifts are used to generate the redshift distri-

bution of objects.

simulated data used here (fsky ≈ 1/138). We should expect that the relative uncertainty

will decrease to 1.3% (0.5% at higher multipoles) with the complete LSST survey.

4.9 Alternative methods for creating deprojection templates

The computation of deprojection bias is the most time-consuming process of the

analysis and the time complexity scales as the square of the number of contamination

templates. If we include all survey maps described in Section 4.3 for each photometric

band, it would result in a total of 5× 6 = 30 templates. The result of deprojection using all

30 maps is shown in figure 4.16. The average fractional change in C` is found to be around

0.5%, with a maximum change of 1.25%.

The contamination deprojection of one number density map with an area of 300

deg2 using Nside = 1024 and 30 templates takes about 27 CPU hours on a single NERSC

Cori node to compute. Since the NaMaster code currently utilizes only a single CPU core, it
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will be unfeasible to include all contamination templates if we were to scale the analysis to

larger survey area and higher map resolution. If we could reduce the number of templates

while capturing most of the information stored in them, it can reduce the run time of the

deprojection calculation drastically while preventing the resulting power spectra from the

risk of overfitting.

Here we explore the effectiveness and performance of two methods to minimize the

total computing time by reducing the number of templates used.

4.9.1 Principal Component Analysis (PCA)

In this secttion we describe a solution through Principal Component Analysis

(PCA), following the method used in [60]. The procedure to reduce the number of templates

can be summarized as follows:

• Normalize all contamination templates to zero mean and unit variance.

• Flatten the templates to vectors and apply PCA.

• Sort the principle component maps according to their eigenvalue or explained variance,

then retain the first n maps such that the explained variance percentage from them is

∼ 90%. This process reduces the number of maps by ∼ 50%, and therefore cuts down

the computation time by a factor of ∼ 4 .

• When performing deprojection, use these principle component maps instead of the

contamination templates.

We compare the power spectra measured using PCA templates with all contamination tem-

plates by plotting their differences with the results obtained without deprojection divided
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by the 1-σ error, as shown in Figure 4.17. Also presented are the power spectra measured

using PCA templates with the results obtained without deprojection (see Figure 4.18).

4.9.2 Contaminant selection based on linearity

As described earlier in section 4.7.1, the deprojection technique is based on the

idea of linear expansion. It works well when the contamination effects are adequately small

and linear. Here we check if this condition is met for our data. We visualize and study the

correlation between the galaxy overdensity maps and contamination templates as follows:

• For each tomographic band, normalize the contamination templates by dividing by

its per pixel mean value.

• Divide each normalized template into 9 regions based on the pixel value percentile,

where each region contains 10% of the total pixels (we discard the pixels that have

values below the 5-th or above the 95-th percentile.)

• Compute the mean galaxy overdensity for each region and estimate the standard error

using the leave-one-out Jackknife technique [61].

• For all contamination templates in each tomographic band and redshift bin, plot

the mean number overdensity against the mean overdensity of the contamination

templates of each region.

For each relation between contamination template and number density map, we

perform a linear fit. We then use only contamination templates that have a Pearson corre-
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lation coefficient r > 0.6. We compare the results with the analysis run where we use the

templates selected using these criteria to the fiducial analysis in Figure 4.19. The difference

is seen to be relatively small (less than 0.25σ`).
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Figure 4.15: Fractional uncertainty in C` for the all six auto-correlation redshift bins. We

can see that, over the whole ` range, the signal-to-noise ratio is larger than 10. The signal-

to-noise ratio is larger than 20 when ` > 700.
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Figure 4.16: Fractional change in the angular power spectrum C` due to deprojection using

all 30 systematics maps for the the auto-correlation redshift bins.
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Figure 4.17: Differences between Cl’s measured with deprojection templates vs. without

deprojection in all auto-correlation redshift bins, normalized by the uncertainty. Blue: using

all 30 systematic maps; Orange: using top 5 maps generated by PCA; Green: using top 15

maps generated by PCA.
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Figure 4.18: Comparison of deprojection methods. Difference between the auto-angular

power spectrum Cl measured using PCA deprojection (5 and 15 maps) and Cl measured

using deprojection using all 30 maps normalized by the uncertainty are shown in orange and

green. The normalized difference between the result without deprojection and the result

with deprojection using all 30 maps is shown in blue.
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Figure 4.19: Difference between auto-angular power spectrum Cl measured using depro-

jection of contaminant maps selected using linearity of contaminant with galaxy density

and Cl measured using deprojection with all 30 maps normalized by the uncertainty. All 6

photo-z bins are shown.
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Chapter 5

Summary and Conclusions

We performed a complete analysis of the galaxy angular power spectrum on sim-

ulated data (LSST DC2 catalogs), which correspond to a survey area of 300 deg2 and an

equivalent exposure of 5 years of survey data in 6 broadband filters (ugrizy). We find

that the photometric redshift performance is close to the requirements quoted in the LSST

Science Book up to z = 1.5. We use a set of 6 evenly spaced photometric redshift bins

from z = 0.2 to z = 1.4. We apply quality cuts based on studies using matching of selected

galaxies to truth information in the catalogs. After magnitude cut, the selected galaxy

sample contains 51 million objects with 95% completeness and 99% purity. We then create

bright object and depth masks, and generate survey property maps by averaging over all

visits. Finally, we compute the angular power spectra for each pair of photometric redshift

bins with and without contaminant deprojection and extract the galaxy bias in each bin

using a chisquare fit with theoretical precictions from the Core Cosmology Library.

The results show that:
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1. The relative uncertainty σ`/C` in the measured angular power spectra is smaller than

10% in most cases, and smaller than 4% at higher multipoles. The full LSST survey

will cover a much larger survey area (fsky ≈ 1/2.3) compared to the simulated data

used here (fsky ≈ 1/138). We should expect that the relative uncertainty will decrease

to 1.3% (0.5% at higher multipoles) with the complete LSST survey.

2. Changes in the angular power spectrum due to deprojection of contamination from

survey properties are found to be on average of order 0.5%, i.e. ∆C`/C` ≈ 0.5%, with

a maximum deviation of 1.5%.

3. Deprojection systematic effects are small compared to the statistical uncertainty of

the measured angular power spectra (∆C` ∼ 0.1σ` on average with a maximum of

0.25σ`). For the full LSST survey data we expect the effects of the systematics to be

significant compared to the statistical uncertainty.

4. We find that the number of survey property maps used to estimate systematic un-

certainties can be significantly reduced using principle component analysis or fair

linear selection, without affecting the results. This is important to reduce computing

resources, especially when scaled to the full LSST survey.
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